Western University

Scholarship@Western

Community, Equity, Gender

Western Heads East

11-15-2017

Time to Consider Dolutegravir for Treatment in Uganda: HIV Drug Resistance Profiles of Virologic Failures on First-,Second-, or Third Line/Raltegravir Containing Combined Antiretroviral Treatments

Emmanuel Ndashimye

P Art

M Avino

R Gibson

M E. Quhinones-Mateu

See next page for additional authors

Follow this and additional works at: https://ir.lib.uwo.ca/wheceg

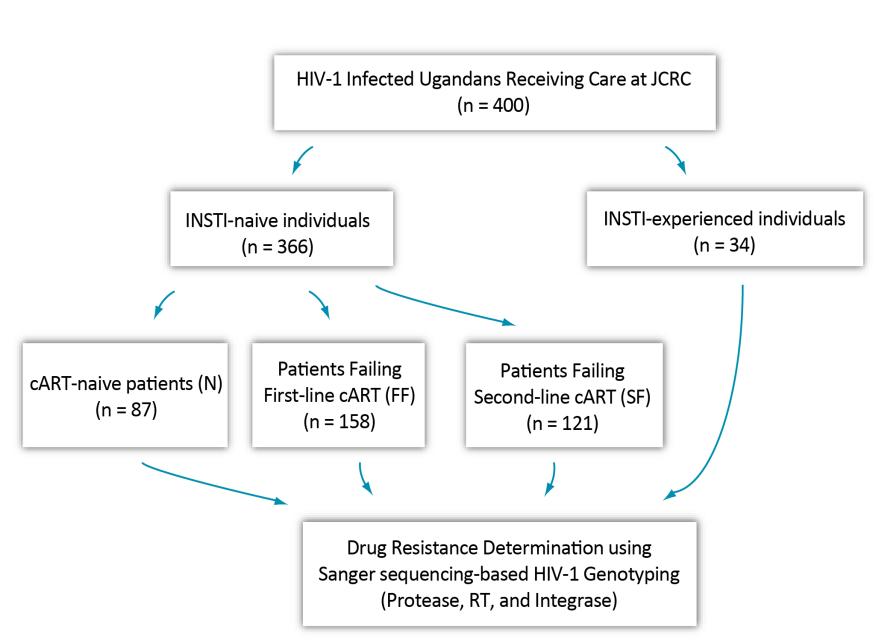
Authors Emmanuel Nda C Kityo, and E A	shimye, P Art, M Av arts	ino, R Gibson, M E.	Quhinones-Mateu,	F Kyeyune, I Nanky	a, P Mugy
- · · · · · · · · · · · · · · · · · · ·					

Time to consider Dolutegravir for treatment in Uganda: HIV drug resistance profiles of virologic failures on first-, second-, or third line/Raltegravir containing combined antiretroviral treatments

Emmanuel Ndashimye ¹, Art P¹, Avino M¹, Gibson R^{2,3}, Quinones-Mateu², Kyeyune F¹, Nankya I¹, Mugyenyi P¹, Kityo C¹, and Arts E²

Western

¹Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry University of Western Ontario, London, Ontario, Canada ²Joint Clinical Research Centre, Kampala, Uganda

