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Abstract

The amount of resources a program needs to run is a crucial aspect to its quality, so
it is important to have reliable methods that efficiently predict resource usage before
execution time. Predicting resource bounds is particularly hard for lazy functional
languages, and this can be an obstacle to a broad adoption of non-strict programming
languages..

In 2003, Hoffman and Jost [14] presented a system able to automatically obtain upper-
bounds on heap cell usage for strict first order programs. Their approach was based
on the combination of type-based analysis with Tarjan’s [31] description of amortised
analysis. This technique can also be called automatic amortised resource analysis
(AARA).

In 2012 AARA was extended to lazily evaluated programs, with a system that was
able to predict upper-bounds on memory allocation costs [30]. This analysis was
successfully applied to several programs, but limited to bounds that are linear in the
size of the input.

The main purpose of this dissertation is to extend this previous system for lazy
evaluation to polynomial resource bounds, by combining the two previous approaches.
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Chapter 1

Introduction

1.1 Motivation

The amount of resources a program needs to run is a crucial aspect to its quality.
Critical software can greatly benefit from guaranteed predictions of resource usage,
so it is important to study methods that can more accurately estimate resource
consumption arising from the execution of programs.

Manually analysing a program, especially to obtain guaranteed approximations, can
be very tedious and can very easily lead to error. As a result, automatic analysis of
resources has become subject of extensive research [14, 15, 21, 3, 12, 11, 20, 8, 9, 16,
13, 17, 10, 22].

In 2003, Hoffman and Jost [14] proposed a system that was able to automatically and
efficiently obtain linear upper bounds on heap cell usage for first order programs. Their
approach was later recognised as an instance of amortised analysis (Tarjan, 1985 [31]).
This prompted a line of research and development on the field of automatic amortised
resource analysis (AARA).

The AARA approach relies on the combination of amortisation with type-based anal-
ysis [27], where the type system provides an infrastructure to express the resource
analysis.

An important aspect of this technique is that it can be reduced to an linear program-
ming (LP) optimisation problem, which is a well-known area with solutions can be
efficiently computed [6].
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CHAPTER 1. INTRODUCTION 9

We should understand that, for Turing complete languages, resource analysis is not
decidable, and because of that, there will exist many programs for which these systems
will not derive bounds. That being said, this does not take away the fact that resource
bound analysis is very beneficial and even crucial for the programs to which it can be
applied.

Following Hoffman and Jost’s article [14], a lot of development has been done to
improve the technique and to surpass some of the obstacles that prevent resource
analysis to be applicable to more programming constructs. AARA has since then
been extended to polynomial bounds for first-order programs [12, 9], linear bounds for
higher-order programs [20], linear bounds for lazily evaluated programs [30, 22] and
even had a system that inferred polynomial bounds for higher-order programs [10].
There has been work towards integrating this last system on OCaml’s compiler.

As mentioned, part of this extensive research on AARA falls upon its usage to analyse
resource usage of lazily-evaluated programs [30, 22]. The importance of this research
is clear: although lazy evaluation offers known advantages in terms of modularity and
higher abstraction [18], its operational properties (such as time and space behaviour)
are more difficult to predict than for strict languages, which can sometimes be an
obstacle to a more widespread use of non-strict programming languages, such as
Haskell. In addition to being important in this context, this research can also be useful
for languages like OCaml, where lazy evaluation can be used if explicitly declared [2].

Previous work on type-based amortised analysis for lazy languages has enabled the
automatic prediction of resource bounds for lazy higher-order functional programs with
linear costs on the number of (co)data constructors [30, 22]. While this system is an
important contribution, it is limited to linear bounds, which means that functions with
polynomial costs can not be typed. Because many functions fall under this category,
it is important to overcome this limitation.

As a motivating example, consider the two functions attach and pairs (adapted to
Haskell from [11]):

pairs :: [a] −> [(a, a)]
pairs [] = []
pairs (x:xs) = attach x xs ++ pairs xs

attach :: a −> [a] −> [(a, a)]
attach _ [] = []
attach y (x:xs) = (x,y): attach x ys
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The function pairs takes a list and computes a list of pairs that are two-element sub-
lists of the given list; this uses an auxiliary definition attach that pairs a single element
to every element of the argument list.

Considering an execution model where pattern match and constructors have unitary
costs, it is straightforward that attach requires worst-case time and space that is linear
on the length n of the input list. Moreover, a precise bound can be derived by the
type system in [22] through a type annotated with a constant potential associated
with each input list node. Function pairs , however, exhibits quadratic time and space
on the length its input. Hence, it does not admit a type derivation in the system of
[22].

1.2 Objectives and Contribution

The main objective of this thesis is to define a resource analysis system for lazy
evaluation that allows polynomial bounds. Our approach is the following:

1. Study amortised analysis. The purpose of this step is to provide familiarisation
with the concepts involved in amortisation, emphasising the potential method,
which is crucial to the understanding of AARA systems;

2. Study type and effect systems and type-based analysis [27]. This is important
to understand how type systems can provide an infrastructure for the analysis;

3. Study prior work on AARA. This step is very relevant to understand how
amortisation and type-based analysis were combined in previous works to reach
the automatic inference of cost bounds. We focus on the systems for strict
evaluation with polynomial bounds [11] and for lazy evaluation with linear
bounds [22].The idea is to better understand the key contributions that reflect
the properties of lazy evaluation and allow the expression of polynomial bounds;

4. Propose a combined type system for lazy evaluation with polynomial bounds
based of those two previous systems;

5. Experiment with some examples that reflect the main properties of this new
system;

6. Study the implementation of some of these concepts.
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The main contribution is the successful extension of the previous analysis system for
lazy evaluation to polynomial bounds. Our type system is formulated for a simple
lazy functional language with higher-order functions, pairs, lists and recursion. For
simplicity, we focus our analysis on the number of allocations needed for a program
to execute, however, this could be easily extended to a parametric cost analysis, as
seen in previous works. We apply our analysis to a few simple examples, which we
will see detailed later in this dissertation. A secondary contribution is a prototype
implementation of this system and a demonstration of the implemented system on
two relevant examples.

This work has been present at the 2020 Workshop on Implementation of Functional
Languages (IFL)[26].

1.3 Thesis Outline

The rest of this thesis is organised as follows: Chapter 2 surveys important background,
more precisely, it introduces relevant basic concepts of the λ-calculus, it explains type-
based analysis and its advantages, and it presents a brief description of amortisation.
There’s also a brief overview of related work about AARA, where we emphasise the
previous approaches to lazy evaluation [22] and polynomial bounds [12]. Chapter 3
presents a small lazy functional language and its annotated operational semantics. It
also presents the main contribution of this thesis: a type system for resource analysis
with polynomial bounds. In the same chapter we demonstrate the analysis on two
simple examples, and finish with some final remarks. In Chapter 4 an overview of the
prototype implementation of our system is shown and demonstrated on two examples.
Finally, Chapter 5 concludes the thesis and offers some directions for future work.



Chapter 2

Background

In this chapter we provide an overview of the theoretical basis that supports our work.
We start by introducing the lambda-calculus and some concepts that are present
throughout this thesis. We then explain the theory behind type-based analysis and
amortised analysis. Finally, we present a summary of other works related to AARA
and how they were relevant for this thesis.

2.1 The lambda-calculus

In 1936, Alonzo Church defined a formal system called lambda calculus (or λ-calculus).
Through this system, Church defined the notion of a computable function that later
would be used as a basis for all functional languages (such as Haskell, ML, and others)
[4].

When we talk about the lambda-calculus, we are generally referring to pure lambda
calculus, or lambda-calculus in its most simple shape. The terms for pure λ-calculus
may take one of these three forms:

x variable

(λx.M) abstraction

(MN) application

WhereM and N are λ-terms. x is a simple variable, a character or string. An abstrac-
tion (λx.M) essentially represents a nameless function that receives one argument, x,
and has body M . (MN) is the application of M to N .

12
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As we can see, there are no numbers, arithmetic operations, conditional statements,
and other elements common to programming languages. However, it is easy to extend
this system to include these elements, as we will see further in this dissertation, or
even encode them as λ-expressions.

Free and bound variables Considering a λ-term (λx.M), we say that the variable
x is a bound variable in that abstraction, and every occurrence of x in the body M is
bound by this abstraction. In contrast, an occurrence is considered to be free if it is
not bound by any abstraction, for example, in (λx.xy), x occurs bound and yoccurs
free.

Definition 1. We call BV(M) the set of all bound variable occurrences in M and
define it as follows:

BV(x) = ∅
BV(λx.M) = {x} ∪ BV(M)

BV(MN) = BV(M) ∪ BV(N)

Definition 2. We call FV(M) the set of all free variable occurrences in M and define
it as follows:

FV(x) = {x}
FV(λx.M) = FV(M) \ {x}
FV(MN) = FV(M) ∪ FV(N)

Substitution Consider an abstraction (λx.M). If we name the function it represents
as f , we can say f(x) = M This means that, applying f to some argument N requires
the substitution by N of all free occurrences of x in M .

Definition 3. The substitution of x by N in term M can be represented like M [N/x]

and defined as follows:

x[N/y] =

N if x = y

x otherwise

(λx.M)[N/y] =

M if x = y

(λx.M [N/y]) otherwise

(ML)[N/y] =(M [N/y]L[N/y])
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Variable capture Note that, if we apply some substitution (λy.xy)[y/x], this would
originate a term (λy.yy). However, we know that the y introduced by the substitution
is not the same y introduced by the abstraction, so the term (λy.yy) is confusing
two different variables that can represent different things, because they have the same
name. This must be avoided by, before applying a substitution λx.M [N/y], requiring
that x /∈ FV (N) (we can see that in the example mentioned this does not happen,
because y ∈ FV (y)). In situations where this condition is not initially met, the bound
variable must be renamed in order to avoid variable capture, for example, considering
again the term (λy.xy)[y/x], we could rename y to z in the term (λy.xy) and this
would originate (λy.xy)[y/x] = (λz.xz)[y/x] = (λz.yz). We can see that the original
confusion does not happen anymore.

In this dissertation we will consider a variable convention [24] that states that, if M
is a λ-term in any context, then all free variables in M are chosen to be different from
all bound variables of M . This way, the problem of variable capture will not happen,
because it would be violating this convention.

Currying As we can observe in the syntax of λ-terms, one abstraction bounds
only one variable, meaning that it can only represent a function with one argument.
Currying is used to express functions with multiple arguments by taking advantage of
functions whose result is another function. For example, if we want to formalise the
function f(x, y) = M , we can represent like (λx.(λy.M)), for any term M and when
we apply it to arguments L and N the result is obtained by replacing x with L and y
by N . We can see how this works for any number of arguments.

Reduction A reduction relation can actually be defined as two relations, one-step
reduction (→) and multi-step reduction (�).

Definition 4. A one-step reduction can be represented as M → L, which essentially
means "M reduces to L by one step". We define → with the following rules:

M →M ′

MN →M ′N
N → N ′

MN →MN ′
N → N ′

(λx.N)→ (λx.N ′)

(λx.M)N →β M [N/x] (β)

Multi-step reduction is a reflexive transitive closure of one-step reduction and, as the
name indicates, allows many steps, including 0 (because of reflexivity).
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Definition 5. We represent multi-step reduction like M �M ′, which can be read as
"M reduces to M ′", and define it with the following rules:

M →M ′

M �M ′
M �M ′′ M ′′ �M ′

M �M ′ M �M ′

When a term can admit no reduction, we say that it is in normal form.

Definition 6. If M is a λ-term, then M is in normal form if it does not have any
sub-terms of the form (λx.R)S.

Considering again the term mentioned above, we can write:

(λx.x)((λy.y)a)→β (λy.y)a→β a

and
(λx.x)((λy.y)a)� a

We say that a is the normal form of the term ((λx.x)((λy.y)a).

Note how, in the first reduction, we are faced with the choice of what term to reduce
first. We decided to start by reducing the outermost application, but we could have
chosen to start by reducing (λy.y)a and we would have reached the same value. This
raises the question of whether we can actually reach different normal forms depending
on the choices we make during reduction. The answer to this question is no, and this
is proven by a corollary of the Church-Rosser Theorem (See section 3.2 of Hankin’s
guide for a detailed explanation [24]).

Reduction strategies Another question that can be raised is whether there is a
better choice to be made depending on the term to be reduced. This is a more
complicated discussion.

We will briefly introduce the concept behind two reduction orders: normal order
reduction and applicative order reduction. Normal order reduction is an reduction
strategy that chooses the leftmost reducible expression (redex) to be reduced first, a
beta-redex is substituted as is in the body of the expression and therefore evaluated as
often as it is used. It compares to a call-by-name evaluation strategy in programming
languages. Contrasting with a normal order reduction, there is a reduction strategy
called applicative order reduction. This strategy chooses to evaluate the leftmost
innermost argument, meaning that all arguments are evaluated once; this strategy
corresponds to a call-by-value evaluation.
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Example 2.1.1.

(λx.xx)((λy.y)a)→β (λx.xx)a→β aa (Applicative order)

(λx.xx)((λy.y)a)→β ((λy.y)a)((λy.y)a)→β a((λy.y)a)→β aa (Normal order)

Since applicative order reduces all arguments only once, it has the advantage of
preventing excessive computations. However, consider the following expression:

(λxy.y)((λx.xx)(λx.xx))z

Applicative order would try to evaluate the argument (λx.xx)(λx.xx) over and over
and to no avail. Normal order reduction, on the other hand, would immediately
evaluate the expression to z. This means that, under a normal order evaluation, if an
argument is not needed, it will not be evaluated. Moreover, applicative order may fail
to reach a normal form whereas normal order will always reach a normal form if it
exists.

Lazy evaluation, or call-by-need, is an technique used to implement normal order
evaluation efficiently, in a way that avoids duplication of computations. It does this
by delaying the evaluation of expressions until their value is needed.

To avoid duplication, this technique introduces mechanisms to "share" sub-expressions
by representing a term as graph. We will not dive deep into graph theory, but essen-
tially, graph reduction is the main implementation technique used for lazy evaluation.
As mentioned, a term is represented as a graph that can have multiple references to the
same node, which avoids repeated evaluations. A graph can have @-nodes to represent
applications, λ-nodes to represent an abstraction, and leafs to represent variables or
constants. It is important to understand this concept because it heavily influences the
mechanics of our analysis, to better understand it let us take a look at the following
example.

Example 2.1.2. In this example we can see how, when evaluating the same ex-
pression, the evaluation of the argument is delayed until needed. We start by re-
ducing the outermost @-node (corresponds to the reduction (λx.xx)((λy.y)a) →β

((λy.y)a)((λy.y)a)). The two pointers to the node x, now point to the application
((λy.y)a), and because of that, we avoid reducing the term (λy.y)a twice, but still
reach the correct value.
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@

@λx

@

x

λy a

y

=⇒

@

@

λy a

y

=⇒

@

a
=⇒ aa

This is an informal representation of this strategy. Later in this thesis, when we
introduce our operational semantics, it will be more clear how it can be formally
defined.

2.2 Type-based Analysis

Static analyses [25] are program analysis techniques which aim to predict, before
execution, program behaviour arising during execution. This is usually useful for
compiler optimizations (e.g. to check if the program contains dead code, to avoid
redundant computations, etc), to ensure program correctness (e.g. statically checked
exception handlers in Java), and program development (aid for modern IDEs, to
support debugging, refactoring, and program understanding).

