
Evaluation of a Secure Smart Contract
Development in Ethereum

DANIEL DA ROCHA MAIA DIAS
Outubro de 2020

Evaluation of a Secure Smart
Contract Development in Ethereum

Daniel Dias

A dissertation submitted in fulfillment of
the requirements for the degree of Master in Computer
Engineering, Specialisation Area of Software Engineering

Supervisor: Isabel Azevedo

Porto, October 15, 2020

iii

Abstract

In the Ethereum Blockchain, Smart Contracts are the standard programs that can perform
operations in the network using the platform currency (ether) and data. Once these con-
tracts are deployed, the user cannot change their state in the system. This immutability
means that, if the contract has any vulnerabilities, it cannot be erased or modified. Ensuring
that a contract is safe in the network requires the knowledge of developers to avoid these
problems. Many tools explore and analyse the contract security and behaviour and, as a
result, detect the vulnerabilities present.

This thesis aims to analyse and integrate different security analysis tools in the smart contract
development process allowing for better knowledge and awareness of best practices and tools
to test and verify contracts, providing a safer smart contract to deploy.

The development of the final solution that allows the integration of security analysis tools in
smart contracts was performed in two stages. In the first stage, approaches, patterns and
tools to develop smart contracts were studied and compared, by running them on a standard
set of vulnerable contracts, to understand how effective they are in detecting vulnerabilities.
Seven existing tools were found that can support the detection of vulnerabilities during the
development process.

In the second stage, it is introduced a framework called EthSential. EthSential was designed
and implemented to initially integrate the security analysis tools, Mythril, Securify and Slither,
with two ways to use, command line and Visual Studio Code. EthSential is published and
publicly available through PyPI and Visual Studio Code extensions.

To evaluate the solution, two software testing methods and a usability and satisfaction ques-
tionnaire were performed. The results were positive in terms of software testing. However,
in terms of usability and satisfaction of the developers, the overall results did not meet
expectations, concluding that improvements should be made in the future to increase the
developers’ satisfaction and usability.

Keywords: Ethereum, Smart Contracts, Solidity, Security, Analysis, Vulnerabilities

v

Resumo

Em Ethereum, contratos inteligentes são programas que permitem realizar operações na
rede utilizando a moeda digital (ether) e os dados armazenados na mesma. Assim que estes
contratos são enviados para a plataforma, o utilizador é impedido de alterar seu estado.
Esta imutabilidade faz com que se o contrato tiver alguma vulnerabilidade, não poderá ser
apagado ou modificado. Para garantir que um contrato seja considerado seguro, requer
um conhecimento dos programadores em lidar com estas vulnerabilidades. Existem muitas
ferramentas que exploram e analisam a segurança e o comportamento do contrato de forma
a detectar as vulnerabilidades presentes.

Esta tese tem como objectivo analisar e integrar diferentes ferramentas de análise de segu-
rança no processo de desenvolvimento de contratos inteligentes. De forma a permitir um
melhor conhecimento e consciência das melhores práticas é necessário analisar as ferramen-
tas de teste e verificação de contratos, proporcionando assim um contrato mais seguro.

O desenvolvimento da solução final foi realizado em duas fases. Na primeira fase, foram
estudadas abordagens, padrões e ferramentas para desenvolver contratos inteligentes, e
comparar essas ferramentas, executando-as num conjunto de contratos vulneráveis, para
entender o quão eficaz são na detecção de vulnerabilidades. Neste estudo foram encontradas
sete ferramentas que podem apoiar a detecção de vulnerabilidades durante o processo de
desenvolvimento.

Na segunda fase, é apresentada uma aplicação denominada EthSential. A aplicação foi
desenhada e implementada de forma a integrar, inicialmente, as ferramentas de análise de
segurança Mythril, Securify e Slither. A aplicação permite duas formas de uso, através da
linha de comandos e através das extensões do Visual Studio Code. A aplicação foi publicada
e disponibilizada publicamente através das ferramentas PyPI e Visual Studio Code.

Para avaliar a solução, foram realizados dois métodos de teste de software e um questionário
de usabilidade e satisfação. Os resultados finais foram considerados positivos em termos
de teste de software. No entanto, em termos de usabilidade e satisfação dos programados,
os resultados não correspoderam às expectativas. Concluindo assim que algumas melhorias
devem ser feitas no futuro para aumentar a satisfação dos programadores e a respectiva
usabilidade da solução.

Palavras-chave: Ethereum, Smart Contracts, Solidity, Segurança, Análise, Vulnerabilidades

vii

Acknowledgement

I would like to express my deep and sincere gratitude to my advisor Professor Isabel Azevedo.
I thank her for her patience and availability. Her immense knowledge and critical thinking
process have been of great value for me and to this dissertation.

I’d also like to thank all my colleagues with whom I had the opportunity to share all these
years that, in a way, helped me achieve this goal.

And finally, but not least, a special thanks to my family for all the support, patience and
continuous encouragement throughout all my academic and professional life. Without them,
none of this would be possible!

ix

Contents

List of Figures xiii

List of Tables xv

List of Source Code xvii

List of Acronyms xix

1 Introduction 1
1.1 Context . 1
1.2 Problem Description . 2
1.3 Outline . 2
1.4 Document Structure . 3

2 Background 5
2.1 Blockchain Fundamentals . 5

2.1.1 Types of Blockchain . 6
2.1.2 Consensus Algorithms . 7

2.2 Ethereum . 8
2.2.1 Turing Complete . 8
2.2.2 Ethereum Virtual Machine . 8
2.2.3 Accounts . 9
2.2.4 Transactions, Messages, and Ether 10
2.2.5 Ethereum Improvement Proposals 10
2.2.6 Current State . 11

2.3 Smart Contract . 12
2.3.1 Solidity . 13
2.3.2 Vyper . 17

2.4 Code Smells . 19
2.5 Coding Standards . 19
2.6 Summary . 20

3 State of the Art 21
3.1 Methodology . 21
3.2 Research Questions . 22
3.3 Data Collection Analysis . 22
3.4 Results . 25

3.4.1 Security Vulnerabilities . 25
3.4.2 Design Patterns . 26
3.4.3 Tools . 27
3.4.4 Effectiveness of Security Analysis Tools 28

3.5 Summary . 30

x

4 Value Analysis 33
4.1 Orientation . 33

4.1.1 Business Strategy . 34
4.1.2 Opportunity Identification . 34
4.1.3 Opportunity Analysis . 36
4.1.4 Idea Generation and Selection . 37
4.1.5 Influencing Factors . 37

4.2 Functional Analysis . 37
4.3 Developing Alternatives, Analysis and Implementation 38

5 Problem statement 41
5.1 Objectives . 41
5.2 Main Points of Focus . 41
5.3 Approach . 42

6 Ethereum Development Research 43
6.1 Methodology . 43
6.2 Smart Contract Data Collection . 44
6.3 Tools and Frameworks . 47

6.3.1 Analysis . 47
6.3.2 Development . 51
6.3.3 Testing . 51

6.4 Compatible Development Stacks . 52
6.5 Comparison to State of the Art . 53
6.6 Summary . 55

7 Framework Design and Implementation 57
7.1 Requirements Gathering . 57
7.2 Design alternatives . 58
7.3 Design Approach . 60

7.3.1 Logical View . 60
7.3.2 Detailed Design . 61

7.4 Implementation . 62
7.4.1 Development Workflow . 62
7.4.2 Ethsential Server . 62
7.4.3 Ethsential Extension . 65
7.4.4 Ethereum Pack . 68
7.4.5 Development Testing Setup . 69

8 Evaluation 71
8.1 Indicators . 71
8.2 Hypothesis Specification . 71
8.3 Evaluation Methods . 72

8.3.1 System and Acceptance Testing 72
8.3.2 Satisfaction and Usability Questionnaire 72
8.3.3 Testing Evaluation Based on Performance 73

8.4 Results Evaluation . 73
8.4.1 System Testing . 73
8.4.2 Acceptance Testing . 74
8.4.3 Performance Testing . 75

xi

8.4.4 Satisfaction and Usability Questionnaire 76

9 Conclusions 81
9.1 Achieved Objectives . 81
9.2 Limitations . 82
9.3 Future Work . 82

Bibliography 85

A Security Vulnerabilities Classification 93

B System Testing 101

C Smart Contract Execution Time Test Results 103

D Usability Questionnaire 105

xiii

List of Figures

2.1 Block structure [21]. 6
2.2 Ethereum Virtual Machine (EVM) execution model. From [28] 9
2.3 Ethereum roadmap. From [33] . 11

4.1 The entire innovation process. From [78]. 33
4.2 The new concept development (NCD). From [78]. 34
4.3 Bitcoin vs Ethereum search results [80]. 35
4.4 Graphic of Ethereum new and total DApps per month. From [81] 35
4.5 Graphic of increased Blockchain developer jobs. From [83] 36
4.6 Quality Function Deployment . 38
4.7 Business Model Canvas . 39

6.1 Ethereum Development research methodology 43
6.2 Histogram of the number of verified Solidity contracts per compiler version. 45
6.3 Histogram of the number of verified Vyper contracts per compiler version. . 45
6.4 Security analysis tool communication flow 49

7.1 Use case diagram . 57
7.2 High-level design approach (1) . 59
7.3 High-level design approach (2) . 59
7.4 Framework logical view . 60
7.5 EthSential Server detailed design . 61
7.6 EthSential Tools configurations . 66
7.7 VS Code command selection to analyse file 67
7.8 VS Code analysis in progress information 67
7.9 VS Code analysis completed information 67

8.1 Chart of security analysis tools selected 77
8.2 Overall impression of the framework . 78
8.3 Classification of the solution automation 78
8.4 Classification of the integration of analysis tools 78
8.5 Classification of the analysis process speed 79
8.6 Classification of the analysis process simplicity 79
8.7 Classification of the vulnerability recognition 79
8.8 Classification of the vulnerability information usefulness 80

xv

List of Tables

2.1 Comparison between Solidity and Viper 20

3.1 Inclusion and Exclusion criteria . 22
3.2 Data collection analysis documents . 23
3.3 Classification of Ethereum tools . 27
3.4 Effectiveness of Security Analysis Tools 29
3.5 Effectiveness of Security Analysis Tools reported by studies 30

6.1 Number of contracts downloaded from Mainnet and TestNets 44
6.2 Top 30 most used contract names written in Solidity contracts 46
6.3 Top 25 most used contract functions written in Vyper contracts 47
6.4 Comparison of smart contract analysis tools 48
6.5 Comparison of the analysis tools against listed vulnerable smart contracts . 50
6.6 Comparison of frameworks for developing smart contracts 51
6.7 Comparison of testing tools for smart contracts 52
6.8 Comparison of tools with other tools . 53
6.9 Comparison of vulnerabilities detected by each tool and study 54

7.1 Functional requirements . 58
7.2 Ethsential command overview . 63

8.1 Hypothesis Specification . 72
8.2 Allocation of the evaluation methods . 72
8.3 System Test Case to Analyse Smart Contract from VS Code 74
8.4 Acceptance Test to Analyse a Smart Contract with Specific Tools Installed 74
8.5 Mean and Median of the Execution Time Test Results 75
8.6 Resulting P-Values of the Shapiro-Wilk Tests 75
8.7 Answers to questions 1,2,3 and 5 . 77

B.1 System Test cases . 101

xvii

List of Source Code

2.1 Example of a contract in Solidity. [1] . 14
2.2 Example of a fallback function in Solidity. [2] 15
2.3 Example of a function modifier in Solidity. [3] 16
2.4 Example of a event in Solidity. [4] . 16
2.5 Example of a contract in Vyper. [5] . 17
2.6 Example of an event’s declaration in Vyper. [5] 18
7.1 EthSential supported features . 63
7.2 Abstract Tool class . 63
7.3 ToolFactory class . 64
7.4 Contract analysis method . 64
7.5 Register extension events, commands and configuration 65
7.6 Extension activation function . 66
7.7 Analysis request to the Language Server 66
7.8 DiagnosticProvider representative class . 68
7.9 Ethereum Pack extensions . 68
7.10 Command to start Ethsential application for TCP connection inside VSCode 69
7.11 Command to start Ethsential extension inside VSCode 69
7.12 Tool Factory test class . 70

xix

List of Acronyms

AAA Arrange-Act-Assert.
API Application Programming Interface.

BDD Behaviour Driven Development.

CLI Command Line Interface.
CSAT Customer Satisfaction Score.

DAO Decentralized Autonomous Organization.
DSR Design Science Research.

EOA Externally Owned Accounts.
EVM Ethereum Virtual Machine.

FEI Front End of Innovation.
FFE Fuzzy Front End.

IDE Integrated Development Environment.

LSP Language Server Protocol.

NCD New Concept Development.

PC Program Counter.
PoS Proof of Stake.
PoW Proof of Work.

QFD Quality Function Deployment.

SDK Software Development Kit.
SDLC Software Development Life Cycle.
SWC Smart Contract Weakness Classification.

VS Code Visual Studio Code.

1

Chapter 1

Introduction

1.1 Context

Since the creation of the first Blockchain technology in 2009, Bitcoin [6], the term Blockchain
has increased its popularity in the community [7].

A Blockchain provides a "distributed software architecture where a network of participants
that do not know or trust each other can establish agreements on shared states for decen-
tralised and transactional data without the need of a central point of control or supervision"
[8].

When dealing with financial aspects, identity management, supply chains, or crowdfunding,
blockchain technologies are a newly emerging alternative gaining more ground in these areas.
These emerging technologies provide different cybersecurity and optimisation, through the
business process, with the integration of distributed resources connected using cryptography
and cryptocurrencies.

Many companies, as well as governments, either directly or indirectly influenced by the com-
munity, have been considering the possibility of using a data structure based on Blockchain
and starting to analyse its potentials [9]. A few number of companies already started using
these technologies [10] in the last couple of years. However, despite the constant aware-
ness and improvements made, companies still need to obtain further knowledge about these
technologies to make informed decisions in their projects.

Currently, thousands of different blockchains are under development, and only a few blockchain
technologies have reached the production stage and are ready to be used in real scenarios.
Some of these technologies include the first blockchain Bitcoin, but also, Ethereum and
Hyperledger Fabric.

An important use of these blockchains for developers is the creation of smart contracts.
Smart contracts provide the use and manipulation of transactions in the form of contracts
to exchange currencies, properties, share data, or initiate an operation. However, one of the
major concerns in using smart contracts is its insecurity in their coding languages. A high
number of attacks have been reported in smart contracts that exploited the vulnerabilities
of their coding languages and blockchain networks [11].

Over the years, multiple programming languages have been proposed to implement smart
contracts in Ethereum. Two remain active to this day, however some were deprecated and
considered harmful to use. The most common and famous language used is Solidity [12],
a contract-oriented language similar to JavaScript. The second and most recently created
one is called Vyper [13], a python-like programming language with the intent to be a more

2 Chapter 1. Introduction

secure and straightforward language than Solidity, offering a different approach to smart
contracts development.

1.2 Problem Description

The increased amount of discussion on blockchain technology has brought a higher interest
in smart contracts, particularly smart contracts on the Ethereum platform. As a program
that runs on a blockchain, a smart contract can be executed by a network without the need
of an external entity. One of the most important key characteristics of smart contracts is
that once has been deployed, it cannot be modified or deleted, unless, as a last resort, it
was programmed to behave in that matter. These characteristics can be seen as both an
advantage and a disadvantage to the community and smart contract developers. One of the
main disadvantages of an immutable contract is the adversity of having a faulty contract
deployed on the network. An immutable faulty contract can become a huge risk to the
application of the contract. In 2018, Nikolic et. al [14] analysed the 970,898 Ethereum
smart contracts in the network of which 34,200 are vulnerable. Due to this risk, testing and
auditing smart contracts before being deployed to the network becomes a high necessity to
develop secure smart contracts.

The potential challenges that developers face when developing and testing smart contracts
have not yet been clearly explored [15]. The lack of knowledge and awareness of best prac-
tices and tools to test and verify contracts during the development process is one of the
challenges that should be addressed. Without understanding these challenges, practitioners
and researchers may spend many efforts developing techniques and tools that are not appre-
ciated by developers and so underused in practice [15]. There is not enough work focused on
understanding the development from a developer/human perspective, and new tools should
seek to explore this issue, facilitating a safer smart contract development [16].

Even though the community is gaining awareness of the exploits and tools available to analyse
and test smart contracts [17] [18] [16], the work done for Ethereum languages, like Solidity
and Vyper, is still not sufficiently well spread. Without knowledge of the best practices,
developers can continue to develop insecure contracts and new attacks can occur.

The language Vyper was created to suppress some of the vulnerabilities of Solidity, but it
is not sufficiently developed to be considered safe to use [19]. Security tools, like Slither,
are working to support Vyper in their static analyser feature and vulnerability detectors [20].
However, there is still work to be performed in this area to verify this type of tools against
the requirements of the current state of Solidity and Vyper.

1.3 Outline

To understand the development of smart contracts from the users perspective, it is necessary
to analyse their practices and tools available to integrate into the process. An essential part
of software development practices is the identification of vulnerabilities and code smells in
the code. Following this identification, the main question of the dissertation is provided:

Is it possible to reduce the vulnerabilities and code smell in a smart contract code by inte-
grating and combining tools in the development process?

1.4. Document Structure 3

1.4 Document Structure

This document is divided into 8 chapters, each referring to a specific part of the project’s
development consisting of several sections and subsections.

• Introduction - The first chapter introduces the context of the project, with a descrip-
tion of its problem and objectives.

• Background - Describes the key concepts of Blockchain and Ethereum that will help
to understand the project.

• State of the Art - Represents the state of the art regarding the development and prac-
tices of Ethereum smart contracts, more specifically in Solidity and Vyper languages,
using a literature review gathering data from multiple sources and databases.

• Value Analysis - Presents the analysis of the requirements and value of the project.

• Problem Statement - Describes the objectives with the main points of focus in this
dissertation and the approach addressed to fulfil said objectives.

• Ethereum Development Research - The research meant to study the Ethereum devel-
opment practices.

• Framework Design and Implementation - Describes the design approach and technical
details of the solution with information relative to specific aspects of the system and
architecture.

• Evaluation - Describes the necessary steps to evaluate the achievement of the objec-
tives of the project and performs a case study with the evaluation steps to test the
feasibility of the solution.

• Conclusions - In the final chapter, a summary of the overall project is presented with
the description of achieved objectives, difficulties found during the project and possible
future work.

5

Chapter 2

Background

The purpose of this chapter is to introduce an overview of essential topics for understanding
the principles of Blockchain, Ethereum and smart contracts development.

2.1 Blockchain Fundamentals

The main idea of a Blockchain was first conceptualised in 2008 by Satoshi Nakamoto, in
a white paper called "Bitcoin: A Peer-to-Peer Electronic Cash System" [21]. In his work,
he described a chain of blocks as an "ongoing chain of hash-based proof-of-work, forming a
record that cannot be changed without redoing the proof-of-work" [21].

A blockchain, in simple terms, is a timestamped network of immutable transactions of data
gathered together in ordered blocks, that are designed to be secured on the chain using
cryptography. The blockchain data can be stored as a single file, a simple database, or a
shared database distributed across multiple computers.

The blockchain structure is very similar to linked lists or binary trees structure. The blocks
are linked to each other using pointers to the previous block in the chain. The first block is
the foundation of the stack, called the genesis block, that must be hardcoded at the same
time that the Blockchain was started. When a block is published in the chain, its data cant
be changed, and it becomes publicly available to any user in the network.

Each block in the Blockchain is a set of transactions uniquely identified by a block hash or
block header. The block header is composed of a hash to the previous block; timestamp is a
reference to the time the block was created; nonce represents a number generated and used
only once and the Merkle root that represents the root hash of all transactions included in
the block. The structure of a block is illustrated in Figure 2.1.

6 Chapter 2. Background

Figure 2.1: Block structure [21].

A transaction is a record of an event represented by a hash, with inputs and outputs depend-
ing on the type of Blockchain in use. When a transaction is executed on the Blockchain, it
contains the private key used by the sender with instructions to operate. This private key
is used to digitally sign the sender and ensures that the data of the transaction was not
tempered during the process.

2.1.1 Types of Blockchain

There are three types of Blockchain [22][23]:

• Public Blockchain

Anyone who has access to the internet can sign-in in a public blockchain and be
authorised to participate as a node in the decision-making process. All transactions
that occur on the network are completely opened, meaning that anyone can view the
transaction details. Bitcoin and Ethereum are examples of public Blockchains.

• Private Blockchain

A private Blockchain is a restrictive Blockchain that is used only in a closed network. In
this network, the participants need consent to join the networks, and the transactions
are only visible to them. There are many examples of this type of Blockchain, like
HydraChain, Corda, and Hyperledger fabric.

• Hybrid/Semiprivate Blockchain

It is a combination of both types of private and public Blockchain. It allows a user
to control the access to the network and gives the flexibility to choose the data they
want to be public, keeping the remaining part of the data restricted. There is one
example of this type, called Dragonchain.

2.1. Blockchain Fundamentals 7

2.1.2 Consensus Algorithms

As mention in section 2.1, a transaction needs a verified digital signature to be able to be
executed. This verification uses a process called mining, where the transaction sent to miners
can digitally sign the transaction and verify if the transaction meets the requirements to be
added to the network. These requirements are made upon a consensus mechanism that is
responsible for the task. To incentive miners to verify transactions, after completing the
verification, a reward is given to them in the currency of the network. Once the consensus
is achieved from all the networks, the transaction can be added to the Blockchain.

There are many different types of consensus algorithms, in which the two most famous are:

• Proof of Work

The initial concept of Proof of Work (PoW) was developed in 1993 when Cynthia
Dwork and Moni Naor published a paper On "Memory-Bound Functions For Fighting
Spam".[24] In their paper, they theorised that "If I do not know you and you want to
send me a message, then you must prove that you spent, say, ten seconds of CPU
time, just for me and just for this message." [24]. However, the concept was only
applied to Blockchain in 1999 when a paper called "Proofs of work and bread pudding
protocols "Markus Jakobsson and Ari Juels published [25]. This means that when a
transaction is sent to the network, it relies on proof that significant computational
resources need to be spent before being valid in the network.

To prove this concept, miners need to solve a complex computational problem and
consume resources so that once a miner finds the solution, it will be broadcast to the
other miners in the network. The other miners will then verify that the solution is
correct, and the transaction will be confirmed and saved in the network.

The number of resources required to solve a computational problem can be costly
and time-consuming and produce only a single piece of data. The second problem of
this concept is centralisation. If a company can have a mining pool with hundreds of
CPUs will have a better chance of solving the problem, then someone who only has
one CPU. This means that the network will be more centralised in the mining pool,
going against the fundamentals of the Blockchain.

• Proof of Stake

The concept of Proof of Stake (PoS) was created as an alternative to PoW to prevent
high costs of resource consumption and mining equipment. The concept is based on
the idea of a voting system that depends on a validator’s economic stake in the network
[25].

It designates that a validator with a high balance or more extended time in the network
has a higher advantage to validate the next block. "The validator takes turns proposing
and voting on the next block, and the weight of each validator’s vote depends on the
size of its deposit (i.e., stake)" [3]. In this concept, the validators do not receive a
reward for validating the block. Instead, they collect transaction fees, and therefore
they must own and support the currency they are verifying. Comparing to PoW, the
PoS can have a lower risk of centralisation and resource consumption.

Ethereum is one of the networks that will use Casper, a proof-of-stake-based consensus
protocol.

8 Chapter 2. Background

Other consensus algorithms are commonly used in the Blockchain like Proof of Elapsed
Time, Proof of Deposit, Proof of Importance, and Proof of Activity.

2.2 Ethereum

Ethereum was introduced by Vitalik Buterin’s paper [26] in 2013. Ethereum intends to be a
public distributed computing platform with an embedded Turing complete system that allows
creating, store, and run smart contracts decentralised applications. "Ethereum can create
arbitrary rules for ownership, transaction formats, and state transition functions" [26]. In
more simple terms, it means that the Ethereum blockchain is a set of connected blocks that
contain code or programs that can be executed without requiring a trusted entity to execute
them.

