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Abstract

In a growing world of sensors, the importance of reducing their failures keeps increas-

ing, particularly in sensors such as fire detection ones, in which a failure may provoke

a useless mobilization of firefighting teams or, in a worst case scenario, not trigger an

alarm when there is a fire, possibly resulting in many deaths.

To better understand the nature of fire sensor data and to further the cause of reducing

their failures, we experiment with a new approach: divide the time series captured by

the sensors in segments with different distributions and then proceed to cluster them

through a shape similarity distance function.

This approach gave us a new way of thinking about the nature of the time series and

to better understand what may cause the different shapes. Through that approach,

we were able to identify multiple predominant shapes present in the data, to describe

them and understand their nature, and to look at the characteristics of each cluster,

in order to understand why the clusters exist in the first place.
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Resumo

Num mundo em que há cada vez mais sensores, a importância de reduzir as fal-

has deles também aumenta constantemente, particularmente nos sensores de deteção

de incêndio, em que uma falha pode significar a mobilização inútil de equipas de

bombeiros, ou no pior dos casos, não ser detetado um incêndio, possivelmente causando

várias mortes.

Para perceber melhor a natureza dos dados de sensores de incêndio e avançar a

causa de redução das falhas deles, experimentamos uma nova abordagem: dividir as

séries temporais capturadas pelos sensores em segmentos com diferentes distribuições

e depois proceder ao clustering desses segmentos através de uma função de semelhança

de formas que esses segmentos tomam.

Esta abordagem dá-nos uma nova forma de pensar sobre a natureza das séries tempo-

rais e a dá-nos a possibilidade de perceber melhor o que pode causar essas diferentes

formas presentes nas séries. Através dela, conseguimos obter várias formas predom-

inantes nos dados, descrevê-las e perceber a sua natureza, assim como olhar para as

diferentes carateŕısticas dos clusters, de forma a perceber porque é que esses clusters

existem.
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Chapter 1

Introduction

1.1 Motivation

In a growing technological world [2, 3], our lives are increasingly dependent on technol-

ogy. This technology doesn’t include only the ones we use directly, like our cellphones

or laptops. It also includes a much bigger world of devices that, without our noticing,

make our lives easier and more secure – sensors. Sensors are devices built to capture

data and transmit it (in real-time or not), so that a user or some other device can

make better informed decisions [5].

Every sensor, as any electronic device, is prone to failures. Those failures may result

in a misreading of the data, making the data unreliable for the very decisions it’s

supposed to help make. Unfortunately, making a decision based on false data can

have a disastrous impact [4]. Take the example of fire detection sensors: a misreading

of the data can lead to the useless mobilization of firefighting teams by detecting

a non-existent fire or in the worst case scenario, many deaths, by not detecting an

occurring fire.

From that, the problem of reducing such failures arises, as one needs to identify them

to avoid making any ill-informed decisions. The detection of devices’ failures falls into

the category of Anomaly Detection (AD), a broader category that, in simple terms,

detects abnormalities in data.

There is plenty of sensor data available that may be used in this work. Unfortunately,

most of that data is independent of alarms. I.e., the data has no identification of when

an alarm was triggered. Even if we choose a source that only represents data in which
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CHAPTER 1. INTRODUCTION 13

an alarm was triggered, we still would not know which of those alarms were false or

true alarms.

Despite that, and still in the pursuit of false alarm reduction, we will try to understand

if there are recurrent patterns in the data, and try to gather valuable knowledge about

these patterns.

With that goal in mind, we will study regimes in the sensor data. A regime is a

contiguous sequence in a time series that follows the same distribution of values. A

sequence is considered to be a new regime when it deviates from the distribution of

values that come before it. Then, we will cluster the regimes in order to understand

whether the regimes have well defined clusters in terms of shapes and what predomi-

nant shapes these clusters have. Finally, we will study these clusters to try to gather

valuable information about their regimes and, subsequently, about the nature of the

data. Finding such clusters would be of uttermost interest and would provide us with

valuable knowledge about the data, because then, we would have evidence that the

data is not homogeneously distributed but rather there is some type of variables in

the originating mechanism that dictates the shapes that the data takes.

1.2 Objectives

We will try to answer the following set of questions:

• Can we verify the existence of regimes in any important variable of our data?

• Are there clusters of shapes in these regimes?

• Can we describe the shapes of the clusters of regimes?

• Do shapes have a correlation with the dates that the regimes were recorded?

• Is there some interesting pattern on what regimes come before a regime from a

certain cluster? And after?

In order to assess the veracity of the following hypotheses:

1. Regimes exist,

2. Regimes have well defined clusters of predominant shapes,

3. The clusters and their shapes can provide valuable information about the data.
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1.3 Thesis’ layout

In this section, we summarize the layout of this thesis. In Chapter 2, an introduction

to the theoretical foundations needed to understand the rest of this work is given.

Next, in Chapter 3, we give the stage to works done by other authors that relate to

this paper, from the general goal to the specific tasks that will be done. Chapter 4

focuses on the data and its transformation (from time series to regimes) in order to

proceed to clustering in Chapter 5. Finally, in Chapter 6, we give conclusions and

final remarks about this thesis, as well as future work that might be done to improve

it.



Chapter 2

Theoretical foundations

In this chapter, the reader will be introduced to key concepts and methods that are

going to be used throughout this work. As we have described in chapter 1, our aim is

to understand and characterize sensor signals. Changes of behavior, either permanent

or temporary, are often an indication of sensor failure or of the detection of a relevant

event. In the first section, Change Point Detection (CPD), a technique that allows us

to identify segments of the time series that may correspond to such behavior changes

or different regimes. In the second and last section, we introduce clustering, and more

precisely, clustering in time series, that will serve the purpose of understanding how

and why the regimes’ shapes cluster together and analyze the clusters’ characteristics.

2.1 Change Point Detection

Change point detection (CPD) is a type of procedure that aims to find whether and

where in a time series the data generating model changes, i.e., it aims to find different

states in the data. In this section and work, we will only address and use offline CPD.

A change point is a transition from one state to another. A state, or as we refer

to it in this work, a regime, is a time period in which the nature of the recording

device has some specific characteristics that don’t change during that period of time.

Those characteristics are not particular to the device itself, but rather to anything

that might have an impact on the measures of the device, such as the environment.

For instance, a thermometer will record low temperatures in the winter and record

high temperatures in the summer. These would be considered two different states in
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CHAPTER 2. THEORETICAL FOUNDATIONS 16

the underlying mechanism (environment) that generates the temperature data.

Note that CPD might be applied to a complex system composed by multiple devices,

in which case the change point detection would refer to the system as a whole and not

in each device in separate.

The most common types of changes searched for in CPD are the following:

• Mean change,

• Variance change,

• And co-variance change.

Any data characteristic that is able to change might influence a new state of the

underlying model.