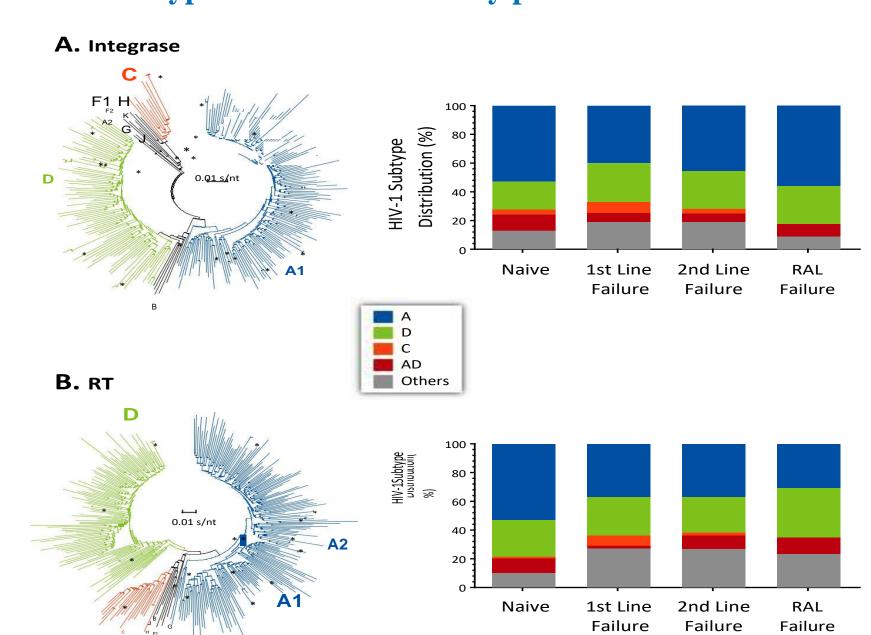

Introduction

- Uganda is among the countries with the highest burden of HIV-1 infections, with approximately 1.4 million (6.5%) people living with HIV/AIDS and 67% of them receiving combined antiretroviral therapy.
- Like other Low income countries (LICs), it is facing dilemma of increasing rates of HIV transmitted drug resistance and acquired drug resistance (DR).
- Despite increasing access to generic Dolutegravir (DTG) in LICs, data on DTG associated DR in this setting is lacking.
- We evaluated DTG associated DR in (n=400) patients who are ART naïve (N), and those failing on first line(FF), second line (SF) and RAL based third line (RF) treatments in Uganda.
- Deep sequencing using Illumina (Miseq) was done in (n=68) of these patients.

<u>Methods</u>

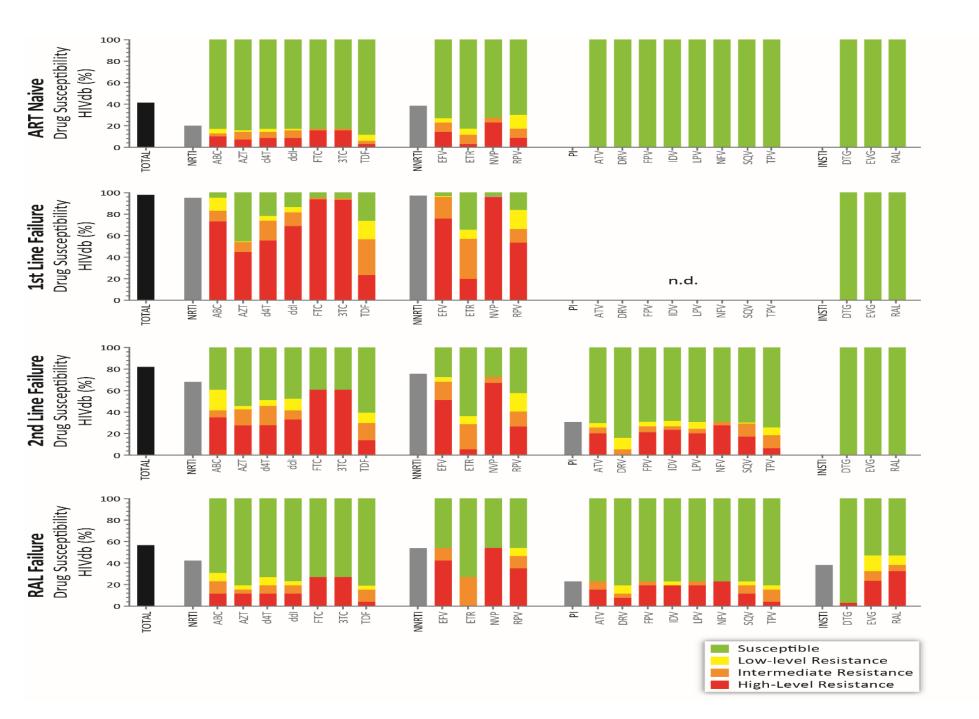
- Patients with virological failure (viral load of ≥ 1000 copies/ml)
 were selected for the study
- HIV-1 integrase enzyme was amplified from extracted RNA and sequenced using Sanger and Miseq platforms.
- Drug susceptibility was interpreted using HIV-1 genotyping resistance interpretation of Stanford HIV database (https://hivdb.stanford.edu) and Scueal program was used for HIV-1 subtype classifications.