The following subsections discuss the essential aspects of Ethereum.

2.2.1 Turing Complete

"The Turing complete machine is the theoretical mathematical machine or model of com-
putation invented by Alan Turing in 1936 that defines an abstract machine that manipulates
symbols on a strip of tape according to a table of rules." [27]

"Alan Turing further defined a system to be Turing complete if it can be used to simulate
any Turing machine, and it called it a Universal Turing machine (UTM)." [3]

Therefore Ethereum’s ability to function as a computer that can execute any program, in a
state machine called the Ethereum Virtual Machine, given the limitations of finite memory
and time, makes it a Turing complete system [3].

2.2.2 Ethereum Virtual Machine

Ethereum Virtual Machine (EVM) is a runtime environment engine that handles smart con-
tracts deployment and execution [3] by decoding the compiled contracts in bytecodes and
executing them on the Ethereum network [27]. It is an isolated engine from the network,
and so it has limited access to smart contracts. The execution model of EVM is presented
in the following Figure 2.2:

2.2. Ethereum 9

Figure 2.2: EVM execution model. From [28]

Every time a code is executed or transaction is created in EVM, an amount of gas and
Program Counter (PC) is calculated. Gas is the unit cost of needed to execute a single
operation on the Ethereum network and a PC tracks the current operation in its program
sequence. The amount of gas defined on the transactions is used to limit the amount of
computational power that can be executed per program in the EVM. So, the more gas used
in a program, the faster it will be executed.

Once the contract is called, the EVM will load the bytecode instructions, called opcodes,
into memory, loop through each bytecode instruction while checking the amount of gas and
incrementing its program counter, execute all operations and store them on the EVM stack.
"The size of every transaction on the EVM stack is 256 bits with a maximum size of 1024."
[29]

2.2.3 Accounts

The Ethereum network has two types of accounts, Externally Owned Accounts (EOA) and
Smart Contract Accounts. EOA is associated with an external entity controlled by a public-
private key pair. The Smart Contract Accounts, have associated code that is kept in storage,
and are triggered by transactions or messages received from other contracts.

Accordingly to Ethereum Yellow Paper [30], all accounts in Blockchain must have the fol-
lowing four elements:

• The nonce, representing the number of transactions or contract-creations made from
the account.

• The balance, the number of wei owned by an account.

• The storageRoot, a 256-bit hash of the root node of the storage contents of the
account, called the storage tie.

10 Chapter 2. Background

• The codeHash, The hash of the EVM code of this account. For EOA this code will
be empty.

2.2.4 Transactions, Messages, and Ether

A transaction in terms of the global Blockchain was explained in Section 2.1. However, for
Ethereum, there are some differences. For Ethereum, a transaction refers to the signed data
package that stores a message to be sent from an Externally Owned Accounts (EOA) to
another account (EOA or smart contract) [31].

There are two types of transactions: those who can send message calls to other contracts and
those which result in the creation of new accounts with associated code (smart contracts)
[30]. Unlike transactions, messages are virtual objects and will not be recorded.

Ether (ETH) is the currency of the Ethereum network, used to pay transaction fees. Each
time a smart contract is deployed in the network, the account must pay in Ether when they
call a transaction or a smart contract. The smallest sub denomination of Ether, and thus
the one in which all integer values of the currency are counted, is the Wei, one Ether is
defined as 1018 Wei [30].

2.2.5 Ethereum Improvement Proposals

"An EIP is a design document providing information to the Ethereum community, or describ-
ing a new feature for Ethereum or its processes or environment." [32] It can be proposed
by any Ethereum community member and then discussed by them. There are three types of
EIPs [32]:

• Standard Track EIP

Describes any change that affects most or all Ethereum implementations, such as
a change to the network protocol, a change in block or transaction validity rules,
proposed application standards/conventions, or any change or addition that affects
the interoperability of applications using Ethereum. Furthermore, Standard EIPs can
be broken down into the following categories. Standards Track EIPs consist of three
parts, a design document, implementation, and finally, if warranted an update to the
formal specification.

• Meta EIP

Describes a process surrounding Ethereum or proposes a change to (or an event in)
a process. Process EIPs are like Standards Track EIPs but apply to areas other
than the Ethereum protocol itself. They may propose an implementation, but not
to Ethereum’s codebase; they often require community consensus; Examples include
procedures, guidelines, changes to the decision-making process, and changes to the
tools or environment used in Ethereum development.

• Informational EIP

Describes an Ethereum design issue, or provides general guidelines or information to
the Ethereum community, but does not propose a new feature. Informational EIPs

2.2. Ethereum 11

do not necessarily represent Ethereum community consensus or a recommendation, so
users are free to ignore Informational EIPs or follow their advice.

2.2.6 Current State

Ethereum is under continuous development and new improvements are constantly being
made by the community. Although Ethereum launched in 2015, it initially planned to be
developed in four stages, as illustrated in Figure 2.3: Frontier; Homestead; Metropolis
(Byzantium and Constantinople); Serenity.

Figure 2.3: Ethereum roadmap. From [33]

Each phase is defined by a set of Ethereum Improvement Proposals (EIPs) that were ac-
cepted by the community.

The Frontier was the first release of the network in 2015 and allowed users to mine Ether,
build simple centralised contracts, and make exchanges while helping the network to fix the
errors.

The second stage was the Homestead upgrade, which was the first hard fork of the Ethereum
network, leaving behind the frontier chain. It provided the resolve of the flaws found in
Frontier and removed the centralisation of the contracts. Also, it provided improvements to
the main protocols and introduced a wallet that allowed users to transfer Ether and deploy
smart contracts.

After the release of Homestead, the Decentralized Autonomous Organization (DAO) attack
occurred. The DAO was a smart contract that intended to be venture capital fund, based on
Ethereum Solidity language. In June 2016, one hacker noticed the flaws of the DAO’s code
and stole 3.6 million Ether into an account similar to DAO. Ethereum decided to create a

12 Chapter 2. Background

hard fork to refund all the Ether that was stolen in the DAO. Those who didn’t agree with
the Hard fork created the Ethereum Classic.

Metropolis was divided into two releases, Byzantium and Constantinople. Byzantium had a
total of nine EIPs to improve the network’s privacy, scalability, and security. Constantinople
hard fork update provided five EIPs to add efficient alternatives for some of the functions
on the Ethereum blockchain.

Not planned from the beginning was the Instanbul fork, which was created in December
2019 with a total of six EIPs. This fork introduces more privacy and scaling capabilities to
Ethereum as well as a significant rebalancing of the gas pricing with the computation costs
of the EVM opcodes [34].

The final planned Serenity stage is in development and is guided by five design principles:
Simplicity, Resilience, Longevity, Security, and Decentralisation [35]. As a PoW blockchain,
there was is a long-term plan to transition to a PoS in the Serenity stage.

Ethereum is currently implementing the Casper protocol, based on proof of work concept.
Accordingly, to Ethereum documentation [25], Casper has two "flavours" of proof of stake:
chain-based proof of stake and BFT-style proof of stake. In Chain-based proof of stake
algorithms, the validators are selected pseudo-randomly to create the next block pointing to
the previous block in the chain. In BFT-style proof of stake, the act of suggesting the next
block and creating the next block are separated, so validators that suggest the next block
are selected randomly.

2.3 Smart Contract

Smart Contracts accounts, mentioned in Section 2.2.3, can be executed using the code
saved in storage, by calling a function containing the contract name. Its parameters are
binary encoded and sent to the contract in the data field of the transaction.

In 1994, Nick Szabo introduced the term smart contract, idealising a digital representation
of a traditional contract, described as follows: "A smart contract is an electronic transac-
tion protocol that executes the terms of a contract. The general objectives are to satisfy
common contractual conditions (such as payment terms, liens, confidentiality, and even en-
forcement), minimise exceptions both malicious and accidental, and minimise the need for
trusted intermediaries." [36]

There have been several definitions of a smart contract over the years. However, the first
rule of a smart contract is that it must be able to be programmed to perform any actions
that blockchain users need and according to their specific business requirements [37]. Once
a smart contract is deployed, its code and state are publicly available and cannot be changed,
representing a block in the chain, as mentioned in Section 2.1.

Smart Contracts code in Ethereum can be written in many programming languages. The two
main languages that will be analysed are Solidity and Vyper. However, other programming
languages were created to be used in Ethereum EVM. These languages are:

• LLL

2.3. Smart Contract 13

Lisp Like Language (LLL) is a low-level language similar to Assembly. [38] It behaves
like a wrapper over coding in EVM directly, with direct access to memory and storage.
It is not maintained since 2018.

• Serpent

The Serpent was a high-level programming language inspired in Python, with a simple
and minimal syntax, dynamic typing, and support for object-oriented programming
[39]. In 2017, it was deprecated after an audit, claiming that it has a very low quality,
untested, very little documentation, and flawed language design. [40]

• Mutan

Mutan was a language targeting the EVM, offering a C like syntax [41]. Mutan has
been deprecated since March 2015.

• Bamboo

Bamboo was first released in 2017, and it is a smart contract language oriented to
state transitions and with no iterative code involved [3]. It was created to avoid
reentrancy problems by default, using each function declared within a state [42].

• Flint

Created in 2018, Flint is a type-safe, capabilities-secure, contract-oriented program-
ming language designed with novel contract-oriented features, such as caller capabili-
ties, Asset types, and mutation functions [43].

2.3.1 Solidity

Solidity [12] was introduced to replace all three original languages (Mutan, Serpent, and
LLL), "created by Dr Gavin Wood as a language explicitly for writing smart contracts with
features to directly support execution in the decentralised environment of the Ethereum
world computer". [3] It is a versioned statically typed language with a contract-oriented
architecture inspired in JavaScript and C++. At the time of writing this document, Ethereum
is in version 0.6.2.

Structure of a Solidity Program

Every Solidity program (shown in example listing 2.1) can have any number of contracts/li-
braries coded in a single file or multiple source files. The file extension for solidity code is
.sol, and it must contain the solidity version to use (line 1) and the contract/library code
(lines 4 - 14). It can also contain an import statement to import other sources files (line 2).

14 Chapter 2. Background

1 pragma solidity >=0.5.0 <0.6.0;
2 import "../ mortal/mortal.sol";
3
4 contract Greeter is Mortal {
5 string greeting;
6
7 constructor(string memory _greeting) public {
8 greeting = _greeting;
9 }

10
11 function greet () public view returns (string memory) {
12 return greeting;
13 }
14 }

Listing 2.1: Example of a contract in Solidity. [1]

An object-oriented language, in general, can contain declarations of Data Types, Variables,
Control and loop structures, Functions and Objects. In Ethereum, the case is similar. "Each
contract can contain declarations of State Variables, Functions, Function Modifiers, Events,
Struct Types, and Enum Types" [44]. It can also define unique kinds of contracts called
libraries that are deployed only once, along with the contract.

State Variables and Data Types

The State Variables defined in any contract are values that are permanently stored in the
contract storage. The variables can be used at multiple places within the code and will refer
to the same value stored. Each state variable has a statically data type defined so that the
Solidity compiler can allocate the memory. The most used data types are [3]:

• Boolean (bool): can store boolean values, true or false, with logical operators

• Integers (int, uint): Include all subtypes of signed(int) and unsigned(uint) integers

• Fixed point (fixed, ufixed): Fixed-point numbers, declared with (u)fixedMxN where M
is the size in bits (increments of 8 up to 256) and N is the number of decimals after
the point (up to 18)

• Address: An Ethereum account address

• Fixed byte arrays: Include static byte arrays that hold a sequence of bytes from one
to up to 32

• Dynamic byte arrays: Includes the dynamic byte array and the string type, a dynamically
sized UTF8-encoded string.

• Enum: User-defined type for enumerating discrete values

• struct: User-defined data containers for grouping variables

• Array: An array of any type, either fixed or dynamic

Solidity provides a set of functions and variables that can be globally accessed in contract
execution. These variables are used to provide information about the state of the blockchain
or the contract. The most used are the block, msg, and tx objects. The first one contains

2.3. Smart Contract 15

the information about the block; the second provides information about the message sent
to a contract; the third and final object provides information about the transaction.

Access Modifiers

There are four different types of access modifiers for functions and variables in Solidity [3]:

• Public: It can be called by other contracts or EOA transactions, or from within the
contract.

• Private: Only visible internally by the declaring contract and not by derived contracts.

• Internal: Only accessible within the contract, cannot be called by another contract or
EOA transaction

• External: Like public functions, except it cannot be called within the contract unless
explicitly prefixed with the keyword this in the code.

Functions, Modifiers and Fallbacks

Solidity functions are used to create transactions and implement a certain logic. A function
can take multiple parameters and return multiple values. It uses the access modifiers to
specify the visibility, and it can be one of the three types: pure, view, or payable. These
types define the scope of changes allowed within the Ethereum global state.

A view function is used to view state variables of the contract and cannot change them. A
pure function ensures that it cannot read or modify a state variable. The compiler will throw
an error in case the pure function tries to perform any operation on state variables. Finally,
the payable function, that provides a mechanism to receive funds in Ether.

The syntax we use to declare a function in Solidity is as follows [3]:

function FunctionName([parameters]) public|private|internal|external
[pure|constant|view|payable] [modifiers] [returns (return types)]

When a Solidity contract is compiled into EVM bytecode, its functions are identified by
a signature derived from its name and arguments. When a function is invoked, and no
matching function can be found, or no signature is provided at all, the fallback function of
a contract is invoked instead [45].

A fallback function cannot be called explicitly, doesn’t have a name and it cannot accept any
arguments or return any value. An example of a fallback function is present in the following
listing 2.2:

1 pragma solidity 0.5.0;
2
3 contract Test {
4 function () external { x = 1; }
5 uint x;
6 }

Listing 2.2: Example of a fallback function in Solidity. [2]

16 Chapter 2. Background

Function modifiers can be used to modify the behaviour of a function. They check that a
function can only be executed in a specific context. For instance, to create a modifier that
allows only the contract owner to run a given function, like shown in Listing 2.3:

1 pragma solidity 0.5.0;
2
3 contract Owner {
4 address owner;
5 constructor () public {
6 owner = msg.sender;
7 }
8 modifier onlyOwner {
9 require(msg.sender == owner);

10 _;
11 }
12 modifier costs(uint price) {
13 if (msg.value >= price) {
14 _;
15 }
16 }
17 }

Listing 2.3: Example of a function modifier in Solidity. [3]

Events

Every transaction in Ethereum keeps the information about events that occurred. When
an event is called, its arguments are stored in the transaction log data structure of the
blockchain. The log keeps the information of the contract address, but the data is not
accessible from any contract. Solidity can create events by declaring the keyword event,
followed by an identifier and any number of parameters to send. An event can index up to
three parameters by adding the keyword indexed in the parameter defined. An example of a
contract creating an event is shown in listing 2.4:

1 pragma solidity 0.5.0;
2
3 contract SmartExchange {
4 event Deposit(address from , bytes32 to , uint indexed value);
5 event Transfer(bytes32 from , address to , uint indexed value);
6
7 function deposit(bytes32 to) payable public {
8 emit Deposit(msg.sender , to, msg.value);
9 }

10
11 function transfer(bytes32 from , address payable to, uint value)

payable public{
12 to.transfer(value);
13 emit Transfer(from , to, value);
14 }
15 }

Listing 2.4: Example of a event in Solidity. [4]

2.3. Smart Contract 17

2.3.2 Vyper

Vyper is a pythonic smart contract language that runs on top of the EVM. It follows the
principles that should be simple to build a secure smart contract and with an auditable code
[46]. Vyper is currently in beta version v0.1.0-beta.16, and new developments are being
made to release the language.

Structure of a Vyper Program

Comparing to Solidity, smart contracts in Vyper are written in a single file. A contract in
Vyper can have state variables, functions, decorators, structs, and events.

Listing 2.5 shows an example of a simple crowdfund written in Vyper that allows other
contracts to participate, refund everyone, and end the crowdfunding.

1 s t r u c t Funder :
2 s e n d e r : a d d r e s s
3 v a l u e : we i_va lue
4 f u n d e r s : map (i n t128 , Funder)
5 n e x tFund e r I n d e x : i n t 1 2 8
6 b e n e f i c i a r y : a d d r e s s
7 d e a d l i n e : p u b l i c (t imestamp)
8 goa l : p u b l i c (we i_va lue)
9 r e f u n d I n d e x : i n t 1 2 8

10 t i m e l i m i t : p u b l i c (t i m e d e l t a)
11
12 @pub l i c
13 de f __init__(_ b e n e f i c i a r y : add r e s s , _goal : we i_va lue , _ t im e l im i t : t i m e d e l t a) :
14 s e l f . b e n e f i c i a r y = _ b e n e f i c i a r y
15 s e l f . d e a d l i n e = b l o c k . t imestamp + _t ime l im i t
16 s e l f . t i m e l i m i t = _ t ime l im i t
17 s e l f . g o a l = _goal
18
19 @pub l i c
20 @payab l e
21 de f p a r t i c i p a t e () :
22 a s s e r t b l o c k . t imestamp < s e l f . d e a d l i n e , " deadline not met (yet)"
23 n f i : i n t 1 2 8 = s e l f . n e x tFund e r I n d e x
24 s e l f . f u n d e r s [n f i] = Funder ({ s e n d e r : msg . s ende r , v a l u e : msg . v a l u e })
25 s e l f . n e x tFund e r I n d e x = n f i + 1
26
27 @pub l i c
28 de f f i n a l i z e () :
29 a s s e r t b l o c k . t imestamp >= s e l f . d e a d l i n e , " deadline not met (yet)"
30 a s s e r t s e l f . b a l a n c e >= s e l f . goa l , " invalid balance "
31 s e l f d e s t r u c t (s e l f . b e n e f i c i a r y)
32
33 @pub l i c
34 de f r e f u n d () :
35 a s s e r t b l o c k . t imestamp >= s e l f . d e a d l i n e and s e l f . b a l a n c e < s e l f . g o a l
36 i n d : i n t 1 2 8 = s e l f . r e f u n d I n d e x
37 f o r i i n r ange (i nd , i n d + 30) :
38 i f i >= s e l f . n e x tFund e r I n d e x :
39 s e l f . r e f u n d I n d e x = s e l f . n e x tFund e r I n d e x
40 r e t u r n
41 send (s e l f . f u n d e r s [i] . s ende r , s e l f . f u n d e r s [i] . v a l u e)
42 c l e a r (s e l f . f u n d e r s [i])
43 s e l f . r e f u n d I n d e x = i n d + 30

Listing 2.5: Example of a contract in Vyper. [5]

18 Chapter 2. Background

As presented in Listing 2.5, the struct Funder with the variables sender and value is defined
on line 1. Vyper is a scripting language and therefore does not have classes or objects.
Instead, it includes structs, similar to C language.

Following the example, there are several state variables defined (lines 4 - 10). The state
variables, like most languages, can be a value type or a reference type, and the syntax is
very similar to Solidity.

There are four functions in the example:

• The __init__ function (line 13) that initialises the contract.

• The function participate (line 21) annotated with the @payable decorator that receives
funds and add them to the crowdfund.

• The finaliser function (line 28) that ends the crowdfunding and removes the contract
from the network (line 31).

• Finally the refund, that sends an Ether stored in the contract to the designated ad-
dresses (line 41).

A decorator in Vyper can be one of the following [46]:

• @public - Can only be called externally.

• @private - Can only be called within the current contract.

• @constant - Does not alter the contract state.

• @payable - The contract is open to receive Ether.

• @nonreentrant(<key>) - Function can only be called once, both externally and inter-
nally. Used to prevent reentrancy attacks.

In Vyper, events must be declared before any global declarations and function and can include
up to three indexed variables. The syntax for executing an event is shown in Listing 2.6.

1 # Financial events the contract logs
2 Transfer: event ({_from: indexed(address), _to: indexed(address),

_value: uint256(currency_value)})
3 Buy: event({ _buyer: indexed(address), _buy_order: uint256(

currency_value)})
4 Sell: event ({ _seller: indexed(address), _sell_order: uint256(

currency_value)})
5 Pay: event({ _vendor: indexed(address), _amount: wei_value })
6
7 # Initiate the variables for the company and its own shares.
8 company: public(address)
9 totalShares: public(uint256(currency_value))

10 price: public(uint256 (wei / currency_value))
11
12 # Store a ledger of stockholder holdings.
13 holdings: map(address , uint256(currency_value))

Listing 2.6: Example of an event’s declaration in Vyper. [5]

2.4. Code Smells 19

2.4 Code Smells

A code smell is a hint which indicates that program code or design could have symptoms
of a problem. The concrete definition of a code smell varies from project to project and
has multiple points of view. The quality of a program can be quantified by the number of
occurrences of code smells [47]. On the opposite, clean code is a practice that aims to write
readable, functional, small, simple code, easy to understand and maintain. It must be easily
accessible to others, with a clear intention, unambiguous, right abstractions, proper names
for units, methods, classes, forms, data modules. There are some common signs of code
smells:

• Bloaters: Classes, methods or parameters that have grown to proportions difficult to
manage.

• Object-Orientation Abusers: The use of incorrect application of switch statements,
temporary fields or inheritance.

• Change Preventers: When a piece of code needs to be changed, and it is necessary to
make the restructuring of a high amount of places in the code.

• Dispensables: Code that is not being used or not necessary for the problem.

• Couplers: Use of excessive coupling or excessive delegation between classes.

Code smells are related to security issues and design flaws because they could increase the
risk of bugs or failures in the system [48]. One of the techniques used to reduce the code
smell in the system is refactoring the code or even the design. Refactoring is the process
of changing a system in such a way that it does not alter the behaviour of the code and
improves its internal structure [49].

2.5 Coding Standards

Coding standards are collections of coding rules, guidelines, and best practices to write
cleaner and safer code. A coding standard attempts to ensure that all the developers of
a given project, organisation, or even community, are following specific guidelines, and the
code can be easily understood, maintaining its consistency [50]. Using a coding standard
can reduce the risk of having errors in code and increase its readability and maintainability.
The most used programming languages have adopted or exemplified coding standards. The
most commonly used are:

• Documentation: writing the explanation or annotation of source code in the format
of comments in the source code or document.

• Indentation: convention used for the source code structure stating the space between
the beginning of a line and the code.

• Naming: there are two naming conventions for functions, variables and other proper-
ties, CamelCase where the first letter of each word is capitalised except for the first
word and UnderScore used between words.

• Avoided deep nesting structure: The nested structures are difficult to read and under-
stand.

20 Chapter 2. Background

• Don’t Repeat Yourself (DRY) principle: aimed at reducing repetition of information
and code.

• Keep It Simple, Stupid (KISS) principle: To keep the code simple and transparent,
making it easy to understand.

2.6 Summary

Ethereum Smart Contracts are elements of the Ethereum network that can operate in numer-
ous contexts and have multiple coding languages supported by an interacting development
community, namely Solidity and Vyper.

Solidity (2.3.1) and Vyper (2.3.2) are very distinct languages. The development of smart
contracts in these languages is not simple. Ethereum languages are new and highly experi-
mental, and new challenges need to be taking into account [51]. The software and network
behind Ethereum is continually changing and upgrading, but smart contracts are different
and cannot upgrade, due to their immutable.

While Solidity has a language very similar to an object-oriented language, Vyper focuses
on the development of smart contracts with increased security and focus on protecting
developers’ code from exploits. It was designed after a number of various stages of Solidity
development and learned from its mistakes. A comparative table between Solidity and Vyper
regarding released versions and contracts deployed can be seen in table 2.1.

Table 2.1: Comparison between Solidity and Viper

Language First Release (Date - Version) Current Version

Solidity 21 Aug 2015 - v0.1.2 v0.6.3
Vyper 23 Mar 2018 - v0.0.4 v0.1.0-beta.16

As stated in the previous table 2.1, Solidity is in a later stage of development with a much
higher number of contracts deployed on the blockchain.