Formally, CPD is all about finding the best possible segmentation τ of the data that

minimizes a criterion V (τ, y). This criterion encodes the sum of costs that measure

the goodness of fit of each segment to a specific model. This means that CPD will try

to find segments in which the data is consistent in a distribution-wise perspective, in

accordance to the cost function. More precisely, the criterion is defined as:

V (τ, y) =
∑K

k=0 c(ytk..tk+1
)

2.1.1 Types of CPD problems

There are two types of problems in CPD[41]:

• Type 1: known number of changes. This problem has a fixed number of changes

that the CPD method must find and so, the criterion is restrained to that fixed

number of changes:

min
|τ |=K

V (τ) 1

• Type 2: unknown number of changes. In this type of problem, the criterion

must have a penalization factor that increases with the number of segments:

min
τ
V (τ) + pen(τ)

1V (τ)⇔ V (τ, y)
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2.1.2 CPD methods composition

There are three components that constitute a CPD method:

• Cost function – measures how heterogeneous a segment is. I.e., the cost is

expected to be low if the data in the segment is homogeneous, and high if not.

The cost function encodes what types of changes will be detected.

• Search method – responsible for iterating segments until it finds the best set of

them.

• Constraint – responsible for maintaining coherence between the real number of

changes and the number of changes detected, or in the case of a type 2 problem,

of limiting the number of changes to a reasonable value.

2.1.2.1 Cost functions

The cost function, as already stated above, encode what types of changes will be

detected – mean, variance, or other data characteristics.

Cost functions are divided in two groups:

• Parametric models – these are cost functions that make assumptions about the

data distribution.

• Non-parametric models – in contrast to parametric models, non-parametric are

close to being assumption-free (the only assumption is that the distributions are

continuous).

In Figure 2.1, we show an account of the most popular cost functions.

2.1.2.2 Search methods

The search method is responsible for solving the CPD optimization problem. Search

methods are also divided in two main groups:

• Optimal detection – finds the exact solution. Optimal detection methods include

Opt [11], which aims to solve type 1 problems and Pelt (Pruned Exact Linear
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Figure 2.1: Most popular cost functions. Image taken from [41].

Time) [25] which aims to solve type 2 problems. These methods have a high

computational complexity.

• Approximate detection – finds the approximate solution. These are used when

optimal detection methods are too computationally expensive for the task at

hand. Examples of these methods are window-based methods, binary segmenta-

tion and bottom-up segmentation. These methods, of finding an approximation

of the optimal solution, are not as accurate as the optimal methods, despite

being faster.

2.1.2.3 Constraint and penalty

Finally, there is also the need for a constraint in type 1 problems, which will make the

CPD method find a fixed number of regimes. For type 2 problems, since we don’t know

for certain how many regimes there are, we use a penalty rather than a constraint. The

main idea behind this is: the higher the number of segments, the higher the penalty

value will be. This penalty mechanism will result in a balance between the goodness

of fit of the partitions and the number of total partitions.

The most popular penalties are linear ones [25], which means that the higher the

number of segments, the higher the penalty, in a linear fashion.

For a more in-depth study about penalties and CPD methods in general, the reader
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should refer to surveys on the matter, such as [41, 34, 8].

2.1.3 Assumption of normality

For some techniques, such as parametric cost functions in CPD, there are some

requirements that the data must meet. In the CPD case, we are interested in whether

the data follows a normal distribution [41]. In an ideal setting, we would know what

distribution the data comes from. Unfortunately, most of real world problems are not

ideal and that means that we have to make assumptions about the data distribution.

To assess if a data set follows a normal distribution, one can resort to visualization

methods, such as QQ plot, box plot, normal probability plot and simple histograms.

One can also make use of statistical tests, such as Chi-Squared test, Kolmogorov-

Smirnov Goodness of Fit test [23], and many more.

2.2 Clustering

Clustering, a type of unsupervised learning, serves the ultimate purpose of discovering

hidden data structures. This is done by partitioning data into groups in which its

instances are similar, and then study what the instances from each group have in

common.

There are multiple types of clustering algorithms:

• Hierarchical,

• Squared-error based,

• Mixture Densities based,

• Graph Theory based,

• Fuzzy,

• And many others.

The most important concept in clustering, used in most of the algorithms, is the

similarity between instances. The similarity measures how identical two instances are,
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according to some function, such as the Euclidean distance, Minkowski distance, and

others.

Then, after having a matrix of the distances between the instances, a clustering

algorithm uses that matrix to discover the clusters, by grouping instances that are close

together. Examples of such algorithms are DBSCAN [16], OPTICS [9], k-Medoids [36].

There are also other clustering algorithms that do not work with a distance matrix,

such as KMeans [29]. For more in this subject, refer to [43].

After grouping the data into clusters, it might also be useful to derive prototypes –

i.e., instances that adequately represent each one of the clusters.

In the next section, we see how clustering time series differs from the typical clustering.

2.2.1 Clustering time series

One of the main problems that arise in time series clustering is the incompatibility of

the usual distance functions with time series. Distance functions such as the Euclidean

distance and others can not be used in a straightforward fashion, as in many cases it

would be impossible to apply such functions (because time series may have different

lengths, for instance). Even if it was possible to apply such distance functions, they

would have unwarranted consequences in the resulting clusters.

First, one must consider whether all the time series are equal in length. If not, an

elastic distance measure is required. An elastic distance measure is one that works

on time series with different lengths. The main idea behind elastic distance measures

is that it contracts (or expands) a time series in order to compare it to another time

series of different length.

Then, the choice of the distance function and/or model will depend on what charac-

teristics of the time series we are most interested in:

• Similarity in time – addresses correlation between time series. Here, classic

distances such as Euclidean (or some variant of it) are used.

• Similarity in shape – takes into account the shapes present in two time series,

regardless of the time at which a particular shape happens. In this case, a

distance measure of elastic nature is of extreme importance; it consider only the

shapes and not to the time step at which they happen.



CHAPTER 2. THEORETICAL FOUNDATIONS 21

• Similarity in structure – this type is identical to similarity in shape, but for

longer time series. In this case, one would use a Hidden Markov Model or an

ARMA process, and only then measure the distance between the parameters of

the models, rather than the time series themselves.

In subsection 2.2.1.1, we briefly expand on the distance measure that will be used

throughout this work.

In what relates to prototypes, there are multiple ways to get them [6]:

• The medoid sequence of the set, where the prototype of a cluster is defined by

the sequence that minimizes the sum of squared distances to other objects within

the cluster.

• The average sequence of the set, where a simple averaging of the time series of

the cluster is done to obtain its prototype. Unfortunately, in the cases of time

series with different lengths or when the similarity between sequences is based

on their shapes, a simple averaging will not capture the actual average shape of

the cluster. For these cases, more complex averaging methods are necessary, but

most of the times such methods are avoided in advantage of simpler ones [6].