Type-based analysis [27] is an approach to static analysis that attaches static analysis
information to types.

One main advantage of this approach is the fact that it facilitates modular analysis,
as types allow for the expression of interfaces between components. It also helps the
comunication with the programmer by extending an already-known notation, namely,
types.

Other advantages revolve around efficiency and completeness. Types provide an
infrastructure from which the analysis can be done. For example, in a type and
effect system, each typing rule provides a localised setting for the analysis, as we will
show in example 1. Furthermore, the correctness of the analysis is subsumed by he
correctness of the type system, which means that the correctness of the analysis can
be formulated and proven using the well studied methods in type systems.
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Type and Effect Systems Type and effect systems are a particular case of type-
based analysis. Overall, these systems improve the information given by types by
decorating them with annotations so that they express more about the program being
analyzed (effects).

There are many classes of analysis in which one can take advantage of these systems.
One specific class that can benefit from this technique is exception analysis. We will
exemplify how it works with the following example:

Consider a small functional language SL [27] with types τ := int | τ → τ and
expressions

e ::= c

| x

| λx.e

| e e

| ifzero e e e

| raise T

| try e handle T e

Let us annotate the types with effects ε, which represent possible exceptions raised,
τ := int | τ ε−→ τ .

The analysis is formulated using annotated type inference rules as presented in figure
3.2. There are three rules deserving of explanation. Raise raises the exception that is
associated to it, and Try handles the exception associated to it, removing it from the
set of possible exceptions raised. The abstraction rule Abs is the one that captures
the exception resulting from the body of the function and annotates it to the type of
the function. We omit the operational semantics for this language (see [27]).

The purpose of this analysis is to determine an approximation to the expeptions that
could be raised by evaluating a program.

Example 2.2.1. For the program:

(λx.ifzero x (raise Z) x) 3

we can analyse (λx.ifzero x (raise Z) x) so as to obtain int Z−→ int; ∅, as shown in
Fig. 2.2. Hence, the overall type and effect of the entire program is int;Z, meaning
that the evaluation of the program might raise exception Z.



CHAPTER 2. BACKGROUND 19

(Const)
Γ ` c:int; ∅

Γ(x) = τ
(Var)

Γ ` x:τ ; ∅

Γ, x : τ1 ` e : τ2; ε
(Abs)

Γ ` λx.e : τ1
ε−→ τ2; ∅

Γ ` e : τ2
ε3−→ τ1; ε1 Γ ` e2 : τ2; ε2 (App)

Γ ` e1 e2 : τ1; ε1 ∪ ε2 ∪ ε3

Γ ` e0 : int; ∅ Γ ` e1 : τ ; ε1 Γ ` e2 : τ ; ε2 (Ifzero)
Γ ` ifzero e0 e1 e2 : τ ; ε1 ∪ ε2

(Raise)
Γ ` raise T : τ ;T

Γ ` e1 : τ ; ε1 Γ ` e2 : τ ; ε2 (Try)
Γ ` try e1 handle T e2 : τ ; (ε1/T ) ∪ ε2

Figure 2.1: Type system for SL

Const
` 3:int; ∅

Γ(x) = int
Var

x:int ` x:int; ∅
Raise

x:int ` (raise Z) : τ ;Z

Γ(x) = int
Var

x:int ` x : int; ∅
Ifzero

x : int ` ifzero (raise Z) x:int;Z
Abs

` λx.ifzero x (raise Z) x:int Z−→ int
App

` (λx.ifzero x (raise Z) x) 3:int;Z

Figure 2.2: Derivation tree for Ex. 2.2.1
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2.3 Amortisation

Amortized analysis [28] is a method for analysing the complexity of a sequence of
operations. While a worst case analysis considers the worst case for each operation,
and an average case analysis considers the average cost over all possible inputs, an
amortised analysis is concerned with the overall worst-case cost over a sequence of
operations. The motivation for this type of analysis arises from the fact that some
operations can be costly, while others can be faster or "cheaper", and in the end they
can even each other out. In some cases, analysing the worst-case per operation may
be too pessimistic.

In an amortised analysis we define a notation of "amortised cost" for each operation
that satisfies the following equation:

m∑
n=1

an ≥
m∑
n=1

tn

With a as the amortised cost and t as the actual cost,this means that, for each sequence
of operations, the total amortised cost is an upper bound of the total actual cost. As
a consequence, in each intermediate step of the sequence, the accumulated amortised
cost is an upper bound of the accumulated actual cost. This allows for the existence
of operations with an actual cost that exceeds their amortized cost, these are called
expensive operations. Cheap operations are operations with a cost lower than their
amortised cost. Expensive operations can only occur when the difference between the
accumulated amortized cost and the acumulated actual cost (accumulated savings) is
enough to cover the "extra" cost.

There are three different methods for amortised analysis: the aggregate method (total
cost), the accounting method (banker’s view) and the potential method (physicist’s
view). The choice of which to use depends on how convenient each is to the situation.

We will look at the classic example [7] of a dynamic array A that needs to be resized
(doubled, in this case) every time we want to insert an element el but the size of the
array has reached its full capacity. The functions are defined in pseudo code in figure
3.1, with size(A) being a function that returns the size of array A and capacity(A)

being a function that returns the full capacity of array A (size + free space).

Let us use amortized analysis to prove that the cost of a sequence of n insert operations
is O(n), that is, each insert has an amortized cost of O(1) .
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1: procedure Insert (el, A)
2: if size(A) = capacity(A) then
3: A← Resize(A)

4: A.append(el)

5: procedure Resize (A)
6: B← new Array(size(A)*2)
7: for let x of A do B.append(x)

8: return B

Figure 2.3: Insert and resize operations

It’s easy to see how an amortized analysis can be a more appropriate approach to this
case, as the resize operation, which is more costly, only happens every so often.

Aggregate Method In the aggregate method the total running time of the sequence
of operations is analyzed. In a sequence that takes T (n) time in the worst case, the
amortized cost of each operation is T (n)/n.

Lets assume we want to insert n elements to our dynamic array A and each operation
i has a cost of ci. The we can see that ci is as follows:

ci = 1 +

i− 1 size(Ai) = capacity(Ai)

0 otherwise

The total amortized cost will be: ∑n
i=1 ci
n

and
∑n

i=1 ci
n

=
n+

∑|log2(n−1)|
j=1 2j

n
= O(n)

n
= O(1).

Note that when size(Ai) = capacity(Ai), i − 1 is a power of 2 (since we’re always
doubling the size of the arry),

∑|log2(n−1)|
j=1 2j is simply the sumations of the powers of

2 up to n− 1.

Accounting Method This method handles the accumulated savings like credits
associated to a location in a data structure. These credits are used to "pay" for future
accesses to those locations.



CHAPTER 2. BACKGROUND 22

Much like a savings bank account, low-cost operations are charged a little bit more
than their true cost, and the surplus is deposited into the bank account for later
use. The amount of extra charge should be chosen such that the balance in the bank
account always remains positive.

It’s important to understand that the extra cost does not mean that the operations
actually need those extra resources, this serves simply for analysis purposes.

The amortized cost of an operation is the total cost of that operation, plus the credits
alocated by the operation minus the credits spent by the operation.

Let us assume again we want to insert n elements to our dynamic array A and each
operation i has a cost of ci.

We define that each operation has an actual cost ci of 1, but we charge 3 credits for
each insertion. These are the credits that will pay for the extra cost of the resizing
operations.

When we want to insert an element and there’s enough space, we insert it into one of
the free spaces of the array with a cost of 1, and associate 1 credit to that element,
and another to the element capacity(A)

2
positions prior to the current position (in the

first insertion we "waste" one of the credits).

When we want to resize the array, each element already in the array will have 1 credit
associated to it, that pays for its insertion in the new array.

This way, the extra cost of the resize operations is spread over the entire sequence,
making the amortized cost of each operation O(1).

Potential Method This method defines a function Φ that maps each state of the
data structure di to a real number (potential of di). This function should be chosen
such that the potential of the initial state is 0 and never becomes negative, that is,
Φ(d0) = 0 and Φ(di) ≥ 0, for all i. This potential represents a lower bound to the
accumulated savings.

The amortized cost of an operation is defined as its actual cost (ti), plus the change in
potential between di−1 and di, where di is the state of data structure before operation i:

ai = ti + Φ(di)− Φ(di−1)

This means that:
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j∑
i=1

ti =

j∑
i=1

(ai + Φ(di−1)− Φ(di))

=

j∑
i=1

ai +

j∑
i=1

(Φ(di−1)− Φ(di))

=

j∑
i=1

ai + Φ(d0)− Φ(dj)

Note that the sequence of potential function values forms a telescoping series and
thus all terms except the initial and final values cancel in pairs. And because Φ(dj) is
always equal or greater than Φ(d0), then Σ(ai) ≥ Σ(ti).

Let us assume again we want to insert n elements to our dynamic array A.

We define the potential function as Φ(Ai) = 2size(Ai) − capacity(Ai). Ai is the state
of the array before operation i.

Given that when we resize the array, it always becomes at least half full, the potential
function will never be negative.

When we do a resize operation, the potential value becomes zero (because capacity(Ai) =

2 ∗ capacity(Ai−1) and size(Ai) = capacity(Ai−1)). The allocation of a new array and
copy of the values from the old array to the new one has an atual cost of O(n), but
the decrease in potential eavens out that value leaving a total amortized cost of O(1).1

As we can see, with the right choice of potential function, amortized analysis gives
a tigher bound for the sequence of operations than simply analysing each operation
individually - that would give a pessimistic bound of O(n2) for n operations.

This last method (potential method) is very relevant in the context of this thesis
because the AARA approach is based on it. More precisely, this approach takes
on the concept of potential and associates it to the data structures involved in the
analysis through a type system. This will be further discussed in following sections of
this dissertation.

1Note that, immediatly after a resizing operation the array becomes half full, so the potential is
never negative.
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2.4 Automatic Amortised Resource Analysis

In 2003, Hofmann and Jost [14] proposed a system for static automatic analysis of
heap space usage for a strict first-order language. This system was able to obtain
linear bounds on the heap space consumption of a program by using a type system
refined with resource annotations. This annotated type system allowed the analyser
to predict the amount of heap space needed to evaluate the program by keeping track
of the memory resources available. This form of analysis would later be recognised as
an instance of Tarjan’s amortisation [31].

Further work has been done using this approach, which is more specifically based
on the potential method of amortised analysis. The idea behind this approach is
the association of potential to data structures through type annotations, where the
annotations serve as coefficients for the potential function. The key to a successful
analysis is the choice of a "good" potential function, "good" being a potential function
that simplifies the amortised costs. To reach good values for the potential function,
the type rules stipulate restrictions over the type annotations. During type derivation,
those restrictions generate constraints that are collected and then sent to an off-the-
shelf LP solver, to be solved automatically.

In 2010 [12], the same authors address the biggest limitation on previous article [14]:
restriction to linear bounds. Their new system infers polynomial upper bounds on
resource usage for first-order programs as a function of their input, and is generic
in terms of resources. This extension is done without losing expressiveness. The
infered polynomial bounds result in linear constraints, meaning that the inference of
polynomial bounds can still be reduced to an linear optimisation problem.

Later, Jost et al. [20] present the first automatic amortised analysis able to deter-
mine linear upper-bounds on the use of quantitative resources for strict, higher-order
recursive programs.

In [22] AARA is extended to compute linear bounds for lazily evaluated functional
languages. This is an important extension because it tries to remove an obstacle to
the broader use of lazy languages: the fact that resource usage for their execution
very hard to predict. This system improves the precision of the analysis for co-
recursive data by combining two previous analyses that considered the allocation costs
of recursive and co-recursive programs. The system is generalised to a parametric cost
model and has the key aspect of tracking self-references, which is essential to model
the graph reduction techniques that are typically used in lazy functional language
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implementations.

These four contributions to AARA are the main support for our analysis, and we will
explain how in the next sections.

2.4.1 First-Order Languages

A starting point for the study of AARA for this dissertation was Hoffmann and Jost’s
article [14], which we have summarised above and will now explain in more detail.
It served as a support to better understand how certain concepts, such as resource
usage and collection of resource constraints, are introduced in a language, and how
they appear in practice.

As mentioned, the article presents a system that can efficiently obtain linear bounds
on the heap space consumption of first-order functional programs. They present the
problem as follows:

"Given a functional program containing function f of a certain type (...) find a
function v such that the computation f(w) requires no more than v(w) additional
cells".

In short, the article addresses this problem by instrumenting the code of the program
being analysed by a counter that is augmented each time there is the need to allocate a
heap cell. The function v is the function computed by the instrumented code, followed
by a projection that only keeps the value of the counter.

A first-order typed language LF is defined and decorated with a freelist that represents
the number of available heap cells. Resource annotations are introduced to the type
system, which allow the analyser to predict the amount of heap space needed to
evaluate the program. A simplified version of their language is given by the following
grammar (where * represent the empty tuple, also known as unit):
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e ::= ∗ | x

| nil

| f(x1...xn)

| let x = e1 in e2

| cons(x1, x2)

| match x with cons(x1, x2) -> e1 | nil -> e2

To define the operational semantics of the language they consider a set of locations
Loc, which represents a set of heap addresses; a stack S, which is a mapping from
variables to values; a heap σ, which is a mapping from locations to values, and a
freelist m.

Lastly, they define their values as:

v ::= c | l | NULL | (v, v)

A function SIZE is defined, which returns the size for a given value. The idea is that
value v occupies SIZE(v) words in the heap.

The evaluation of an expression is done according to a relation of the form: m,σ, S `
e v, σ′,m′ (where represents the evaluation operation). As a side effect, the heap
can be modified and the freelist can increase or decrease.

We will omit in this report most rules for the operational semantics, except two
particular ones. There are two versions of pattern matching, Match immediately
deallocates the node matched against, meaning that the freelist grows, while the
Match ' construct preserves it, and the freelist stays the same.

S(x) = l σ(l) = (vh, vt) m0 = m+ SIZE(σ(l))

m0, S[xh → vh][xt → vt], σ \ l ` e1  v, σ′,m′

(Match-Cons)
m,S, σ ` match x with cons(x1, x2) -> e1 | nil -> e2  v, σ′,m′

S(x) = l σ(l) = (vh, vt)

m,S[xh → vh][xt → vt], σ ` e1  v, σ′,m′

(Match-Cons’)
m,S, σ ` match x with cons(x1, x2) -> e1 | nil -> e2  v, σ′,m′

The resource annotations are introduced in the type system, the following grammars
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defines the simple types and the annotated types.