21

Chapter 3

State of the Art

This chapter presents an exhaustive study of the state of the art of technologies and relevant
information regarding the Ethereum development in Solidity and Vyper.

3.1 Methodology

This Section describes the research plan for the literature review to address the practises in
Solidity and Vyper, through an analysis of scientific and academic publications/studies and
tools developed by the Ethereum community.

There are two possible literature review approaches identified for the research plan:

• Systematic literature review (SLR): "A systematic review is a technique that answers
a defined research question by collecting and summarising all the available evidence
regarding a specific area that meets the eligibility criteria" [52].

• Traditional or Narrative literature review (NLR): Narrative reviews take a less formal
approach than systematic reviews, do not require the presentation of rigorous aspects
characteristic of a systematic review [53].

• Meta-analysis Review: "Technique that statistically combines the results of quantita-
tive studies to provide a more precise effect of the results" [54].

The approach adopted in this research is the meta-analysis review. With this type of re-
search, it is possible to gather multiple data studies and combine them with more recent
development in smart contracts. The selection of the data studies is chosen based on
multiple criteria relevant to identify possible vulnerabilities and patterns following the best
practices and development approaches. The gathered data is synthesised following specific
criteria, analysed and evaluated against their usage in smart contracts development. A
meta-analysis consists of the following phases:

• Define the research question and literature review (Section 3.2)

• Extract and Analyse Data (Section 3.3)

• Present results (Section 3.4)

22 Chapter 3. State of the Art

3.2 Research Questions

Writing a research question is the first step in conducting a meta-analysis review. Following
the main question of this dissertation provided in Section 1.3), the following questions were
identified:

• [Knowledge]What are the most common vulnerabilities and code smells detected and
reported in smart contracts?

In this first question, the purpose is to find precise taxonomies of vulnerabilities, bugs,
and code smells with its definitions, examples and implications on the development of
smart contracts.

• [Availability]What is the state of tools used in the development of Ethereum smart
contract?

Identify and categorise available and usable tools that support the development of
smart contracts.

• [Quality]Which design patterns and anti-patterns are documented and exemplified in
smart contracts?

Obtain common illustrated design patterns and respective anti-patterns that success-
fully identify the problems and solutions for the patterns.

• [Effectiveness]Which of the vulnerabilities, bugs, and code smells can be detected by
tools?

For this question, the interest is to determine which tools can detect vulnerabilities in
vulnerable smart contracts.

3.3 Data Collection Analysis

The research was conducted on several online databases, such as Google Scholar, IEEE,
ResearchGate, ACM DL, Solidity/Vyper documentation, and "grey" literature (eg., blogs,
books, dissertations and video conferences).

The process of selecting the appropriate studies is defined by following Inclusion/Exclusion
criteria along with the search strings. The defined I/E criteria are described in Table 3.1.

Table 3.1: Inclusion and Exclusion criteria

Inclusion Exclusion

Reports referencing tools, design patterns, code smells, and practices related to Ethereum Solidity or Vyper Reports not related to Ethereum
Published after 2015 to June 2020 Before 2015

Published or unpublished but publicly available Private or Unavailable

To conclude the selection of the appropriate studies, the search string is simply defined to
obtain the most important data following the research questions and I/E criteria:

ethereum AND smart AND contract? AND (solidity OR vyper)

As a result of the selection and screening of studies following the selected search string
and I/E criteria, a total of 103 documents were identified from online databases and 20
documents identified from other sources.

3.3. Data Collection Analysis 23

The analysis of data collected is completed with a quality assessment of the finds. This
assessment breaks down the relative information of the findings focusing on answering the
research questions defined (Section 3.2).

The main documents found in the data collection analysis process are presented in table 3.2.

Table 3.2: Data collection analysis documents

Identifier Date Summary
1 2016 Luu et al. [55] Investigated the security of running smart contracts in

Ethereum and proposed ways to enhance the operational semantics
of Ethereum to make contracts less vulnerable by building a symbolic
execution tool called Oyente to find potential security bugs.

2 2017 Dika [17] proposed a categorised taxonomy of known security issues
by inspecting analysis tools (Oyente, SmartCheck, Remix and Secu-
rify) and proposing a taxonomy with the categorisation of that tools.

3 2017 Atzei et al. [56] surveyed attacks on Ethereum smart contracts and
defined a taxonomy for Ethereum smart contract vulnerabilities.

4 2018 Chen et al. [57] researched on under-optimised smart contracts and
identified 24 anti-patterns from the execution traces of real smart
contracts. They developed a tool called GasReducer, to automatically
detect anti-patterns from the bytecode of smart contracts and replace
them with efficient code through bytecode-to-bytecode optimisation.

5 2018 Parizi et al. [58]conducted an empirical study of security analysis
tools against vulnerability detection in Ethereum smart contracts.
The result show that SmartCheck is the most effective tool while
Mythril is the most accurate one.

6 2018 Wöhrer and Zdun [59] analysed security patterns for Solidity, by gath-
ering data from different sources and applied Grounded Theory tech-
niques to extract and identify the patterns. In total, they identified
six design patterns that lack execution control once a contract is de-
ployed, resulting from the distributed execution environment provided
by Ethereum.

7 2018 Antonopoulos et al. [3] referenced some security best practices, anti-
patterns and various vulnerabilities encountered by smart contract
developers.

8 2018 Mense and Flatscher[60] compiled a taxonomy of vulnerabilities and
compared 7 analysis tools against all of the vulnerabilities in the tax-
onomy. The study showed that SmartCheck, Securify and Mythril
identified the higher number of vulnerabilities and that Remix and
Security focus only on severe vulnerabilities.

9 2018 Liu et al. [61] summarised smart contract design patterns based on
existing smart contracts and classified them into the Design Patterns
categories: Creational Patterns, Structural Patterns, Inter-Behavioral
Patterns,and Intra-Behavioral Patterns

10 2018 Wöhrer and Zdun [62] conducted an analysis based on a Multi-vocal
Literature Research and identified 18 design patterns, grouped into
five categories (Action and Control Patterns, Authorisation, Life-
cycle, Maintenance and Security) and described them in detail with
exemplary code for illustration.

24 Chapter 3. State of the Art

11 2019 Coblenz et al. [16] analysed different blockchain publications and
considers that a new generation of blockchain software development
tools should focus on users’ needs, seek to facilitate safe develop-
ment, by detecting relevant classes of severe bugs at compile-time,
and be blockchain-agnostic.

12 2019 Grundy et al. [48] conducted an empirical study on Stack Exchange
posts [63] related with smart contracts code smells. As a result, 20
types of code smells in smart contracts were defined and categorised
in security, architecture, and usability.

13 2019 Murray and Anisi [64] surveyed the state of the art of formal ver-
ification of smart contracts and identified several methods and ap-
proaches for performing formal verification. They also consider that,
at the time of the publication, there were no established standard or
best practice for the development of smart contracts.

14 2019 Demir et al. [65] reviewed 28 security smells in deployed smart con-
tracts and categorised them by their context: in the smart contract’s
execution environment, design and coding.

15 2019 Di Angelo and Salzer [66] surveyed the various tools for analysing
Ethereum smart contracts. They concluded that there are three
types of tools: academic tools, tools developed by companies, and
community tools in open repositories. They surveyed 27 considered
tools regarding availability, maturity level, methods employed, and
detection of security issues, regardless of their provenance and by in-
stalling and testing them. From this survey they highlighted 5 tools:
FSolidM, KEVM, Securify, MAIAN and Mythril.

16 2019 Sierra [67] extended the verification of smart contracts by developing
a formal verifier for smart contracts written in Vyper. The verifier
introduces a new specification construct to give guarantees about the
execution of a contract even in the presence of reentrancy problems,
the correct handling of funds, and the absence of security problems.

17 2019 Gupta [68] analysed Ethereum smart contracts from a security per-
spective, by studying multiple security vulnerabilities and issues, and
developing a taxonomy with the results. Then, analysed the secu-
rity tools with the taxonomy to test their effectiveness against the
vulnerabilities.

18 2020 Durieux et al. [69] created a framework to analyse and compare mul-
tiple analysis tools, called SmartBugs. The tool compared 9 analysis
tools against a dataset of Vulnerable Smart Contracts. The results
show that the tools with most detected vulnerabilities per category
defined are Mythril, Slither, Oyente and Osiris.

19 2020 Kaleem et al. [70] analysed Vyper and presented a survey to assess if
common vulnerabilities in Solidity can be translated to Vyper devel-
opment. They analysed the vulnerabilities and categorised them in 5
groups.

3.4. Results 25

20 2020 Gao et al. [71] proposed and implemented an automated approach,
named SMARTEMBED, to provide clone detection, bug detection
and contract validation on Solidity smart contracts. They tested
their tool in 22,000 smart contracts collected from the Ethereum
blockchain and showed that their tool can effectively identify a clone
ratio around 90% and more than 1000 clone-related bugs.

21 2020 Praitheeshan et al. [18] investigated 16 security vulnerabilities in
smart contracts and categorised them in terms of static analysis,
dynamic analysis, and formal verification. By correlating the vulner-
abilities and 19 software security issues compared the three analysis
methods in terms of their performance, coverage of finding vulnera-
bilities and accuracy.

3.4 Results

As result of the data collection obtained from the collected documents, the following cate-
gories were identified:

• Security vulnerabilities - A classification of commonly identified vulnerabilities in the
Ethereum network with the development of smart contracts.

• Design Patterns - A list of design and programming patterns for smart contract pro-
gramming.

• Tools - A classification of analysis, development and testing tools in smart contract
development.

3.4.1 Security Vulnerabilities

Based on the proposed EIP-1470, the most common weakness of smart contracts have been
identified since October 2018, in a Smart Contract Weakness Classification (SWC) web page
[72] publicly available and opened for contribution. The overall classification for security
vulnerabilities were extracted from the SWC Registry and compared with other sources [73]
[65] [74] [60]. The vulnerabilities that were present in other sources and didn’t matched
the vulnerabilities of the SWC registry were added to the classification. The complete
classification of the security vulnerabilities with respective description and recommendation
is present in Appendix A. The classification contains the following registries:

• SWC 100 - Function Default Visibility

• SWC 101 - Integer Overflow and Un-
derflow

• SWC 102 - Outdated Compiler Version

• SWC 103 - Floating Pragma

• SWC 104 - Unchecked Call Return
Value

• SWC 105 - Unprotected Ether With-
drawal

• SWC 106 - Unprotected SELFDE-
STRUCT Instruction

• SWC 107 - Reentrancy

• SWC 108 - State Variable Default Vis-
ibility

26 Chapter 3. State of the Art

• SWC 109 - Uninitialised Storage
Pointer

• SWC 110 - Assert Violation

• SWC 111 - Use of Deprecated Solidity
Functions

• SWC 112 - Delegatecall to Untrusted
Callee

• SWC 113 - DoS with Failed Call

• SWC 114 - Transaction Order Depen-
dence

• SWC 115 - Authorisation through
tx.origin

• SWC 116 - Block values as a proxy for
time

• SWC 117 - Signature Malleability

• SWC 118 - Incorrect Constructor
Name

• SWC 119 - Shadowing State Variables

• SWC 120 - Weak Sources of Random-
ness from Chain Attributes

• SWC 121 - Missing Protection against
Signature Replay Attacks

• SWC 123 - Requirement Violation

• SWC 124 - Write to Arbitrary Storage
Location

• SWC 125 - Incorrect Inheritance Order

• SWC 126 - Insufficient Gas Griefing

• SWC 127 - Arbitrary Jump with Func-
tion Type Variable

• SWC 128 - DoS With Block Gas Limit

• SWC 129 - Typographical Error

• SWC 130 - Right-To-Left-Override
control character (U+202E)

• SWC 131 - Presence of unused vari-
ables

• SWC 132 - Unexpected Ether balance

• SWC 133 - Hash Collisions With Mul-
tiple Variable Length Arguments

• SWC 134 - Message call with hard-
coded gas amount

• SWC 135 - Code With No Effects

• SWC 136 - Unencrypted Private Data
On-Chain

• Array length manipulation

• Complex Fallback

• Freezing ether

• Function order

• Gassless send

• Mark callable contracts

• Payable fallback

• Reason string

• Unchecked Division

• Quotes

• Uninitialised State

• Visibility Modifier Order

3.4.2 Design Patterns

The design patterns in Ethereum are mainly identified as a way to prevent the occurrence
of vulnerabilities in the network. In this research, the design patterns were found in three
research publications [59][75][61]:

• Access Restriction

• Automatic Deprecation

• Balance Limit

• Commit and Reveal (Hash Secret)

• Contract Register

• Contract Relay

3.4. Results 27

• Checks-Effects-Interaction

• Contract Facade

• Contract Factory

• Contract Composer

• Contract Mediator

• Contract Observer

• Data Segregation

• Emergency Stop (Circuit breaker)

• Mortal

• Mutex

• Multi-signature (Multiple authoriza-
tion)

• Oracle (Data Provider)

• Ownership

• Pull Payment

• Rate Limit

• Satellite (Contract Decorator)

• State Machine

• Speed Bump

3.4.3 Tools

The SWEBOK guide [76] classifies software engineering knowledge areas in a set of cate-
gories, including:

• Software construction tools - frameworks that allow the creation of smart contracts
in the network through a combination of coding, debugging and deployment.

• Software testing tools - validate and verify the correctness of the contract.

• Software quality tools - evaluate the state of the contract.

These categories were used to classify the tools available in the development of smart
contracts and respective sources (Table 3.3):

Table 3.3: Classification of Ethereum tools

Tools Category Source
Buidler Construction https://github.com/nomiclabs/buidler
Dapp Construction https://github.com/dapphub/dapptools/tree/master/src/dapp
Embark Construction https://github.com/embarklabs/embark
Etherlime Construction https://github.com/LimeChain/etherlime
OpenZeppelin Construction https://openzeppelin.com/
Parasol Construction https://github.com/Lamarkaz/parasol
Remix IDE Construction https://github.com/ethereum/remix
Truffle Construction https://github.com/trufflesuite/truffle/
adelaide Quality https://github.com/sec-bit/adelaide
ContractGuard Quality https://contract.guardstrike.com/
contractLarva Quality https://github.com/gordonpace/contractLarva
EasyFlow Quality https://github.com/Jianbo-Gao/EasyFlow
E-EVM Quality https://github.com/pisocrob/E-EVM
Erays Quality https://github.com/teamnsrg/erays
EtherTrust Quality https://github.com/SecPriv/EtherTrust
Ethlint Quality https://github.com/duaraghav8/Ethlint
FSolidM Quality https://github.com/FSolidM/smart-contracts
GigaHorse Quality https://zenodo.org/record/2578692#.Xrm0tGhKhPZ
HoneyBadger Quality https://github.com/christoftorres/HoneyBadger
KEVM Quality https://github.com/kframework/evm-semantics

28 Chapter 3. State of the Art

KVyper Quality https://github.com/kframework/vyper-semantics
MadMax Quality https://github.com/nevillegrech/MadMax
MAIAN Quality https://github.com/MAIAN-tool/MAIAN
Manticore Quality https://github.com/trailofbits/manticore
Mythril Quality https://github.com/ConsenSys/mythril
MythX Quality https://mythx.io/
Octopus Quality https://github.com/pventuzelo/octopus
Osiris Quality https://github.com/christoftorres/Osiris
Oyente Quality https://github.com/melonproject/oyente
Porosity Quality https://github.com/comaeio/porosity
Rattle Quality https://github.com/crytic/rattle
Remix Analyzer Quality https://github.com/ethereum/remix/tree/master/remix-

analyzer
Securify Quality https://github.com/eth-sri/securify2
Slither Quality https://github.com/crytic/slither
SmartCheck Quality https://github.com/smartdec/smartcheck
SmartEmbed Quality https://github.com/beyondacm/SmartEmbed
Solgraph Quality https://github.com/raineorshine/solgraph
Solhint Quality https://github.com/protofire/solhint
Solidity Visual Auditor Quality https://github.com/ConsenSys/vscode-solidity-

auditor
Solitor Quality https://github.com/LarsStegeman/EthereumRuntimeMonitoring
SolMet Quality https://github.com/chicxurug/SolMet-Solidity-parser
teEther Quality https://github.com/nescio007/teether
Vandal Quality https://github.com/usyd-blockchain/vandal
VeriMan Quality https://github.com/VeraBE/VeriMan
VeriSol Quality https://github.com/microsoft/verisol
vscode-Vyper Quality https://github.com/tintinweb/vscode-vyper
Brownie Testing https://github.com/eth-brownie/brownie
Echidna Testing https://github.com/crytic/echidna
espresso Testing https://github.com/hillstreetlabs/espresso
Ethereum Tester Testing https://github.com/ethereum/eth-tester
ethereum-graph-debugger Testing https://github.com/fergarrui/ethereum-graph-

debugger
hevm Testing https://github.com/dapphub/dapptools/tree/master/src/hevm
solidity-coverage Testing https://github.com/sc-forks/solidity-coverage
sol-profiler Testing https://github.com/Aniket-Engg/sol-profiler
Tenderly Testing https://tenderly.co/
Waffle Testing https://github.com/EthWorks/Waffle

3.4.4 Effectiveness of Security Analysis Tools

In some studies, security analysis tools are evaluated based on the number of vulnerabilities
identified in smart contracts and some of these tools also provided the list of identifiable
vulnerabilities.

Reported by Tools

Table 3.4 shows the effectiveness of security analysis of each tool in detecting the vulnera-
bilities identified in Section 3.4.1.

3.4. Results 29

Table 3.4: Effectiveness of Security Analysis Tools

Vuln\Tool R
em

ix

Sl
it
he
r

O
ye
nt
e

M
yt
hr
il

Se
cu
rif
y

Sm
ar
tC

he
ck

So
lh
in
t

C
on

tr
ac
tG

ua
rd

Array length manipulation x x
Complex Fallback x x
Constant function state x x
Freezing ether x x x x
Function order x x
Gasless Send x x x
Mark callable contracts x x
Payable fallback x x
Reason string x x
Single quotes x x
SWC-100 x x x x
SWC-101 x x x
SWC-102 x x x
SWC-103 x x
SWC-104 x x x x x
SWC-105 x x
SWC-106 x x x x
SWC-107 x x x x x x x
SWC-109 x x x
SWC-110 x x x
SWC-111 x x x x x
SWC-112 x x x
SWC-113 x x x x x x
SWC-114 x x
SWC-115 x x x x x
SWC-116 x x x x x x x x
SWC-118 x x x
SWC-119 x x x
SWC-120 x x x x x
SWC-123 x x
SWC-124 x x x
SWC-127 x x x x x
SWC-128 x x x
SWC-130 x x x
SWC-131 x x x
SWC-132 x x x
Unchecked Division x x
Initialised State x x x
Initialised State x x
Total 13 22 4 12 19 14 20 27

According to Table 3.4, the most effective tools detecting vulnerabilities are ContractGuard
and Slither, followed by Securify and Solhint. Securify and Slither seem to verify most of
the SWC vulnerabilities while ContractGuard verifies most of the others. The least effective
tool is Oyente with only 4 identifiable vulnerabilities from SWC registry.

30 Chapter 3. State of the Art

Reported by studies

The security analysis tools reported by the studies analyses are identified in Table 3.5 with
each study correspondent to the identifier in Table 3.2.

Table 3.5: Effectiveness of Security Analysis Tools reported by studies

Vuln\Tool M
A
IA
N

M
an
ti
co
re

M
yt
hr
il

O
si
ris

O
ye
nt
e

P
or
os
ity

R
em

ix

Se
cu
rif
y

Sm
ar
tC

he
ck

So
lg
ra
ph

V
an
da
l

Z
E
U
S

E
th
ir

G
as
pe

r

H
on

ey
B
ad
ge
r

Sl
it
he
r

F* T
ot
al

Freezing ether 15,21 15,8 15,8 3
Other 15 15 15 15 15 15 15 17 18 9
Payable fallback 8 1
SWC-100 17 1
SWC-101 18 17,18 18 18,21 18 21 6
SWC-102 17 1
SWC-104 15 15,18 15,17,18 15,17 15,18 15,17,18 17,18 7
SWC-105 8,17 8 8,17 17 4
SWC-106 15,21 15 17 15,17 15,21 21 17 7
SWC-107 15,18 2,8,15,18 18 2,8,15,17,18,21 15 2,8,15,17 2,8,15,17,18,21 2,8,15,18 15,21 21 21 17,18 2,8 13
SWC-108 15 15 15 3
SWC-109 17 1
SWC-110 17 1
SWC-111 15,17 15 15,17 17 4
SWC-112 8,17 15 15 17 4
SWC-113 2,15 2,8,21 2,8,15 2,8,15,21 2,8,15 15 15,21 21 21 17 2,8 11
SWC-114 8,15,18 2,8,15,21 2,8,15,17,18,21 2 21 21 6
SWC-115 15,18 2,8,15,17,18 8 2,8,15,17 2,8 2,8,15,18 15,21 17,18 8
SWC-116 15,18 8,15 2,8,15,21 2,8,15,17 2,8,15,18 21 21 18 8
SWC-118 2 2 8 2 4
SWC-119 17 1
SWC-120 15 8,15 8 2,15,17 8 8 6
SWC-123 21 1
SWC-124 21 1
SWC-127 8 17 17 17 17 5
SWC-128 8 2,8,15 2,8,15,17 8,21 2 5
SWC-132 21 17 21 21 17 5
Unchecked Division 15 8,15 15 8, 15 4
Total 4 9 17 3 9 1 13 14 20 3 6 7 4 1 1 15 3

Table 3.5 shows that most of the tools are unsuccessful in identifying the majority of vulner-
abilities. The most successful tool is SmartCheck with 20 vulnerabilities identified. Porosity,
Gasper and HoneyBadger only identified 1 vulnerability. Mythril, SmartCheck and Slither
identified the most SWC vulnerabilities, followed by Remix and Securify.

3.5 Summary

This Section aimed to compile all the information available on Ethereum development.

In this chapter, the methodology chosen to perform the literature review was the SLR. The
literature review was initially performed defining four research questions, I/E criteria and a
search string to screen the data gathered from multiple databases.

As result of this research, three categories were identified, i.e. security vulnerabilities, design
patterns and development/analysis tools.

There are several analysis tools implemented to test and assure the correctness of smart
contracts. Some of these tools are publicly available, while others are purely academic or
experimental. The analysis tools were grouped and compared according to the vulnerabilities
claimed by each tool and studies that analysed the tools against a set of smart contracts.

Up until now, only one document [70] focused on the security of Vyper by analysing vul-
nerabilities in the language. Practitioners, researchers and even security analysis tools use

3.5. Summary 31

different standards and classifications for the identification of vulnerabilities and security
issues. The most official classification is the SWC Registry, provided by the Ethereum
community that can be used by any member of the community.

33

Chapter 4

Value Analysis

Value Analysis can be defined as a process of systematic, formal, and organised review that
is applied to compare the function of the product, solution, or service required to meet the
functional specification and performance criteria required by the customer or consumer [77].
Understanding the key features a solution provides is vital to discuss and understand how
the product can improve its value for the targeting market.

This chapter presents the value analysis process proposed by Rich et. al [77], composed by
the following phases: Orientation, Functional Analysis, Develop Alternatives, Analysis and
Evaluation, and Implementation.

4.1 Orientation

The orientation process consists of gathering all the resources required to identify the prod-
ucts or solutions available that can transmit value or opportunities in the market [77]. One
of the techniques that can be used in this process is Fuzzy Front End (FFE), also called
Front End of Innovation (FEI). The fuzzy front end model, as shown in Figure 4.1, is the
first part of the innovation process, that follows two phases, New Concept Development
(NCD) and Commercialisation.

Figure 4.1: The entire innovation process. From [78].

The FFE model can be unstructured and unpredictable to follow. Therefore Koen et a.l [78]
improved the understanding of the glsffe by describing it using terms that mean the same
thing to everyone using the NCD model represented in Figure 4.2.