• The local search prototype, where a combination of the medoid and the averaging

method happens.

2.2.1.1 Dynamic Time Warping

From the multiple distance measures existent, Dynamic Time Warping (DTW) [12]

is one of the most popular. DTW is an elastic distance measurement that aims to

measure the similarity in shape of two time series, regardless of their speed (or the

difference thereof).

In figure 2.2, a comparison between Euclidean distance and DTW is shown, so the

reader can have a better intuition of how DTW works.

2.2.2 Clustering evaluation

There are multiple metrics to evaluate clusters. From those, two will be used through-

out this work: Silhouette score and Dunn’s Index.
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Figure 2.2: On the left, euclidean matching and on the right, DTW matching. Image

taken from: [1]

Silhouette score is computed by first calculating the silhouette width for each instance

ith, which is a confidence indicator on the membership of the ith instance in the

cluster that it was assigned to. This confidence is measured by how easy it would

be for this instance to be assigned to the closest cluster other than the one it was

actually assigned to. After having each silhouette width, a silhouette score of each

cluster is computed, by calculating the mean of the silhouette widths. Finally, we

can get the global silhouette score by getting the mean of each cluster’s silhouette

score. Silhouette scores have a domain of [−1, 1], where a value of 1 would mean that

the instances were correctly assigned to the respective clusters; 0 would mean that

the instances could be assigned to some other cluster; and -1 would mean that the

instances were incorrectly assigned and should be assigned to some other cluster.

Dunn’s Index main goal is to have a sense of how much the clusters overlap and how

compact the clusters are. It is calculated through the inter-cluster distance and intra-

cluster variance. This index takes the [0, 1] domain where higher values mean that

there is less overlapping, and therefore a better clustering.



Chapter 3

Related work

In this chapter, works that might be of relevance to this thesis are presented. First, we

go through works on anomaly detection in sensor data. Then, we dive into works on

CPD, statistical tests for normality assumption, and finally, clustering on time series.

3.1 Anomaly detection in sensor data

Multiple works have been done on this subjects, but many of these are are specific to

a single type of sensors. For instance, in Fujimaki et al. [18], the authors develop a

system to detect anomalies in spacecrafts using kernel feature space. The authors of

Ahn et al. [7] also develop an anomaly detection procedure for spacecraft control

systems, but with Deep Generative Models. There are some works that address

anomaly detection of time series in an unsupervised setting, without a particular

task in mind. Examples of that are Munir et al. [33], in which the authors use deep

learning approaches such as Convolutional Neural Networks. Another instance of such

work is Munir et al. [32], in which the authors fuse DL with statistical models.

There are also multiple surveys that are related to this matter. In Ball et al. [10], the

authors write extensively about DL in remote sensing data, although not exclusively

about anomaly detection, but rather all the problems that are related to the sensors’

world. In Chalapathy et al. [14], the authors write about DL for AD for all type of

data (from simple time series, to video). In both of these surveys, several references

to AD in sensor data can be found.
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3.2 Change Point Detection

In the last decade, many works on CPD were done. Most of the recent works use

the Pelt optimization method [13, 21, 19], to be able to solve both type 1 and type 2

CPD problems. The only exceptions, in recent years, are Lung-Yut-Fong et al. [28],

in which the authors use the Opt method and a rank-based cost function and Frick

et al. [17], in which the authors use BinSeg, an approximate optimization method to

solve both CPD problem types.

In what relates to CPD optimization methods, Opt and Pelt were introduced in 1958

[11] and 2012 [25], respectively. The first of these was first introduced in a non-related

field of research, and only applied to CPD a few decades later.

There are also multiple surveys about this subject. In the most recent one, Truong

et al. [41] provide an overview of offline CPD methods, showcasing most of the

optimization methods (optimal and approximated) and many cost functions. The

authors also write about estimating the number of changes and most appropriate

penalty. Furthermore, they implement some CPD methods in a Python package they

called ruptures, which was useful in the present work. Niu et al. [34] and Shannalee

et al. [8] also wrote extensive surveys on this topic.

3.3 Statistical tests for normality assumption

Two of the most popular statistical tests are the Chi-squared test and the Kolmogorov-

Smirnov (KS) Goodness of Fit test [30]. Unfortunately, these two tests are not

adequate for most problems. The Chi-squared test requires the sample to be small

(up to only 20 samples), while the KS test leads to very conservative statistics, i.e. p-

values strongly biased upward when an estimation of the mean and variance is needed

[39].

Hubert W. Lilliefors [27] made a correction to deal with this upward bias of the KS

test. Later on, this was further updated by Dallal and Wilkinson [15] and Stephens

[40]. Despite these corrections, the KS test doesn’t seem to be as powerful as other

statistical tests, like Shapiro-Wilk (SW) [38] and Jarque-Bera (JB) [22]1.

1This means that SW and JB tests will make less Type II errors than the KS and Lilliefors tests,

i.e., the less powerful tests (KS and Lilliefors) will incorrectly fail to reject the null hypothesis more

often than their counterparts (SW and JB).
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3.4 Clustering time series

Most of the existing works related to clustering in time series use existing clustering

procedures, such as partitioning, hierarchical, grid-based, model-based, density-based

and multi-step algorithms. In what relates to hierarchical clustering, according to

Aghabozorgi et al. [6], such methods are weak in the quality of the resulting clusters,

and for that reason, these methods are usually paired with another algorithm as

a hybrid clustering approach. Furthermore, there are multiple works that aim to

improve the quality of the hierarchical procedure, such as Chamaleon[24], CURE[20]

and BIRCH[44].

The authors combine these procedures with a distance measure of their choosing – one

that will reflect the warranted characteristics of the time series. There are multiple

distance measures for different purposes. A few examples of such distances are:

Euclidean, correlation-based, Dynamic Time Warping (DTW)[12], Longest Common

Subsequence (LCSS)[42], Minimal Variance Matching (MVM)[26] and many others.

The reader should refer to Aghabozorgi et al. [6] for more about this subject.

There are multiple works that combine an already existing clustering procedure with a

distance measure. For instance, in Oates et al. [35], the authors combine agglomerative

clustering and DTW to cluster the experiences of an autonomous agent.

An implementation of DTW in Python – dtaidistance [31] – will be used throughout

this work.



Chapter 4

Identifying regimes

As stated in the first chapter, our goal is to improve the understanding of our data by

identifying its regimes and by characterizing them through clustering. With that, we

hope to gain valuable information about the data.

In this chapter, the work done on identifying the regimes is explained. First, we

introduce the data and what part of it will be used. Then, we pre-process it, and

follow through with an analysis and a brief outlier analysis. Next, CPD is applied,

resulting in the regimes, which, in the next chapter, we will cluster and analyse the

results and their characteristics, which hopefully will bring valuable knowledge about

the data at hand.