Simple types

A := 1 | B | A ⊗ A | A ⊕ A | L(A)

F := (A, ..., A)→ A

Annotated types

P := 1 | B | P ⊗ P | R ⊕ R | L(R)

R := (P, k)

F := (P, ...P, k)→ R

The typing judgment for the annotated type system is Γ, n `Σ e : A, n′, which means
that, given a signature Σ that maps a set of function names to their first-order types,
a typing environment Γ, and with n heap cells available, e has type A with n′ free
heap cells. The typing judgement is done according to a set of rules defined in the
article, which we will also omit in this report, except for the pattern matching rules
and the list constructor rule. We decided to show this last one because, while it may
not be obvious in the pattern matching rules, most of the typing rules result in side
inequalities, which we call constraints.

n ≥ SIZE(A⊗ L(A, k)) + k + n′
(Cons)

Γ, xh : A, xt : L(A, k), n `Σ cons(xh, xt) : L(A, k), n′

Γ, n `Σ e1 : C, n′

Γ, xh : Axt : L(A, k), n+ SIZE(A⊗ L(A, k)) + k `Σ e1 : C, n′

(LIST-ELIM)
Γ, xh : A, xt : L(A, k), n `Σ match x with cons(x1, x2) -> e1 | nil -> e2 : C, n′

Γ, n `Σ e1 : C, n′ Γ, xh : Axt : L(A, k), n `Σ e1 : C, n′
(LIST-ELIM’)

Γ, xh : A, xt : L(A, k), n `Σ match x with cons(x1, x2) -> e1 | nil -> e2 : C, n′

It is important to notice that the annotated type derivation T’ of some program P is
determined by its underlying non-annotated type derivation T. It is important because
it means that, if we want to derive T’, all that needs to be done it find the numerical
annotations such that the constraints resulting of the derivation are satisfied. These
constraints are linear, which means that the inference of annotations can be reduced
to a linear optimization problem, and can be handled by an LP solver.
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Let us consider a function f of type L(A), L(A)→ L(A) and assume we have infered
the annotations such that the annotated type of f is L(A, 4), L(A, 0), 1→ L(A, 1), 2.
This means that the function call f(l1, l2) evaluates to l3 provided that there are at
least 1 + 4 ∗ |l1| available heap cells, and that after the evaluation there are at least
2 + 1 ∗ |l3| free heap cells available.

As a support to the study of this article, we implemented a prototype based on the
system presented. The development and implementation are discussed in chapter 4.

While the article presents an efficient solution in the context of first-order functions, it
lacks to give a solution that extends to higher-order functions. This issue is approached
in following articles that we have mentioned above, one of them [20] which we will
discuss briefly in the next section.

2.4.2 Higher-Order Languages

The previous section described an approach to first-order languages. This work was
eventually extended to higher-order functions in [20] and further developed in Jost’s
PhD thesis [19]. In 2016 it was extended for polynomial bounds [10].

When dealing with higher-order programs, the control flow is more difficult to de-
termine. It becomes necessary to deal with closures, which are records that store a
function together with an environment.

To address this new paradigm, the function call f(x1, . . . , xn) we saw in the previous
section becomes obsolete, and to replace it, they consider a general application (x1 x2 )

and introduce a general lambda abstraction (λx.e).

The type rule pertaining to abstraction is worth explaining. Here we present a
simplified adaptation of the abstraction rule in [20], that captures an important
behaviour.

x:A
q′
q
e:B dom(Γ) = FV(e) \ {x} Γ / {Γ,Γ}

Γ 0
cost of abstraction

λx.e:A
q−→
q′
B

Abs

In this judgement, Γ represents a typing environment, A q−→
q′

B represents the type

of a function with q − q′ constant cost, and FV(e) is the set of free variables of the
expression e.
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Because the potential stored in the function closure becomes available for each ap-
plication of that function, to ensure that potential is not used more than once, the
potential stored in a closure is restricted to be 0. This allows the unlimited repeated
application of functions. This can be achieved by stating that the context Γ shares to
itself and this restriction is represented by the rule Γ / {Γ,Γ}. The relation / will be
better defined later in this thesis, but in this context it essentially just generates the
constraint x = x + x for each resource variable in Γ, forcing them all to be zero. All
the potential required for the function body must then be provided by its arguments
(except for a constant amount, given by the arrow annotations).

The body of a function is only analysed once. A set of constraints is associated with
the function when analysed, and these constraints are copied from the type at each
application. If some resource variable only occurs in a function’s type and constraints,
it is given a fresh name for each application, and because of this, the LP-solver may
choose a different solution for each individual application of the same function.

2.4.3 Polynomial Potential

In this section, we briefly explain Hoffman’s approach to polynomial potential [12].
We go over the main contributions of this system and what influenced our approach.

This article presents a technique for inferring polynomial bounds, that still relies only
on linear constraints. This is a very important feature because, until then, it was
considered that the dependence on linear programming imposed a limitation to linear
bounds.

One key aspect of this work is the use of binomial coefficients as a basis for polynomials,
rather than the more common monomial basis xn for n >= 0 (i.e. representing
potential like this

∑k
i=1 qi

(
n
i

)
rather than this

∑k
i=1 qi.n

i).

First, let us consider a list of type L~p(A). This is a simple list type, refined with a
resource annotation ~p = (p1, . . . , pk), where (p1, . . . , pk) represents a vector of coeffi-
cients that will be used to calculate the potential of the list. We can translate this
annotated type to: the number q1 is the potential assigned to every element of the
list, q2 is the potential assigned to every element of every suffix of the list, q3 is the
potential assigned to every element of every suffix of the suffixes of the list, and so on.

The main advantage of using binomial coefficients is the fact that it simplifies the
definition of the additive shift. The additive shift is an operation on the coefficients
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~p = (p1, . . . , pk)

Σ;xh:A, xt:L
/(~p)

0

p1+Kcons

cons(xh, xt):L(~p)(A)
T:Cons

~p = (p1, . . . , pk)

Σ; Γ;xh:A, xt:L
/(~p)(A)

q′+KmatC
2

q+p1−KmatC
1

e1:B

Σ; Γ
q′−Knil

q−Knil

e2:B

Σ;x:L(~p)
q′
q

match x with cons(xh, xt) -> e1 | nil -> e2:B
T:MatL

Figure 2.4: Rules T:Cons and T:MatL

represented by a resource annotation, that corresponds to the change in potential
for typing branches of a pattern match. Let us consider a vector of coefficients ~p =

(p1, p2, . . . , pk), the additive shift of vector ~p is

/~p = (p1 + p2, p2 + p3, . . . , pk−1 + pk, pk)

The idea is that the potential assigned to the tail xs:L/~p of a list x :: xs:L~p is used to
pay for recursive calls, calls to auxiliary functions and constant costs before and after
recursive calls.

Similarly to the other works on AARA, the inference of constraints on the resource
annotations is done during type inference, so it is also important to explain how these
concepts were introduced in the type rules and why. As mentioned, the additive
shift allows the typing of the branches of a pattern match, so naturally, we see these
concepts arise in match rules and constructor rules. In his analysis, Hoffman works
with list and tree data structures, but because we only consider lists in our analysis,
we are only interested in the rules written for lists. We can see them in Fig. 2.4.

Some things to mention before explaining the particularities of these rules, note how
the turnstile is annotated with values, one above and another below. Those are the
values that keep track of resource usage during type inference. To be more specific, a
judgement of the form Γ z

z′
e:C can be read as: considering a typing environment Γ

and with z resource units available, we can infer the type C for the expression e and
infer that the evaluation of e consumes z − z′ resource units.

T:Cons infers the type of a list constructor and illustrates the fact that one has to pay
for the potential that is assigned to the new list. To do so, they require that the tail
of the list xt is typed with the additive shift of the potential of the new list and that
there are p1 resource units available. The parameter Kcons is a parametric constant,
it is there to formalise the fact that we need to pay for the cost of allocating space
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for the new list. The rule T:MatL complements T:Cons, and shows how to use the
potential of a list to pay for resource usage, particularly in the "cons" branch. The
tail of the list is annotated with the additive shift of the potential of the list, allowing
recursive calls (with annotation ~p) and calls to auxiliary functions (with annotation
(p2, p3, . . .)), furthermore, p1 resource units become directly available.

To summarise, we have explained the idea behind the additive shift and described
how Hoffmann introduced it in the type inference rules. The way it is inserted into
the type system through a vector of coefficients, and the way the type rules use these
values during inference is used in our system in a mostly identical manner.

2.4.4 Lazy Evaluation

In [22], Jost et al. approach the problem of inferring strict cost bounds for lazy
functional languages by taking advantage of an AARA system to keep track of resource
usage. In this section, much like in the previous one, we briefly explain this approach,
focusing mainly on the key points that we took advantage of for our system.

The main contributions of this system deal with the particularities of the mechanics
that define lazy evaluation, namely, how it delays the evaluation of arguments and
uses references to prevent multiple evaluations of the same terms.

One very important contribution is the introduction of an annotated thunk structure
to the type system. This structure essentially denotes a delayed evaluation of a term
and maintains the cost of evaluating the delayed term. Tp(A) means: to evaluate the
delayed expression of type A, we need p resource units available.

The use of resource annotations is also crucial, much like in other AARA systems.
They are used during type inference to keep track of the resource usage of an expres-
sion, and attached to the types of functions to denote the overall cost evaluating the
function.

Γ z
z′
e:C

This judgement means, under the environment Γ and with z resource unit available,
the evaluation of e has type C and leaves z′ resource units available.

Finally and possibly the most important contribution, the type rule Prepay. This
is a structural rule that allows the cost of a thunk to be paid in advance, preventing
that same cost to be accounted in further uses of the same thunk, "simulating" this
way the memoization of a call-by-need evaluation.
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Γ, x:Tq0(A)
p′
p
e: C

Γ, x:Tq0+q1(A)
p′

p+q1
e: C

(Prepay)

These are the main points that we considered to understand how we could handle lazy
evaluation in our analysis. Supplementary to these elements, we also took advantage
of most syntactic and semantic choices of this article to write our system and the
language that supports it. We will come back to these choices next when we explain
our language and operational semantics.

2.4.5 Other Related Work

Here we provide a brief overview of some other works related to AARA that were not
directly relevant for our development, but add to the knowledge of how AARA has
developed along the years and how it can be adopted in different contexts.

Following work [15] used the AARA approach to obtain heap space requirements for
Java-like programs with explicit deallocations. The data is assigned a potential related
to its input and layout, and the allocations are then payed with this potential. This
way, the potential provides an upper bound on the heap space usage for the given input.
Whereas in the previous work a refined type consisted of a simple type together with
a number, object-oriented languages require a more complex approach due to aliasing
and inheritance, and so a refined type in this context consists of a number together
with refined types for the attributes and methods.

Atkey [3] presented a system that extends AARA to pointer-manipulation languages
by embedding a logic of resources based on intuitonistic logic of bunched implications
within separation logic.

In [9] it is studied how AARA can be used to derive worst case resource usage for
procedures with several arguments, and the previous inference of bounds is generalised
for arbitrary multivariate polynomials (with limits like m ∗ n). The drawbacks of a
univariate analysis are the fact that many functions have multivariate characteristics,
and the fact that, if data from different sources is interconnected in a program,
multivariate bounds like (m+ n)2 will appear.

In 2016, Hoffmann et. al [10] presented a resource analysis system based on AARA
that derives worst case bounds for higher-order programs with user defined inductive
types. The derived bounds are multivariate resource polynomials. The system was
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integrated with Inria’s OCaml compiler and reuses the parser and type inference from
this compiler.

This chapter provided a revision of relevant background concepts for this thesis.
Concepts related to the lambda-calculus were addressed, as well as type-based analysis
and amortisation, two crucial techniques in the context of this thesis. A review of
previous works on AARA was also presented, with focus on the analysis systems for
lazy evaluation with linear bounds and strict evaluation with polynomial bounds, the
two main focal points of this thesis.



Chapter 3

Polynomial Analysis for Lazy
Evaluation

In this chapter, we explain the approach we took to reach our main contribution:
extend the current lazy evaluation analysis system to consider polynomial potential. In
summary, we present a lazy functional language and its operational semantics (against
which the analysis is done), then we explain the type inference rules needed to analyse
the resource usage, and finally we provide a detailed demonstration of how the analysis
can be done with some examples.

3.1 A Motivating Example

We have explained the motivation behind the need to extend the current resource
analysis systems for lazy evaluation to consider polynomial potential, but to under-
stand what that means at a practical level, let us take a look back at the function
pairs that we presented in the introduction.

pairs ::[ a] −> [(a, a)]
pairs [] = []
pairs (x:xs) = (attach x xs)++(pairs xs)

attach :: a −> [a] −> [(a, a)]
attach _ [] = []
attach y (x:xs) = (x,y ):( attach x ys)

With the aid of two auxiliary functions, attach (illustrated above) and ++ (Haskell’s
append), pairs takes a list as an argument and computes a list of pairs that are two-
element sub-lists of the given list. This function iterates over every sub-list of the
input list, meaning that this is a function with polynomial potential. This also means

34
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that the system we studied for lazy evaluation is not able to derive bounds for this
function, which is very undesirable since it imposes a great limitation to that system.

To understand how we should approach this problem, we studied how we could use J.
Hoffman’s [12] approach for strict languages (the approach that we have explained in
Section 2.3.4), and combine it with Jost’s system [22] (explained in section 2.3.3), to
obtain a resource analysis system for lazy languages with polynomial potential.

3.2 A Lazy Functional Language

In this section, we present the language and operational semantics against which our
analysis is done.

We start by introducing a simple lazy functional language (SLFL) composed by the
syntactical terms e and w, presented in Fig. 3.1. Our expressions e include vari-
ables, lambda expressions, list constructors, let-expressions, and pattern matching.
The values w are in weak head normal form and include constant values, pairs, list
constructors and lambda expressions. To simplify the presentation of our expressions,
sometimes we will be using a semicolon instead of in in let-expressions.

e ::= c | λx. e | e y | let x = e1 in e2

| (x1, x2) | cons(xh, xt) | nil

| match e0 with (x1, x2) -> e1

| match e0 with cons(xh, xt) -> e1 | nil -> e2

w ::= c | λx. e | (x1, x2) | cons(xh, xt) | nil

Figure 3.1: Syntax for SLFL expressions and normal forms

As mentioned, our syntax and cost model are largely based on Jost et al.’s semantics
[22], which in its turn, is based on Sestof’s revision [29] of Launchbury’s operational
semantics for lazy evaluation [23]. The main difference is the restriction to list and
pairs constructors rather than more general recursive types. This was done to simplify
the presentation, and we believe it would be a straightforward task to extend this
system to more general data structures.
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3.2.1 Operational Semantics

Here we present the rules that define the operational semantics for SLFL.

Before we explore the rules in more detail, it is important to explain the structure of
our judgements and its meaning:

H, S,L
m′
m
e ⇓ w,H′

The relation can be read as follows: under a heap H, a set of bound variables S and a
set of locations L, an expression e is evaluated to value w, in weak head normal form,
consuming m−m′ resource units and producing a new heap H’. The semantic rules
in Fig. 3.2 illustrate how an expression is evaluated.

A heap H is a mapping from variables to thunks. As was mentioned in Section 2, a
thunk is a delayed evaluation of an expression, meaning that our heap saves expressions
that are possibly not yet evaluated. A set of locations L is used to keep track of the
locations of the expressions that are being evaluated (See rule Var⇓), this is done
to prevent cyclic evaluation. We also use a set of variables S to keep track of bound
variables.

The operational semantics is instrumented by a counting mechanism that keeps track
of resource usage for each expression. The resource usage tracked in these rules is
the target of our cost analysis. For simplicity, we decided that our analysis would
only be interested in calculating cost bounds on the number of allocations used in
an expression. Note that, however, the system could easily be extended to consider
multiple cost parameters, such as the number of steps, number of applications, and
others. This could be done by assigning different constants to each reduction rule to
specify how many resource units should be available when considering a specific cost
parameter. We can see this parametrization be used in Hoffman’s [12] and Jost et al.’s
[22] analyses. In our system we consider only one constant, 1, in the reduction rules
Let and Letcons.