34 Chapter 4. Value Analysis

Figure 4.2: The new concept development (NCD). From [78].

The NCD model composes of three parts [78]:

• The engine or bull’s-eye portion is composed of the business strategy, culture, and
leadership of the organisation that influences the five key elements of the FFE.

• The five key activity elements that represent the inner spoken area of the business.

• The Influencing Factors consist of uncontrollable external factors like, organisational
capabilities, the outside world, and the enabling sciences, that might influence the
entire innovation process.

4.1.1 Business Strategy

For Koen et. al. [78], "the entire innovation process needs to be aligned with business
strategy to ensure a pipeline of new products and processes with value to the corporation."

To complement the original context of chapter 1, the strategy of Ethereum is explained.
Ethereum’s open-source platform strategy wants to enable anyone to "write code that con-
trols digital value, runs exactly as programmed, and is accessible anywhere in the world" [79].
With this strategy statement in mind, it is possible to affirm that Ethereum user’s data and
ether can be shared without compromising its security. Users should be able to write appli-
cations (Dapps) without any concern about the functionality, declaring that Ethereum wants
to build a network that has the key attributes: privacy, security, high accessibility, usability,
and reliable functionality.

4.1.2 Opportunity Identification

Both Bitcoin and Ethereum have been increasing their popularity in the last years, due to
their success in asserting as a good currency alternative to the traditional currencies. The
following Figure 4.3 shows the trend of online research using the Bitcoin and Ethereum
concepts.

4.1. Orientation 35

Figure 4.3: Bitcoin vs Ethereum search results [80].

Even though the graph shows a more interest search in Bitcoin, the interest in Ethereum and
smart contracts is growing significantly. According to Ethereum web page [79], "thousands
of developers all over the world are building applications on Ethereum, and inventing new
kinds of applications." At the date of the document, an approximate total of 2,760 DApps
are registered in Ethereum [81], and the numbers have been increasing since 2015, as shown
in Figure 4.4.

Figure 4.4: Graphic of Ethereum new and total DApps per month. From [81]

The number of Blockchain-related and Ethereum jobs has also increased (Figure 4.5) with

36 Chapter 4. Value Analysis

a total of almost 4,000 developers in January 2019. Despite the verified downturns, full-
time developers increased 13% from June 2018 to June 2019 and are consolidating jobs
in the marked. LinkedIn’s 2018 U.S Emerging Jobs Report [82] also shows that blockchain
developers are the most emerging job roles, having grown 33 times in 2018 over the previous
year.

Figure 4.5: Graphic of increased Blockchain developer jobs. From [83]

Other evidence identified, shows that several attacks in the Ethereum ecosystem successfully
stole ether coins, including the famous DAO [84], Parity, and MyEtherWallet attacks. The
first one, as introduced in Section 2.2.6, stole 3.6 million Ether, forcing Ethereum to a hard
fork to return DAO Funds. The second attack, caused by a Parity multisig wallet library
contract, when a user supposedly accidentally triggered a killer function [85], stealing 280
million ether. The third one, the attack exploited the unreliable BGP messages, the sensitive
DNS and URL redirection and stole approximately 17 million ether [86].

4.1.3 Opportunity Analysis

The opportunity identified in the last Section 4.1.2, raises a trust concern in new and
aspiring smart contract developers. Being a highly experimental platform that is continuously
changing brings uncertainty to the platform and raises many ongoing issues and challenges.

The above incidents, in Section 4.1.2, show that even considered experienced developers
have issues in developing smart contracts, and the learning curve to achieve a proficient
knowledge and expertise can be very steep and hard to accomplish.

One of the challenges that have to be addressed is the education of Ethereum community,
so that a person without a vast knowledge or expertise in smart contract development or
even in blockchain in general, can make transactions or make applications (DApps) without
being stolen or hacked.

Considering both languages, Solidity and Vyper, the first being a more stable and robust
language and latter a yet experimental language but intending to improve security, there is
the necessity to protect smart contracts in both languages against the evidenced problems
and attacks to Ethereum.

4.2. Functional Analysis 37

4.1.4 Idea Generation and Selection

From gathering the data of Ethereum resources, demonstrated in Section 3.3, and oppor-
tunity identified, the following deductions can be assessed:

• Security tools are not sufficient for a good smart contract development. There is a
need to use other tools to develop, deploy, and test smart contracts.

• Guidelines and resources to learn about the skills and best practices in any language
are necessary for a clean and code smell-free code.

• There isn’t enough evidence supporting the idea that Vyper has major security vul-
nerabilities. The assessment of the Vyper’s security could lead to a change in smart
contract development. New tools for Vyper like linters, formatters, and even frame-
works for formal verification tools could be considered.

It is necessary to analyse the smart contracts tools with prototypes that allow demonstrating
the efficiency, accuracy, and reliability of the tools explored, against both Solidity and Vyper
and make it possible to select the most suitable for the development of smart contracts.

4.1.5 Influencing Factors

There are a few key factors of the blockchain ecosystem and Ethereum that could influence
the approach of this document:

• Centralisation of Ethereum - Currently, the two most commonly used clients for run-
ning nodes (Ethereum programs that maintain the blockchain) are Geth and Parity.
However, if any of these clients is abandoned, and no new clients emerge, "Ethereum
will become more centralised and vulnerable to attacks that target a single type of
client" [87].

• Regulations - Although Ethereum interest is increasing, several countries are prohibit-
ing or banning Ethereum from being sold or used. Since no official institutions are
working as an intermediary or backing the contract, if any account is stolen, there are
no legal rights that can help or compensate. It is up to the community to judge and
decide the course of action.

• Serenity - The last stage of the improvement of the Ethereum network, Serenity, is
in an ongoing process with some crucial changes being made. These changes could
influence the entire paradigm of the network and therefore change the development
approaches.

4.2 Functional Analysis

The stage of Functional Analysis is the process of identifying the most critical functions
of a product or service [77]. In order to serve these requirements, a Quality Function
Deployment (QFD) has been proposed, Figure 4.6. The QFD is a product developing
technique performed to translate customer requirements to product specification [88].

38 Chapter 4. Value Analysis

Figure 4.6: Quality Function Deployment

Analysing Figure 1 is possible to identify the most important quality characteristics of the
customer’s requirements being the veracity, the cost to production, followed by usability and
accuracy. Stating that the solution should validate if the requirements gathered can be used
by any developer or aspiring Ethereum developer, providing simple access to guidelines and
best practices and, develop contracts with a correct indication of the finding vulnerabilities
during the process.

4.3 Developing Alternatives, Analysis and Implementation

Analysing and evaluating the cost and worth of the product allows assessing its potential
value[77]. To describe the value for the customer’s project involved, the Business Model
Canvas was created, Figure 4.7.

4.3. Developing Alternatives, Analysis and Implementation 39

Figure 4.7: Business Model Canvas

The fulfilment and evaluating of the value proposition referred in 4.7, can be accomplished
with an approach to research the demanded qualities in the Ethereum development pro-
cess based on the multiple alternatives and tools to evaluate objectively according to the
functional requirements.

A Design Science Research (DSR), proposed by Hevner et al. [89], is used to ensure the
alignment of this approach. A DSR is a cycle to analyse the use and performance of designed
artefacts intended to solve the identified problems. The DSR used is defined in three main
phases “problem identification”, “solution design” and “evaluation” [90]:

• Problem identification: Ensure the relevance of the problem (Chapter 5) using the
gathered tools to identify the value of the problem (Chapter 4) and unsolved state of
the art (Chapter 3).

• Solution Design: Define a viable solution (Chapter 7), taking into account existing
artefacts viable to the solution (Chapter 6).

• Evaluation: The evaluation demonstrate the utility, quality and efficacy of the design
solution, using a practical application (Chapter 8) and summarising the results of the
solution (Chapter 9).

41

Chapter 5

Problem statement

5.1 Objectives

The security of smart contracts is a major issue in Ethereum languages. The developers
in the network should be able to write smart contracts knowing these issues and validating
their code against them. Prior studies have already focused on these issues [56][60][74] and
analysed the frameworks and tools [17][66][18][69] used to test the contracts vulnerabilities.
However, these studies did not focus on the integration of these tools and frameworks in
the smart contracts development process [91]. This implies that the development process
of smart contracts is not adequate and there is a "clear gap between the research regarding
developers’ perception of smart contract issues and technologies" [92]. The knowledge of
new developers is limited to what they can find and understand through research, and to
resources available on Ethereum languages [93].

The main goal of this dissertation is to provide new uses for the Ethereum development
practices by analysing the tools available in Ethereum, considering the two main languages,
Solidity and Vyper. The final solution should demonstrate the safety of executing smart
contracts providing a better perception of issues and technologies to developers.

The objectives are summarised as:

• Explore solutions to identify vulnerabilities and guidelines that provide a readable res-
olution of these vulnerabilities and potential improvements.

• Address the smart contract vulnerabilities and technologies, proposing a solution to
ease the development of smart contracts using good practices and guidelines.

5.2 Main Points of Focus

The resources to substantiate the knowledge of Ethereum development practices are al-
ready introduced in Chapter 3. However, the improvement of these practices requires many
following points of focus:

• Development Process

The improvement of a development process can have a resemblance to a streamline of
steps to improve a business process. The steps are defined as Mapping - Identify the
key areas to improve; Analyse the process - Analyse which of the areas developers
get more issues and what areas can create obstacles to slow or delay the process;

42 Chapter 5. Problem statement

Redesign - Gather the information of the mapping stage and design a solution to
eliminate the issues found in the areas; Implement - Find the right resources available
to implement the redesign and perform the changes in the respective areas; Reflect,
Review and potentially, Optimise - Monitor the execution of the new process to
identify what changes made don’t work and what areas can be improved.

• Responsibility

Changing the development practices of any software should not change the scope of
responsibilities of the end-user. The user should always be able to perform the usual
coding software without having to perform extra required steps, like having to create a
specific test case or having to follow specific coding syntax. This steps should always
be optional and configurable to the user’s needs.

• Automation

The ability to move manual processes to automated processes can reduce the risk of
developer errors and keep track of the development process. An automated solution
can focus on the most important tasks and improve the quality of the development.

5.3 Approach

The approach of this dissertation focus on comparing techniques used to improve the devel-
opment of smart contracts in Ethereum languages and define a feasible solution that serves
as a reference to the Ethereum community awareness of code smells, security vulnerabilities,
tools available, and design patterns found. The resulting solution would also provide the user
with continuous integrated development and vulnerability detection framework on Ethereum
smart contracts. The solution is developed in two main Chapters, each of them answering
one of the questions in Section 5.1:

• Ethereum Development Research (Chapter 6)

• Solution Design and Implementation (Chapter 7)

43

Chapter 6

Ethereum Development Research

This chapter presents the research plan design and execution to validate and identify the
possible practices using the tools available in the evolving state of smart contracts develop-
ment.

6.1 Methodology

This section provides a detailed explanation of the analysis and evaluation method performed
based on the categories identified in Section 3.4. The methodology used is described in
Figure 6.1.

Figure 6.1: Ethereum Development research methodology

44 Chapter 6. Ethereum Development Research

As shown in Figure 6.1, the research flow starts with the parsing of a collection of smart
contracts. The parser analyses the code of these contracts and generates a list of code
metrics obtained from the contracts. Then, based on the security vulnerabilities, a new set
of vulnerable contracts is created, with each contract containing a single vulnerability. The
process continues with a selection of security tools that meet the required criteria and detect
the results of each vulnerable contracts in the selected tools. The frameworks and testing
tools are also selected based on required criteria. Finally, a compatibility detection between
the tools and frameworks is performed to create a list of development stacks, that contains
a list of languages, frameworks and tools used for the development of smart contracts. The
results of this analysis are compared with responses obtained in Section 3.4.4 and conclusions
drawn.

6.2 Smart Contract Data Collection

The smart contracts were retrieved from Etherscan [94], an explorer that allows obtaining
a list of verified smart contracts published in the network. A verified contract is a contract
compiled and analysed to make sure that the respective code matches the deployed contract
in the blockchain. The extraction was conducted with a list of smart contracts verified and
available until February 2020.

The extraction process was performed with a Python script, available in github [95], to scan
an excel file provided by Etherscan and obtain the source code of each contract. The excel
file is a compilation of the addresses of smart contracts available in the Ethereum Mainnet
and Testnets.

The script reads the address from the excel and downloads the source and ABI from Ether-
scan Application Programming Interface (API) to a folder containing the source code files
and ABI code. The version and language of each contract is accounted for later verifica-
tion. As a result of the extraction, 7911 contract codes were downloaded, from a total of
7914 addresses, where 7796 contracts were developed with Solidity and 115 with Vyper.
The number of contracts downloaded from the Mainnet and TestNets is identified in the
following Table 6.1.

Table 6.1: Number of contracts downloaded from Mainnet and TestNets

URL Number
api-goerli.etherscan.io 112
api-kovan.etherscan.io 559
api-rinkeby.etherscan.io 1155
api-ropsten.etherscan.io 2393
api.etherscan.io 3692

From the total number of contracts downloaded from Etherscan, 3692 were retrieved from
the Mainnet. Almost two-thirds of these numbers are deployed and extracted from the
Ropsten TestNet.

The statistic of the number of Solidity and Vyper contracts per compiler version is identified
in Figure 6.2 and Figure 6.3, respectively.

6.2. Smart Contract Data Collection 45

v0
.4
.1
1

v0
.4
.1
1

v0
.4
.1
3

v0
.4
.1
5

v0
.4
.1
7

v0
.4
.1
9

v0
.4
.2
1

v0
.4
.2
4

v0
.4
.2
6

v0
.5
.1

v0
.5
.3

v0
.5
.5

v0
.5
.7

v0
.5
.9

v0
.5
.1
1

v0
.5
.1
3

v0
.5
.1
3

0

200

400

600

800

1,000

1,200

1,400

1,600

Figure 6.2: Histogram of the number of verified Solidity contracts per com-
piler version.

From the histogram in Figure 6.2, the most used Solidity compiler versions are v0.4.24 and
v0.5.11. No results were observed for the version 0.4.22 and versions before v0.4.11.

0.
1.
0b
4

0.
1.
0b
8

0.
1.
0b
9

0.
1.
0b
11

0.
1.
0b
16

0.
1.
0b
17

0

10

20

30

40

Figure 6.3: Histogram of the number of verified Vyper contracts per compiler
version.

Regarding Vyper, the histogram in Figure 6.3, shows a single normal distribution with the
most used version 0.1.0b9 containing almost 40 contracts.

Following the process flow, after gathering the code for each address, the parsing of the
obtained smart contracts is performed. The parsing is divided in two script written in Python,
one for Solidity [96] and another one for Vyper [97]. The parsers transforms the contracts
into an AST tree, using the Solidity parser [96] and Vyper built-in parser. The parsed trees
were serialised to a contract-level and function-level, capturing the structural information of

46 Chapter 6. Ethereum Development Research

the contract names, functions and duplicated contracts. The Solidity parser version 0.0.7
used could not process 482 contracts of the total 7796 and Vyper version 0.1.0b17 could
not parse 80 out of a total of 115.

The analyses identified a total of 5370 solidity contract addresses using contract names
with 50440 of those used more than once, remaining 3130 unique contract names in the
collection. In Solidity, 4339 duplicated contracts were identified in a total of 7314 contracts
available.

Table 6.2 references the top 30 contract names written in Solidity ordered by total of
occurrences.

Table 6.2: Top 30 most used contract names written in Solidity contracts

Contract Name Total
IERC165 359
ERC165 370
BasicToken 388
ERC20Mintable 415
Token 459
MinterRole 490
Context 521
ERC20Basic 531
StandardToken 566
Address 584
ERC20Detailed 645
Pausable 668
ApproveAndCallFallBack 757
Roles 909
Owned 942
ERC20Interface 1005
IERC20 1708
Ownable 2048
ERC20 2260
SafeMath 4483

From the analysed Table 6.2, SafeMath is the most referenced contract and presents a library
that performs arithmetic operations with overflow verification. All ERC20 -like contracts
represent a variation of the ERC20 token implementation. The third most used contract
name, the Ownable contract, is a pattern that provides a basic authorisation control for the
owners of the contract.

As Vyper contracts are identified in a single file and don’t have specific names, the study
focused on the functions naming. The top 25 contract functions written in Vyper are
identified in Table 6.3.

6.3. Tools and Frameworks 47

Table 6.3: Top 25 most used contract functions written in Vyper contracts

onERC20Received(address,uint256) 6
getValuation(uint256) 6
tokenByIndex(uint256) 8
init(string,string,uint256,uint256) 8
mint(address,uint256) 8
tokenOfOwnerByIndex(address,uint256) 8
supportsInterface(bytes32) 9
safeTransferFrom(address,address,uint256) 9
safeTransferFrom(address,address,uint256,bytes) 9
isApprovedForAll(address,address) 9
ownerOf(uint256) 9
getApproved(uint256) 9
setApprovalForAll(address,bool) 9
burnFrom(address,uint256) 11
init() 11
burn(uint256) 12
transfer(address,uint256) 13
allowance(address,address) 13
decimals() 14
totalSupply() 21
symbol() 21
approve(address,uint256) 22
transferFrom(address,address,uint256) 22
balanceOf(address) 22
name() 26

Regarding the result of Vyper functions, Vyper compiler assumes that all public variables are
described as a function and from the 35 contracts identified, three of them are public vari-
ables: name, symbol and decimals. The high number of similar function names suggest that
some contracts are identical, and perform the same operations. Analysing the duplicability
of functions 23 contracts were identified with the same functions.

6.3 Tools and Frameworks

6.3.1 Analysis

In this section, the available analysis tools are examined and compared regarding the following
aspects:

• Level of execution (source code and byte code)

• Use of a command line interface to execute the tool

• Display of information in a User Interface

• Integration with an Integrated Development Environment (IDE) throughout extensions
and plugins

• Maintained by the community or company

48 Chapter 6. Ethereum Development Research

• Available to use without costs

• Detect known vulnerabilities

Table 6.4: Comparison of smart contract analysis tools

Tool Type Level C
LI

U
I

ID
E
E
xt
en
si
on

M
ai
nt
ai
ne
d

A
va
ila
bl
e

D
et
ec
t
V
ul
ne
ra
bi
lit
ie
s

ContractGuard Analysis source code 7 3 7 3 3 3

contractLarva Analysis source code 3 7 7 3 3 7

EtherTrust Analysis bytecode 3 7 7 7 3 7

EasyFlow Analysis bytecode 3 7 7 7 3 3

Manticore Analysis both 3 7 7 3 3 3

E-EVM Analysis bytecode 3 7 7 7 3 7

Mythril Analysis both 3 7 3 3 3 3

Erays Analysis bytecode 3 7 7 7 3 7

MythX Analysis both 3 7 3 3 7 3

GigaHorse Analysis bytecode 3 7 7 7 3 7

Octopus Analysis bytecode 3 7 7 3 3 7

HoneyBadger Analysis both 3 7 7 7 3 3

KVyper Analysis source code 3 7 7 7 3 7

MadMax Analysis bytecode 3 7 7 7 3 3

MAIAN Analysis both 3 3 7 7 3 3

Oyente Analysis bytecode 3 7 7 7 3 3

Rattle Analysis bytecode 3 7 7 3 3 7

Securify Analysis source code 3 7 7 3 3 3

Slither Analysis source code 3 7 3 3 3 3

SmartCheck Analysis source code 3 7 7 3 3 3

Osiris Analysis both 3 7 7 7 3 3

VeriSol Analysis source code 3 7 7 3 3 7

Solgraph Analysis source code 3 7 7 7 3 7

teEther Analysis bytecode 3 7 7 7 3 3

Vandal Analysis bytecode 3 7 7 7 3 3

VeriMan Analysis source code 3 7 7 7 3 7

adelaide Analysis source code 3 7 3 7 7 3

Porosity Analysis source code 3 7 7 7 3 7

SmartEmbed Analysis source code 7 3 7 7 3 3

Ethlint Linter source code 3 7 3 7 3 3

Solhint Linter source code 3 7 3 3 3 3

Solidity Visual Auditor Linter source code 7 7 3 3 3 7

vscode-Vyper Linter source code 7 7 3 3 3 7

Remix Analyzer Analysis source code 7 3 7 3 3 3

KEVM Analysis bytecode 7 7 7 3 3 7

Table 6.4 represents the comparison of the analysis tools collected. Then, the tools are cho-
sen based on the following criteria: maintenance, to verify if the tool is updated accordingly
to Ethereum changes; availability, to choose open-source or free tools; and vulnerability de-
tection, to select tools that can verify issues in smart contracts. As a result, 8 of the analysed
tools meet the criteria: ContractGuard, Manticore, Mythril, Securify, Slither, SmartCheck,
Solhint, Remix Analyzer. Despite the ability of MythX to detect vulnerabilities and one of
the most used analysis tools for smart contracts, it requires a monthly fee to analyse multiple
contracts, thus not meeting the criteria defined.

6.3. Tools and Frameworks 49

To analyse the selected tools against the set of vulnerable smart contracts defined in Section
6.2, a modified version of an automated tool called SmartBugs[98] was selected. SmartBugs
automates the execution of predefined Command Line Interface (CLI) analysis tools, based
on docker images, against a set of smart contracts. This tool was modified [99] to allow
new versions of the analysis tools and different Solidity versions, using the solc-select script
[100].

The communication flow of the modified tool is defined in Figure 6.4.

Figure 6.4: Security analysis tool communication flow

After each analysis, the results were manually checked and classified accordingly to the
respective vulnerability. The result of the execution of this tool in complement with a manual
analysis of ContractGuard and Remix Analyzer is displayed in Table 6.5. Every execution of
the analysis tool against a vulnerable contract is classified in one of the following aspects:

• V - The tool found the vulnerability identified in the contract

• O - The tool found other vulnerabilities

• E - The tool could not parse the contract

• N - The tool didn’t find vulnerabilities

50 Chapter 6. Ethereum Development Research

Table 6.5: Comparison of the analysis tools against listed vulnerable smart
contracts

Vulnerabilities C
on

tr
ac
tG

ua
rd

M
an
ti
co
re

M
yt
hr
il

Se
cu
rif
y

Sl
it
he
r

Sm
ar
tC

he
ck

So
lh
in
t

R
em

ix
A
na
ly
ze
r

C
om

pi
le
r
Fi
xe
d
V
er
si
on

Array length manipulation O O O O O V O O 0.6.0
Complex Fallback V O N V V O V V -
Constant function state V N N V V O N V 0.5.0
Freezing ether V O N V O N O N -
Function order V N N O O O V N -
Gasless send V E V V V V V V -
Mark callable contracts V N N O O O V O -
Payable fallback V N N O N O V N -
Reason string V O N O O O V O -
Single quotes V O N O O O V O -
SWC-100 Function Default Visibility V E N E V O V O 0.5.0
SWC-101 Integer Overflow and Underflow V V V O O O N N -
SWC-102 Outdated Compiler Version N E E O E N N N -
SWC-103 Floating Pragma N N N O V V O N -
SWC-104 Unchecked Call Return Value O E V E V V O V 0.5.0
SWC-105 Unprotected Ether Withdrawal O V V V O O N O -
SWC-106 Unprotected SELFDESTRUCT Instruction N V V V V O O V -
SWC-107 Reentrancy O E V V O O O V -
SWC-108 State Variable Default Visibility V E N E O V V O -
SWC-109 Uninitialized Storage Pointer V E O E E O V O 0.5.0
SWC-110 Assert Violation N O V N N N N V -
SWC-111 Use of Deprecated Solidity Functions V E O E V V V V -
SWC-112 Delegatecall to Untrusted Callee V E V V V O O V -
SWC-113 DoS with Failed Call V O V V V O V V -
SWC-114 Transaction Order Dependence O O O V O O O O -
SWC-115 Authorization through tx.origin V V V V V V V V -
SWC-116 Block values as a proxy for time O V V O O O O O -
SWC-117 Signature Malleability O E V E O O N O -
SWC-118 Incorrect Constructor Name O E N E O O O O 0.5.0
SWC-119 Shadowing State Variables O N N E V O O N 0.5.0
SWC-120 Weak Sources of Randomness from
Chain Attributes

V N O O O O V V -

SWC-123 Requirement Violation O O N O V O O O -
SWC-124 Write to Arbitrary Storage Location O E V V O O O O -
SWC-125 Incorrect Inheritance Order O E O E E O O O -
SWC-126 Insufficient Gas Griefing O N O O O O O O -
SWC-127 Arbitrary Jump with Function Type Variable V N V N V V V V -
SWC-128 DoS With Block Gas Limit O N N O O O O V -
SWC-129 Typographical Error O N N E E O O N 0.5.0
SWC-130 Right-To-Left-Override control
character (U+202E)

O O N V V O O O -

SWC-131 Presence of unused variables V N N O O O V N -
SWC-132 Unexpected Ether balance V V N V V V N O -
SWC-133 Hash Collisions With
Multiple Variable Length Arguments

N N N O N O O O

SWC-134 Message call with hardcoded gas amount E N O E N O O O -
SWC-135 Code With No Effects O N N O O O O O -
SWC-136 Unencrypted Private Data On-Chain O N O V V V O O -
Unchecked Division N N N N N O N V -
Unitialized State V N N V V N N N -
Visibility Modifier Order V N N O O O V O -
Total - V - Found specific vulnerability and other vulnerabilities 23 6 14 16 18 10 17 15
Total - O - Found other vulnerabilities 18 10 9 18 21 34 22 23
Total - N - No errors found 6 19 24 3 5 4 9 10
Total - E - Could not parse 1 13 1 11 4 0 0 0

6.3. Tools and Frameworks 51

As can be seen in the Table 6.5:

• Only Remix Analyzer verifies unchecked divisions and SWC-128.