4.1 Original data

The data that we will be using was provided by Bosch, came from systems of fire

detection, and amounted to close to 60 gigabytes of disk space. There was plenty of

more data to use other than these 60 gigabytes, but we chose to use this particular

sample of it. The reason behind this decision is that we think that this amount of data

will be enough to reach our goal (while a tinier sample would not), and at the same

time it will not require as much computational resources as of hundreds of gigabytes

would. The same method could likely be applied to more data with the same success.

In this data set, composed by more than 250 million instances and 60 attributes, there

are 12 systems1 from a single customer. Each row represents an observation of multiple

1A system is an infrastructure containing several devices.
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variables of a single device at a given time. These observations date from 2016-09-23

to 2020-03-21. There are many types of sensors in this data set: points, couplers,

modules and panels, each with its particular task. Each of these device groups may

also have different types (e.g., there are multiple types of modules). These types

can be thought of as a hierarchy, points being the most individual sensors, which are

responsible for capturing specific environmental variables, and the panels being the

most high-level device, that are responsible for monitoring the totality of the sensors

(points, couplers and modules) that are assigned to it. Each type of sensor also has

multiple models – points for instance, can be the model FAP-O420, FAP-O425, FAH-

T420, etc. and each one of these models may capture different variables. The devices

capture data from environmental variables (optical, temperature, pollution, etc.) to

electrical variables and more.

In this data set, there is a very high amount of missing values. The reason for this

is that, as stated before, there are dozens of different models of devices, and each of

them is made to record some specific variables. For instance, it doesn’t make sense

for a module2 to record environmental values. For that reason, the data set is very

sparse.

We chose to work only with one of the most important types of sensors and their most

important variable – FAP-O420 and opt13. We chose this path because we wanted

homogeneity in the data, rather than having multiple problems to address. Also, this

set of device/variable is one of the few that provided sufficient data to analyse.

4.2 Pre-processing

The data processing consisted of transforming the raw data into sets of contiguous

time series for each sensor. In Figure 4.1, we show the pre-processing pipeline done.

For a better understanding of the flowchart, we briefly expand on some of the sub-

routines:

1. Date conversion – the date field is a timestamp composed by the date (year,

month and day) and time (hour, minute and second) at which the observation

was recorded. As we are only interested in the date, we remove the time from

2A module is a device that is responsible for monitoring the health of a loop of sensors.
3Most common optical sensor and environmental variable, respectively.
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Figure 4.1: Pre-processing flowchart.

the values to get date-only timestamps. With this step, we will be able to group

by the date at which the observations were recorded.

2. Group by device and date – a simple ”group by” procedure is done here, where

we get the mean of temperature observations of every device in each day.

3. Drop system/devices if it doesn’t have a minimum of 20 different days – this is

done to lessen the computational costs of the steps that follow. Note that this

data would be dropped at the last step of this pipeline regardless.

4. Group by device – the goal here is to get a list of values, ordered by date, for

each device.

5. Separate into contiguous time series – separate each device’s list into multiple

date-contiguous lists. Any list with less than 20 points is dropped.

Only time series which had at least 20 data points were considered. The reason for

this is that we think this is the lowest reasonable series’ length to work with in the

next stages.

At the end of the pipeline, the data was written to JSON because this format seems

to be the only one that correctly stores lists, something useful for us at this stage.
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4.3 Data analysis

We will now delve into the analysis of our data after pre-processing, so that we have

a better knowledge of it before moving on to CPD. The data processing procedure

described in the last section culminated in 9900 contiguous time series. Two examples

of such time series are shown in Figure 4.2. Notice that the series don’t have the same

time frame. This is due to different devices having observations at different times.

Despite many of the series not having the same time frame, there will also be many

of them that have.

Figure 4.2: Two examples of the resulting time series.

To have an understanding of what values our time series takes along the time frame at

which they were captured, in Figure 4.3 we show both the average time series and the

region that contains all the values. One might think that different regimes can already

be seen in this visualization. That would be a wrong assessment, as this visualization

is an average of all the time series, which are heterogeneous and have different lengths,

and so this can not be seen as regimes of the individual sensors. It’s also worth to

notice that there are multiple breaks in the series, where the value drastically goes

up or down. Take for instance the upwards break that happens between May and

September of 2019 of the average time series (on the left of Figure 4.3) – the reason

for this event is that there are multiple time series with high opt1 values starting at

that precise date, resulting in that steep increase in the average value.

In Figure 4.4, we show both the numerical distribution and the length distribution of

the time series. We can see that most of the opt1 values are between 0 and 100, with

some outliers going up to 300. In terms of length, its distribution is wide, ranging from

20 to close to 350 time steps, with an outlier surprassing the 400 time steps mark.

We also show, in Figure 4.5, observations’ frequency throughout time. In the picture,

it can be noted that there are multiple moments where the frequency bounces. The
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Figure 4.3: Average time series on the left. On the right, the same time series but

with a red shadow representing the region in which data points are present.

Figure 4.4: Distributions of the time series values and lengths, on the left and right,

respectively.

reason for this is that there are many time series ending at a given date and then many

starting right after that. The balance between how many finish and start in a given

date dictates the dynamics of the bounce. This is the same reason that explains the

steep increase in the average opt1 value of Figure 4.3. Furthermore, between May and

September of 2019, we notice that there are multiple series ending and many starting

right after. This indicates that the steep increase at that time, that we talked about

above, is not only due to the appearance of new time series with high opt1 values, but

also due to the end of many time series at that date (with lower opt1 values).

Finally, to start understanding the individual distribution of each time series, we

present a heat map of opt1 values for 10 devices of a single system, in Figure 4.6. In

this heat map, regimes are easily identified in multiple devices. I.e., in many rows of

the heat map, there are patterns of colours, such as cooler and warmer regions in many

of the series. This corroborates our first hypothesis (presented in subsection 1.2), that

there indeed are regimes in our data. There are also some values which seem to be

outliers, around the 164th day, in many of the devices (rows) presented.
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Figure 4.5: Frequency of dates in the time series.

Figure 4.6: Heat map of 10 different devices of a single system for normalized opt1

values.

4.3.1 Will outliers be a problem?

Some outliers were detected in Figure 4.6, and for that reason, we will make a brief

analysis of the outliers present in our data so that we can be sure they will not raise

problems in a later stage of our work. In that same figure, despite multiple outliers

being present, there is one that stands out the most – the one present in device 1. In

Figure 4.7 we showcase the respective time series.

Furthermore, through z-score analysis of the data, we are able to find the rest of the

series that have an outlier. In Figure 4.8, we show both the distribution of z-scores
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Figure 4.7: Time series of Device 1 of Figure 4.6

for all the data points of each time series and the distribution of the days that the

outliers were registered. For the boxplot on the right, we only considered the 35 most

extreme outliers (zscore greater than 8). With these illustrations, if we consider an

outlier to have a z-score of greater than 3, then we have hundreds of time series with

at least one outlier. Furthermore, the time steps at which the outliers happen seem to

be well distributed through the lengths of the time series, falling close to the actual

time series lengths’ distribution (left-side of figure 4.4).