Discussing the evaluation rules As mentioned above, these rules are largely based
on the semantics from [22], their construction and meaning are mostly identical. The
main differences can be seen in the definition for rules Match-L⇓, Match-P⇓ and
Letcons⇓.

Rule whnf⇓: A lambda expression, a constructor and a constant are already final
values so they evaluate to themselves and leave the heap unmodified. This incurs no
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H, S,L m
m
w ⇓ w,H

(whnf⇓)

H, S,L ∪ {l} m
m
e ⇓ w,H′

H[l→ e], S,L
m′
m
l ⇓ w,H′[l→ w]

(Var⇓)

l is fresh H[l→ e1[l/x]], S,L
m′
m
e2[l/x] ⇓ w,H′

H, S,L
m′
m+1

let x = e1 in e2 ⇓ w,H′
(Let⇓)

H, S,L
m′
m
e ⇓ λx. e′,H′ H′, S,L

m′′
m′

e′[y/x] ⇓ w,H′′

H, S,L
m′′
m

e y ⇓w,H′′
(App⇓)

H, S ∪ ({x1, x2} ∪ BV(e1) ∪ BV(e2)),L
m′
m
e0 ⇓ cons(l1, l2),H′

H′, S,L
m′′
m′

e1[l1/x1, l2/x2] ⇓ w,H′′

H, S,L
m′′
m match e0 with cons(x1, x2) -> e1 | nil -> e2 ⇓ w,H′′

(Match-L⇓)

H, S ∪ ({x1, x2} ∪ BV(e1) ∪ BV(e2)),L
m′
m
e0 ⇓ nil,H′

H′, S,L
m′′
m′

e2 ⇓ w,H′′

H, S,L
m′′
m match e0 with cons(x1, x2) -> e1 | nil -> e2 ⇓ w,H′′

(Match-N⇓)

H, S ∪ ({x1, x2} ∪ BV(e1) ∪ BV(e2)),L
m′
m
e0 ⇓ (l1, l2),H′

H′, S,L
m′′
m′

e1[l1/x1, l2/x2] ⇓ w,H′′

H, S,L
m′′
m match e0 with (x1, x2) -> e1 ⇓ w,H′′

(Match-P⇓)

Figure 3.2: Operational semantics for SLFL
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cost.

Rule Var⇓: A variable l that is linked to an expression e in the initial heap, evaluates
to a value w if the evaluation of e reaches that same value. The final heap will have
the expression e that is linked to l, replaced by the value w, this way we avoid re-
evaluations of e, obtaining lazy evaluation. This means that the cost of evaluating a
variable is the cost of evaluating the expression that is associated with it.

Rule Let⇓: the expression e1 bound to x is not evaluated, instead a thunk is allocated
and associated with a fresh location l in the heap. The rules proceed to evaluate the
expressions e2. Because the purpose of our analysis is to infer cost bounds on the
number of allocations, the evaluation of these rules needs to cost at least 1 resource
unit, plus the cost of evaluating e2.

Rule Match-P⇓ and Match-L⇓: In both these rules, the variables bound by the
pattern matching are replaced in each branch by the respective locations that result
from the evaluation of e0 and are stored in the heap. The final value and heap are the
result of evaluating the branch taken.

Example 3.2.1. Consider the term:

let f = let z = z; (λx.λy.y) z

in let i = λx.x; let v = f i ; f v
.

We can see how this term evaluates to λx. x under the rules of Fig. 3.2, leaving a heap
Θ = [l1 → λy.y, l2 → λx.x, l3 → λx.x].

[l1 → λy.y, l2 → λx.x, l3 → l1 l2 ] 0
0
λx.x⇓λx.x, [l1 → λy.y] Whnf⇓ (1)

[l1 → λy.y, l2 → λx.x, l3 → l1 l2 ] 0
0
l2⇓λx.x, [l1 → λy.y, l2 → λx.x] Var⇓ (1) (2)

[l1 → λy.y, l2 → λx.x, l3 → l1 l2 ] 0
0
λy.y⇓λy.y, [l1 → λy.y] Whnf⇓ (3)

[l1 → λy.y, l2 → λx.x, l3 → l1 l2 ] 0
0
l1 ⇓ λy.y, [l1 → λy.y] Var⇓ (3) (4)

[l1 → λy.y, l2 → λx.x, l3 → l1 l2 ] 0
0
l1 l2 ⇓ λx.x, [l1 → λy.y, l2 → λx.x]

App⇓ (4,2) (5)

[l1 → λy.y, l2 → λx.x, l3 → l1 l2 ] 0
0
l3⇓λx.x, [. . . , l3 → λx.x] Var⇓ (5) (6)

[l1 → let z = z; (λx.λy.y) z , . . . , l4 → z] 0
0
λy.y⇓λy.y Whnf⇓ (7)

[l1 → let z = z; (λx.λy.y) z , . . . , l4 → z] 0
0

(λx.λy.y)⇓λx.λy.y Whnf⇓ (8)

[l1 → let z = z; (λx.λy.y) z , . . . , l4 → z] 0
0

(λx.λy.y) l4 ⇓λy.y App⇓ (8,7) (9)

[l1 → let z = z; (λx.λy.y) z , . . .] 0
1 let z = z; (λx.λy.y) z ⇓λy.y Let⇓ (9) (10)

[l1 → let z = z; (λx.λy.y) z , . . .] 0
1
l1⇓λy.y, [l1 → λy.y] Var⇓ (10) (11)
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[l1 → let z = z; (λx.λy.y) z , l2 → λx.x, l3 → l1 l2 ] 0
1
l1 l3 ⇓λx.x,Θ

App⇓ (11,6) (12)

[l1 → let z = z; (λx.λy.y) z , l2 → λx.x] 0
2 let v = l1 l2 ; l1 v ⇓λx.x,Θ

Let⇓ (12) (13)

[l1 → let z = z; (λx.λy.y) z ] 0
3 let i = λx.x; let v = l1 i ; l1 v ⇓λx.x,Θ

Let⇓ (13) (14)

0
4 let f = let z = z; (λx.λy.y) z ; let i = λx.x; let v = f i ; f v ⇓λx.x,Θ

Let⇓ (14) (15)

3.3 Annotated Type System

In this section, we present our type system to analyse resource usage and provide a
detailed description of how the analysis works using some illustrating examples.

3.3.1 Annotated Types

Here, we present the syntax for the annotated types of our language and the type rules
used to perform the cost analysis. Types include primitives, function types, thunks,
pairs and lists.

A, B ::= int | A q−→ B | Tq(A) | A×B | Lq(~p,A)

The variables q and ~p stand for cost annotations. More precisely, ~p stands for list
potential and actually represents a vector of cost annotations, ~p = (p1, . . . , pn).

The annotation q on function types is an upper bound on the cost of applying that
function. Thunk types represent a delayed evaluation of an expression of type A
and are also annotated with an upper bound on the cost of evaluating the delayed
expression. List types are annotated with a simple annotation q, representing the cost
of evaluating one constructor of the list, and a vector annotation ~p, which represents
the potential associated with that list. The primitive type int is free of cost annotations
and type pairs is a pair of any type.

We define the additive shift of a vector of coefficients ~p as Hoffmann (see section 2.4.3):

/(p1, p2, . . . , pn) = (p1 + p2, p2 + p3, . . . , pn−1 + pn, pn)
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We also define an addition operation on vectors of coefficients of equal length:

(p1, . . . , pn) + (q1, . . . , qn) = (p1 + q1, p2 + q2, . . . , pn + qn)

In Fig. 3.3 and Fig. 3.4 we present the type rules used to derive these types and their
cost annotations.

3.3.2 The Sharing Relation

Before we go on to explain how the type system works, it is important to explain
the concept of sharing : A / {B1, . . . , Bn}. In short, sharing allows the potential of
a type A to be distributed amongst other types {B1, . . . , Bn}. The rules presented
in Fig. 3.5 illustrate how the sharing relation applies depending on the types it is
used on, and they follow very strictly the construction and explanation of the sharing
rules presented in [22]. The main difference is present in the rule regarding list types
(because Jost et al. system deals with possibly recursive algebraic data types, and not
only lists). In our sharing relation, the Sharelist rule allows for the potential of a
certain list A, to be shared amongst types Bi.

3.3.3 Subtyping

The subtyping relation is a particular case of sharing. It allows us to relax the
annotations associated to a type by requiring them to be greater or equal than those
of that type. We say a type A1 is a subtype of a type A when A1 <: A, this relation
could also be represented as A1 / {A,A′}, where A′ is a type with annotations greater
than or equal to zero. We can say that subtyping has the following properties:

int <: int

Tq1(A1) <: Tq2(A2) if q1 ≥ q2 and A1 <: A2

A1 × A2 <: B1 ×B2 if A1 <: B1 and B1 <: B2

A1
q1−→ B1 <: A2

q2−→ B2 if q1 ≥ q2 and A1 <: A2 and B2 <: B1

Lq1(~p1, A1) <: Lq2(~p2, A2) if q1 ≥ q2 and ~p1 ≥ ~p2 and A1 <: A2

We say ~q ≥ ~p if, |~q| = |~p| = n and ∀1≤i≤n, qi ≥ p1.
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0
0
n : int

(Const)

x:Tp(A) 0

p
x : A

(Var)

Γ
z′
z
e : A

p−→ C

Γ, y : A
z′
z+p

e y :C
(App)

Γ, x:A 0

p
e : C x /∈ Γ Γ / {Γ,Γ}

Γ 0
0
λx.e : A

p−→ C
(Abs)

A / {A,A′} x /∈ {Γ,∆} e1 is not a constructor
Γ, x : T0(A′) 0

p
e1 : A ∆, x : Tp(A)

z′
z
e2 : C

Γ,∆
z′
z+1

let x = e1 in e2 : C
(Let)

→
q = (q1, . . . , qk) A = Lp(~q, B) A / {A, A′}

Γ, x : T0(A′) 0
0 cons(xh, xt) : A ∆, x : T0(A)

z′
z
e : C

Γ,∆
z′

z+1+q1 let x = cons(xh, xt) in e : C
(Letcons)

x1:A1, x2:A2 0
0

(x1, x2) : A1 × A2

(Pair)

0
0 nil : Lq(~p,A)

(Nil)

xh:B, xt:T
p(Lp( ~/q, B)) 0

0 cons(xh, xt) : Lp(~q, B)
(Cons)

Γ
z′
z
e0 : A1 × A2 ∆, x1 : A1, x2 : A2 z′′

z′
e1 : C

Γ,∆
z′′
z match e0 with (x1, x2) -> e1 : C

(Match-P)

~q = (q1, . . . , qk)

Γ
z′
z
e0 : Lp(~q, A)

∆, xh : A, xt : Tp(Lp( ~/q, A))
z′′

z′+q1
e1 : C

∆
z′′
z′
e2 : C

Γ,∆
z′′
z match e0 with cons(xh, xt) -> e1 | nil -> e2 : C

(Match-L)

Figure 3.3: Syntax directed type rules
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Γ, x:Tq0(A)
p′
p
e: C

Γ, x:Tq0+q1(A)
p′

p+q1
e: C

(Prepay)

Γ
p′
p
e:C

Γ, x:A
p′
p
e: C

(Weak)

Γ, x:A1, x:A2 p′
p
e: C A / {A1, A2}

Γ, x:A
p′
p
e: C

(Share)

Γ
p′
p
e: A q ≥ p q − p ≥ q′ − p′

Γ
q′
q
e: A

(Relax)

Γ
p′
p
e: A A <: B

Γ
p′
p
e: B

(Subtype)

Γ, x:B
p′
p
e: C A <: B

Γ, x:A
p′
p
e: C

(Supertype)

Figure 3.4: Structural type rules

3.3.4 Type System

The type rules required for our analysis are presented in Fig. 3.3. These rules are
complemented with the structural rules in Fig. 3.4, which introduce some flexibility
to our analysis in ways that we will explain next. Our judgements have the form
Γ p

p′

e : A and can be read as follows: considering a typing context Γ, and with p

resource units available, we can derive the annotated type A for expression e, leaving
p′ resource units available. These rules result from combining the ones presented in the
two previous systems [22, 12] While many rules are identical to previous work, there
are important differences in rules that concern the use of potential, namely, Letcons,
Cons and Match.

We now describe each rule informally, focusing on on how type annotations express
resource usage. Recall that we consider cost bounds for the number of allocations, i.e.
the number of let-expressions evaluated.

Rule Const does not consume any resources as evaluating a primitive value incurs
no additional allocations.

Rule Var deals with the elimination of a thunk type, so it is necessary to pay for the



CHAPTER 3. POLYNOMIAL ANALYSIS FOR LAZY EVALUATION 43

A / ∅
(ShareEmpty)

A / {A1, . . . , An} B / {B1, . . . , Bn}

A×B / {A1 ×B1, . . . , An ×Bn}
(SharePair)

Bi = Lpi(~qi, Ai) A / {A1, . . . , An}
→
q ≥

∑n
i=1 ~qi pi ≥ p

Lp(~q, A) / {B1, . . . , Bn}
(ShareList)

Ai / {A} C / {Ci} qi ≥ p (1 ≤ i ≤ n)

A
p−→ C / {A1

q1−→ C1, . . . , An
qn−→ Cn}

(ShareFun)

A / {A1, . . . , An} qi ≥ p (1 ≤ i ≤ n)

Tp(A) / {Tq1(A1), . . . ,Tqn(An)}
(ShareThunk)

Γ / ∅
(ShareEmptyCtx)

A / {B1, . . . , Bn} Γ / ∆

x: A,Γ / (x: B1, . . . , x: Bn, ∆)
(ShareCtx)

Figure 3.5: Sharing rules

cost associated with that thunk.

Rules Let and Letcons deal with the allocation of a thunk for sub-expressions.
Both rules require at least 1 unit to be available (corresponding to the newly allocated
thunk) and recursive use of the bound variable x is allowed. Note also that the side
condition A / {A, . . . , A′} that guarantees that the type A′ does not have potential
is required to ensure soundness (so that self-referencing structures are assigned zero
potential [22]). Rule Let allows the cost of e1 to be paid for only once, even in the
case of self-reference; the intuition for this is that any productive uses of the bound
variable in self-referencing definitions must be to an evaluated form [32].

Rule Letcons formalises the fact that one has to pay for the allocation of a new list
constructor, which requires paying for the potential associated with the new list. We
do so by requiring q1 units to be available and complementing it with rule Cons, to
be applied on the first expression e1, which must be a list constructor.

Rules Cons and Pair are simple references to a constructor so they do not consume
any resources. In rule Cons we do require the tail of the list to be annotated with
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the additive shift of its potential, complementing rule Letcons.

Rule App requires that the cost associated with a function is paid for each time the
function is applied.

Rule Abs captures the cost of the expression in the type annotation of the function.

Rule Match-L shows how to use the potential of a list to pay for resource consump-
tion. To do so, we require that the branch matching with the list constructor gains
the excess potential q1. We also annotate the tail of the list with the additive shift of
the list potential, to allow future recursive calls or calls to auxiliary functions. This
rule requires that both branches are of the same type C and that the amount of
resources z′′, available after the evaluation of each branch, is the same, which may
require relaxation of the costs (See structural rule Relax in Fig. 3.4).