The work flow chart of the patient numbers and their respective groups


Results

Clinical and virological characteristics of the patients

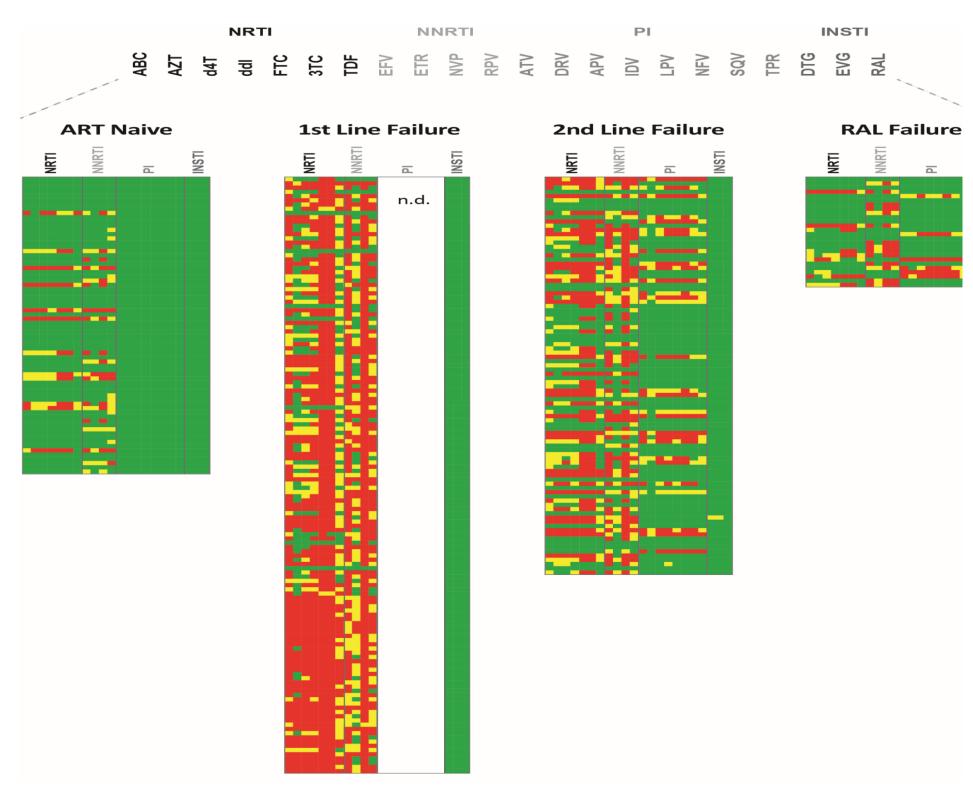
			Subtype N	No. (%)			
Group of patients ^a	cART regimen (No. patients) ^b	Mean HIV 1 RNA log ¹⁰ c/ml o	Α	D	С	A/D	Other ^d
CART naïve (n = 87)	None	4.64	42(47.1)	17(19.5)	3(3.4)	9(10.3)	17(19.5)
Failing First-line cART (n = 158)	AZT, 3TC, NVP (38)	0.54	14(36.9)	11(28.9)	4(10.5)	2(5.3)	7(18.4)
	TDF, 3TC, EFV (34)	1.21	14(41.2)	10(29.4)	2(5.9)	1(2.9)	7(20.6)
	AZT, 3TC, EFV (18)	1.31	18(44.4)	6(33.3)	1(5.6)	1(5.6)	2(11.1)
	TDF, 3TC, FTC (15)	0.43	1(20)	1(20)	1(20)	0(0.0)	2(40)
	Other (14)	7.5	5(35.7)	5(35.7)	2(14.3)	2(14.3)	0(0.0)
	3TC, D4T, NVP (13)	2.2	8(61.5)	1(7.7)	0(0.0)	1(7.7)	3(23.1)
	ABC, 3TC, NVP (10)	2.56	4(40)	1(10)	1(10)	1(10)	3(30)
	ABC, 3TC, EFV (7)	0.64	7(100)	0(0.0)	0(0.0)	0(0.0)	0(0.0)
	TDF, 3TC, NVP (6)	0.97	0(0.0)	3(50)	0(0.0)	1(16.7)	2(33.3)
	3TC, AZT, NVP (4)	2.22	0(0.0)	1(25)	1(25)	1(25)	1(25)
	d4T, 3TC, NVP (3)	0.97	0(0.0)	3(100)	0(0.0)	0(0.0)	0(0.0)
	AZT, 3TC, ABC (2)	ND	0(0.0)	1(50)	0(0.0)	0(0.0)	1(50)
	FTC, TDF, EFV (2)	0.7	1(50)	0(0.0)	0(0.0)	0(0.0)	1(50)
	TDF, ABC, AZT (n = 2)	ND	1(50)	0(0.0)	0(0.0)	0(0.0)	1(50)
Failing Second-line cART (n = 121)	TDF, 3TC, LPVr (30)	1.22	13(43.3)	4(13.3)	2(6.7)	2(6.7)	9(30)
	TDF, 3TC, ATVr (30)	2.2	14(46.7)	7(23.3)	1(3.3)	2(6.7)	6(20)
	ABC, 3TC, LPVr (25)	2.13	12(48)	8(32)	1(4)	0(0.0)	4(16)
	ABC, 3TC, ATVr (25)	3.64	3(60)	0(0.0)	0(0.0)	0(0.0)	2(40)
	AZT, 3TC, LPVr (13)	7.82	4(30.7)	3(23.1)	0(0.0)	3(23.1)	3(23.1)
	LPVr (7)	0.05	3(42.9)	4(57.1)	0(0.0)	0(0.0)	0(0.0)
	AZT, 3TC, ATVr (6)	2.53	4(66.7)	2(33.3)	0(0.0)	0(0.0)	0(0.0)
	Other (5)	0.7	1(20)	1(20)	0(0.0)	1(20)	2(40)
Failing RAL-based cART (n =34)	RAL, LPVr (16)	2.2	7(43.75)	4(25)	0(0.0)	3(18.75)	
rannig to the based of title (it is 1)	Other (6)	0.3	4(66.6)	1(16.7)	0(0.0)	0(0.0)	1(16.7)
	RAL, DRVr (5)	9.5	4(80)	1(20)	0(0.0)	0(0.0)	0(0.0)
	RAL, ATVr (2)	8.5	1(50)	1(50)	0(0.0)	0(0.0)	0(0.0)
	RAL, TDF, 3TC, LPVr (2)	2.7	2(100)	0(0.0)	0(0.0)	0(0.0)	0(0.0)
	TDF, 3TC, RAL, DRVr (2)	0.03	1(50)	1(50)	0(0.0)	0(0.0)	0(0.0)
	RAL, ETR, DRVr (2)	1.1	2(100)	0(0.0)	0(0.0)	0(0.0)	0(0.0)