• Seven of the vulnerabilities identified are fixed by the Solidity compiler after v0.5.0 and
after v0.6.0 to array length manipulation vulnerability.

• Eight specific vulnerabilities were not verified by the analysis tools: SWC-102, SWC-
118, SWC-125, SWC-129, SWC-133, SWC-134 and SWC-135.

• The tools Solhint, SmartCheck and Remix Analyzer didn’t provide any compilation
error to verify the contract.

• Exception disorder is verified by almost all tools except Manticore and Solhint.

6.3.2 Development

Development frameworks are compared in Table 6.6. For better development of smart con-
tracts, it is required that the framework can execute in Solidity and Vyper and is constantly
maintained to support new Ethereum versions and languages. Remix, Embark, Truffle,
Etherlime and Buidler meet these requirements.

Table 6.6: Comparison of frameworks for developing smart contracts

Tool Solidity Vyper Add extensions Mantained
Remix 3 3 3 3

Dapp 3 7 7 3

Embark 3 3 3 3

Etherlime 3 3 7 3

OpenZeppelin 3 7 7 3

Parasol 3 7 7 7

Truffle 3 3 3 3

Buidler 3 3 3 3

6.3.3 Testing

Regarding the requirements for testing tools, it is required that the tool:

• Execute in Solidity and Vyper languages.

• Execute using the CLI.

• Is maintained.

• Is free.

The comparison of the testing tools is described in Table 6.7:

52 Chapter 6. Ethereum Development Research

Table 6.7: Comparison of testing tools for smart contracts

Tool Level So
lid
ity

V
yp
er

C
LI

U
I

M
ai
nt
ai
ne
d

P
ai
d

ethereum-graph-debugger source code 3 7 7 3 3 7

espresso source code 3 7 3 7 7 7

Echidna source code 3 3 3 7 3 7

Ethereum Tester bytecode 3 3 3 7 3 7

hevm both 3 7 3 7 3 7

solidity-coverage source code 3 7 3 7 3 7

sol-profiler source code 3 7 3 7 7 7

Tenderly bytecode 3 3 3 7 3 3

Waffle source code 3 3 3 7 3 7

Brownie source code 3 3 3 7 3 7

Base on the comparison of the testing tools, the following meet the requirements: Echidna,
hevm, solidity coverage, Waffle and Brownie.

6.4 Compatible Development Stacks

A development stack is a set of tools and frameworks that are used in the development of a
software product. In smart contracts development, the development stack consists of a set
of components that create a functional smart contract or Dapp.

Respecting all the previous analysed tools, CLI analysis tools can be aggregated to analyse
a smart contract to verify a greater number of vulnerabilities. In this case, Mythril, Securify,
Slither and Solhint were combined as MSSS tools in order to verify a higher number of
vulnerabilities. Table 6.8 compares the screened set of tools with each other. Frameworks
are not compared against each other since their usage is completely independent of each
other.

6.5. Comparison to State of the Art 53

Table 6.8: Comparison of tools with other tools

Tools C
on

tr
ac
tG

ua
rd

M
SS

S
T
oo

ls

R
em

ix
A
na
ly
ze
r

E
ch
id
na

H
E
V
M

So
lid
ity

C
ov
er
ag
e

W
affl

e

R
em

ix

E
m
ba
rk

E
th
er
lim

e

T
ru
ffl
e

B
ui
dl
er

ContractGuard - 7 7 7 7 7 7 7 7 7 7 7

MSSS Tools - - 7 3 3 3 3 3 3 3 3 3

Remix Analyzer - - - 3 3 3 3 3 7 7 7 7

Echidna - - - - 3 3 3 3 3 7 3 3

HEVM - - - - 3 3 7 7 7 7 7

Solidity Coverage - - - - - - 3 7 7 3 3 3

Waffle - - - - - - - 3 3 3 3 3

From the Table 6.8 the following aspects can be found:

• ContractGuard is not compatible with any tool or framework.

• MSSS tools can be used in any Framework and are compatible with other testing and
analysis tools except Remix analyzer.

• Remix Analyzer can work with other testing and analysis tools but only support their
framework Remix.

• Etherlime does not support testing tools besides Solidity Coverage.

• The frameworks that supports more tools are Truffle and Buidler.

For each framework, the following development stacks are identified:

• Remix + Remix Analyzer + MSSS tools + Echidna + Waffle

• Embark + MSSS tools + Echidna + Waffle

• Etherlime + MSSS tools + Solidity Coverage + werenWaffle

• Truffle + MSSS tools + Solidity Coverage + Echidna + Waffle

• Buidler + MSSS tools + Solidity Coverage + Echidna + Waffle

6.5 Comparison to State of the Art

As established in Chapter 3, many security analysis tools, have some but not complete
effectiveness in detecting the full list of vulnerabilities identified. From the security tools
analysed in this study, only ContractGuard and Solhint are not analysed in previous studies.

Regarding the reported vulnerabilities from each tool, only Oyente was not analysed in this
study. A comparison of the reported vulnerabilities by each tool to the vulnerability detected
in this study is demonstrated in Table 6.9. The vulnerabilities identified in this study and
reported by the respective tool are marked with 3. If the study identified the vulnerability but

54 Chapter 6. Ethereum Development Research

is not reported by the tool is marked with O, otherwise marked with 7. The vulnerabilities
fixed in any compiler version were removed from the comparison.

Table 6.9: Comparison of vulnerabilities detected by each tool and study

Vuln\Tool R
em

ix
A
na
ly
ze
r

Sl
it
he
r

M
yt
hr
il

Se
cu
rif
y

Sm
ar
tC

he
ck

So
lh
in
t

C
on

tr
ac
tG

ua
rd

Complex Fallback O O O 3 3

Freezing ether 3 7 3

Function order 3 3

Gasslend send O 3 O O 3 O 3

Mark callable contracts 3 3

Payable fallback 3 3

Reason string 3 3

Single quotes 3 3

SWC-101 Integer Overflow and Underflow 3 3

SWC-102 Outdated Compiler Version 7 7 7

SWC-103 Floating Pragma 3 3

SWC-105 Unprotected Ether Withdrawal 3 3

SWC-106 Unprotected SELFDESTRUCT Instruction 7 7 3 3

SWC-107 Reentrancy 3 7 3 3 7 7

SWC-108 State Variable Default Visibility O O O
SWC-110 Assert Violation 3 3 7

SWC-111 Use of Deprecated Solidity Functions O 3 7 3 3 3

SWC-112 Delegatecall to Untrusted Callee O 3 3 3 3

SWC-113 DoS with Failed Call 3 3 3 3 7 3 3

SWC-114 Transaction Order Dependence 3

SWC-115 Authorization through tx.origin 3 3 O 3 O 3 3

SWC-116 Block values as a proxy for time 7 7 3 7 7 7 7

SWC-117 Signature Malleability O
SWC-120 Weak Sources of Randomness from Chain Attributes 3 7 7 3 3

SWC-123 Requirement Violation 7 O
SWC-124 Write to Arbitrary Storage Location 7 3 3

SWC-125 Incorrect Inheritance Order
SWC-126 Insufficient Gas Griefing
SWC-127 Arbitrary Jump with Function Type Variable 3 3 O 7 O 3 3

SWC-128 DoS With Block Gas Limit 3 7 7

SWC-130 Right-To-Left-Override control character 3 3 7

SWC-131 Presence of unused variables 7 7 3 3

SWC-132 Unexpected Ether balance 3 O 3 3

SWC-133 Hash Collisions With Multiple Variable Length Arguments
SWC-134 Message call with hardcoded gas amount
SWC-135 Code With No Effects
SWC-136 Unencrypted Private Data On-Chain 3 3 3

Unchecked Division 3 7

Unitialized State 3 3 3

Visibility Modifier Order 3 3

As observed in table 6.9, the vulnerabilities that were least detected in the study and stated
as detected by tools were SWC-116 and SWC-120. Slither and SmartCheck reported the
most unexpected results. ContractGuard and Solhint are reported as the most accurate
security tools.

6.6. Summary 55

6.6 Summary

The results of the research show that some of the security tools can detect more vulnera-
bilities than others. However, all of them can be used to validate smart contracts.

ContractGuard was the most effective and accurate security analysis tool, however it is not
compatible with any other tool or framework. Mythril, Securify, Slither and Solhint combined
can detect the higher number of vulnerabilities and are compatible with all other tools and
frameworks, except Remix analyzer.

Other evidence indicates that tools are not prepared to deal with various types of approaches
to the same vulnerability and, as a result, lack proper verification of vulnerabilities in smart
contracts. The results show that if there are other errors in the code, or the code is not set
in the structure required by the tool, it may vary the outcome of the analysis.

As a general conclusion, this research indicates that the use of security analysis tools in
the development process of smart contracts would have significant benefits regarding the
security verification and design of smart contracts. The use of security analysis guidelines
would also improve the knowledge of developers about the implementation of design patterns
and, as an effect, potentially avoid vulnerabilities.

57

Chapter 7

Framework Design and
Implementation

This chapter defines the design and implementation of the solution proposed, gathering the
required artefacts that constitute the structure and process of the solution.

7.1 Requirements Gathering

The objectives of this dissertation are defined to help the smart contract developers, so the
main actors of this solution are the developers themselves, that mainly interact with the
system and perform the functional operations. Researchers are also important stakeholders
to the solution, that could have an interest in checking the vulnerabilities of smart contracts.

To identify the requirements of the solution, Figure 7.1 represents the use case diagram
with the use cases that a smart contract developer or researcher can perform.

Figure 7.1: Use case diagram

The requirements behind the solution can be divided into functional and non-functional
requirements. The functional requirements are illustrated in Table 7.1.

58 Chapter 7. Framework Design and Implementation

Table 7.1: Functional requirements

Number Description
1 The user should be able to analyse the security of a smart contract, written in

Solidity or Vyper.
2 The system should integrate multiple security analysis tools.
3 The system should provide the user a configurable view to select the tools enabled

to perform the security analysis.
4 The system should display information of the finding vulnerabilities in the respective

code location.
5 The system should allow to install the integrated security analysis tools.

Non-functional requirements can be described as the system quality attributes and behaviour
of the solution. The following non-functional requirements were identified:

• The system should not outperform the sum of the isolated execution of all analysis
tools.

• The system should provide failure-handling mechanisms to the analysis execution and
tools installations.

• The interaction with the user must be simple, intuitive, and adaptive to smart con-
tracts.

• The system should be compatible with a code editor that allows multiple development
frameworks, analysis and testing tools and support multiple versions of Solidity and
Vyper.

• The system should be exposed their functionalities from publicly available protocols.

7.2 Design alternatives

To create a suitable design for the development of the solution is necessary to consider the
findings of the previous Chapter 6, declaring that the most effective security tool against the
set of analysed smart contracts is ContractGuard. However, due to being only accessible on
a web page [73] cannot be grouped and integrated with other development frameworks or
CLI applications in the development process. Therefore, the most suitable identified tools
are the combined analysis tools, Mythril, Securify, Slither and Solhint. With these tools,
there are two possible approaches for the design:

The approach (1) showed in Figure 7.2 with the security analysis tools are used as distinct
and separate extensions composed by a single server that handles the communication with
the security analysis tools and the development framework through a single API.

7.2. Design alternatives 59

Figure 7.2: High-level design approach (1)

And the approach (2) showed in Figure 7.3 with a single server that exposes two API’s
through the Language Server Protocol (LSP) [101] and CLI protocols. The server would
handle all the requests and determine which tools are needed for the execution. The CLI
would enable the user to analyse the smart contract without other dependencies, and the
LSP would allow the solution to connect with a code editor or IDE.

Figure 7.3: High-level design approach (2)

It is worth mention again that the approaches presented above were taken as a starting
point to the development of the prototyped solution while using the research presented in
Chapter 6. If a chosen security tool proves to be inadequate, or if one alternative tool is
more suitable to the security of smart contracts, then, the solution should also have that
alternative.

In the first approach, the Ethereum Server would have to run the tools in a parallel order to
decrease the time to perform the analysis. However, it would not be possible to wait for all
the tools to finish because the security tools are not interdependent, and a single call to the
API can only execute an available plugin. In the second approach, the server would handle

60 Chapter 7. Framework Design and Implementation

the parallel execution of each security tool and wait for all the tools to finish to retrieve the
results. Based on this interpretation, the second approach is the optimal choice to develop
the solution.

7.3 Design Approach

This section presents the design to capture the architecture and implementation of the
selected approach.

7.3.1 Logical View

The high-level overview of the solution architecture is illustrated in Figure 7.4.

Figure 7.4: Framework logical view

As defined in Section 7.2, Figure 7.4 presents the solution architecture centred on a server
application called Ethsential that exposes the two CLI and LSP protocols. The first directly
used by the developer and the second used in Visual Studio Code (VS Code) extension
functionality.

The solution is integrated with the VS Code editor to demonstrate the extendability of
the solution to multiple development platforms. Through its popularity and features, VS
Code provides an extension API [102] supporting numerous extensions to the Ethereum
development and Solidity and Vyper languages. The Ethereum Extension pack (Ethereum
pack) is a VS Code extension package that combines and installs all required plugins to
smart contract development. The VS Code extensions used in the Ethereum pack are:

• EthSential Extension - Handle the logic required to execute the analysis of the smart
contract and sends the requests to Ethsential Server through LSP protocol.

7.3. Design Approach 61

• Solidity Extension - Handle the analyses of smart contract’s code written in Solidity
with a Solhint integration.

• Vyper Extension - The language support for Vyper smart contracts.

The respective analysis tools (Mythril, Securify and Slither) are also a part of the architecture
for the solution, integrated into EthSential Server. The integration with the analysis tools
is described in the detailed design.

7.3.2 Detailed Design

After defining the main architecture, the detailed components Ethsential server and VS Code
extensions are specified. Figure 7.5 presents the EthSential Server detailed design defined.

Figure 7.5: EthSential Server detailed design

As illustrated in Figure 7.5, the EthSential Server contains three layers:

• Application layer - programmatically exposes the command line interface or language
server based on the functionalities required by the user and routes the commands to
the respective handlers.

• Model layer - The definition of the business entities (Mythril, Securify and Slither)
with the individual command and parser functionalities.

• Service layer - The components that handle the logical functionality of the application.
Contains two main components, that allows the installation and analysis of the required
tools following the user’ specifications and the entities model commands.

Regarding the Docker component, it is designed to isolate the application environment
of each security tool from the physical machine with a significant increase in security. A
containerised tool helps to minimise the problems of any dependency or package necessary to
its execution. Each security tool (Mythril, Securify and Slither) contains an image published

62 Chapter 7. Framework Design and Implementation

in Docker Hub [103] that is loaded into the user machine during the execution of the installer
service and is initialised in a container when analysing a contract (using the analyser service).

7.4 Implementation

In this section is presented the main implementation and coding decisions made along the
development of the solution.

7.4.1 Development Workflow

The Ethsential Server is implemented using the version control Git [104] and is hosted on
the platform Github [105].

The Git workflow used for the development of the application is the centralised workflow
[106] with a single master branch only available to the repository owner. However, the
community can add new contributions to the project using a feature branch workflow [107].

The development process is performed using the Continuous Integration practices under the
Github actions, where the unit tests are run in each push or pull request to the master
branch [108]. Only if the tests pass the integration can be concluded.

The project is published in the PyPi repository [109] and the VS Code extension in the Visual
Studio Marketplace [110]. A release to these repositories is triggered when a Github Release
is manually created that triggers a deployment Github action [111].

7.4.2 Ethsential Server

Ethsential is built with Python and relies on the Docker API [112] and pygls [113] to properly
execute as a language server. The Docker API only supports its integration using one of
the Go Software Development Kit (SDK), Python SDK or HTTP client. A language server
can be implemented in any language; however, it can easily be used using one of the SDK’s
available (Go, C#, Java, PHP, Python, etc.) [101]. In this case, to integrate Docker API
and pygls the Python SDK’s were chosen.

The user has two options to initialise the Ethsential application:

• As a LSP server connected via stdin/stout or TCP:

$ ethsent #stdin/stout
$ ethsent --tcp #tcp

• As a CLI application with the included file(s) and tools:

$ ethsent --cli --file file.sol --tool all

7.4. Implementation 63

The commands available are grouped by actions that represent the options to initialise the
application via CLI or LSP. The commands are defined in Table 7.2.

Table 7.2: Ethsential command overview

Group Command Alias Description
1 tcp Use TCP server.
1 - - port -p Bind tcp to port (default=2087).
1 - - host Bind tcp to port (default=127.0.0.1).
2 cli Use cli tool.
2 - - file -f Select file(s) or directories to be analysed.
2 - - tool -t Select tool(s) (default=all). tools=[all, mythril, securify, slither]
2 - - outputPath -op The output full path, relative to the current workspace. (default=result/)
2 install i, isntall, add Install tools via cli.

After initialising the application as an LSP server, its features are available to execute (Listing
7.1). The server has three features, the CMD_ANALYSE (line 6) when a request is sent
to analyse a contract, the feature CMD_INSTALL (line 10) if the user chooses to install
the tools and a mandatory feature to register the configuration changes (line 14).

1
2 class EthSencialLS(LanguageServer):
3 CMD_ANALYSE = ’analyse ’
4 CMD_INSTALL = ’install ’
5
6 @ETHSENTIAL.feature(EthSencialLS.CMD_ANALYSE)
7 async def doAnalysisFeat(ls: EthSencialLS , params):
8 #...
9

10 @ETHSENTIAL.feature(EthSencialLS.CMD_INSTALL)
11 async def doInstallFeat(ls: EthSencialLS , *args):
12 #....
13
14 @ETHSENTIAL.feature(WORKSPACE_DID_CHANGE_CONFIGURATION)
15 async def didChangeWorkspace(ls: EthSencialLS , *args):
16 #...

Listing 7.1: EthSential supported features

Each tool (Mythril, Securify and Slither) contains a business entity defined by inheriting
a class called Tool (Listing 7.2). This pattern allows any derived tool to acquire all the
properties and behaviours of a Tool.

1 class Tool(ABC):
2 @abstractmethod
3 def __init__(self):
4 pass
5
6 @abstractmethod
7 def parse(self , str):
8 pass
9

10 @property
11 def image(self):
12 raise NotImplementedError
13

64 Chapter 7. Framework Design and Implementation

14 @property
15 def command(self):
16 raise NotImplementedError
17
18 @property
19 def lang_supported(self):
20 raise NotImplementedError

Listing 7.2: Abstract Tool class

A tool is defined by the command (line 15), image (line 11), and language support properties
(line 19) and the parse method (line 7) called during the analysis process.

The creation of the required tools is defined by a tool factory class (Listing 7.3). This class
chooses the tools to create (line 5) based on the selected options available (line 3). If the
selected option is not available will prompt an error (line 15).

1 class ToolFactory ():
2
3 TOOLS_CHOICES = [’all’, ’mythril ’, ’securify ’, ’slither ’]
4
5 def createTool(tool_type):
6 if tool_type == "mythril":
7 return [Mythril ()]
8 if tool_type == "securify":
9 return [Securify ()]

10 if tool_type == "slither":
11 return [Slither ()]
12 if tool_type == "all":
13 return [Mythril (), Securify (), Slither ()]
14 raise ValueError(format)
15 createTool = staticmethod(createTool)

Listing 7.3: ToolFactory class

An analysis of a contract, either triggered by the LSP or CLI, is analysed (Listing 7.4)
using the file path, language and selected tools (line 16). Before performing the analysis
in the containerised security tool, the application mounts the file path to a specific volume
and extracts the contract language version from the file (lines 17-18). The analysis of
the contract is run in a parallel execution for each selected tool using the multiprocessing
Python pool (lines 19-23). In the analysis execution function (lines 1-14), the tool command
property is formatted to the executing file and language version (line 4). The execution in the
docker container (line 6) uses the tool image, command and mounted volume to start. The
result of the container execution is then parsed accordingly to the tool parsing functionality
(lines 8-9).

1 def start_container(filePath , lang_version , volume_bindings , tool):
2 container = None
3 try:
4 cmd = tool.command.format(contract=’/analysis/’ + os.path.basename

(filePath).replace(
5 ’\\’, ’/’), version=lang_version)
6 container = client.containers.run(tool.image ,cmd ,detach=True ,

volumes=volume_bindings)
7 container.wait(timeout =(30 * 80))
8 output = container.logs().decode(’utf8’).strip ()

7.4. Implementation 65

9 return tool.parse(output)
10 except Exception as exception:
11 return {"sucess": False , "exception": exception}
12 finally:
13 stop_container(container)
14 remove_container(container)
15
16 def analyse_file(filePath , lang , tools):
17 volume_bindings = mount_volumes(os.path.dirname(filePath))
18 lang_version = get_lang_version(filePath , lang)
19 pool = multiprocessing.Pool()
20 results = []
21 results = [pool.apply(start_container , args=(
22 filePath , lang_version , volume_bindings , tool)) for tool in tools]
23 pool.close ()
24 return results

Listing 7.4: Contract analysis method

7.4.3 Ethsential Extension

As defined in Section 7.3, VS Code allows creating custom extensions through a dedicated
API. A custom extension relies on two main files, the extension.ts file, to handle all the
extension logic and, the package.json file [114], to register all functionalities and activation
events of the extension. In Ethsential extension (Listing 7.5) there are two main function-
alities written as command points of the extension, the analysis command, to perform the
security analysis of a file and installation command, to install all the tools available. The ex-
tension is activated when a Solidity or Vyper file is opened (lines 4-5) or one of the provided
commands is executed (lines 6-7).

1 {
2 ...
3 "activationEvents": [
4 "onLanguage:solidity",
5 "onLanguage:vyper"
6 "onCommand:ethsential.analyse",
7 "onCommand:ethsential.install"
8],
9 "contributes": {
10 "commands": [
11 {
12 "command": "ethsential.analyse",
13 "title": "EthSential: Analyse File"
14 },
15 {
16 "command": "ethsential.install",
17 "title": "EthSential: Install Security Analysis Tools"
18 }
19]
20 ...
21 }

Listing 7.5: Register extension events, commands and configuration

66 Chapter 7. Framework Design and Implementation

The configuration of the active security tools is also a feature required in the solution. This
feature works as a configuration property for each tool, displayed as a checkbox, in the user
preference settings under the EthSential configuration as illustrated in Figure 7.6.