Rule Match-P deals with pattern matching against a pair constructor. Like in
Match-P, we require that both branches are of the same type C and that the amount
of resources z′′ is the same.

The structural rules in Fig.3.4 can be used in any part of a type derivation. As we
have explained before, Prepay allows the payment in advance of the cost associated
with a thunk, preventing that same cost to be payed for more than once. Weak
introduces a new hypothesis in the environment. Share allows the use of the sharing
rules in 3.5 to split potential in an hypothesis. Relax, as the name indicates, allows
the relaxation of cost bounds. Subtype allows subtyping in a result, and Supertype
allows supertyping in an environment.

3.4 Worked Examples

To better understand how the analysis works, let us take a look at some examples.

Example 3.4.1. Let us consider function pairs in Fig. 3.6. This function is a
translation into SLFL of the example from Section 1.1. Function pairs takes a list
as an argument and computes a list of pairs that are two-element sub-lists the given
list, while function attach combines each element of a list with the first argument. Note
that the auxiliary function app ′ is the translation of list append with the argument
order flipped, i.e. app ′ = flip (++); this is done so that recursion is over the second
argument and the type rules allow assigning potential to this argument.1.

1In particular, the side condition for rule Abs requires that the typing context Γ has no potential.
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attach = λn. λl.match lk1 with
nil->nil
cons(x, xsj1)-> let p = (x, n); f = attach n xsn1

in cons(p, f)

app ′ = λl1. λl2.match lv12 with
nil->l1
cons(x, xsw1)-> let f = app ′ l1 xs

m1

in cons(x, f)

pairs = λl.match l(q1,q2) with
nil->nil
cons(x, xs(r1,r2))-> let f1 = pairs xs(s1,s2);

f2 = attach x xs(p1,p2)

in app ′ f1 f2

Figure 3.6: Translation of the pairs function and auxiliary definitions into SLFL.

To facilitate the presentation of annotated type assignments, we have added potential
annotations to list variables in Fig. 3.6: l~q means that variable l has type L0(~q, B) for
some B, i.e. l is a list with potential ~q and zero thunk cost for the spine. Since we
expect function pairs has quadratic cost on the argument list length, we annotate it
with pair of coefficients ~q = (q1, q2). Conversely, we expect functions attach and app ′

to have linear cost, hence we annotated these with a single coefficient.

Function app ′ is defined by structural recursion on the second argument l2 and uses a
single let-expression for each constructor in the argument; this means that l2 should
have a potential of at least 1 resource unit for each constructor. In attach we can see
two let-expressions being used, which means the input potential should be at least 2.
However, when analysing the body of function pairs , we can see that the output of
attach is also the second input of app ′. This means that to be able to type pairs , the
output of attach must be compatible with the input of app ′, and because of that, its
potential should be at least 1. Because the output potential needs to be accounted for
in the input, we need to add it to the potential 2 we mentioned before.

Using the annotations for attach and app ′ in Fig. 3.6, we derive the following con-
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straints:

j1 = k1 (additive shift)

j1 = n1 (share)

n1 = k1 (recursive call)

k1 ≥ 2 + v1

(two let-expressions plus the potential of the output of attach/input of app’)

w1 = v1 (additive shift)

w1 = m1 (share)

m1 = v1 (recursive call)

v1 ≥ 1 (single let-expression)

We can solve this system of equations with v1 = m1 = w1 = 1 and q1 = r1 = s1 = 3

and derive the following annotated types:

app ′ : T0(L0(0, B ×B))
0−→ T0(L0(1, B ×B))

0−→ L0(0, B ×B)

attach : B
0−→ T0(L0(3, B))

0−→ L0(1, B ×B)

To better understand how the analysis works, we are going to illustrate the inference
steps with more detail. The rules are applied in a very straightforward way, but
it is important to pay attention to how resource usage is passed from and onto the
judgements. Let us start by assuming:

Γ = app ′ : T0(L0(0, B ×B))
0−→ T0(L0(1, B ×B))

0−→ L0(0, B ×B)

Σ = attach : B
0−→ T0(L0(3, B))

0−→ L0(1, B ×B)

We will derive a type for pairs as follows:

Θ = pairs : T0(L0((q1, q2), B)︸ ︷︷ ︸
LIn

)
p−→ L0((0, 0), B ×B)︸ ︷︷ ︸

LOut

For simplicity, sometimes we omit certain elements of the type context that are not
needed for the derivation in question. We also divide the definition of pairs into two
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sub-expressions as shown:

pairs = λl.

e1︷ ︸︸ ︷
match l with

nil->nil

cons(x, xs)->

e2︷ ︸︸ ︷
let f1 = pairs xs;

f2 = attach x xs

in app ′ f1 f2

We start by stating the typing obligation for the outer part of the recursive definition:

Γ,Σ 0
1 let pairs = λl. e1 in pairs:T0(LIn)

p−→ LOut (3.1)

By rule Let, we need to prove:

Γ,Σ,Θ 0
0
λl. e1 : T0(LIn)

p−→ LOut (3.2)

The later follows from rule Abs if we prove:

Γ,Σ,Θ, l:T0(LIn) 0

p
e1 : LOut (3.3)

By rule Match-L we get three new obligations; the first two correspond to the
scrutinised list and the right-hand side of nil-case:

l:T0(LIn) 0
0
l:LIn (Var)

0
0 nil:LOut (Nil)

The remaining case for non-empty lists is:

Γ,Σ,Θ, x:B, xs:T0(L0((q1 + q2, q2), B)) 0

q1
e2:LOut (3.4)

We now apply the Share rule to distribute the potential of the tail xs for the two
uses in right-hand side expression e2. The side condition is:

L0((q1 + q2, q2), B) / {L0((p1, p2), B), L0((s1, s2), B)} (3.5)

for some annotations p1, p2, s1, s2 such that q1 + q2 ≥ p1 + s1 ∧ q2 ≥ p2 + s2. The two
contexts are:

∆1 = xs:T0(L0((s1, s2), B)) (for the recursive call to pairs)

∆2 = xs:T0(L0((p1, p2), B)) (for the call to attach)

We can now type the recursive right-hand side e2:

Γ,Σ,Θ, x:B, ∆1,∆2 0
2 let f1 = pairs xs;

f2 = attach x xs

in app ′ f1 f2

: LOut (3.6)
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The cost annotation on the turnstile correspond to the two uses of let for f1 and f2,
as will be confirmed from the remaining derivation. We continue by typing the bound
sub-expressions:

Θ,∆1 0
0
pairs xs : L0((0, 0), B ×B) (3.7)

Σ,∆2, x:B 0
0
attach x xs : L0(0, B ×B) (3.8)

Judgments (3.7) and (3.8) follow immediately from Var and App. Note that, while
the annotations on the turnstile are zero, the uses of App impose constraints on the
annotations in ∆1 and ∆2: p1 = 3, p2 = 0, s1 = q1 and s2 = q2. It remains to type the
inner expression:

∆2,Γ,Θ, f1:T0(LOut) 0
1 let f2 = attach x xs in app′ f1 f2:LOut (3.9)

This follows from the rules Var and App twice:

Γ, f1:T0(LOut), f2:T0(L0(1, B ×B)) 0
0
app′ f1 f2:LOut (3.10)

With this detailed illustration it is easy to see where the constraints mentioned before
come from. From (3.7), (3.8) and (3.9) we get p1 = 3, p2 = 0, s1 = q1 and s2 = q2.
From (3.4) and (3.6) we get q1 ≥ 2. From (3.5) we get that q1 + q2 = s1 + p1 and q2 =

s2 + p2. These constraints admit the solution p1 = s2 = q2 = 3, s1 = q1 = 2, p2, p = 0,
giving us the following typing:

pairs : T0(L0((2, 3), B))
0−→ L0(0, B ×B)

This typing ensures that pairs can be applied to an input list l with potential 2×|l|+
3 ×

(|l|
2

)
leaving no leftover potential. This corresponds to a quadratic cost bound of

2× n+ 3×
(
n
2

)
+ 0 = 2× n+ 3

2
× n× (n− 1) expressed as a function of the input list

length n = |l|.

Example 3.4.2. In the previous derivation we choose zero annotations for the thunks
in the list spine; this corresponds to deriving a cost bound for the case where the spine
of the input list is fully evaluated. Let us now consider the case where the input list l is
annotated with L1((q1, q2), B), i.e., evaluating each list successive constructor costs 1.

Because of the rule Match, when we introduce the tail element of the list to our
environment it will be associated with a unitary cost thunk. We can use the structural
rule Prepay to pay for its thunk cost only once, rather than for each use, before using
Share to duplicate it. Because the rule Prepay is structural, we could have chosen
not to use it and the inference would still have obtained an acceptable but less precise
type.

Again, we are going to illustrate the inference steps with more detail. Note that, again,
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we omit certain elements of the type context that are not needed for the derivation in
question. The expression is divided into 3 sub-expressions as illustrated before.

As before we assume annotated type for the auxiliary functions:2

Γ = app ′ : T0(L0(0, B ×B))
0−→ T0(L0(1, B ×B))

0−→ L0(0, B ×B)

Σ = attach : B
0−→ T0(L1(4, B))

0−→ L0(1, B ×B)

let us derive a type for pairs as follows:

Θ = pairs : Tp(L1((q1, q2), B)︸ ︷︷ ︸
LIn

)
a−→ L0((0, 0), B ×B)︸ ︷︷ ︸

LOut

The derivation is very similar to the previous example. It is when we reach the point
of sharing the potential of the list that the main difference appears.

Γ,Σ,Θ, x:B, xs:Tp(L1((q1 + q2, q2), B)) 0

q1
e2:LOut (3.11)

Because this time the list is associated with a unitary cost thunk rather than a 0
annotated thunk, if we applied the rule Share as before, that cost would be replicated
for both lists, meaning that we would have to pay for both uses. To prevent this from
happening, we use the structural rule Prepay right before we use Share. We can see
how the lists that result from sharing end up associated with a 0 annotated thunk:

Γ,Σ, x:B, xs:T1(L1((q1 + q2, q2), B)) 0
3
e2:LOut (Prepay)

Γ,Σ, x:B, xs:T0(L1((q1, q2), B)) 0
2
e2:LOut (Share)

The use of Share creates the following condition:

T0(L1((q1 + q2, q2), B)) / {T0(L1((p1, p2), B)), T0(L1((s1, s2), B))} (3.12)

Note that, although the outermost thunks have been reduced by the use of Prepay,
the list spine thunks still cost 1. This is because sharing distributes list potential but
not thunk costs (See Fig. 3.5).

The remaining derivation is:

Γ,Σ, x:B, xs:T0(L1((p1, p2), B)), xs:T0(L1((s1, s2), B)) 0
2
e2:LOut (3.13)

The main constraints that result from this derivation are very similar to the ones
from the example above, with the exception of p1 = 4 (because of the different type

2Note that we need a slightly different annotation for the input list of attach.
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assumption for attach) and q1 ≥ 3 (because of the use of Prepay after (3.13)). These
constraints can be solved by p1 = s2 = q2 = 4, s1 = q1 = 3, p2 = 0, p = 0, giving us
the type

pairs : T0(L1((3, 4), B))
0−→ L0(0, B ×B)

This type corresponds to a cost bound of 3×n+ 4×
(
n
2

)
+ 0 = 3×n+ 2×n× (n− 1)

for list of length n.

3.5 Further Discussion

The analysis of these examples demonstrates how our system can infer reliable strict
cost bounds. Although we believe we have reached positive results, there are some
issues worth mentioning.

When comparing the result from Example 3.4.2 with the bound obtained for Example
3.4.1, we note an over-estimation of the cost: we would expect paying only extra n
units for evaluating a list spine of length n; instead the difference between the bounds
is 3× n+ 2× n× (n− 1)− (3

2
× n× (n− 1)) = n+ 1

2
× n× (n− 1).

This overestimation results from the sharing of the list tail xs between pairs and
attach: the two uses do not account for the repeated evaluation of xs. Note, however,
that simply changing the sharing rule to distribute the list spine costs, i.e. sharing
xs:T0(L1(. . ., B)) to xs1:T0(L0(. . ., B)) and xs2:T0(L1(. . ., B)) would, in general, be
unsound because we may discard the variable xs2 and use only xs1, thus underesti-
mating the cost.

This is an issue that we believe will not be trivial to address. We have not yet tried
to approach it, as we were not aware of it until very recently. We leave it as future
work.

Another limitation of our analysis as presented here is the fact that it does not allow
resource polymorphic recursion, i.e., recursive calls with different resource annotations;
as in the strict setting, we expect that this will cause many programs that are not
in tail-recursive form to fail to admit an annotated type [12, 8]. For example, if we
consider our definition of pairs and change the order in which the arguments are
sent to app’, the inference of annotations eventually reaches some inconsistency. This
problem was addressed by Hoffmann in the strict setting by using a cost-free resource
metric that assigns zero costs for each evaluation step and extending the algorithmic
type rules with resource polymorphic recursion. We believe that the same approach
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could be used in our system.

To summarise this chapter, we have presented a system that can successfully infer
polynomial bounds for a lazy functional language and provided a demonstration on
a simple but relevant example. We explained how we used main keys from previous
systems in order to reach our goal (usage of thunk types and the concept of prepaying
for lazy evaluation; additive shift for polynomial potential). We also present some of
the limitations of our analysis with a brief reflection on how they could be approached
in the future. In the next chapter we will explain how we implemented a prototype of
this system.



Chapter 4

Exploratory Implementation

In this chapter we give a brief overview of how we implemented a prototype of our
system. We also show how the system operates on two examples. The full implemen-
tation can be found in https://github.com/ohhisara/lazy-potential-analysis.
All code can be seen in Appendix A.

4.1 Overview

Much like our theoretical system, our implementation was built over a previous pro-
totype implementation (see https://github.com/pbv/lazy-amortised-analysis)
of the system for lazy evaluation with linear bounds [22]. This system receives a
program as an input and produces an annotated type for that program (or fails, when
the program is not typable by the system). The inference of this annotated type
is fully automatic, and works as a type reconstruction algorithm with the following
phases:

1. Derive an unnanotated type for the given program using Damas-Milner type
inference [5];

2. Annotate the resulting type with fresh annotation variables;

3. Go over the type derivation tree to collect constraints over the annotation
variables;

4. Solve the collected constraints using an off-the-shelf LP solver (the GLPK library
for Haskell [1]).
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Figure 4.1: Overview of our system flow

Our implementation follows these same steps and an overview of our how the modules
of our system interact with each other can be seen in Fig. 4.1. A difference worth
mentioning is that our system requires the user to provide a degree for the analysis,
so it is not fully automatic. This degree represents the maximum degree for the
polynomial function (or the size of the vector of annotations on a list type).

We haven’t yet extended the parser from the previous implementation for our syntax,
so the input program for our system must be provided in abstract syntax. Fig. 4.2
shows the syntax of our expressions and types.

It goes without saying that the most important module of the system is the Analysis
module, it corresponds to the final three phases of the algorithm, where the annotation
constraints are collected and solved. One important new concept implemented in our
system in this module is the additive shift.