Figure 4.8: Distributions of the (absolute) z-scores and days at which an outlier was

present, on the left and right, respectively.

We present two more examples of time series that have extreme outliers, in Figure 4.9.

Most extreme outliers follow the pattern present in these two time series – the series

are somewhat constant and then in a single day, the opt1 value grows a lot, to then

come back to normalcy.

Despite having some extreme outliers present, we choose to do nothing about them,
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Figure 4.9: Two examples of time series that have an extreme outlier.

as they can bring valuable information to the regimes. E.g., two time series might be

very identical due to the presence of outliers. Nonetheless, these outliers have to be

kept in mind throughout this whole work, since we can not be sure about their impact

at this stage.

4.4 Can we isolate the regimes?

In this section, we will dive into CPD in order to isolate each one of the regimes present

in each one of the time series. First, we assess which assumptions can be made about

our data – more precisely, if we can assume normality, – so that then we can choose

which CPD methods to apply in our time series. Afterwards, we will ponder about

which optimization method and cost function to use and then choose penalty values

to combine with our methods. Finally, we will take the combination of our methods

and penalties to do a preliminary analysis of the CPD results, to then proceed, in the

next chapter, to the clustering of the resulting regimes.

4.4.1 Should we assume normality?

In some of the CPD methods, the data is required to be normally distributed. As we do

not know the originating mechanism of our data, we do not have a priori information

about the distribution of the data. Nonetheless, we can study the distribution in order

to make or reject assumptions about it.

There are two main ways to assess if a sample is normally distributed – through

visualization or statistical tests (see subsection 2.1.3). Because we are not working

with a single distribution, but rather thousands of them, there is no easy way to
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visualize whether each time series follows a normal distribution. For that reason, we

have no choice other than use statistical tests.

In this particular problem, we have no knowledge of the mean and variance of our

distributions, making the KS test inadequate. Furthermore, there are more powerful

tests to assess the normality assumption, such as SW and JB (see subsection 3.3).

In the remainder of this subsection, we will use the SW and JB tests to study the

hypothesis that our time series follow normal distributions.

To assess whether we can assume normality, in Figure 4.10 we show the box plots for

each of the statistical tests done – KS, SW and JB. Note that each test was done for

each time series, and therefore each box plot represents the distribution of the p-values

of the respective test for all the time series. Furthermore, the KS test was done just

to have a sense of the discrepancy between it and the rest of the tests. Both the SW

and JB tests result in a rejection of the null hypothesis (i.e., that a series follows a

normal distribution) for 64% and 54%, respectively. On the contrary, the KS test had

somewhat different results from his counterparts, resulting in a rejection of the null

hypothesis for only 27% of the series.

Figure 4.10: Boxplots for KS, SW and JB tests for the 9900 time series.

In order to assume normality, we would have to eliminate close to 50% of the time

series present in our data set, which would result in a drastic reduction of the data.

As we are not prepared to eliminate such a big portion of our data, we will not assume

normality for any of the series and will rather continue with no assumptions about

the underlying distributions.
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4.4.2 What CPD method should we use?

In this problem, we have no prior knowledge about the number of partitions. We

also don’t have an immense amount of data. For those reasons, the best optimization

method is Pelt, as it is the only one that provides exact solutions and works with an

unknown number of partitions.

In what relates to the cost function, we don’t have a choice other than to choose

a kernel-based detection – more precisely, the Gaussian kernel. We have no choice

because we are using the Ruptures package, and this package only provides this

combination of optimization method and cost function for problems with unknown

number of partitions and no assumptions about the data.

For those reasons, we are going to continue with a single combination of optimization

method and cost function – Pelt and crbf .

4.4.3 What penalty is suitable for our time series?

The penalty has a great impact in the number of segments that the CPD method finds

(see subsection 2.1.2.3). The number of partitions is of uttermost importance, since

we do not want to find too many nor too few partitions. In Figure 4.11, the reader can

get an insight about the impact of the penalty in the CPD procedure for a single time

series of our data. Note that the vertical black lines are the change points detected

by the CPD method. As the penalty grows, the number of change points detected

decreases drastically.

Next, to study the impact of the penalty in the results of the CPD procedure in our

data, we show, in Figure 4.12, how the number of change points detected for our 9900

time series varies, using the Pelt+ crbf method.

As expected, in the left side of the image, it can be seen that as the penalty gets bigger,

fewer change points are found, until a convergence happens (number of minimum

change points detected reached).

It can also be noticed, in the right side of the image, that the number of change points

found is highly correlated with the length of the time series, i.e. the lengthiest time

series, represented in red, has the highest mean of change points found. Furthermore,

lengthier time series also seem to converge to the higher values of change points

detected than shorter time series.



CHAPTER 4. IDENTIFYING REGIMES 36

Figure 4.11: Pelt + crbf CPD method results for a single time series, varying the

penalty.

Figure 4.12: On the left, box plots of the number of change points found, by penalty.

On the right, line plots of number of change points found, by penalty, grouped by

length of series (red > green > orange > blue > purple).

At low penalty values, there is a drastic decrease of change points detected. This

is due to the time series nature, which has a lot of tiny variations, and will in turn

make the CPD procedure find a lot of change points when no penalty is used. This

phenomena can also be seen in the first plot of Figure 4.12, where the tiniest change

in the values produce a change point. This would be counter-productive for our goal,
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as we want our regimes to have some useful meaning, and not encode all of the tiniest

changes in our series.

Because we do not want either too many nor too few change points, we are choosing

penalty values that we find to be the most balanced. Those values, in our opinion,

are both 1 and 2 – those that come immediately after the ”elbow” of figure 4.12. We

will run the CPD procedure two times, using these two different penalty values. In

the next subsection, a brief analysis of the results of such procedures follows.

4.4.4 CPD results

The CPD procedure resulted in 78175 and 45417 regimes, for pen = 1 and pen = 2,

respectively. We will now proceed to briefly analyze these results.

In figure 4.13, the lengths’ distribution for each set of regimes can be visualized. As

expected, the lengths’ distribution of the regimes from pen = 2 span a greater number

of lengths and has a higher median, which means that it’s more likely for a regime of

pen = 2 to be longer than those of pen = 1.

Next, in figure 4.14 we visualize the mean and variance for each regime. The two

figures are very similar, because a good portion of the regimes found in pen = 1 were

also found in pen = 2, as expected. It is noticeable that there are a few regimes

that stands higher than the rest in respect to variance. The regime with the highest

variance can be seen in figure 4.15. The reader might ask why such regime was not

cut around day 5, producing 2 regimes. The reason for this is that this depression

around day 5, only spans 3 days, and the CPD procedure was set up to have a regimes

with minimum of 5 time points, making it impossible to consider this depression a

new regime.