Figure 7.6: EthSential Tools configurations

After the extension is activated, a subscription to the language server is started (line 13 in
Listing 7.6) and the EthSential commands are registered for execution (lines 14-15).

1 export function activate(context: ExtensionContext) {
2 async function analyse(editor: TextEditor) { ... }
3
4 async function install (){ ... }
5
6 //...
7
8 context.subscriptions.push(
9 client.start(),

10 commands.registerTextEditorCommand(’ethsential.analyse ’, analyse),
11 commands.registerCommand(’ethsential.install ’, install)
12);
13 }

Listing 7.6: Extension activation function

When a command, like ethsential.analyse (line 14 in Listing 7.6), is triggered, the respective
registered function is executed by sending an asynchronous request directed to the server
(e.g. Listing 7.7). The sendRequest method (line 1) represents the connection to the server.
It requires a parameter called RequestType that defines two interfaces, the ActiveAnalysis-
Params and the ToolCommandOutput, describing the parameters and response obtained
from the language server. The parameters are defined in lines 4-6 using the document URI,
language and tools to run.

1 let result: ToolCommandOutput [] = await client.sendRequest(new
RequestType <ActiveAnalysisParams , ToolCommandOutput [], void , void >(’
analyse ’),

2 {
3 textDocument: { uri },
4 lang: editor.document.languageId ,
5 tools ,
6 }

7.4. Implementation 67

7);

Listing 7.7: Analysis request to the Language Server

Figure 7.7 shows the selection of available EthSential operations in the command palette of
the VS Code. In this case, the solidity file is already opened in the VS Code and the analysis
of the file is selected.

Figure 7.7: VS Code command selection to analyse file

After the analysis option is selected, a window with the information of the analysis progress
is shown (Figure 7.8). This progress window only concludes when the analysis is completed.

Figure 7.8: VS Code analysis in progress information

Once the analysis is completed, the normalised result of the language server analysis is
presented to the user, as demonstrated in Figure 7.9. The analysis is presented with an
informational window containing the total vulnerabilities found. Every single vulnerability
detected is present as a code diagnostic in the source code as a native VS Code informa-
tion/warnings/error and shown in the problems section with the vulnerability details.

Figure 7.9: VS Code analysis completed information

68 Chapter 7. Framework Design and Implementation

This mapping from the analysis is performed using a specific class called DiagnosticProvider,
as represented in Listing 7.8. This class is instantiated when the extension is activated and
called after an analysis is called to the language server. When is instantiated the constructor
is called (line 6) and the fileDiagnosticMap and diagnosticCollection are initialised, repre-
senting respectively the diagnostics obtain in each file and the diagnostics to show to the
user. The method refreshDiagnostics handles the mapping of the outcome of the analysis
into the diagnosticCollection and calls the private methods of the class.

1 export class DiagnosticProvider {
2 private fileDiagnosticMap: Map <Uri , Diagnostic []>;
3 private diagnosticCollection: DiagnosticCollection;
4 numberOfProblems = 0;
5
6 constructor(collectionName: string) {
7 this.fileDiagnosticMap = new Map <Uri , Diagnostic []>();
8 this.diagnosticCollection = languages.createDiagnosticCollection(

collectionName);
9 }

10
11 public refreshDiagnostics(document: TextDocument , outputResults:

ToolCommandOutput []) { ... }
12
13 private gatherDiagnostics(issues: ToolCommandIssue [], document:

TextDocument
14) { ... }
15
16 private createDiagnosticResult(textRange: Range , issue:

ToolCommandIssue , severity: DiagnosticSeverity) { ... }
17
18 private getTextRange(document: TextDocument , lines: Number []) { ... }
19
20 private getDiagnosticSeverity(severity: string) { ... }
21
22 private clearDiagnostic(diagnosticCollection: DiagnosticCollection) {

... }
23 }

Listing 7.8: DiagnosticProvider representative class

The EthSential operations to install the security analysis tools, uses the enabled tools of
the user preference settings and sends an installation command to the language server.
The installation begins by showing a progress information window, in the same way of the
analysis operation, and finally, when the installations are completed, display the respective
information.

7.4.4 Ethereum Pack

The Ethereum Pack consists of a VS Code extensions pack that bundles the Ethsential
extension with the Solidity and Vyper languages support. These extensions are defined in
the package.json under the extensionsPack (Listing 7.9).

1 "extensionPack": ["JuanBlanco.solidity",
↪→ "tintinweb.vscode -vyper", "1140251. ethsential"]

Listing 7.9: Ethereum Pack extensions

7.4. Implementation 69

7.4.5 Development Testing Setup

Following the specification of the Software Development Life Cycle (SDLC) [115], any
development process must be accompanied by the testing process. There are various types
of testing, which can be done to find bugs and errors within software or even functional
flaws in the specification of the implemented requirements.

In this solution, the Ethsential extension and the language server were developed accompa-
nied by the VS Code debugging functionality and the specific unit software testing.

Debug Ethsential Language Server and CLI

The Ethsential language server can be debugged by running the VS Code debug mode
(Listing 7.10). The debugging itself is a standard Python debugging that interprets the
installed Python version (line 8) and executes the server module folder (line 5) with the
TCP argument (line 6).

1 {
2 "name": "Launch Server",
3 "type": "python",
4 "request": "launch",
5 "module": "ethsential",
6 "args": ["tcp"],
7 "justMyCode": false ,
8 "pythonPath": "${command:python.interpreterPath}",
9 "cwd": "${workspaceFolder}",
10 "env": {
11 "PYTHONPATH": "${workspaceFolder}"
12 }
13 }

Listing 7.10: Command to start Ethsential application for TCP connection
inside VSCode

The Ethsential CLI application is debugged using the same standard Python debugging and
adding CLI action. The command specifies the file to execute and the argument to execute
all tools (e.g. cli –file server/examples/example-solidity.sol -t all).

Debug Ethsential VS Code Extension

The Ethsential VS Code extension is started in debug mode by running the Typescript
compiler in watch mode. The commands to start and compile the extension ready to deploy
are specified in the package.json file [114]. As seen in Listing 7.11, the launch in debug
mode is started by running a VS Code extension host (line 2) with the compiled source code
in a workspace folder (lines 7-10).

1 {
2 "type": "extensionHost",
3 "request": "launch",
4 "name": "Launch Client",

70 Chapter 7. Framework Design and Implementation

5 "runtimeExecutable": "${execPath}",
6 "args": ["--extensionDevelopmentPath=${workspaceRoot}"],
7 "outFiles": ["${workspaceRoot }/vscode -client/out/**/*.js"],
8 "preLaunchTask": {
9 "type": "npm",
10 "script": "watch"
11 },
12 "env": {
13 "VSCODE_DEBUG_MODE": "true"
14 }
15 }

Listing 7.11: Command to start Ethsential extension inside VSCode

Unit Testing

Unit testing is the first testing method used in this project. It focuses on testing individual
units of source code and is an important component to detect code flaws missed during the
development process.

In this project, the unit tests are performed for the main component of the solution, the
EthSential language server. The component is tested using the Behaviour Driven Devel-
opment (BDD) following the Arrange-Act-Assert (AAA) pattern. This pattern states that
each section (act, arrange and assert) is responsible for a specific part of the test: the
arrange is responsible for the code required for the test setup (inputs); the act is responsible
for the invocation of the methods being tested; And finally, the assert, responsible for the
verification of the outcome of the methods called.

The unit tests in the language server were developed using the built-in Python unittest
framework. An example of these unit tests is provided in Listing 7.12 and represents a test
case of the ToolFactory class. The objective of this class is to test the possible outcomes
of the method createTool : retrieve one tool (lines 3-6), all tools (lines 8-11) or even throw
an error if the tool name is not supported (lines 13-18). Like this listing, all other unit tests
developed within the scope of the language server follow the same approach to test all the
possible outcomes of a method or class.

1 class ToolFactoryTest(unittest.TestCase):
2 def test_create_mythril_pass(self):
3 tool_name = ’mythril ’
4 tools = ToolFactory.createTool(tool_name)
5 self.assertIsInstance(tools [0], Mythril)
6 def test_create_all_pass(self):
7 tool_name = ’all’
8 tools = ToolFactory.createTool(tool_name)
9 self.assertEqual(len(tools), 3)

10 def test_create_tool_fail(self):
11 try:
12 tool_name = ’tool’
13 _ = ToolFactory.createTool(tool_name)
14 except Exception as identifier:
15 self.assertIsInstance(identifier , ValueError)

Listing 7.12: Tool Factory test class

71

Chapter 8

Evaluation

This chapter aims to evaluate the solutions implemented by defining the evaluation indica-
tors, their hypotheses, the methods used and respective results.

8.1 Indicators

To perform the evaluation of the solution is mandatory to define the evaluation indicators.
"An indicator is a documentable or measurable piece of information regarding some aspect
of the program in question" [116]. In order to do so, the indicators must be defined based
on the requirements and objectives of the solution. The main indicators defined are:

• Compliance with functional requirements - Any software should be compliant and
performed accordingly to the functional requirements and use cases defined.

• Performance - Verify the performance of the solution in terms of response times com-
pared to the response times of each tool.

• User satisfaction and usability - Evaluate the usability and experience of smart contract
developers when using the solution.

8.2 Hypothesis Specification

The definition of the hypothesis is an important requirement to measure the defined indica-
tors and assess the achievement of the proposed objectives.

Each indicator contains an hypothesis of two opposing statements [117]. The Null hypothesis
testing (H0) is the formal argument while the second statement, called the alternative
hypothesis (H1) is the rejection of H0. The following Table 8.1 describes the hypothesis for
each indicator.

72 Chapter 8. Evaluation

Table 8.1: Hypothesis Specification

Indicator H0 H1
Compliance with functional
requirement

The solution does not have the
requirements required

The solution fulfils the require-
ments required

Performance The solution is less performant
than the sum of the execution
of each tool

The solution is more performant
than the sum of the execution of
each tool

User satisfaction and us-
ability

The satisfaction of smart con-
tract developers is less then 80%

The satisfaction of smart con-
tract developers is greater than
or equal to 80%

The defined hypotheses for the compliance with functional requirements is defined based
on the requirements to obtain a fast and integrated solution. Since the integrated solution
would need to be adapted to different tools, is necessary to evaluate if the solution would
not outperform the sum of executions of each tool. Regarding the satisfaction score of 80%
for the user satisfaction, this score is based on the Customer Satisfaction Score (CSAT)
[118], that states that an user to be satisfied requires at least an 80% score.

8.3 Evaluation Methods

This section presents the evaluation methods of the identified indicators. There are three
methods used to perform the evaluation: software testing, performance evaluation and,
satisfaction and usability questionnaires. Table 8.2 shows the allocation of these methods
in each indicator.

Table 8.2: Allocation of the evaluation methods

Indicator Method
Compliance with functional requirement System and Acceptance Testing
Performance Performance Testing
User satisfaction and usability Satisfaction and Usability Questionnaire

8.3.1 System and Acceptance Testing

As already mentioned in Section 7.4.5, the development of an application should always
be connected and paired with both the manual and the automatic application tests. The
commonly used stages of software testing are: unit testing (section 7.4.5), integration
testing, system testing and acceptance testing [119]. In this evaluation, the stages of
software testing performed were the system and acceptance testing.

8.3.2 Satisfaction and Usability Questionnaire

The satisfaction and usability survey aims to assess the user’ satisfaction and agreement
with the developed solution, in order to verify that it meets their needs.

8.4. Results Evaluation 73

The questionnaire should have a compact structure with clear questions, avoiding ambiguity,
and uncertain answers. The answers should have up to three different response scales:
Dichotomous scales, using two choices answers; Rating scales, using the Likert scale by
defining answers in 5 levels (Strongly disagree, Disagree, Neither agree nor disagree, Agree
and Strongly agree); and Semantic differential scales, providing a paired choice of clearly
opposite statements.

Considering that usability is one of the critical requirements and indicators, the questionnaire
should focus on evaluating the interaction of the targeted users (experienced and inexperi-
enced developers) on using the tools with specified guidelines. The opinion of these users has
an huge importance to understand the feasibility of this solution. Addressing the experience
of smart contract developers can be a difficult task, so the guidelines provided should be
explicit, allowing experienced and inexperienced developers to test the solution and provide
their feedback.

8.3.3 Testing Evaluation Based on Performance

Creating a new framework that is involved in the development process happens with the
intention to improve it by removing or reducing the manual tasks that the user has to
perform. Reducing the manual tasks allows for a faster and more efficient experience for the
user. According to Jakob Nielsen [120], the time limit for a user to shift their attention from
the application to another task is about 10 seconds. Any time above that will not provide
a good performance of the application, therefore it is necessary to test the EthSential
framework in this matter.

Since EthSential itself is integrated in the development process and possesses other security
analysis tools to analyse smart contracts, the overall response times must be analysed. So,
to understand how the solution will perform on Ethereum, tests must be applied to verify
the response times of each tool against the response times of the EthSential framework.

8.4 Results Evaluation

In this section, the indicators are evaluated against the defined hypotheses, demonstrating
the results obtained from each evaluation method performed.

8.4.1 System Testing

System testing is the stage of the software testing where the system is tested as a whole,
gathering a clear representation of the requirements and testing all possible results. Table
8.3 shows a system test case performed to analyse a smart contract in VS Code. According
to the expected and actual result obtained, the system is capable of analysing a file using
VS Code integration. The complete list of system tests is available in Appendix B.

74 Chapter 8. Evaluation

Table 8.3: System Test Case to Analyse Smart Contract from VS Code

ID 12
Description Analyse smart contract from VS Code
Steps

1. Open VS Code
2. Open example-solidity.sol
3. Run command - EthSential: Analyse

File

Expected Result
1. Show message - Analysis finished
2. Show diagnostics

Passed/Failed
1. Passed
2. Passed

8.4.2 Acceptance Testing

Acceptance tests are intended to determine if the delivered system satisfies the acceptance
criteria defined by the customer’s requirements. Table 8.4 shows an acceptance test regard-
ing the analysis of a smart contract with specific tools selected and installed. To determine
if an acceptance test is valid, a set of criteria are identified in which they must fully comply
with the system requirements after executing the test case.

Table 8.4: Acceptance Test to Analyse a Smart Contract with Specific Tools
Installed

Scenario Analysis a smart contract with specific tools
installed

Assumptions
1. VS Code installed with extension
2. Docker running

Criteria
1. Mythril is not installed
2. Show message - Installation completed

finished
3. Show message - Analysis finished
4. Show code

Test Case
1. Open VS Code
2. Open example-solidity.sol
3. Open the user preference settings
4. Deselect Mythril
5. Run command - EthSential: Install Se-

curity Analysis Tools
6. Run command - EthSential: Analyse

File

Result All criteria were met

8.4. Results Evaluation 75

8.4.3 Performance Testing

The performance is evaluated with a test to determine the execution time of smart contract
evaluations in the EthSential framework, through the command line. The test was performed
five times using the 40 vulnerabilities obtained in table 6.9 on a computer with an Intel R©

CoreTM i5-8265U .60GHz 1.80GHz CPU and an average WiFi download speed of 556.16
Mbps.

The results of all instances of the test are shown in Appendix C, with the mean and median
of all the results present in Table 8.5.

Table 8.5: Mean and Median of the Execution Time Test Results

Slither Securify Mythril All
Before After Before After Before After -

Mean 1.025 4.05 1.275 4.1 69.05 72.6 81.35
Median 1 4 1 4 20 21.5 24

Through the analysis of Table 8.5, it is possible to observe that for Slither and Securify
both have a mean and median approximately equal. This evidence indicates that there is
not much variation in the results obtained for these tools. However, it also shows that for
both tools and even Mythril, despite the higher variation of mean and median results, the
EthSential integration requires more time (approximately three seconds more) to evaluate a
smart contract than the original tool. Concluding that original tools performed in separate
are more effective than the Ethsential framework integration.

So, the final evaluation of Ethsential performance is to verify if the sum of executions of
each tool outperforms the execution of EthSential with all tools. In order to verify this
case, it is necessary to analyse the tool to check whether the data samples follow a normal
distribution. For this case, a Shapiro-Wilk normality test [121] is applied, with the following
hypotheses:

• H0: If the P-Value of the Shapiro-Wilk Test is larger than 0.05, it must be assumed
that it is a normal distribution.

• H1: If the P-Value of the Shapiro-Wilk Test is smaller than 0.05, it must be assumed
that it is not a normal distribution.

The following Table 8.6 shows the resulting P-Value of the Shapiro-Wilk Test.

Table 8.6: Resulting P-Values of the Shapiro-Wilk Tests

Slither Securify Mythril All
Before After Before After Before After -

P-Value 8.68E-14 8.68E-14 7.18E-10 9.90E-11 1.48E-12 1.41E-12 1.22E-12

The table shows that all p-value values are less than 0.05, so the H0 hypothesis is rejected.
Therefore, it is possible to affirm with a 95% confidence level that the analysed samples
do not follow a normal distribution. Concluding, to compare the performance of the newly
developed EthSential, a 2-sample T-Test [122] cannot be used, and only a non-parametric

76 Chapter 8. Evaluation

test can be performed. The Mann-Whitney U test is used for this scenario with the following
hypotheses:

• H0: The tool’s execution time performance is higher than the tool in EthSential.

• H1: The tool’s execution time performance is equal or lower than the tool in EthSential.

As a result of the Mann-Whitney U test [123], the p-value is 0.899, rejecting the alternative
hypothesis, therefore the EthSential framework as a higher performance.

The final performance test is performed to analyse if the EthSential framework has an overall
response time lower or equal to 10 seconds. So the hypotheses are:

• H0: The execution response times are lower or equal to 10.

• H1: The execution response times are higher than 10.

This test is performed using the Wilcoxon signed rank test [124] and resulting p-value is
2.067e-08, rejecting the H0 hypothesis. This means that the application has a low perfor-
mance in terms of response times to the user.

8.4.4 Satisfaction and Usability Questionnaire

To analyse the satisfaction and usability of the solution, a questionnaire, which can be
found in Appendix D, was developed using the Microsoft Forms platform. This means that
it was accessible to professionals in the field of software development with interest in the
development of smart contracts, and launched to the Ethereum community through forums
and network platforms.

The questionnaire had a total of 18 questions divided into two question groups:

• Questions regarding the background of the interviewee in Smart Contracts devel-
opment in order to verify if the interviewee has some knowledge and experience in
developing smart contract

• Questions regarding the solution to validate the usability, using the values of the Likert
scale, and satisfaction, using the 10 point likert scale and an open-ended question.

The questionnaire was conducted with 5 participants, in order to assess the level of usability
and satisfaction regarding the developed solution. Despite the small sample of interviewees,
the analysis of these data was considered to evaluate the usability of the solution.

Interviewees Knowledge

To evaluate the interviewees knowledge, the closed-ended questions results were analysed
(Table 8.7).

8.4. Results Evaluation 77

Table 8.7: Answers to questions 1,2,3 and 5

Question 1 Question 2 Question 3 Question 5
0 0 1 0
1 1 1 1
1 1 1 1
0 0 0 0
1 0 1 0

The internal consistency of the interviewees, that is, how closely they are related to smart
contracts, was evaluated with the Cronbach’s Alpha [125] test on the closed-ended ques-
tions. The reported alpha coefficient of the test is 0.875, meaning that all answered ques-
tions are closely related and assuming that the 5 interviewees answered almost the same
questions, can be concluded that 3 of the 5 interviewees have knowledge and awareness of
security smart contracts.

Regarding the multiple choice question number 4 only two interviewees answered. Figure
8.1 provides the security analysis tools selected in this question. While Mythril and Remix
are the most popular tools, Securify and Slither were not chosen even once.

Figure 8.1: Chart of security analysis tools selected

Since only one interviewee answered the open-ended question with Remix and Mythril, there
is no possible analysis for this question.

Solution Evaluation

This section presents the results obtained in the questionnaire regarding the usability of the
solution.

The answers obtained in questions 7 to 13 were classified according to the Likert scale,
where the maximum value defined is 5 (Strongly agree) and the minimum value is 1 (Strongly
disagree). The results of each question are presented with the respective interpretation.

78 Chapter 8. Evaluation

Figure 8.2: Overall impression of the framework

The overall impression of the interviewees (Figure 8.2) is classified with a positive mean
score of 3.2 and a median of 3. Despite the positive mean score, the results show that the
solution needs to be analysed for further improvements.

Figure 8.3: Classification of the solution automation

The assessment of the automation and streamlining of the solution (Figure 8.3) obtained a
mean score of 3.4 and a median of 4, which represents a positive assessment.

The next question (Figure 8.4) aimed to frame the interviewee’ opinions on the integration
of security tools.

Figure 8.4: Classification of the integration of analysis tools

Analysing the graph of Figure 8.4, the interviewees classified the integration of analysis tools
with a mean score of 3.6, being adequate and sufficient to the development process.

8.4. Results Evaluation 79

When questioned about the speed of the analysis process, the interviewees answered that
the process has a tendency to be slow (Figure 8.5). No interviewee answered with a grade
5, meaning that no interviewee is completely happy with the analysis process speed.

Figure 8.5: Classification of the analysis process speed

In Figure 8.6, the average interviewee classified the analysis process as simple to use. While
only one interviewee provided a grade 1, all the others provided higher grades, positioning
the simplicity of the analysis process with a mean of 3.6.

Figure 8.6: Classification of the analysis process simplicity

Regarding the vulnerability recognition (Figure 8.7), the majority of the interviewees classi-
fied the solution with a grade 3. Results show a mean of 3.2, which translates in a positive
score.

Figure 8.7: Classification of the vulnerability recognition

80 Chapter 8. Evaluation

In the final Likert scale question (Figure 8.8), interviewees evaluated the usefulness of the
vulnerability information. These results show that the vulnerability information is not suffi-
ciently useful to rectify the smart contract.

Figure 8.8: Classification of the vulnerability information usefulness

Another key analysis is to verify if the interviewees with experience in developing smart
contracts have a tendency to give a lower score than interviewees without experience. In
this analysis the Likert scale questions were divided into two groups based on the response
provided by question 2 (Have you previously developed smart contracts?). The test used to
performed this analysis is the Mann-Whitney U test with the following hypotheses:

• H0: The answers of experienced developers are lower or equal to the answers of
inexperience developers.

• H1: The answers of experienced developers are higher than the answers of inexperience
developers.

The result of the test shows a p-value of 0.999856, hence the H0 is accepted, stating
with 5% confidence that experienced developers have a tendency to give a lower score than
inexperienced developers.

Regarding question 15, all interviewees unanimously answered that no tool should be added
or removed from the framework. Also, none of the interviewees provided an answer to the
open-ended questions 14 and 16

The last question analysed is a 10 point Likert scale question with a scale from 1 (not likely
at all) to 10 (extremely likely). In this question, the Mann-Whitney U test was applied with
the hypotheses:

• H0: Experienced developers responded with a lower or equivalent score than inexperi-
ence developers.

• H1: Experienced developers responded with a higher score than inexperience develop-
ers.

The Mann-Whitney U test results in a p-value of 0.5, rejecting the H1 hypothesis. This result
demonstrates that inexperience developers have a higher tendency to use the framework in
the future.

81

Chapter 9

Conclusions

This chapter presents the conclusions drawn from the study on the practices of developing
smart contracts and the development of the EthSential prototype, namely the achieved
objectives, the limitations identified and finally, the improvements that can be made in the
future.

9.1 Achieved Objectives

In this Section, the objectives are evaluated based on the corresponding achievements. The
main goal of this thesis, as defined in Section 5.1, was to provide new practices for the
Ethereum development by analysing the tools available in Ethereum, with the following
objectives:

• Explore solutions to identify vulnerabilities and guidelines that provide a readable res-
olution of these vulnerabilities and potential improvements.