1 -- additive shift of a vector of annotations
2 -- second argument is additive shift of first argument
3 additive_shift::[Ann] -> [Ann] -> CLP ()
4 additive_shift (t1:t2:ts) (p1:ps)
5 | length (t1:t2:ts) == length (p1:ps) = do
6 (var t1 + var t2 - var p1) `equalTo` 0
7 additive_shift (t2:ts) ps
8 | otherwise = error "Different sizes for potential"
9 additive_shift (tn:[]) (pn:[]) = do

10 (var tn - var pn) `equalTo` 0

The structural rules also play a role in this module, and most heuristic choices for their
use are the same as in the previous system. Prepay is used after bound variables are
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1 -- language expressions
2 data Term a
3 = Var Ident
4 | Nil
5 | Lambda Ident (Term a)
6 | App (Term a) Ident
7 | Pair Ident Ident
8 | Let Ident (Term a) (Term a)
9 -- ^ letcons is a special use case of let

10 | Match (Term a) (Term a) (Term a) (Term a) (Term a)
11 -- ^ optinal term is the "otherwise" alternative
12 | ConsApp Ident Ident -- ^ constructor application
13 | Const !Integer -- ^ primitive integers
14 | Coerce SrcAnn (Term a) -- ^ source level annotation
15 | (Term a) :@ a -- ^ type checker annotation
16

17 -- type expressions with annotations 'a'
18 data TyExp a
19 = TyVar TVar -- ^ variables
20 | TyThunk a (TyExp a) -- ^ thunks
21 | TyFun a (TyExp a) (TyExp a) -- ^ functions
22 | TyCon TConst -- ^ base types (e.g. Int)
23 | TyPair (TyExp a) (TyExp a)
24 | TyList a [a] (TyExp a) -- ^ list types
25 deriving (Eq, Show, Functor, Foldable, Traversable)
26

27 type TVar = String -- ^ type variables
28 type TConst = String -- ^ basic types
29

30 -- Hindley-Milner types (without annotations)
31 type HMtype = TyExp ()
32

33 -- annotated types
34 type Atype = TyExp Ann
35

36 -- annotation variables
37 newtype Ann = Ann Int deriving (Eq,Ord,Enum, Num)
38 instance Show Ann where
39 showsPrec _ (Ann n) = ('a':) . shows n

Figure 4.2: Abstract syntax for terms and types
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introduced in the environment (after a lambda expression, let expression or match).
Because the rule allows for all the cost to be paid for, or only part of it, the choice of
how much to pay is left for the solver. Subtype is used for the result and argument
of applications. Share is used to split the potential of variables that occur more than
once in an environment before applications, let expressions and match.

A special case of share had to be implemented in our system to share the potential of
lists. gather_all_potential collects the potential of each degree of lists ts, as arrays of
annotations. share_potential restricts the potential of each degree on the first input
list to be bigger than the sum of the annotations in the collected arrays sent in the
second input.

1 share (TyList a1 l1 t) ts = do
2 sequence_ [ do { var ai `geq` var a1
3 ; share t [ti]
4 }
5 | TyList ai _ ti <- ts]
6 share_potential l1 (gather_all_potential ts)

As in the previous implementation, an heuristic had to be chosen for the objective
function sent to the constraint solver. The choice was to minimize the sum of cost
annotations in the result type and judgement.

4.2 Examples

Let us take a look at function pairs from the introduction, written in SLFL syntax.
To define this function we need to define the body of functions attach and app ′ as
well.

1 pairs =
2 (Let "attach"
3 (Lambda "n"
4 (Lambda "l"
5 (Match (Term.Var "l")
6 (ConsApp "x" "xs")
7 (Let "p" (Pair "x" "n")
8 (Let "f" (App (App (Term.Var "attach") "n") "xs")
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9 (ConsApp "p" "f")))
10 (Nil) (Nil) )))
11 (Let "app'"
12 (Lambda "l1"
13 (Lambda "l2"
14 (Match (Term.Var "l2")
15 (ConsApp "x1" "xs1")
16 (Let "fn" (App (App (Term.Var "app'") "l1") ("xs1"))
17 (ConsApp "x1" "fn"))
18 (Nil) (Term.Var "l1"))) )
19 (Let "pairs"
20 (Lambda "list"
21 (Match (Term.Var "list")
22 (ConsApp "x2" "xs2" )
23 (Let "f1" (App (Term.Var "pairs") "xs2")
24 (Let "f2" (App (App (Term.Var "attach") "x2") "xs2")
25 (App (App (Term.Var "app'") "f1") "f2")))
26 (Nil) (Nil)))
27 (Term.Var "pairs")))
28 )

Example 4.2.1. If we apply our analysis to this function, we get the following
annotated type:

1 TyFun (-0.0)
2 (TyThunk 0.0 (TyList 0.0 [2.0,3.0] (TyVar "t1")))
3 (TyList (-0.0) [0.0,0.0]
4 (TyThunk (-0.0)
5 (TyThunk (-0.0)
6 (TyPair (TyThunk (-0.0) (TyVar "t1")) (TyThunk (-0.0) (TyVar "t1")))))
7 )
8 ann_in = 3.0, ann_out = 0.0

If we look at the type of the input list (TyThunk 0.0 (TyList 0.0 [2.0,3.0] (TyVar "t1")))

we can see how it is exactly the same type as the one we derived in Example 3.4.1.
The annotation 2 takes account of the two uses of let expressions in the function, and
the annotation 3 denotes the cost of the auxiliary function attach. The annotation
ann_in = 3.0 counts the three let expressions used in the outer part of each function
(e.g let pairs = (...)) .

Example 4.2.2. Our system also allows the user to manually define restrictions for
annotations. Using this, we can replicate the analysis from Example 3.4.2, where the
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spine thunk cost annotation is restricted to 1. Applying the analysis with this new
restriction we get the following type:

1 TyFun (-0.0)
2 (TyThunk 0.0 (TyList 1.0 [3.0,4.0] (TyVar "t1")))
3 (TyList (-0.0) [0.0,0.0]
4 (TyThunk (-0.0)
5 (TyThunk (-0.0)
6 (TyPair (TyThunk (-0.0) (TyVar "t1")) (TyThunk (-0.0) (TyVar "t1")))))
7 )
8 ann_in = 3.0, ann_out = 0.0

We can see once again how it results exactly in the same types as in Example 3.4.2
(and the same overestimation), where the annotation 3 denotes again the two uses
of let expressions in the function, plus the extra cost of each constructor of the list.
The annotation 4 represents the cost of the auxiliary function attach. The cost of this
function changed as well, because of the extra cost of the spine. Again, the annotation
ann_in = 3.0 counts the three let expressions used in the outer part of each function.

This prototype is still at an early phase of implementation so we have not yet exper-
imented with many examples. However, when looking at these two applications of
our implementation, we observe that we get exactly the cost bounds predicted, so we
believe the heuristics chosen result in good cost bounds. Further development on the
implementation should be useful to experiment on more complex examples.

To summarise this chapter, we have presented an overview of a prototype imple-
mentation of the system described in Chapter 3. We clarified the main steps of
the implemented algorithm and pointed out relevant concepts introduced in this
implementation that were not necessary for the previous system. We finished with
a demonstration on two examples.



Chapter 5

Conclusion

This is the closing chapter for our thesis. We go over our main goal and contributions,
explaining the overall approach taken to reach that goal. We wrap up with some
concluding remarks and directions for future work.

This thesis aimed to extend the previous resource analysis system for lazy evaluation
to polynomial bounds. We researched and studied existing literature on automatic
amortised resource analysis to understand how the combination of amortisation with
a type-based analysis can be used to achieve automatic resource analysis. We then
focused on the existing systems that address lazy evaluation with linear bound and
strict evaluation with polynomial bounds. We studied their key contributions, trying
to understand how we could combine them to reach our goal. The result of our research
and study is a type system able to derive polynomial cost bounds on the number of
allocation for a simple lazily-evaluated language.

There are some limitations to our system, as we mentioned above. Example 3.4.2
illustrated a cost overestimation caused by duplication of thunk costs inside data
structures. We decided to leave investigating mitigations for this issue as future work.
Additionally, resource polymorphic recursion is not allowed in our system, we hope
that an adaptation of Hoffman’s approach to this issue can be used in a straightforward
fashion for our system.

Another important issue to mention is the fact that we do not yet have a formal proof
of soundness yet. This is, of course, an important step to be taken in the future, and
would be the logical next step to take. We believe previous work in [22] could be
adapted to our polynomial potential case.
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Furthermore, we must say that, although the prototype implementation of our system
(Chapter 4) is still at its initial phase, we have successfully applied it to two simple
examples and achieved the predicted results for both. We should add that the system
as it is now is not expressive enough to be integrated in an industrial compiler like
GHC for the analysis of realistic programs. This does not mean, however, that it could
not be used as a basis for future development in this sense. It also does not mean that
it could not be used to analyse small portions of more complex programs.

Having considered all these points, we believe the outcome of this work was a positive
one. We reached our main goal and a secondary one, and left directions for future
work. We hope this system can serve as a starting point for further extensions or
implementations that can be used to analyse more complex examples.
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Appendix A

Analysis for a Simple Lazy Functional
Language

Implementation of the system described in Chapter 3.

All code presented in this appendix can be found in the GitHub repository https://
github.com/ohhisara/lazy-potential-analysis. The code of the previous system
can be found in https://github.com/pbv/lazy-amortised-analysis.

A.1 Abstract Syntax for Terms

1 module Term where
2

3 import Types
4 import Data.LinearProgram hiding (Var)
5 import Data.Set (Set)
6 import qualified Data.Set as Set
7

8 -- | identifiers
9 type Ident = String

10

11 -- terms with sub-terms with annotations `a'
12 -- used to keep the type information and
13 -- avoid the need for "guessing" during constraint collection
14 data Term a
15 = Var Ident
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16 | Nil
17 | Lambda Ident (Term a)
18 | App (Term a) Ident
19 | Pair Ident Ident
20 | Let Ident (Term a) (Term a)
21 -- ^ letcons is a special use case of let
22 | Match (Term a) (Term a) (Term a) (Term a) (Term a)
23 | ConsApp Ident Ident -- ^ constructor application
24 | Const !Integer -- ^ primitive integers
25 | Coerce SrcAnn (Term a) -- ^ source level annotation
26 | (Term a) :@ a -- ^ type checker annotation
27 deriving (Show, Functor, Foldable, Traversable)
28

29 -- | source annotations
30 type SrcAnn = (SrcType, [SrcConstr])
31 type SrcType = TyExp String
32 type SrcConstr = Constraint String Int
33

34 -- | a typing judgment for a closed term
35 -- parameterized by annotations 'a'
36 data Typing a
37 = Typing { aterm :: Term (TyExp a)
38 , atype :: TyExp a
39 , ann_in :: a
40 , ann_out :: a
41 }
42 deriving (Functor, Foldable, Traversable, Show)
43

44 -- | collect free variables from a term
45 freevars :: Term a -> Set Ident
46 freevars (Nil) = Set.empty
47 freevars (Var x) = Set.singleton x
48 freevars (Lambda x e) = Set.delete x (freevars e)
49 freevars (App e y) = Set.insert y (freevars e)
50 freevars (Pair v1 v2) = (Set.singleton v1) `Set.union` (Set.singleton v2 )
51 freevars (ConsApp v1 v2) = (Set.singleton v1) `Set.union` (Set.singleton v2 )
52 freevars (Let x e1 e2) = Set.delete x (freevars e1 `Set.union` freevars e2)
53 freevars (Match e1 e2 e3 e4 e5) = freevars e1 `Set.union`
54 freevars e2 `Set.union`
55 freevars e3 `Set.union`
56 freevars e4 `Set.union`
57 freevars e5
58 freevars (Const _) = Set.empty
59 freevars (Coerce _ e) = freevars e
60 freevars (e :@ _) = freevars e
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61

62 -- | rename an identifier
63 rename :: Ident -> Ident -> Term a -> Term a
64 rename _ _ e@(Nil) = Nil
65 rename x y e@(Var v) | v==x = Var y
66 | otherwise = e
67 rename x y e@(Lambda x' e')
68 | x==x' = e
69 | otherwise = Lambda x' (rename x y e')
70 rename x y (App e' v) = App (rename x y e') v'
71 where v' | v==x = y
72 | otherwise = v
73 rename x y (ConsApp v1 v2)
74 = ConsApp (if x==v1 then y else v1) (if x==v2 then y else v2)
75 rename x y (Pair v1 v2)
76 = Pair (if x==v1 then y else v1) (if x==v2 then y else v2)
77 rename x y e@(Let x' e1 e2)
78 | x'==x = e
79 | otherwise = Let x' (rename x y e1) (rename x y e2)
80

81 rename x y (Match e1 e2 e3 e4 e5)
82 = Match (rename x y e1) (rename x y e2) (rename x y e3)
83 (rename x y e4) (rename x y e5)
84

85 rename x y e@(Const n) = e
86

87 -- annotations
88 rename x y (Coerce a e) = Coerce a (rename x y e)
89 rename x y (e :@ a) = rename x y e :@ a
90

91 -- | rename many identifiers
92 renames :: [Ident] -> [Ident] -> Term a -> Term a
93 renames (x:xs) (y:ys) e = renames xs ys (rename x y e)
94 renames [] [] e = e
95 renames _ _ _ = error "renames: variable lists must have equal length"

A.2 Abstract Syntax for Types

1 module Types where
2

3 import Data.Foldable (toList)
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4 import Data.Map (Map)
5 import qualified Data.Map as Map
6

7 infixr 4 ~> -- function type constructor
8

9 -- | type expressions with annotations 'a'
10 data TyExp a
11 = TyVar TVar -- ^ variables
12 | TyThunk a (TyExp a) -- ^ thunks
13 | TyFun a (TyExp a) (TyExp a) -- ^ functions
14 | TyCon TConst -- ^ base types (e.g. Int)
15 | TyPair (TyExp a) (TyExp a)
16 | TyList a [a] (TyExp a) -- ^ list types
17 deriving (Eq, Show, Functor, Foldable, Traversable)
18

19 type TVar = String -- ^ type variables
20 type TConst = String -- ^ basic types
21

22 -- | Hindley-Milner types (without annotations)
23 type HMtype = TyExp ()
24

25 -- | annotated types
26 type Atype = TyExp Ann
27

28 -- | annotation variables
29 newtype Ann = Ann Int deriving (Eq,Ord,Enum, Num)
30

31 instance Show Ann where
32 showsPrec _ (Ann n) = ('a':) . shows n
33

34 -- | auxiliary functions to make simple types
35 tycon = TyCon
36 tyvar = TyVar
37 tyfun = TyFun
38 hmfun = TyFun ()
39 (~>) = hmfun
40 thunk = TyThunk
41 hmthunk = TyThunk ()
42 hmalt c t = (c, (), t)
43 hmint = TyCon "Int"
44

45 annotations :: Foldable t => t a -> [a]
46 annotations = toList
47

48 -- | collect all type variables
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49 -- generic foldable and for plain type expressions
50 typevars :: Foldable f => f (TyExp a) -> [TVar]
51 typevars = foldMap tyvars
52