In this chapter, we went from lengthy time series, derived from raw data, to regimes

discovered through the CPD procedure. Next, we will dive into the clustering of

these regimes, to try to find interesting patterns that may prove useful to better

understanding the mechanics behind the data.
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Figure 4.13: Box-plot and histogram of the lengths of regimes.

Figure 4.14: Mean and variance for each regime of pen = 1 and pen = 2, on the left

and right, respectively.

Figure 4.15: Regime with the most variance.
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Clustering regimes

In this chapter, we will work with the regimes found in the previous chapter. We

will cluster them with the aim of trying to understand whether there are distinct

groups of regimes with specific characteristics each, hoping to understand, through

their characteristics, why these clusters exist in the first place and what makes them

different. More precisely, we are looking for clusters of regimes according to their

shape.

We will only use a sample of the regimes (the first 5 thousand of them). The reason

for this is that working with all the regimes would not be feasible, as it would take

substantially more time to deal with all the problems that it would raise (the clustering

algorithms would need too much memory, to start with), particularly if we reach no

satisfying result at the end. For now, this work serves to study if such methods will

bring any useful knowledge about the data. In later stages, it may be adequate to

expand this work to all the data available.

We should be aware that the results of this section could differ if another sample had

been used. Note also that the results of the clustering for the regimes of pen = 1

were very similar to those of pen = 2. For that reason, we will only show the results

of clustering in using the regimes obtained with pen = 1, and will only make the

distinction when relevant.

In the remainder of this section, we will first discuss about the distance measure to be

used and then visualize the resulting pair-wise distances. We will then talk about the

possible clustering algorithms for this task and make some experiments with them.

Next, we will find a suitable number of clusters to produce cluster prototypes and

finally analyze the clusters and their predominant shapes, while trying to answer the
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research questions made in the first chapter.

5.1 What distance measure fits our goal?

The distance measure to be used depends on whether the time series have the same

length and what characteristic are we looking to encode with such measure. As seen

in the last section, our time series differ in length. We have also mentioned that we

are looking for time series similar in shape. An adequate option, in that case, is DTW

(see subsection 2.2.1.1).

To visualize the pair-wise distances and to have a sense of how the regimes dis-

tribute themselves (distance-wise), we use both Muldi-Dimensional Scaling (MDS)

and t-Distributed Stochastic Neighbor Embedding (t-SNE). Such visualizations are

presented in figure 5.1. In none of these visualizations there seems to be any evidence

of clusters. This likely means that we will not reach a satisfactory clustering result.

Figure 5.1: MDS and t-SNE visualization of the pair-wise DTW distances of the

sample of regimes.

5.2 Clustering algorithms and preliminary results

After computing the pair-wise distance matrix, we can now apply a clustering algo-

rithm to the matrix. There are many clustering algorithms that work with a pre-

computed distance matrix. We tested the following algorithms: DBSCAN, OPTICS,

Affinity Propagation, K-Medoids and Agglomerative Hierarchical Clustering (AHC),

all from the Scikit-Learn package [37].



CHAPTER 5. CLUSTERING REGIMES 41

All of the clustering algorithms produced very poor results:

• DBSCAN, with low ε, considered most of the time series to be noise instances,

not belonging to any cluster. With higher ε, considered most of the time series

belonging to the same cluster, and the rest as noise.

• OPTICS, resulted in most of the time series classified as noise, and then the few

that weren’t noise, were distributed throughout a high number of clusters with

a low number of instances assigned to them.

• Affinity Propagation found multiple clusters with a somewhat satisfying number

of instances in each of them. Unfortunately, looking to the Silhouette score and

Dunn’s index, one sees that the clusters are of a very low quality (both metrics

close to 0).

• K-Medoids, having a parameter that defines the number of clusters to be found, it

had no choice but to find that exact number of clusters. Regardless, the resulting

clusters revealed to be very weak, as can be seen in figure 5.2 – independent of

number of clusters chosen, the Silhouette score and Dunn’s Index are very close

to zero. Nevertheless, we show in figure 5.3, the resulting clusters, only for

demonstration purposes.

Figure 5.2: Silhouette score and Dunn’s Index for K-Medoids, varying number of

clusters.

The clustering algorithm that seemed to produce the best results was AHC, but this

also fell short of the minimum required quality, as we are going to see now.
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Figure 5.3: MDS and t-SNE visualization for the results of the K-Medoids clustering

algorithm.

For pre-computed distance matrixes, Hierarchical Clustering offers 3 different methods

to cluster the instances: complete or maximum linkage, average linkage and single

linkage. All of these 3 methods were tried.

First, we show the respective dendograms for each of the methods, in figure 5.4.

The dendograms show that the complete linkage method produced multiple groups of

instances, with one of the groups (yellow), being the most predominant, followed by

the brown and the red one. On the other hand, average linkage method resulted in a

group completely dominating the rest, to the point that no other group can be seen in

the dendogram. Single linkage dendogram is not shown as it produced a ”maximum

recursion depth exceeded” error while constructing the dendogram. Note that the

dendogram colours do not match the colours of the clusters in the MDS and t-SNE

visualizations.

Figure 5.4: Dendograms for complete and average linkage methods, on the left and

right, respectively.

Figure 5.5 shows, through the analysis of the Silhouette score and Dunn’s index,
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that single and average linkage with low number of clusters appear to be the most

promising methods, reaching medium-high scores. Unfortunately, these good scores

only happen because, as was saw in the dendogram of the average linkage in figure

5.4, the clustering algorithm assigns almost every instance to a single cluster, while

the rest of the clusters, despite distant, have a very low number of instances assigned

to them (in some cases, 1 or 2 instances). This is not useful for our task, and such

clusters do not represent anything of worth.

Figure 5.5: Silhouette score and Dunn’s Index for each of the method, varying the

number of clusters.

On the other hand, we have the complete linkage method, which do not result in good

metrics, independently of the chosen number of clusters. The most satisfying number

of clusters, by a tiny margin, seems to be 2 clusters, but again, the algorithm assigns

only a few instances to the second cluster, which is not useful to the task at hand.

For comparison purposes, in figure 5.6, we show the scores for every clustering method

that is not misleading, i.e., that does not have clusters with very few regimes. All of

the methods resulted in very poor scores, with OPTICS standing out with a negative

silhouette score.

Clustering, for these regimes, does not reach an acceptable quality, and therefore our

second hypothesis presented in subsection 1.2 can not be validated for now. The rest

of this section will be related to AHC with complete method linkage using 6 clusters.

We chose 6 as the number of clusters because the silhouette score and Dunn’s index

decreases only by a tiny margin in low number of clusters, and we thought 6 to be a

good number of clusters for visualization and exploration purposes.
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Figure 5.6: Silhouette score and Dunn’s index for the clustering procedures that all

clusters have a significant number of regimes.