• Address the smart contract vulnerabilities and technologies, proposing a solution to
ease the development of smart contracts using good practices and guidelines.

The first objective was achieved by analysing all the information available regarding security
analysis tools. The research defined in Chapter 6 allowed to evaluate all the frameworks
and, analysis and testing tools available in the market and open source. Of all these tools,
the research identified seven that can detect vulnerabilities and provide insights on problems
that occurred. By providing these insights, this dissertation has shown that security analysis
tools can be integrated in the smart contract development process and can directly improve
it by teaching the developers how to avoid the problems encountered and encourage them
to use design patterns.

The second objective related to the development of the solution is achieved with the EthSen-
tial framework. By providing a framework that can integrate multiple security analysis tools,
it allows developers to choose which tools they want to use, knowing that they can identify
vulnerabilities and provide some information about present vulnerabilities. The framework
integration with the command line and VS Code editor allows a good accessibility and avail-
ability of the framework for developers to use in the development of smart contracts.

Regarding the evaluation of the solution performed in Chapter 8, the results show that the
solution fulfils all the functional and non-functional requirements. However, some of these
requirements show that the solution could be improved regarding the analysis execution time
and information provided in each vulnerability. Since experienced developers that filled out

82 Chapter 9. Conclusions

the questionnaire answered most of the questions with a lower score than inexperienced
developers, the solution did not accomplish the overall satisfaction of 80%.

Concluding, and answering the main question - Is it possible to reduce the vulnerabilities and
code smell in a smart contract code by integrating and combining tools in the development
process? The answer is yes, there are some testing and security analysis tools available
that could be integrated in the development process to increase the security of the smart
contract.

9.2 Limitations

Despite the development effort to achieve the objectives and the successfully implementation
and deployment of EthSential, there are some limitations that influenced the analysis of the
tools and results of the application.

One of the biggest limitations of this project was the lack of standards to identify vulner-
abilities. Most of the security analysis tools use different notations to identify the same
type of vulnerability. This differences made it harder to identify and map the vulnerabilities
accordingly to the SWC standards.

The constant evolution of Solidity means that the tools have to be prepared for new versions
and adapt accordingly. The majority of the tools analysed were not prepared and adaptable
to handle contracts with different versions. To perform the solution was necessary to install
the specific Solidity smart contract to perform the analysis and thus an increase in the
analysis execution time.

Regarding the EthSential development, there were some limitations identified. The Eth-
Sential framework is new and the community of Solidity developers can only be reached
by forums or networking platform. This led to a difficult attempt to reach smart contract
developers and ask them to analyse the solution and provide their feedback by answering
the usability questionnaire in which ultimately results in fewer responses. Also, due to the
architecture of the solution using docker as service integrated in the solution to provide the
information of the security analysis tools, the integration testing was evaluated but extremely
hard to performed, which lead to not being performed and present in this dissertation.

9.3 Future Work

The future work intends to overcome some of the identified limitations and the need to
improve the developed solution. The future work that can be performed is:

• Reduce the EthSential analysis execution time

There are some possibilities that can be evaluated in this matter. The security analysis
tools could be migrated to a single Kubernetes [126] resource and evaluate its deploy-
ment in the cloud and thus only requiring the user to have an internet connection.
Another possibility is to create a dedicated server so that all security analysis tools
would be installed and managed in the server.

• Unify/Standardise the vulnerabilities found

9.3. Future Work 83

As identified in the limitations, the security analysis tools can provide different outputs
to the same vulnerability. In this case is necessary to analyse the responses of each tool
and validate if there are no frequent changes in responses. To perform this change, it
would be required to change the parsing functionality of each tool.

• Versioning configuration

To avoid the constant changes of the smart contract versions, it could be possible
that the user has to specify the Solidity version or specific tool versions to analyse the
contracts before the analysis occurs. This change would benefit the analysis execution
time.

• Specification of the tool behaviour

New tools are being explored [127] [128] that were not analysed in this dissertation.
To add these tools in the solution, it would be required to change the code by adding a
new tool and create a new version of the framework. To improve this aspect, it could
be possible to transfer this control to the user by allowing to specify the tool behaviour
through a single json or xml file that would be imported to the framework during the
analysis process. E.g. define a json-schema [129] with a data reading structure that
the tool would return and perform the respective mapping for the desired result in the
framework.

85

Bibliography

[1] solidity-examples/greeter at master · quantanet/solidity-examples · GitHub. [Online].
Available: https://github.com/quantanet/solidity-examples/tree/master/
greeter (visited on 02/04/2020).

[2] Contracts — Solidity 0.5.3 documentation. [Online]. Available: https://solidity.
readthedocs.io/en/v0.5.3/contracts.html%7B%5C#%7Dfallback-function
(visited on 04/18/2020).

[3] A. M. Antonopoulos and G. Wood,Mastering Ethereum. 2018, isbn: 9781491971949.
[Online]. Available: https://github.com/ethereumbook/ethereumbook/blob/
develop/14consensus.asciidoc.

[4] EthFiddle - Solidity IDE in the Browser. Powered By Loom Network. [Online]. Avail-
able: https://ethfiddle.com/sCLwlzQGAn (visited on 04/18/2020).

[5] Vyper by Example — Vyper documentation. [Online]. Available: https://vyper.
readthedocs.io/en/latest/vyper-by-example.html (visited on 02/17/2020).

[6] Bitcoin - Open source P2P money. [Online]. Available: https://bitcoin.org/en/
(visited on 02/06/2020).

[7] blockchain meaning - Explorar - Google Trends. [Online]. Available: https : / /
trends.google.com/trends/explore?q=blockchain%20meaning&date=today%
205-y (visited on 06/25/2020).

[8] P. Tasca and C. Tessone, “A taxonomy of blockchain technologies: Principles of
identification and classification”, Ledger, vol. 4, Feb. 2019. doi: 10.5195/ledger.
2019.140.

[9] Which Governments Are Using Blockchain Right Now? [Online]. Available: https:
//consensys.net/blog/enterprise-blockchain/which-governments-are-
using-blockchain-right-now/ (visited on 06/25/2020).

[10] Blockchain 50: Billion Dollar Babies. [Online]. Available: https://www.forbes.com/
sites/michaeldelcastillo/2019/04/16/blockchain-50-billion-dollar-
babies (visited on 06/25/2020).

[11] Known Attacks - Ethereum Smart Contract Best Practices. [Online]. Available:
https://consensys.github.io/smart-contract-best-practices/known_
attacks/ (visited on 06/26/2020).

[12] GitHub - ethereum/solidity: Solidity, the Contract-Oriented Programming Language.
[Online]. Available: https://github.com/ethereum/solidity (visited on 02/06/2020).

[13] GitHub - vyperlang/vyper: Pythonic Smart Contract Language for the EVM. [Online].
Available: https://github.com/vyperlang/vyper (visited on 02/06/2020).

[14] I. N. Nikolic, A. Kolluri, P. Saxena, and A. Hobor, “Finding The Greedy, Prodigal, and
Suicidal Contracts at Scale”, Tech. Rep. arXiv: 1802.06038v2. [Online]. Available:
https://github.com/MAIAN-tool/.

[15] W. Zou, D. Lo, S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen, and B. Xu,
“Smart Contract Development: Challenges and Opportunities”, Tech. Rep., 2019.
[Online]. Available: http://neo.org/.

86 BIBLIOGRAPHY

[16] M. Coblenz, J. Sunshine, J. Aldrich, and B. Myers, “Smarter Smart Contract Devel-
opment Tools”, Institute of Electrical and Electronics Engineers (IEEE), Sep. 2019,
pp. 48–51. doi: 10.1109/wetseb.2019.00013.

[17] A. Dika, “Ethereum Smart Contracts: Security Vulnerabilities and Security Tools”,
Tech. Rep., 2017.

[18] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, “Security Analysis Methods
on Ethereum Smart Contract Vulnerabilities-A Survey”, Tech. Rep., p. 2020. arXiv:
1908.08605v2.

[19] Vyper Preliminary Security Review | ConsenSys Diligence. [Online]. Available: https:
//diligence.consensys.net/blog/2019/10/vyper-preliminary-security-
review/ (visited on 02/06/2020).

[20] Watch Your Language: Our First Vyper Audit - Security Boulevard. [Online]. Avail-
able: https://securityboulevard.com/2019/10/watch-your-language-our-
first-vyper-audit/ (visited on 02/21/2020).

[21] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, Tech. Rep., 2008.
[Online]. Available: www.bitcoin.org.

[22] What Different Types of Blockchains are There? - Dragonchain. [Online]. Available:
https://dragonchain.com/blog/differences-between-public-private-
blockchains (visited on 07/29/2020).

[23] What is Blockchain Technology? | IBM Blockchain | IBM. [Online]. Available: https:
//www.ibm.com/blockchain/what-is-blockchain (visited on 07/29/2020).

[24] C. Dwork, A. Goldberg, and M. Naor, “On Memory-Bound Functions for Fighting
Spam”, Tech. Rep., 2003.

[25] M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols”, Tech.
Rep., 1999.

[26] White Paper · ethereum/wiki Wiki · GitHub. [Online]. Available: https://github.
com/ethereum/wiki/wiki/white-paper (visited on 01/25/2020).

[27] D. Mohanty, Ethereum for Architects and Developers. 2018, isbn: 9781484240748.
doi: 10.1007/978-1-4842-4075-5.

[28] Getting Deep Into EVM: How Ethereum Works Backstage - By. [Online]. Available:
https://hackernoon.com/getting-deep-into-evm-how-ethereum-works-
backstage-ac7efa1f0015 (visited on 01/26/2020).

[29] A Deep Dive into the Ethereum Virtual Machine (EVM) - part 1: Introduction.
[Online]. Available: https://www.mayowatudonu.com/blockchain/deep-dive-
into-evm-intro (visited on 01/26/2020).

[30] “ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION
LEDGER”, Tech. Rep., 2014.

[31] Account Types, Gas, and Transactions — Ethereum Homestead 0.1 documentation.
[Online]. Available: https://ethereum-homestead.readthedocs.io/en/latest/
contracts-and-transactions/account-types-gas-and-transactions.html
(visited on 01/27/2020).

[32] EIP 1: EIP Purpose and Guidelines. [Online]. Available: https://eips.ethereum.
org/EIPS/eip-1 (visited on 01/27/2020).

[33] Visualizing the Most Important Ethereum Forks to Date. [Online]. Available: https:
//www.visualcapitalist.com/mapping-major-ethereum-forks/ (visited on
02/11/2020).

[34] Ethereum Istanbul Hard Fork Explained 2019 | Cointelegraph. [Online]. Available:
https://magazine.cointelegraph.com/ethereum- hard- fork- istanbul-
2019/ (visited on 02/11/2020).

BIBLIOGRAPHY 87

[35] The Roadmap to Serenity aka Ethereum 2.0 Upgrades. [Online]. Available: https:
//consensys.net/blog/blockchain-explained/the-roadmap-to-serenity-
2/ (visited on 02/11/2020).

[36] Smart Contracts. [Online]. Available: http : / / www . fon . hum . uva . nl / rob /
Courses / InformationInSpeech / CDROM / Literature / LOTwinterschool2006 /
szabo.best.vwh.net/smart.contracts.html (visited on 02/02/2020).

[37] Imran Bashir,Mastering Blockchain, 9. 2013, vol. 53, pp. 1689–1699, isbn: 9788578110796.
doi: 10.1017/CBO9781107415324.004. arXiv: arXiv:1011.1669v3.

[38] LLL Introduction — LLL Compiler Documentation 0.1 documentation. [Online].
Available: https://lll-docs.readthedocs.io/en/latest/lll_introduction.
html (visited on 02/03/2020).

[39] An Introduction to Serpent. [Online]. Available: https://www.cs.cmu.edu/%7B~%
7Dmusic/serpent/doc/serpent.htm (visited on 02/03/2020).

[40] Serpent Compiler Audit – OpenZeppelin blog. [Online]. Available: https://blog.
openzeppelin.com/serpent-compiler-audit-3095d1257929/ (visited on 02/03/2020).

[41] GitHub - obscuren/mutan: Compiler & Language definition for the Ethereum project.
[Online]. Available: https://github.com/obscuren/mutan (visited on 02/18/2020).

[42] L. Stegeman, “Solitor: Runtime Verication of Smart Contracts On the Ethereum
network”, Tech. Rep., 2018.

[43] F. Schrans, S. Eisenbach, and S. Drossopoulou, “Writing Safe Smart Contracts in
Flint”, pp. 218–219, 2018.

[44] Structure of a Contract — Solidity 0.5.3 documentation. [Online]. Available: https:
//solidity.readthedocs.io/en/v0.5.3/structure-of-a-contract.html
(visited on 02/04/2020).

[45] F. S. Lucern, S. Student, S. R. Niya, and T. Bocek, “Design and Implementation of
a Smart Contract Application”, Tech. Rep., 2017.

[46] Vyper — Vyper documentation. [Online]. Available: https://vyper.readthedocs.
io/en/latest/index.html (visited on 02/11/2020).

[47] D. Cedrim, L. Sousa, R. Gheyi, and A. Garcia, “Does refactoring improve software
structural quality? A longitudinal study of 25 projects”, in ACM International Confer-
ence Proceeding Series, Association for Computing Machinery, Sep. 2016, pp. 73–
82, isbn: 9781450342018. doi: 10.1145/2973839.2973848.

[48] J. Chen, X. Xia, D. Lo, J. Grundy, D. X. Luo, and T. Chen, “Domain Specific
Code Smells in Smart Contracts”, May 2019. arXiv: 1905.01467. [Online]. Available:
http://arxiv.org/abs/1905.01467.

[49] by Martin Fowler, K. Beck, J. Brant, W. Opdyke, and don Roberts, “Refactoring:
Improving the Design of Existing Code”, Tech. Rep.

[50] Importance of Code Quality and Coding Standard in Software Development - Mul-
tidots. [Online]. Available: https : / / www . multidots . com / importance - of -
code- quality- and- coding- standard- in- software- development/ (visited
on 02/22/2020).

[51] General Philosophy - Ethereum Smart Contract Best Practices. [Online]. Available:
https://consensys.github.io/smart-contract-best-practices/general_
philosophy/ (visited on 02/22/2020).

[52] Systematic reviews and meta-analyses: a step-by-step guide | www.ccace.ed.ac.uk.
[Online]. Available: https : / / www . ccace . ed . ac . uk / research / software -
resources/systematic-reviews-and-meta-analyses (visited on 02/23/2020).

88 BIBLIOGRAPHY

[53] N. Jahan, S. Naveed, M. Zeshan, and M. A. Tahir, “How to Conduct a Systematic
Review: A Narrative Literature Review”, Cureus, vol. 8, no. 11, Nov. 2016, issn:
2168-8184. doi: 10.7759/cureus.864.

[54] M. J. Grant and A. Booth, “A typology of reviews: an analysis of 14 review types and
associated methodologies”, Health Information & Libraries Journal, vol. 26, no. 2,
pp. 91–108, Jun. 2009, issn: 14711834. doi: 10.1111/j.1471-1842.2009.00848.x.
[Online]. Available: http://doi.wiley.com/10.1111/j.1471-1842.2009.00848.
x.

[55] L. Luu, D. H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts
smarter”, in Proceedings of the ACM Conference on Computer and Communica-
tions Security, vol. 24-28-Octo, Association for Computing Machinery, Oct. 2016,
pp. 254–269, isbn: 9781450341394. doi: 10.1145/2976749.2978309.

[56] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum smart
contracts”, Tech. Rep., 2017. [Online]. Available: https://coinmarketcap.com/
currencies/ethereum.

[57] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, and X. Zhang, “Towards saving
money in using smart contracts”, in Proceedings - International Conference on Soft-
ware Engineering, IEEE Computer Society, May 2018, pp. 81–84, isbn: 9781450356626.
doi: 10.1145/3183399.3183420.

[58] R. M. Parizi, A. Dehghantanha, A. Singh, and K.-K. R. Choo, “Empirical vulnerabil-
ity analysis of automated smart contracts security testing on blockchains”, in CAS-
CON ’18 Proceedings of the 28th Annual International Conference on Computer
Science and Software Engineering, Association for Computing Machinery (ACM),
2018, pp. 103–113. [Online]. Available: https://dl.acm.org/citation.cfm?id=
3291303.

[59] M. Wohrer and U. Zdun, “Smart contracts: Security patterns in the ethereum ecosys-
tem and solidity”, in 2018 IEEE 1st International Workshop on Blockchain Oriented
Software Engineering, IWBOSE 2018 - Proceedings, vol. 2018-Janua, Institute of
Electrical and Electronics Engineers Inc., Mar. 2018, pp. 2–8, isbn: 9781538659861.
doi: 10.1109/IWBOSE.2018.8327565.

[60] A. Mense and M. Flatscher, “Security Vulnerabilities in Ethereum Smart Contracts”,
in Proceedings of the 20th International Conference on Information Integration and
Web-based Applications & Services - iiWAS2018, New York, New York, USA: ACM
Press, 2018, pp. 375–380, isbn: 9781450364799. doi: 10.1145/3282373.3282419.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=3282373.3282419.

[61] Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao, “Applying design patterns in smart con-
tracts: A case study on a blockchain-based traceability application”, in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 10974 LNCS, Springer Verlag, 2018, pp. 92–
106, isbn: 9783319944777. doi: 10.1007/978-3-319-94478-4_7.

[62] M. Wöhrer and U. Zdun, “Design Patterns for Smart Contracts in the Ethereum
Ecosystem - IEEE Conference Publication”, 2018, pp. 1–8.

[63] Hot Questions - Stack Exchange. [Online]. Available: https://stackexchange.
com/ (visited on 01/30/2020).

[64] Y. Murray and D. A. Anisi, “Survey of Formal Verification Methods for Smart Con-
tracts on Blockchain”, Institute of Electrical and Electronics Engineers (IEEE), Jul.
2019, pp. 1–6, isbn: 9781728115429. doi: 10.1109/ntms.2019.8763832.

BIBLIOGRAPHY 89

[65] M. Demir, M. Alalfi, O. Turetken, and A. Ferworn, “Security Smells in Smart Con-
tracts”, Institute of Electrical and Electronics Engineers (IEEE), Oct. 2019, pp. 442–
449. doi: 10.1109/qrs-c.2019.00086.

[66] M. di Angelo and G. Salzer, “A Survey of Tools for Analyzing Ethereum Smart Con-
tracts”, Institute of Electrical and Electronics Engineers (IEEE), Aug. 2019, pp. 69–
78. doi: 10.1109/dappcon.2019.00018.

[67] R. Sierra, M. Eilers, and P. Müller, “Verification of Ethereum Smart Contracts Writ-
ten in Vyper”, PhD thesis, 2019.

[68] “Analysis of Ethereum Smart Contracts-A Security Perspective”, Tech. Rep., 2019.
[69] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical Review of Automated

Analysis Tools on 47,587 Ethereum Smart Contracts”, Tech. Rep., 2020. arXiv:
1910.10601v2. [Online]. Available: https://smartbugs.github.io.

[70] M. Kaleem, A. Mavridou, and A. Laszka, “Vyper: A Security Comparison with Solidity
Based on Common Vulnerabilities”, no. June, 2020. arXiv: 2003.07435. [Online].
Available: http://arxiv.org/abs/2003.07435.

[71] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking Smart Contracts with
Structural Code Embedding”, Tech. Rep., 2020, p. 1. arXiv: 2001.07125v1.

[72] Overview · Smart Contract Weakness Classification and Test Cases. [Online]. Avail-
able: https://swcregistry.io/ (visited on 06/28/2020).

[73] ContractGuard - Testing Platform for Smart Contracts. [Online]. Available: https:
//contract.guardstrike.com/#/knowledge (visited on 02/23/2020).

[74] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A Survey on Ethereum Systems Secu-
rity: Vulnerabilities, Attacks and Defenses”, Tech. Rep., 2019. arXiv: 1908.04507v1.

[75] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “ReGuard: Finding reen-
trancy bugs in smart contracts”, Proceedings - International Conference on Software
Engineering, pp. 65–68, 2018, issn: 02705257. doi: 10.1145/3183440.3183495.

[76] SWEBOK Guide V3 Topics | IEEE Computer Society. [Online]. Available: https://
www.computer.org/education/bodies-of-knowledge/software-engineering/
topics (visited on 06/30/2020).

[77] N. Rich and M. Holweg, “VALUE ANALYSIS, VALUE ENGINEERING”, Tech. Rep.
[78] P. A. Koen, G. M. Ajamian, S. Boyce, A. Clamen, E. Fisher, S. Fountoulakis, A.

Johnson, P. Puri, and R. Seibert, “FuzzyFrontEnd: Effective Methods, Tools, and
Techniques LITERATURE REVIEW AND RATIONALE FOR DEVELOPING THE
NCD MODEL”, Tech. Rep., 2002.

[79] Home | Ethereum.org. [Online]. Available: https://ethereum.org/ (visited on
02/08/2020).

[80] Bitcoin, Ethereum - Explorar - Google Trends. [Online]. Available: https://trends.
google.pt/trends/explore?date=today%205-y&q=%2Fm%2F05p0rrx,%2Fm%
2F0108bn2x (visited on 06/27/2020).

[81] State of the DApps—DApp Statistics. [Online]. Available: https://www.stateofthedapps.
com/stats (visited on 02/08/2020).

[82] LinkedIn 2018 Emerging Jobs Report. [Online]. Available: https://economicgraph.
linkedin.com/research/linkedin-2018-emerging-jobs-report (visited on
02/13/2020).

[83] Ethereum Has 4x More Developers Than Any Other Crypto Ecosystem. [Online].
Available: https://consensys.net/blog/blockchain-development/ethereum-
has-4x-more-developers-than-any-other-crypto-ecosystem/ (visited on
02/13/2020).

90 BIBLIOGRAPHY

[84] GitHub - slockit/DAO at v1.0. [Online]. Available: https://github.com/slockit/
DAO/tree/v1.0 (visited on 02/08/2020).

[85] anyone can kill your contract · Issue #6995 · openethereum/openethereum. [Online].
Available: https://github.com/paritytech/parity-ethereum/issues/6995
(visited on 02/09/2020).

[86] BGP leaks and cryptocurrencies. [Online]. Available: https://blog.cloudflare.
com/bgp-leaks-and-crypto-currencies/ (visited on 02/08/2020).

[87] Ethereum’s Parity Client Loses Sync During Attack | Crypto Briefing. [Online]. Avail-
able: https://cryptobriefing.com/ethereums-parity-client-loses-sync-
during-attack/ (visited on 02/09/2020).

[88] Y. Akao, Quality function deployment: Integrating customer requirements into prod-
uct design. Taylor & Francis, 2004, isbn: 9781563273131. [Online]. Available: https:
//books.google.pt/books?id=NS1Cuw6UQKIC.

[89] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research”, MIS Quarterly: Management Information Systems, vol. 28, no. 1,
pp. 75–105, 2004, issn: 02767783. doi: 10.2307/25148625.

[90] P. Offermann, O. Levina, M. Schönherr, and U. Bub, “Outline of a design science re-
search process”, in Proceedings of the 4th International Conference on Design Science
Research in Information Systems and Technology, ser. DESRIST ’09, Philadelphia,
Pennsylvania: Association for Computing Machinery, 2009, isbn: 9781605584089.
doi: 10.1145/1555619.1555629. [Online]. Available: https://doi.org/10.1145/
1555619.1555629.

[91] P. Hartel, I. Homoliak, and D. Reijsbergen, “An Empirical Study into the Success
of Listed Smart Contracts in Ethereum”, Tech. Rep., 2019. arXiv: 1908.11597v1.
[Online]. Available: https://etherscan.io/contractsVerified.

[92] A. Ayman, A. Aziz, A. Alipour, and A. Laszka, “Smart Contract Development in
Practice: Trends, Issues, and Discussions on Stack Overflow”, May 2019. arXiv:
1905.08833. [Online]. Available: http://arxiv.org/abs/1905.08833.