53 tyvars :: TyExp a -> [TVar]
54 tyvars (TyCon _) = []
55 tyvars (TyVar x) = [x]
56 tyvars (TyPair t1 t2) = tyvars t1 ++ tyvars t2
57 tyvars (TyThunk _ t) = tyvars t
58 tyvars (TyFun _ t1 t2) = tyvars t1 ++ tyvars t2
59 tyvars (TyList _ _ t) = tyvars t
60

61 -- | type substitutions
62 type Tysubst a = Map TVar (TyExp a)
63 type HMsubst = Tysubst ()
64

65

66 -- | apply a substitution to a type
67 appsubst :: Tysubst a -> TyExp a -> TyExp a
68 appsubst _ t@(TyCon _) = t
69 appsubst s t@(TyVar v) = Map.findWithDefault t v s
70 appsubst s (TyThunk q t') = TyThunk q (appsubst s t')
71 appsubst s (TyFun q t1 t2) = TyFun q (appsubst s t1) (appsubst s t2)
72 appsubst s (TyPair t1 t2) = TyPair(appsubst s t1) (appsubst s t2)
73 appsubst s (TyList q p t) = TyList q p (appsubst s t)

A.3 Damas-Milner Type Inference

1 module DamasMilner where
2

3 import Term
4 import Types
5 import Debug.Trace
6 import qualified Data.Map as Map
7 import Control.Monad.State
8 import Control.Monad.Except
9

10 -- type schemes
11 newtype HMscheme = Gen ([TVar], HMtype) deriving (Eq,Show)
12

13 -- inject a type into a scheme
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14 nogen :: HMtype -> HMscheme
15 nogen t = Gen ([], t)
16

17 gen :: [TVar] -> HMtype -> HMscheme
18 gen vs t = Gen (vs, t)
19

20 -- Hindley-Milner context assigning types schemes to variables
21 type HMcontext = [(Ident, HMscheme)]
22

23 -- a monad for Hindler-Milner type inference/checking
24 -- combination of state and failure
25 type Tc = StateT TcState (Either String)
26

27 -- type checking state: fresh var generation and current unifier
28 data TcState = TcState { counter :: Int, unifier :: HMsubst }
29 deriving (Eq, Show)
30

31 -- generate fresh variables
32 freshvars :: Int -> Tc [TVar]
33 freshvars n = do i <- gets counter
34 modify $ \s -> s {counter=counter s+n}
35 return ['t':show n | n<-[i..i+n-1]]
36

37 freshvar :: Tc TVar
38 freshvar = liftM head (freshvars 1)
39

40 -- lookup in context and instantiate type scheme
41 lookupTc :: Ident -> HMcontext -> Tc HMtype
42 lookupTc x ctx
43 = case lookup x ctx of
44 Nothing -> throwError ("unbound variable: " ++ show x)
45 Just (Gen (vs,t)) -> do vs' <- freshvars (length vs)
46 let s = Map.fromList $ zip vs (map TyVar vs')
47 return (appsubst s t)
48

49

50 -- assert a unification constraint
51 unify :: HMtype -> HMtype -> Tc ()
52 unify t1 t2 = do u <- gets unifier
53 case unifyEqs u [(t1, t2)] of
54 Left err -> throwError err
55 Right u' -> modify $ \s -> s {unifier=u'}
56

57 -- unification algorithm
58 -- takes the current unifier and a list of term equations
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59 -- result is extended unifier or failure
60 unifyEqs :: HMsubst -> [(HMtype, HMtype)] -> Either String HMsubst
61 unifyEqs s [] = return s
62 unifyEqs s ((t,t'):eqs) = unifyEqs' s (appsubst s t) (appsubst s t') eqs
63

64 -- worker function to unify two types and more equations
65 -- pre-condition: substitution has been applyed to the types
66 -- unifyEqs' s TySelf TySelf eqs
67 -- = unifyEqs s eqs
68 unifyEqs' s t@(TyCon c) t'@(TyCon c') eqs
69

70 | c==c' = unifyEqs s eqs
71 | otherwise = throwError $
72 unlines ["type mismatch 1: ||" ++ (show t) ++ "|| "++ (show t')]
73

74 unifyEqs' s (TyVar x) (TyVar y) eqs
75 = case compare x y of -- fix bindings from higher to lower variables
76 EQ -> unifyEqs s eqs
77 LT -> unifyEqs (extend y (TyVar x) s) eqs
78 GT -> unifyEqs (extend x (TyVar y) s) eqs
79

80 unifyEqs' s v@(TyVar x) t eqs
81 | x `notElem` tyvars t = unifyEqs (extend x t s) eqs
82 | otherwise = throwError $ unlines ["occur check failed:" ++(show v) ++
83 (show t)]
84

85 unifyEqs' s t (TyVar x) eqs = unifyEqs' s (TyVar x) t eqs
86

87 unifyEqs' s (TyFun _ t1 t2) (TyFun _ t1' t2') eqs
88 = unifyEqs s ((t1,t1'):(t2,t2'):eqs)
89

90 unifyEqs' s (TyThunk _ t) (TyThunk _ t') eqs
91 = unifyEqs s ((t,t'):eqs)
92

93 unifyEqs' s (TyList _ _ t1) (TyList _ _ t2) eqs
94 = unifyEqs s ((t1,t2):eqs)
95

96 unifyEqs' s (TyPair t1 t2) (TyPair t3 t4) eqs
97 = unifyEqs s ((t1,t3):(t2,t4):eqs)
98 -- distinct type structures
99 unifyEqs' _ t t' _ = throwError $ unlines ["type mismatch 2: ||" ++ (show t) ++ "|| "

100 ++ (show t')]
101

102 -- extend a type substitution maintaining idempotency
103 extend :: TVar -> HMtype -> HMsubst -> HMsubst
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104 extend v t s = Map.insert v t $ Map.map (appsubst s') s
105 where s' = Map.singleton v t
106

107 -- Damas-Milner type inference
108 -- takes a context and term;
109 -- computes the Hindley-Milner annotated term
110 -- discards annotations in the original term
111 hm_infer :: HMcontext -> Term () -> Tc (Term HMtype)
112 hm_infer ctx (Var x)
113 = do t <- lookupTc x ctx
114 a <- freshvar
115 unify t (TyThunk () (TyVar a))
116 return (Var x :@ (TyVar a))
117

118 hm_infer _ Nil
119 = do a <- freshvar
120 return (Nil :@ TyList () [()] (TyVar a))
121

122 hm_infer ctx (Lambda x e)
123 = do a <- freshvar
124 let ctx' = (x, nogen (hmthunk (tyvar a))):ctx
125 (e' :@ t) <- hm_infer ctx' e
126 return (Lambda x e' :@ (hmthunk (tyvar a) ~> t))
127

128 hm_infer ctx (App e y)
129 = do t1 <- lookupTc y ctx
130 (e' :@ te) <- hm_infer ctx e
131 b <- freshvar
132 unify te (t1 ~> tyvar b)
133 return (App (e':@te) y :@ tyvar b)
134

135 hm_infer ctx (Pair x1 x2)
136 = do t1 <- lookupTc x1 ctx
137 t2 <- lookupTc x2 ctx
138 return (Pair x1 x2 :@ (TyPair t1 t2))
139

140 hm_infer ctx (ConsApp x1 x2)
141 = do b <- lookupTc x1 ctx
142 l <- lookupTc x2 ctx
143 unify l (TyThunk () (TyList () [()] b))
144 return (ConsApp x1 x2 :@ (TyList () [()] b))
145

146 hm_infer ctx (Let x (ConsApp x1 x2) e2)
147 = do a <- freshvar
148 b <- freshvar
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149 unify (TyVar a) (TyList () [()] (TyVar b))
150 let ctx' = (x, nogen (TyThunk () (TyVar a))):ctx
151 (e1':@t1) <- hm_infer ctx' (ConsApp x1 x2)
152 unify (TyVar a) t1
153 (e2':@t2) <- hm_infer ctx' e2
154 return (Let x (e1':@t1) e2' :@t2)
155

156 hm_infer ctx (Let x e1 e2)
157 = do a <- freshvar
158 let ctx' = (x, nogen (TyThunk () (TyVar a))):ctx
159 (e1' :@ t1) <- hm_infer ctx' e1
160 unify (tyvar a) t1
161 (e2' :@ t2) <- hm_infer ctx' e2
162 return (Let x (e1':@t1) e2' :@ t2)
163

164 hm_infer ctx (Match e0 (ConsApp x1 x2) e1 (Nil) e2)
165 = do (e0' :@ t0) <- hm_infer ctx e0
166 a <- freshvar
167 let ctx' = (x1, nogen (hmthunk (TyVar a))):ctx
168 let ctx'' = (x2, nogen (TyThunk () (TyList () [()] (TyVar a)))):ctx'
169 (e1' :@ t1) <- hm_infer ctx'' e1
170 (e2' :@ t2) <- hm_infer ctx e2
171 unify t1 t2
172 return (Match (e0':@t0) (ConsApp x1 x2) (e1':@t1) Nil (e2':@t2) :@ t1)
173

174 -- constants
175 hm_infer _ (Const n)
176 = return (Const n :@ hmint)
177

178

179 hm_infer ctx (Coerce a@(t',_) e)
180 = do (e' :@ t) <- hm_infer ctx e
181 -- ensure the annotated type has the same HM structure
182 let t'' = fmap (\_ -> ()) t'
183 unify t t''
184 return (Coerce a e' :@ t)
185

186

187 hm_infer _ _ = error "hm_infer: invalid argument"
188

189 -- perform HM type inference and annotate the term with types
190 hm_inference :: Term () -> Either String (Term HMtype)
191 hm_inference e
192 = do (e',tc) <- runStateT (hm_infer [] e) tc0
193 return (let s = unifier tc
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194 in fmap (appsubst s) e')
195 where -- initial state for the type checker
196 tc0 = TcState { counter=0, unifier = Map.empty }

A.4 Resource Analysis

1 module Analysis where
2

3 import Prelude hiding (Num(..))
4 import Algebra.Classes hiding (zero)
5

6 import Term
7 import Types
8 import Control.Monad.State
9 import Control.Monad.Reader

10 import Data.LinearProgram hiding (Var,zero)
11 import Data.LinearProgram.GLPK.Solver
12 import Control.Monad.LPMonad hiding (Var)
13 import Data.Map (Map)
14 import qualified Data.Map as Map
15 import qualified Data.Set as Set
16 import Data.List (transpose, partition, nubBy)
17 import Data.Char (isSymbol)
18 import Options
19 import Cost (CostModel(..))
20 import Debug.Trace
21 import DamasMilner
22

23 -- | Degree of polynomial function
24 type Degree = Int
25

26 -- | typing contexts for annotated types
27 type Context a = [(Ident,TyExp a)]
28

29 -- | context for the lazy amortized analysis
30 type Acontext = Context Ann
31

32 -- | a monad for constructing linear programs
33 type CLP = LPT Ann Int (StateT Ann (Reader Options))
34

35 -- | fixed zero annotation variable
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36 zero_ann :: Ann
37 zero_ann = Ann 0
38

39 zero :: LinFunc Ann Int
40 zero = linCombination []
41

42 -- singleton annotation variables
43 var :: Ann -> LinFunc Ann Int
44 var x = linCombination [(1,x)]
45

46 -- sum a list of annotations
47 vars :: [Ann] -> LinFunc Ann Int
48 vars xs = linCombination $ zip (repeat 1) xs
49

50 -- generate a fresh annotation variable
51 fresh_ann :: CLP Ann
52 fresh_ann = do a <- lift (do {modify succ; get})
53 varGeq a 0 -- impose non-negativity
54 return a
55

56 -- generate list of fresh annotation variables
57 fresh_anns:: Degree -> CLP [Ann]
58 fresh_anns 0 = return []
59 fresh_anns k = do
60 a <- fresh_ann
61 anns <- fresh_anns (k-1)
62 return (a:anns)
63

64 -- additive shift of a vector of annotations
65 -- second argument is additive shift of first argument
66 additive_shift::[Ann] -> [Ann] -> CLP ()
67 additive_shift (t1:t2:ts) (p1:ps)
68 | length (t1:t2:ts) == length (p1:ps) = do
69 (var t1 + var t2 - var p1) `equalTo` 0
70 additive_shift (t2:ts) ps
71 | otherwise = error "Different lengths"
72 additive_shift (tn:[]) (pn:[]) = do
73 (var tn - var pn) `equalTo` 0
74

75 -- decorate a type with fresh anotation variables
76 decorate_type :: Degree -> TyExp a -> CLP Atype
77 decorate_type k (TyVar x) = return (TyVar x)
78 decorate_type k (TyThunk _ t)
79 = do q <- fresh_ann
80 t'<- decorate_type k t
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81 return (TyThunk q t')
82

83 decorate_type k (TyFun _ t1 t2)
84 = do p <- fresh_ann
85 t1' <- decorate_type k t1
86 t2' <- decorate_type k t2
87 return (TyFun p t1' t2')
88

89 decorate_type k (TyPair t1 t2)
90 = do p <- fresh_ann
91 t1' <- decorate_type k t1
92 t2' <- decorate_type k t2
93 return (TyPair t1' t2')
94

95 decorate_type k (TyCon b) = return (TyCon b)
96

97 decorate_type k (TyList _ _ t)
98 = do an <- fresh_ann
99 p <- fresh_anns k

100 t1 <- decorate_type k t
101 return (TyList an p t1)
102

103

104 -- | decorate a term with annotation variables
105 decorate_term :: Degree -> Term HMtype -> CLP (Term Atype)
106 decorate_term k Nil = return Nil
107 decorate_term k (Var x) = return (Var x)
108

109 decorate_term k (Lambda x e)
110 = do e' <- decorate_term k e
111 return (Lambda x e')
112

113 decorate_term k (App e y)
114 = do e' <- decorate_term k e
115 return (App e' y)
116

117 decorate_term k (ConsApp x1 x2)
118 = return (ConsApp x1 x2)
119

120 decorate_term k (Pair x1 x2)
121 = return (Pair x1 x2)
122

123 decorate_term k (Let x e1 e2)
124 = do e1'<- decorate_term k e1
125 e2'<- decorate_term k e2
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126 return (Let x e1' e2')
127

128 decorate_term k (Match e0 e1 e2 e3 e4)
129 = do e0' <- decorate_term k e0
130 e1' <- decorate_term k e1
131 e2' <- decorate_term k e2
132 e3' <- decorate_term k e3
133 e4' <- decorate_term k e4
134 return (Match e0' e1' e2' e3' e4')
135

136

137 -- | primitive operations
138 decorate_term k (Const n) = return (Const n)
139

140 decorate_term k (Coerce a e)
141 = do e' <- decorate_term k e
142 return (Coerce a e')
143

144 -- | annotations
145 decorate_term k (e :@ t)
146 = do e' <- decorate_term k e
147 t' <- decorate_type k t
148 return (e' :@ t')
149

150

151 decorate_term k e = error ("non exaustive " ++ (show e))
152

153

154 -- | sharing relation between types
155 -- pre-condition: types have the same Hindley-Milner structure
156 share :: Atype -> [Atype] -> CLP ()
157

158 share _ [] = return ()
159

160 -- thunks
161 share (TyThunk q t0) ts
162 = do sequence_ [ do { var qi `geq` var q
163 }
164 | TyThunk qi ti <- ts]
165 share t0 [ ti | TyThunk qi ti <- ts]
166