5.3 Gathering knowledge from the resulting clus-

ters

Despite the clusters being poor in quality, in this section, we are going to assess

whether the clusters can give us any valuable information about the regimes at hand,

proceeding to their in-depth analysis.

In table 5.1, it can be seen that, as expected from the first dendogram of figure 5.4,

there’s one cluster that dominates (cluster 4 with 2667 instances assigned to it), and

then the clusters 2 and 5, with 1073 and 882 instances, respectively, that have a

considerably higher number of elements than the other 3 clusters. The algorithm also

produces a cluster with only 20 instances.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Nr. of points 233 1073 20 2667 822 185

Table 5.1: Table showing the count of instances per cluster, for the AHC with complete

linkage results.

In figure 5.7, the most noticeable characteristic of either visualization, are the points

assigned to the dominant clusters (cluster 4, 2 and 5, coloured as purple, blue and

green, respectively). It is also clear that there is not much division between the

clusters, as the low Silhouette score seen in figure 5.5 indicated.
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Figure 5.7: MDS and t-SNE visualizations for the AHC with complete linkage results.

With figure 5.8, we are trying to understand whether the regimes of the different

clusters start and/or end at different dates. Unfortunately, one sees no relevant

difference between the start and end dates of each cluster. Cluster 3 dates slightly

deviates from the other clusters, but this is the cluster with 20 instances, so this

deviation is probably due to the low number of instances, rather than a inherent

difference in the cluster itself. Note that the first column in each image represents all

the instances, regardless of cluster, for comparison purposes.

Figure 5.8: Boxplot distributions of start and end dates for each cluster of the AHC

with complete linkage results.

In figure 5.9, we present the length and pair-wise distance distributions for each of

the clusters. It seems like the regimes assigned to each cluster tend to be similar in

respect to their lengths. This is probably due to the fact that the DTW distance tends

to be lower for similar length regimes. In respect to pair-wise distance, these seem

to have some correlation with how many points the cluster has assigned to it. For

instance, the most frequent cluster (cluster 4), has the pair-wise distance distribution

with most variance. This also means that it’s the cluster that spans the most area, as



CHAPTER 5. CLUSTERING REGIMES 46

can be confirmed in figure 5.7. On the other hand, we have the less frequent cluster

(cluster 3), that does not have the lowest variance of pair-wise distances, giving the

podium of lowest variance to the 3rd less frequent cluster (cluster 1).

Figure 5.9: Boxplot distributions of lengths and pair-wise distances for each cluster of

the AHC with complete linkage results.

To try to understand the patterns of precedence and succession for each of the clusters,

we present figure 5.10. There, we can see that the distributions of the clusters of the

regimes that precede and succeed each of the 6 clusters. These images represent what

comes before and after (left and right hand sides, respectively) a given cluster (x-axis).

E.g., from the left hand side of the figure we know that, independently of the cluster

to which a regime belongs, the regime that comes before it will most likely belong to

cluster 4 (purple). In this visualization, there are some points worth noticing:

• In the right hand side of the figure, it can be seen that after a regime from

cluster 3, there will most likely come nothing (end of series). This was somewhat

expected, since cluster 3 has the longest regimes.

• Cluster 3 also shows a preference of being succeeded by clusters 1 (red) and 4

(purple). As cluster 3 has the longest regimes, it was expected that if anything

succeeds it, it would be a short regime (cluster 4 has the shortest regimes).

However, cluster 1 is unexpected, since it has the second longest regimes in our

set of clusters.

• Cluster 3 also deviates from the expected pattern of being preceded by cluster

2 (blue) more predominantly than the cluster 5 (green), a pattern that is seen

in every other cluster.
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• Cluster 4 (purple) is predominant almost everywhere, as expected, since it is the

most frequent cluster.

• There is a clear pattern that is present in most of the clusters: first comes the

purple with the highest probability of either succeeding or preceding a given

cluster, then blue and finally green, while the rest of the clusters are always

close to being insignificant. This goes hand in hand with the frequency of the

clusters.

From the observations made above, it is evident that there are many deviations from

the expected patterns in what relates to cluster 3. This is probably due to the low

number of points belonging to that cluster.

Figure 5.10: Precedence and succession of clusters for each cluster, on the left and

right, respectively.

In figure 5.11, the positions of the regimes in their respective time series, grouped by

cluster, are shown. The positions seem to be inversely proportional to the regimes

length, visualized in figure 5.9. E.g., cluster 3 regimes’ tend to be the longest, and so

they come early in the time series they belong to, as can be seen in cluster 3 box plot

of figure 5.11. This is expected, as very long time series will make the respective time

series have less regimes. The rest of the distributions seem to be similar, as expected,

due to the similarity of their lengths.

5.3.1 Cluster prototypes and their shapes

We considered the prototypes for each cluster to be the most centered instance of each

cluster, i.e., the regime with the lowest sum of squared errors (DTW distance) when

compared with the rest of the regimes assigned to the same cluster. In figures 5.12,
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Figure 5.11: Boxplots of the regimes position in the time series they belong to, grouped

by cluster.

5.13 and 5.14, the location of the prototypes and respective prototypes regimes are

presented.

Figure 5.12: MDS visualization for the AHC with complete linkage results and

respective prototypes localizations (represented by a plus signal).

Despite some of the prototypes (represented by crosses) being hidden by the rest of

the points in figure 5.12, one can still notice that the prototypes have a fair distance

between them. This is further verifiable in figure 5.14, where none of the prototypes

are similar. The reader can have a better sense of the position of the prototypes, in

each cluster, in figure 5.13.

To have a better understanding of the shapes inside of each cluster, in figures 5.15
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and 5.16, we show the prototype and a sample of 9 regimes for each of the clusters,

accompanied by where each of the instances is located. Through the analysis of figures

5.14, 5.15, 5.16, a description of each shape predominant characteristics can be made:

• In cluster 1, the regimes seem to start at high values and then have a succession

of decreases and increases.

• In cluster 2, the regimes seem to start at high values, decrease, increase again,

and at the end decrease more softly than at the beginning. Despite this shape

seeming similar to that of cluster 1, the regimes of this cluster are shorter.

• Cluster 3 shape is clearly defined by the lengthiest regimes, which don’t seem to

have a proper shape other than being the longest.

• Cluster 4 seems to be defined by the shorter lengths.

• Cluster 5 shape seems to be mainly defined by 2 peaks – the regimes first start

by increasing, reaching a peak, to then decrease and increase again, reaching

another peak.

• Cluster 6 seems to be mostly defined by an increasing tail.

We can finally conclude that the shapes for this clustering method (AHC) seem to be

mostly defined by:

1. Length of regime,

2. Number of peaks in regime,

3. Order of increase/decrease and where such increases and decreases happen in

the regime.

5.4 Discussion on the clustering results

In this section, we will try to answer the questions made in the subsection 1.2 with

the knowledge gathered in the previous section and provide some final remarks about

the clustering.