[93] Amazon.com : learn solidity. [Online]. Available: https://www.amazon.com/s?k=
learn+solidity%7B%5C&%7Dref=nb%7B%5C_%7Dsb%7B%5C_%7Dnoss (visited on
07/03/2020).

[94] Etherscan - About Us. [Online]. Available: https://etherscan.io/aboutus (visited
on 02/06/2020).

[95] MasterThesis/etherscan-web-scraping.py at master · 1140251/MasterThesis. [On-
line]. Available: https://github.com/1140251/MasterThesis/blob/master/
etherscan-web-scraping.py.

[96] MasterThesis/solidity-parser.py at master · 1140251/MasterThesis. [Online]. Avail-
able: https://github.com/1140251/MasterThesis/blob/master/solidity-
parser/solidity-parser.py (visited on 08/23/2020).

[97] MasterThesis/vyper-parser.py at master · 1140251/MasterThesis. [Online]. Avail-
able: https://github.com/1140251/MasterThesis/blob/master/vyper-
parser/vyper-parser.py (visited on 08/23/2020).

[98] smartbugs/smartbugs: SmartBugs: A Framework to Analyze Solidity Smart Con-
tracts. [Online]. Available: https://github.com/smartbugs/smartbugs (visited
on 07/04/2020).

[99] MasterThesis/analysis at master · 1140251/MasterThesis. [Online]. Available: https:
//github.com/1140251/MasterThesis/tree/master/analysis (visited on
08/23/2020).

BIBLIOGRAPHY 91

[100] crytic/solc-select: A script to quickly switch between Solidity compiler versions.
[Online]. Available: https : / / github . com / crytic / solc - select (visited on
07/05/2020).

[101] Official page for Language Server Protocol. [Online]. Available: https://microsoft.
github.io/language-server-protocol/ (visited on 08/25/2020).

[102] Extension API | Visual Studio Code Extension API. [Online]. Available: https://
code.visualstudio.com/api (visited on 08/25/2020).

[103] Docker Hub. [Online]. Available: https://hub.docker.com/ (visited on 08/25/2020).
[104] Git. [Online]. Available: https://git-scm.com/ (visited on 09/20/2020).
[105] 1140251/Ethsential. [Online]. Available: https://github.com/1140251/Ethsential

(visited on 09/19/2020).
[106] Git Workflow | Atlassian Git Tutorial. [Online]. Available: https://www.atlassian.

com/git/tutorials/comparing-workflows#centralized-workflow (visited on
09/20/2020).

[107] Git Feature Branch Workflow | Atlassian Git Tutorial. [Online]. Available: https://
www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-
workflow (visited on 09/20/2020).

[108] Ethsential/ci.yml at master · 1140251/Ethsential. [Online]. Available: https://
github.com/1140251/Ethsential/blob/master/.github/workflows/ci.yml
(visited on 09/20/2020).

[109] ethsential · PyPI. [Online]. Available: https://pypi.org/project/ethsential/
(visited on 09/20/2020).

[110] EthSential - Visual Studio Marketplace. [Online]. Available: https://marketplace.
visualstudio.com/items?itemName=1140251.ethsential (visited on 09/20/2020).

[111] Ethsential/publish.yml at master · 1140251/Ethsential. [Online]. Available: https:
/ / github . com / 1140251 / Ethsential / blob / master / .github / workflows /
publish.yml (visited on 09/20/2020).

[112] Develop with Docker Engine API | Docker Documentation. [Online]. Available: https:
//docs.docker.com/engine/api/ (visited on 08/27/2020).

[113] Openlawlibrary/pygls: A pythonic generic language server. [Online]. Available: https:
//github.com/openlawlibrary/pygls (visited on 08/25/2020).

[114] Ethsential/publish.yml at master · 1140251/Ethsential. [Online]. Available: https:
//github.com/1140251/Ethsential/blob/master/vscode-client/package.
json (visited on 09/20/2020).

[115] D. W. W. Royce, “Managing the Development of large Software Systems”, Tech.
Rep. August, 1970, pp. 1–9.

[116] G. Macdonald, “Goldie MacDonald Centers for Disease Control and Prevention-2013
Criteria for Selection of High-Performing Indicators A Checklist to Inform Monitoring
and Evaluation”, Tech. Rep.

[117] How to Set Up a Hypothesis Test: Null versus Alternative. [Online]. Available: https:
/ / www . dummies . com / education / math / statistics / how - to - set - up - a -
hypothesis-test-null-versus-alternative/ (visited on 02/22/2020).

[118] Customer Satisfaction - How to Measure Satisfaction of Customers. [Online]. Avail-
able: https://corporatefinanceinstitute.com/resources/knowledge/other/
measuring-customer-satisfaction/ (visited on 10/15/2020).

[119] S. Basak and M. Shazzad Hosain, “Software Testing Process Model from Require-
ment Analysis to Maintenance”, International Journal of Computer Applications, vol.
107, no. 11, pp. 14–22, 2014. doi: 10.5120/18795-0147.

92 BIBLIOGRAPHY

[120] J. Nielsen, Usability engineering. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1993, isbn: 0125184050.

[121] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete
samples)”, Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965, issn: 00063444. [Online].
Available: http://www.jstor.org/stable/2333709.

[122] STUDENT, “THE PROBABLE ERROR OF A MEAN”, Biometrika, vol. 6, no. 1,
pp. 1–25, Mar. 1908, issn: 0006-3444. doi: 10.1093/biomet/6.1.1. eprint: https:
//academic.oup.com/biomet/article- pdf/6/1/1/605641/6- 1- 1.pdf.
[Online]. Available: https://doi.org/10.1093/biomet/6.1.1.

[123] N. Nachar, “The mann-whitney u: A test for assessing whether two independent
samples come from the same distribution”, Tutorials in Quantitative Methods for
Psychology, vol. 4, Mar. 2008. doi: 10.20982/tqmp.04.1.p013.

[124] F. Wilcoxon, “Individual comparisons by ranking methods”, Biometrics Bulletin, vol.
1, no. 6, pp. 80–83, 1945, issn: 00994987. [Online]. Available: http://www.jstor.
org/stable/3001968.

[125] L. J. Cronbach, “Coefficient alpha and the internal structure of tests”, Psychometrika,
vol. 16, no. 3, pp. 297–334, 1951, issn: 00333123. doi: 10.1007/BF02310555.

[126] Kubernetes. [Online]. Available: https://kubernetes.io/ (visited on 10/15/2020).
[127] S. Akca, A. Rajan, and C. Peng, “SolAnalyser: A Framework for Analysing and Test-

ing Smart Contracts”, Proceedings - Asia-Pacific Software Engineering Conference,
APSEC, vol. 2019-December, pp. 482–489, 2019, issn: 15301362. doi: 10.1109/
APSEC48747.2019.00071.

[128] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, “Smartshield: Automatic smart
contract protection made easy”, in 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2020, pp. 23–34.

[129] JSON Schema | The home of JSON Schema. [Online]. Available: http://json-
schema.org/ (visited on 10/15/2020).

[130] openzeppelin-contracts/SafeMath.sol at master ·OpenZeppelin/openzeppelin-contracts.
[Online]. Available: https://github.com/OpenZeppelin/openzeppelin-contracts/
blob/master/contracts/math/SafeMath.sol (visited on 07/01/2020).

[131] openzeppelin-contracts/ReentrancyGuard.sol at master ·OpenZeppelin/openzeppelin-
contracts. [Online]. Available: https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/utils/ReentrancyGuard.sol (visited on
06/29/2020).

[132] openzeppelin-contracts/ReentrancyGuard.sol at master ·OpenZeppelin/openzeppelin-
contracts. [Online]. Available: https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/utils/ReentrancyGuard.sol (visited on
06/29/2020).

[133] Other Uses of Commit-Reveal · A Beginner’s Guide to Ethereum and Dapp Devel-
opment. [Online]. Available: https://sunnya97.gitbooks.io/a-beginner-s-
guide-to-ethereum-and-dapp-developme/writing-smart-contracts/other-
uses-of-commit-reveal.html (visited on 06/30/2020).

[134] Oracle | solidity-patterns. [Online]. Available: https : / / fravoll . github . io /
solidity-patterns/oracle.html (visited on 06/30/2020).

[135] randao/randao: RANDAO: A DAO working as RNG of Ethereum. [Online]. Available:
https://github.com/randao/randao (visited on 06/30/2020).

[136] Style Guide— Solidity 0.5.3 documentation. [Online]. Available: https://solidity.
readthedocs.io/en/v0.5.3/style-guide.html#order-of-functions (visited
on 07/01/2020).

93

Appendix A

Security Vulnerabilities Classification

• SWC 100 - Function Default Visibility

Problem: Functions without a specific visibility type are public by default. Public
functions are opened to any user with access to the contract.

Recommendation: Specify the function visibility type.

• SWC 101 - Integer Overflow and Underflow

Problem: An arithmetic operation surpasses the maximum and minimum size for data
types.

Recommendation: Use SafeMath library [130].

• SWC 102 - Outdated Compiler Version

Problem: Outdated Compiler version can lead to bugs and issues that are fixed in
newer versions.

Recommendation: Use the latest compiler version.

• SWC 103 - Floating Pragma

Problem: Using the pragma "^" in a compiler version can lead to the usage of outdated
code in newer versions.

Recommendation: Mark a specific compiler version. A contract can have a pragma
in specific cases i.e. contracts that belong to libraries or packages used in different
contracts versions.

• SWC 104 - Unchecked Call Return Value

Problem: The address call function returns a tuple with the success of the operation
and bytes of the returned data that are unchecked.

Recommendation: Check the success of the call function.

• SWC 105 - Unprotected Ether Withdrawal

Problem: A contract with missing function modifiers and incorrect controls of the
function can lead to unprotected Ether.

Recommendation: Add specific controls to allow Ether withdrawal only when required.

• SWC 106 - Unprotected SELFDESTRUCT Instruction

94 Appendix A. Security Vulnerabilities Classification

Problem: A SELFDESTRUCT function without proper restrictions can delete the
contract from the network.

Recommendation: Remove SELFDESTRUCT functions or allow only specific user to
execute the operation.

• SWC 107 - Reentrancy

Problem: When executing external contracts, a contract can call back into the calling
contract before the first invocation of the function is finished.

Recommendation: Execute internal operations and changes of state before calling the
external contract or specific use OpenZeppelin ReentrancyGuard contract [131].

• SWC 108 - State Variable Default Visibility

Problem: The default visibility for variables is internal. If the state is not specified can
have mistaken expectations.

Recommendation: Always specify variables visibility (public, internal or private).

• SWC 109 - Uninitialised Storage Pointer

Problem: Local storage variables point to storage locations in the contract. By inap-
propriately initialise variables can produce unexpected vulnerabilities.

Recommendation: Specifically mark local variables with the memory attribute. Stor-
age variables must be marke with the attribute storage.

• SWC 110 - Assert Violation

Problem: Using falsy assert statements means either the code contains a bug or, is
validated improperly.

Recommendation: Check if the assert is invariant otherwise use the required state-
ment.

• SWC 111 - Use of Deprecated Solidity Functions

Problem: Functions and operators can be changed Solidity and lead to deprecated
usage.

Recommendation: Check and apply replacement functions provided by Solidity [132].

• SWC 112 - Delegatecall to Untrusted Callee

Problem: The usage of function delegatecall imports the target address code to be
executed in the context of the current contract allowing the user to to change the
targeted address with a different code.

Recommendation: delegatecall functions should be avoided otherwise check if targeted
address is desired and trusted.

• SWC 113 - DoS with Failed Call

Problem: A DoS can occurr when an external call fails.

Recommendation: Check the result of external calls and avoid using multiple calls in
a single transaction and loop conditions.

Appendix A. Security Vulnerabilities Classification 95

• SWC 114 - Transaction Order Dependence

Problem: Transactions in Ethereum are executed based on the amount of gas spent
in the transaction. Higher amount transaction will execute first. A race condition
can occur when a user submits an transaction with higher gas spent then the previ-
ous transactions. The contract will be executed first and other transactions will not
performed as expected.

Recommendation: Use a commit reveal scheme [133] to send the data to the user.

• SWC 115 - Authorisation through tx.origin

Problem: The tx.origin represents the sender of the transaction. Using this address
for authorisation makes the authorisation always valid.

Recommendation: Use the msg.sender variable.

• SWC 116 - Block values as a proxy for time

Problem: the variables block.timestamp, and block.number are imprecise and if used
as time values can give incorrect values.

Recommendation: Avoid using timestamp in constant functions. Use oracles to re-
trieve data outside the network [134].

• SWC 117 - Signature Malleability

Problem: cryptographic signatures used in part of the signed message hash can be
altered.

Recommendation: A signature should not be used into a signed message hash.

• SWC 118 - Incorrect Constructor Name

Problem: Solidity versions prior to 0.4.22 used a constructor as the same name of the
contract. If the function is not equal to the contract name is a normal function.

Recommendation: Upgrade contract to an higher version.

• SWC 119 - Shadowing State Variables

Problem: Ambiguous state variables with the same name either used in a single con-
tract or inherited from other contracts can provide a faulty result.

Recommendation: Remove Ambiguous state variables with the same name.

• SWC 120 - Weak Sources of Randomness from Chain Attributes

Problem: Allied with the SWC-116 using timestamp variables to generate random
numbers or other variables blockhash, block.difficulty can be manipulated by miners.

Recommendation: Use a commit scheme e.g., RANDAO [135] or Oracle to generate
numbers.

• SWC 121 - Missing Protection against Signature Replay Attacks

Problem: The ecrecover function only validates the integrity of the message hash,
does not validate the signer address or if the signer message is unique. The usage
of this function without proper subsequent validations can lead to Signature Replay
Attacks.

96 Appendix A. Security Vulnerabilities Classification

Recommendation: Use ECDSA library to verify the sign message.

• SWC 123 - Requirement Violation

Problem: Solidity require() validates external inputs of a function and an weakness
can occur if an improper validation of the returned value violates the requirements.

Recommendation: Simplify the require logical condition

• SWC 124 - Write to Arbitrary Storage Location

Problem: Contracts write data in storage or memory. If an attacker can write to an
arbitrary storage location authorisations will pass.

Recommendation: Make assurance that the data structures share the same storage
and cant be overwritten.

• SWC 125 - Incorrect Inheritance Order

Problem: Ambiguous inherit functions are set based on a priority between the base
contracts and executes them by order of priority.

Recommendation: Specify inheritance in the correct order of execution.

• SWC 126 - Insufficient Gas Griefing

Problem: Contracts that accept data from users and use it in a sub-call on another
contract, without proper validations, an attacker can provide less gas then gas needed
to execute the sub-call and end the transaction.

Recommendation: Only allow verified users to execute the sub-call. Require that the
user provides gas to execute the whole transaction successfully.

• SWC 127 - Arbitrary Jump with Function Type Variable

Problem: Uses of assembly instructions, such as mstore or assign operator can point
a function type variable to any code instruction.

Recommendation: Avoid using assembly functions. Avoid assigning arbitrary values to
function types.

• SWC 128 - DoS With Block Gas Limit

Problem: When dealing with high and unknown data size structures and the cost of
executing the transaction exceeds the block gas limit an Dos can occur.

Recommendation: Avoid iterations over high and unknown data sized structures.

• SWC 129 - Typographical Error

Problem: Occur when an unintended defined operation is used.

Recommendation: Most of the typographical error are fixed in version 0.5.0 and higher.
Use the latest compiler version.

• SWC 130 - Right-To-Left-Override control character (U+202E)

Problem: Use of Right-To-Left-Override unicode character can lead to misunderstand
the behaviour of the contract.

Recommendation: Never use Right-To-Left-Override unicode characters.

Appendix A. Security Vulnerabilities Classification 97

• SWC 131 - Presence of unused variables

Problem: Unused variables can require more gas and indicate a bad code structure.

Recommendation: Remove unused variables.

• SWC 132 - Unexpected Ether balance

Problem: Assuming a specific Ether balance can lead to DoS conditions.

Recommendation: Avoid using specific Ether balance.

• SWC 133 - Hash Collisions With Multiple Variable Length Arguments.

Problem: Solidity function abi.encodePacked() used with multiple variable length pa-
rameters can lead to a hash collision.

Recommendation: Don’t allow access to parameters used in abi.encodePacked() func-
tion or add a fixed size variable as a parameter. In alternative use the function
abi.encode().

• SWC 134 - Message call with hardcoded gas amount

Problem: transfer() and send() functions used with specific gas amounts can break a
contract.

Recommendation: Avoid using transfer() and send() functions. Use call.value().gas()
function and use OpenZeppelin ReentrancyGuard contract [131] or checks-effects-
interactions pattern identified in the Design Patterns Taxonomy. In Vyper use raw_call()
function or/and a @nonreentrant(<key>) decorator in the function.

• SWC 135 - Code With No Effects

Problem: Functions with no behaviour or effects can lead to require more gas then
expected.

Recommendation: Every function should produce an effect. Check the usage of the
function and test the contract behaviour.

• SWC 136 - Unencrypted Private Data On-Chain

Problem: Private type variables can be read from users.

Recommendation: Protect private type variables with encryption or use Oracles to
store the variable outside the network.

• Array length manipulation

Problem: Changing the array length directly can lead to a storage overlap attack.

Recommendation: Avoid to change the length of the dynamic array directly.

• Complex Fallback

Problem: Using a send() function with a complex fallback function that can fail will
cause an disrupt in the send behaviour.

Recommendation: Avoid using send() function. Use call.value().gas() function and
reduce the code complexity of fallback functions. In Vyper use raw_call() function.

98 Appendix A. Security Vulnerabilities Classification

• Exception Disorder

Problem: Using the send function will not throw an exception when the operation fails.

Recommendation: Use call.value().gas() function. In Vyper use raw_call() function.

• Freezing ether

Problem: Receiving ether from other account but don’t send to other account.

Recommendation: Provide a function to send ether out.

• Function order

Problem: Writing a contract with disordered function can make the contracts hard to
understand and read.

Recommendation: Write function following Solidity style guide function order [136].

• Gassless send

Problem: The send() function transfers ether to a contract, and can spend all the gas
available.

Recommendation: Use call.value().gas() function. In Vyper use raw_call() function.

• Mark callable contracts

Problem: External contracts without the trusted naming of variables or methods can
indicate that it may be unsafe to use them.

Recommendation: marked external contracts trusted or untrusted.

• Payable fallback

Problem: Fallback functions marked without the payable keyword cannot receive ether.

Recommendation: Mark callback functions with payable keyword.

• Reason string

Problem: An require() or revert() functions can show an error information if the
assertion fails, but it is necessary to add an reason string.

Recommendation: Add reason strings to require() or revert() functions with at most
500 characters long.

• Unchecked Division

Problem: Divisions with int type variables unchecked can fail the execution of the
contract

Recommendation: Use SafeMath library [130].

• Quotes

Problem: Use of double quote strings.

Recommendation: Use single quote strings.

• Uninitialised State

Problem: Uninitialised State variables will throw exceptions.

Appendix A. Security Vulnerabilities Classification 99

Recommendation: Initialised State variables by assigning values ether by user/trans-
action input or direct declaration.

• Visibility Modifier Order

Problem: Modifier functions in order to execute need the visibility order correctly.

Recommendation: Indicate the visibility of the function before modifier.

101

Appendix B

System Testing

Table B.1: System Test cases

ID Description Steps Expected Result Passed/Failed
1 Install tools

1. Insert command - ethsent in-
stall

Docker images cre-
ated

Passed

2 Install tools - Docker Un-
available

1. Stop Docker

2. Insert command - ethsent in-
stall

Show - Docker not
found

Passed

3 Analyse mythril

1. Insert command - ethsent
analyse -t mythril -f example-
solidity.sol

Create file with re-
sult

Passed

4 Analyse smart contract
with invalid file

1. Insert command - ethsent
analyse -t mythril -f not-
found.sol

Show - No such file
or directory

Passed

5 Analyse smart contract
with invalid tool

1. Insert command - ethsent
analyse -t notFound -f
example-solidity.sol

Show - Invalid
choice: ’notFound’

Passed

6 Analyse smart contract
with image not installed

1. Insert command - ethsent
analyse -t mythril -f example-
solidity.sol

Install tool and cre-
ate file with result

Passed

7 Analyse smart contract
with multiple tools

1. Insert command - ethsent
analyse -t all mythril -f
example-solidity.sol

Create one file with
results for each tool

Passed

102 Appendix B. System Testing

8 Analyse smart contract
with all tools and se-
lected output path

1. Insert command - ethsent
analyse -t all -f example-
solidity.sol -op results/all/

Create one file with
results for each tool

Passed

9 Analyse all tools to se-
lected invalid output path

1. Insert command - ethsent
analyse -t all -f example-
solidity.sol -op results/in-
valid/

Create directory
with one file with
results for each tool

Passed

10 Install tools from VS
Code

1. Open VS Code

2. Open example-solidity.sol

3. Run command - EthSen-
tial: Install Security Analysis
Tools

Show message - In-
stallation completed

Passed

11 Install tools from VS
Code - Docker Unavail-
able

1. Stop Docker

2. Open VS Code

3. Open example-solidity.sol

4. Run command - EthSen-
tial: Install Security Analysis
Tools

Show message
- Docker is not
available

Passed

12 Analyse smart contract
from VS Code

1. Open VS Code

2. Open example-solidity.sol

3. Run command - EthSential:
Analyse File

Show message -
Analysis finished

Passed

13 Analyse smart contract
from VS Code with
Docker Unavailable

1. Stop Docker

2. Open VS Code

3. Open example-solidity.sol

4. Run command - EthSential:
Analyse File

Show message
- Docker is not
available

Passed

103

Appendix C

Smart Contract Execution Time Test
Results

Slither Securify Mythril All
Vulnerabilities Before After Before After Before After After
SWC-101 1 4 1 4 12 14 17
SWC-102 1 4 1 4 7 9 11
SWC-103 1 4 1 4 8 11 12
SWC-105 1 4 2 4 139 142 156
SWC-106 1 4 1 4 11 14 12
SWC-107 1 4 1 4 193 195 214
SWC-108 1 4 2 4 28 32 35
SWC-110 1 4 1 4 8 10 13
SWC-111 1 4 1 4 9 11 15
SWC-112 1 4 1 4 34 36 35
SWC-113 1 4 2 4 16 20 23
SWC-114 1 4 1 4 23 27 27
SWC-115 1 4 1 4 13 16 18
SWC-116 1 4 2 4 158 160 164
SWC-117 1 4 1 4 90 94 106
SWC-120 1 4 1 4 11 18 20
SWC-123 1 4 1 4 21 24 26
SWC-124 1 4 1 4 26 32 29
SWC-125 2 6 1 6 1323 1356 1525
SWC-126 1 4 1 4 223 225 240
SWC-127 1 4 1 4 12 14 24
SWC-128 1 4 2 4 23 26 24
SWC-130 1 4 2 4 26 28 36
SWC-131 1 4 1 4 9 11 22
SWC-132 1 4 1 4 8 10 21
SWC-133 1 4 2 5 37 40 42
SWC-134 1 4 1 4 45 48 64
SWC-135 1 4 2 4 20 22 37
SWC-136 1 4 2 5 17 19 35
Unchecked Division 1 4 1 4 6 8 9
Unitialized State 1 4 2 5 21 23 34
Visibility Modifier Order 1 4 1 4 11 13 24
Complex Fallback 1 4 1 4 37 42 30
Freezing ether 1 4 2 4 56 57 62
Function order 1 4 1 3 12 16 12

104 Appendix C. Smart Contract Execution Time Test Results

Gasslend send 1 4 1 4 20 21 23
Mark callable contracts 1 4 1 4 20 23 14
Payable fallback 1 4 1 4 8 10 13
Reason string 1 4 1 4 12 15 16
Single quotes 1 4 1 4 9 12 14

Appendix D

Usability Questionnaire