167 -- function types
168 share (TyFun q a b) ts
169 = sequence_ [ do { var qi `geq` var q
170 ; share ai [a]
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171 ; share b [bi]
172 }
173 | TyFun qi ai bi <- ts]
174

175 -- constants
176 share (TyCon b) ts = return ()
177

178 -- variables
179 share (TyVar x) ts = return ()
180

181 -- pairs
182 share (TyPair t1 t2) ts = sequence_ [ do { share t1 [t1']
183 ; share t2 [t2']
184 }
185 | TyPair t1' t2' <- ts]
186

187 -- lists
188 share (TyList a1 l1 t) ts = do
189 sequence_ [ do { var ai `geq` var a1
190 ; share t [ti]
191 }
192 | TyList ai _ ti <- ts]
193 share_potential l1 (gather_all_potential ts) --special case to share potential
194

195 -- to collect potential from list of lists
196 gather_all_potential::[Atype] -> [[Ann]]
197 gather_all_potential [] = []
198 gather_all_potential l = (gather_potential l):(gather_all_potential (shift_right l))
199

200 -- gather potential os same degree
201 gather_potential::[Atype] -> [Ann]
202 gather_potential []= []
203 gather_potential ((TyList ai [] ti):ts )= []
204 gather_potential ((TyList ai (l1:xsi) ti):ts )= l1:(gather_potential ts)
205

206 -- share potential of one list to others
207 share_potential::[Ann] -> [[Ann]] -> CLP ()
208 share_potential _ [] = return ()
209 share_potential [] _ = return ()
210 share_potential (a:as) (l:ls) = do
211 (var a `geq` vars l)
212 share_potential as ls
213

214 shift_right::[Atype] -> [Atype]
215 shift_right [] = []
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216 shift_right ((TyList ai [] ti):xs) = []
217 shift_right ((TyList ai (l1:xsi) ti):xs) = (TyList ai xsi ti):(shift_right xs)
218

219 -- | subtyping is a special case of sharing
220 subtype, equaltype :: Atype -> Atype -> CLP ()
221 t1 `subtype` t2 = share t1 [t2]
222

223 -- NB: the following is not needed
224 t1 `equaltype` t2 = do t1 `subtype` t2; t2 `subtype` t1
225

226 -- | sharing a context against itself
227 share_self :: Acontext -> CLP ()
228 share_self ctx = sequence_ [share t [t,t] | (x,t)<-ctx]
229

230

231 -- | split a context for typing a subexpression
232 split_context :: Degree -> Acontext -> CLP (Acontext, Acontext)
233 split_context k ctx
234 = let newctx = sequence [do {t'<-decorate_type k t; return (x,t')}
235 | (x,t)<-ctx]
236 in do ctx1 <- newctx
237 ctx2 <- newctx
238 sequence_ [ share t [t1,t2] |
239 (t,t1,t2)<-zip3 (map snd ctx) (map snd ctx1) (map snd ctx2)]
240 return (ctx1, ctx2)
241

242

243 -- | trim context to vars with free occurences in a term
244 trim_context :: Term b -> Context a -> Context a
245 trim_context e
246 = filter (\(x,_) -> x`Set.member`vars) . nubBy (\(x,_) (y,_) -> x==y)
247 where vars = freevars e
248

249

250 -- relax cost annotations
251 -- if \Gamma |-p0/p0'- e : C then \Gamma |-p/p'- e : C
252 relaxcost :: (LinFunc Ann Int, LinFunc Ann Int) ->
253 (LinFunc Ann Int, LinFunc Ann Int) -> CLP ()
254 (p,p') `relaxcost` (p0,p0') = do {p `geq` p0; (p - p0) `geq` (p' - p0')}
255

256

257 -- lookup a name in a context
258 lookupId :: Ident -> Context a -> TyExp a
259 lookupId x ctx
260 = case lookup x ctx of
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261 Nothing -> error ("unbound identifier: "++show x)
262 Just t -> t
263

264 -- as above but enforces sharing and returns remaining context
265 lookupShare :: Degree -> Ident -> Acontext -> CLP (Atype,Acontext)
266 lookupShare k x ctx
267 = case span (\(x',_) -> x'/=x) ctx of
268 (_, []) -> error ("unbound identifier: "++show x)
269 (ctx', (_,t):ctx'') -> do t1 <-decorate_type k t
270 t2 <- decorate_type k t
271 share t [t1,t2]
272 return (t1, ctx' ++ (x,t2):ctx'')
273

274

275 -- get a cost model constant
276 askC :: (CostModel -> Int) -> CLP Int
277 askC k = fmap k $ asks optCostModel
278

279 -- Amortised Analysis
280 -- collects linear constraints over annotations
281 aa_infer :: Degree -> Acontext -> Term Atype -> Atype -> Ann -> Ann -> CLP ()
282 aa_infer k ctx (Nil) (TyList _ _ _) p p'
283 = var p `geq` var p'
284

285 -- Var rule
286 aa_infer k ctx (Var x) t p p'
287 = let TyThunk q t' = lookupId x ctx
288 in do ((var p - var p') - var q) `equalTo` 0
289 t' `subtype` t -- allow subtyping
290

291 -- Abs rule
292 -- allow prepaying for the argument
293 aa_infer k ctx (Lambda x e) (TyFun q t t') p p'
294 = do share_self (trim_context e ctx)
295 var p `geq` var p' -- allow relaxing
296 aa_infer_prepay k [(x,t)] ctx e t' q zero_ann
297

298

299 -- App rule
300 aa_infer k ctx (App (e :@ te) y) t0 p p'
301 | TyFun q t' t <- te
302 = do (ty, ctx') <- lookupShare k y ctx
303 pe <- fresh_ann
304 let potential = look_for_potential t
305 new_type <- decorate_type k ty
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306 t1 <- out_potential k new_type potential
307 t' `subtype` t1
308 aa_infer k ctx' e (TyFun q new_type t) pe p'
309 -- allow subtyping the argument and result
310 ty `subtype` t'
311 t `subtype` t0
312 ((var p - var pe) - var q) `equalTo` 0
313

314

315 -- Letcons rule
316 aa_infer k ctx (Let x ((ConsApp c ys) :@ (TyList an pot tL)) e2) tC p p'
317 = do pe <- fresh_ann
318 tL'<- decorate_type k (TyList an pot tL)
319 share (TyList an pot tL) [(TyList an pot tL), tL']
320 (ctx1,ctx2) <- split_context k ctx
321 ((var p - var pe ) - var (head pot)) `equalTo` 1
322 aa_infer k ((x,TyThunk zero_ann tL'):ctx1) (ConsApp c ys)
323 (TyList an pot tL) zero_ann zero_ann
324 aa_infer k ((x,TyThunk zero_ann (TyList an pot tL)):ctx2) e2 tC pe p'
325

326 -- Let rule
327 aa_infer k ctx (Let x (e1 :@ tA) e2) tC p p'
328 = do
329 tA' <- decorate_type k tA
330 share tA [tA, tA']
331 q <- fresh_ann
332 pe <- fresh_ann
333 (var p - var pe) `equalTo` 1
334 (ctx1, ctx2) <- split_context k ctx
335 aa_infer k ((x,TyThunk zero_ann tA'):ctx1) e1 tA q zero_ann
336 aa_infer_prepay k [(x,TyThunk q tA)] ctx2 e2 tC pe p'
337

338 aa_infer k ctx (Pair x1 x2) (TyPair t1 t2) z z'
339 = do (var z `geq` var z')
340

341 -- Cons rule
342 aa_infer k ctx (ConsApp x1 x2) (TyList a p t) z z'
343 = do
344 var z `geq` var z'
345 let tx1 = lookupId x1 ctx
346 let tx2 = lookupId x2 ctx
347 case tx1 of
348 TyThunk q ttype -> do
349 case tx2 of
350 TyThunk ann (TyList an po ty) -> do
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351 additive_shift p po
352 (var ann - var an) `equalTo` 0
353 _ -> error "Not a list"
354 _ -> error "Not a thunk"
355

356

357 aa_infer k ctx (ConsApp x1 x2) t z z' = error ("Wrong type for ConsApp: "++ show t)
358

359 -- Match rule
360 aa_infer k ctx (Match (e0 :@ (TyList a p t0)) (ConsApp x1 x2) (e2 :@ t2) Nil (e4 :@ t4))
361 t z z''
362 = do new_ann <- fresh_ann
363 (ctx1,ctx2) <- split_context k ctx
364 p1 <- fresh_anns k
365 additive_shift p p1
366 let ctx' = [(x2, TyThunk a (TyList a p1 t0)),(x1, TyThunk new_ann t0)]
367 pt <- fresh_ann
368 z' <- fresh_ann
369 (var z' + var (head p)) `geq` var pt
370 aa_infer k ctx1 e0 (TyList a p t0) z z'
371 aa_infer_prepay k ctx' ctx2 e2 t2 pt z''
372 aa_infer k ctx2 e4 t4 z' z''
373

374

375 -- Constants
376 aa_infer k ctx (Const n) t p p' -- t must be hmint
377 = var p `geq` var p' -- allow relaxing
378

379 -- user annotations and constraints
380 -- checking that t and t' match is done during Damas-Milner inference
381 aa_infer k ctx (Coerce (t,cs) e) t' p p'
382 = let s = Map.fromList $ zip (annotations t) (annotations t')
383 ren x = Map.findWithDefault undefined x s
384 in do sequence_ [ constrain lf' bds
385 | Constr _ lf bds <- cs,
386 let lf' = Map.mapKeys ren lf
387 ]
388 aa_infer k ctx e t' p p'
389

390

391 aa_infer k ctx e t p p' = error ("aa_infer: undefined for " ++ show e)
392

393 -- create new type with potential >= the given potential
394 out_potential::Degree -> Atype -> [Ann] -> CLP Atype
395 out_potential k (TyList a1 p1 t1) p2 = do
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396 new_potential <- fresh_anns k
397 share_potential_simple new_potential p1 p2
398 new_type <- out_potential k t1 p2
399 return (TyList a1 new_potential new_type)
400 out_potential k (TyFun a t1 t2) p2 = do
401 new_type1 <- out_potential k t1 p2
402 new_type2 <- out_potential k t2 p2
403 return (TyFun a new_type1 new_type2)
404 out_potential k (TyPair t1 t2) p2 = do
405 new_type1 <- out_potential k t1 p2
406 new_type2 <- out_potential k t2 p2
407 return (TyPair new_type1 new_type2)
408 out_potential k (TyThunk a t1) p2 = do
409 new_type1 <- out_potential k t1 p2
410 return (TyThunk a new_type1)
411 out_potential k (TyVar a) p2 = do
412 return (TyVar a)
413 out_potential k (TyCon a) p2 = do
414 return (TyCon a)
415

416 -- potential os first argument is shared with the other
417 share_potential_simple::[Ann] -> [Ann] -> [Ann]-> CLP ()
418 share_potential_simple _ [] _ = return ()
419 share_potential_simple [] _ _= return ()
420 share_potential_simple (a:as) (l:ls) (q:qs) = do
421 var a `geq` (var l + var q)
422 share_potential_simple as ls qs
423

424 -- look for potential in a type
425 look_for_potential:: Atype -> [Ann]
426 look_for_potential (TyList _ p t1)= p
427 look_for_potential (TyThunk _ ti) = look_for_potential ti
428 look_for_potential (TyFun _ t1 t2) = (look_for_potential t2)
429 look_for_potential (TyVar _ ) = []
430 look_for_potential (TyCon _ ) = []
431 look_for_potential (TyPair t1 t2 ) = (look_for_potential t1)++(look_for_potential t2)
432

433 --
434 -- allow the prepay for all variables in the first context
435 -- followed by type inference
436 aa_infer_prepay :: Degree -> Acontext -> Acontext ->
437 Term Atype -> Atype -> Ann -> Ann -> CLP ()
438 aa_infer_prepay k [] ctx e t' p p' = aa_infer k ctx e t' p p'
439 aa_infer_prepay k ((x,TyThunk q t) : ctx1) ctx2 e t' p p'
440 = do q0 <- fresh_ann
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441 q1 <- fresh_ann
442 p0 <- fresh_ann
443 var q `equal` (var q0 + var q1)
444 var p `equal` (var p0 + var q1)
445 aa_infer_prepay k ctx1 ((x,TyThunk q0 t):ctx2) e t' p0 p'
446 aa_infer_prepay k ctx _ e t' p p'
447 = error ("aa_infer_prepay: invalid context\n " ++ show ctx)
448

449 -- lookup and share many identifiers in sequence
450 lookupMany :: Degree -> [Ident] -> Acontext -> CLP ([Atype], Acontext)
451 lookupMany k [] ctx = return ([],ctx)
452 lookupMany k (x:xs) ctx
453 = do (t, ctx') <- lookupShare k x ctx
454 (ts, ctx'')<- lookupMany k xs ctx'
455 return (t:ts, ctx'')
456

457 -- leave only type annotations for let-bindings
458 let_annotations :: Term a -> Term a
459 let_annotations (Let x (e1 :@ t1) e2)
460 = Let x (let_annotations e1 :@ t1) (let_annotations e2)
461 let_annotations (Let x e1 e2)
462 = Let x (let_annotations e1) (let_annotations e2)
463 let_annotations (Lambda x e)
464 = Lambda x (let_annotations e)
465 let_annotations (Match e0 e1 e2 e3 e4)
466 = Match (let_annotations e0) (let_annotations e1) (let_annotations e2)
467 (let_annotations e3) (let_annotations e4)
468 let_annotations (App e y)
469 = App (let_annotations e) y
470 let_annotations (Var x) = Var x
471 let_annotations (ConsApp x1 x2) = ConsApp x1 x2
472 let_annotations (Pair x1 x2) = Pair x1 x2
473 let_annotations (Const n) = Const n
474 let_annotations Nil = Nil
475 let_annotations (Coerce a e) = Coerce a (let_annotations e)
476 let_annotations (e :@ a) = let_annotations e
477

478

479 -- toplevel inference
480 -- generates a typing \Gamma |-p/p'- e : C
481 -- and a linear program for constraints over annotations
482 -- set p'=0 and solves to minimize p (i.e. the whnf cost of the expression)
483 aa_inference :: Degree -> Options -> Term HMtype -> HMtype -> (Typing Ann, LP Ann Int)
484 aa_inference degree opts e t
485 = flip runReader opts $
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486 flip evalStateT (Ann 1) $
487 runLPT $
488 do { varEq zero_ann 0
489 ; p <- fresh_ann
490 ; e'<- decorate_term degree e
491 ; t'<- decorate_type degree t
492 ; setDirection Min
493 ; setObjective (vars (p:annotations t'))
494 ; aa_infer degree [] e' t' p zero_ann
495 ; return Typing {aterm = let_annotations e',
496 atype = t',
497 ann_in = p,
498 ann_out = zero_ann}
499 }
500

501 -- solve linear constraints and instantiate annotations
502 aa_solve :: (Typing Ann, LP Ann Int) -> IO (Typing Double)
503 aa_solve (typing, lp)
504 = do print typing
505 answer <- glpSolveVars simplexDefaults{msgLev=MsgOff} lp
506 case answer of
507 (Success, Just (obj, vars)) ->
508 let subst a = Map.findWithDefault 0 a vars
509 in return (fmap subst typing)
510 (other, _) -> error ("LP solver failed: " ++ show other)
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