First, we asked if there were clusters of shapes in the regimes. With these regimes, we

can not say that there are clusters, since the obtained clusters are mostly overlapping
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and have no apparent division between them. Nonetheless, there still may be useful

information that can be gathered from these sections of regimes.

Second, we asked whether we could achieve a description of the shapes of the typical

regime for each cluster. We did that in the end of the previous section, with some

success. The only problem that we found here is that some clusters have a very high

variance in shape, and many times a regime from a given cluster is not similar at all

to the prototype of that same cluster.

Then, we asked whether there was some difference in the dates that the regimes happen

from cluster to cluster. We saw in the last section that there is no difference from

cluster to cluster.

Finally, we asked whether there were any interesting patterns on the precedence or

succession among clusters. We found cluster 3 to be the most interesting, since it

keeps deviating from the pattern present in the rest of the clusters. We are confident

that this is due to the cluster 3 having the lengthiest regimes and also not having

many points assigned to it. We believe that with a bigger sample, this cluster would

be more identical to the other clusters, but still deviate from the usual pattern, for its

usual length of regimes.

Unfortunately, the clusters were not well divided, and we believe that this was the

main reason for not finding more interesting knowledge in the clusters. In our opinion,

our clusters were not well divided because of the poor quality of the regimes used –

the CPD procedure simply looks for different distribution in each of the time series,

rather than looking for similar distributions that are present throughout all time series.

Looking for different distributions that are present in many time series would provide

more coherent regimes, and consequently, we believe, better clusters.

Despite the clusters not having the most quality, one could argue that the clusters

provide us some useful knowledge about the data, since we are looking at regions of

regimes, rather than the whole data, and therefore we have a better understanding of

the different sections of the data.

We also noticed that the regimes’ shapes inside each cluster are not very homogeneous.

An increase in number of clusters would probably increase the homogeneity of the

shapes, but this would likely decrease the quality of the clustering.

For the reasons mentioned, we cannot confidently validate our third hypothesis of sub-

section 1.2 – the clusters and their shapes can provide valuable information about the

data, – although we believe that further work could indeed validate it. Despite that,
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we are confident that this thesis is a step in the right direction of better understanding

the data through a regimes/clustering approach, as we were close to promising results

and even reached some interesting knowledge, such as the predominant shapes of the

regimes.

In this chapter, we went from the regimes produced by CPD to clusters of regimes,

using DTW as distance measure as input to AHC. Unfortunately, such clusters, did

not properly separate the data at hand but still provided some valuable information

about the data. In the end, we could not validate our second and third hypothesis of

this thesis as we do not have sufficiently strong evidence to do so.
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Figure 5.13: MDS representation of each cluster of the AHC with complete linkage

results and respective prototype instances (represented by a plus signal).
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Figure 5.14: Regime prototypes of each of the clusters.
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Figure 5.15: On the left, the prototypes (first series of of each plot on the left) and a

sample of 9 regimes for each one of the first 3 clusters. On the right, their respective

positions in the cluster.
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Figure 5.16: On the left, the prototypes (first series of of each plot on the left) and a

sample of 9 regimes for each one of the last 3 clusters. On the right, their respective

positions in the cluster.



Chapter 6

Conclusion

In this thesis, we aimed to better understand fire detecting sensors’ data and, in a

best case scenario, to reduce its false alarm rate. Right from the start, reducing the

false alarm rate was a seemingly impossible task due to the nature of our data – we

did not know whether the data we had, had any relation to alarms. Because of that,

we decided to follow another path in order to, hopefully, gather valuable information

about the data that would provide valuable insights into the originating mechanisms

of the data: first, to divide our sensors’ time series in regimes (sequences that follow

different distributions), and then to cluster those regimes in the hope that there would

be well defined clusters of them, providing us valuable information about the different

clusters and why those clusters happen in the first place. The analysis of those clusters

would provide us with the shapes of their prototypes (the most representative regime

of each cluster), the dates at which the regimes of each clusters tend to happen,

the precedence and succession of the regimes’ clusters, and much more interesting

knowledge.

For the detection of regimes, we used CPD, which is a method that divides a sequence

into sub-sequences taking into account their distributions. Achieving tens of thousands

of different regimes, we now were able to compare those regimes through the DTW

distance function, which compares the shape of two time series. Calculating the

distance of every pair of regimes, we now had a square matrix that could be used

as input to multiple clustering methods. As seen through the MDS and t-SNE

visualization of the distance matrix, clusters are not clearly identified. This was

further confirmed by the clustering procedures. Every single one of them produced

very poor results, with their resulting clusters overlapping consistently, achieving very

poor silhouette scores and dunn’s index.

56
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In what relates to our hypotheses, we are confident to say that the first one was

validated. The second and third one could not be validated in this work, since we

achieved only poor clusters (i.e., data not well divided into clusters) and therefore

those clusters do not provide us with the most faithful information about the data

at hand. Nevertheless, we saw interesting knowledge emerging in the analysis of the

clusters, and we believe that further work could prove useful in the pursuit of validating

our hypotheses and gathering important knowledge of the data. Further work could

include a rework of the definition of regimes – we do not think the CPD method

used was the best for this task, as mentioned in the end of Chapter 5. We think that

something like CPD but that maintains cohesiveness between all the time series would

provide better results. Furthermore, deviating from the hypotheses of this thesis, one

could also try to cluster the structure of the complete time series instead of the shapes

of their regimes. That could also be useful to a better understanding of the data.

In this work, we dived into the uncharted fire sensors’ data provided to us by Bosch.

It served as a beginning of the exploration of the data and the regimes/clustering

approach to gather valuable knowledge about the nature of it. We started with a

non-processed dataset of dozens of gygabytes, and ended up with some interesting

predominant shapes of regimes that are present throughout the time series of the

sensors.



Appendix A

Acronyms

AD - Anomaly Detection

AHC - Agglomerative Hierarchical Clustering

CPD - Change Point Detection

DL - Deep Learning

DTW - Dynamic Time Warping

KS - Kologorov-Smirnov

JB - Jarque-Bera

SW - Shapiro-Wilk
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and change-point detection tests for multivariate data using rank statistics. arXiv

preprint arXiv:1107.1971, 2011.

[29] James MacQueen et al. Some methods for classification and analysis of

multivariate observations. In Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA,

USA, 1967.

[30] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of

the American statistical Association, 46(253):68–78, 1951.

[31] Wannes Meert, Kilian Hendrickx, and Toon Van Craenendonck.

https://github.com/wannesm/dtaidistance, August 2020.

[32] Mohsin Munir, Shoaib Ahmed Siddiqui, Muhammad Ali Chattha, Andreas

Dengel, and Sheraz Ahmed. Fusead: unsupervised anomaly detection in

streaming sensors data by fusing statistical and deep learning models. Sensors,

19(11):2451, 2019.
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