The HIV subtype was predicted using SCUEAL subtype classification algorithm. Viral loads were assayed using Abbott m2000sp/rt or Roche COBAS Amplicor Monitor ultrasensitive tests, v1.5.

HIV subtype distribution in study patients

On average, subtype A, 45.7%, subtype D, 25.2%, subtype C, 4.75% and recombinant AD, 7.5%.

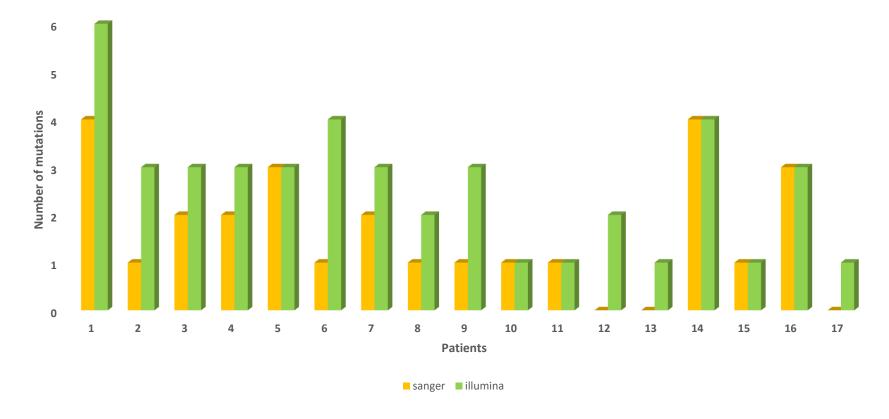
HIVdb drug susceptibility for all patient groups

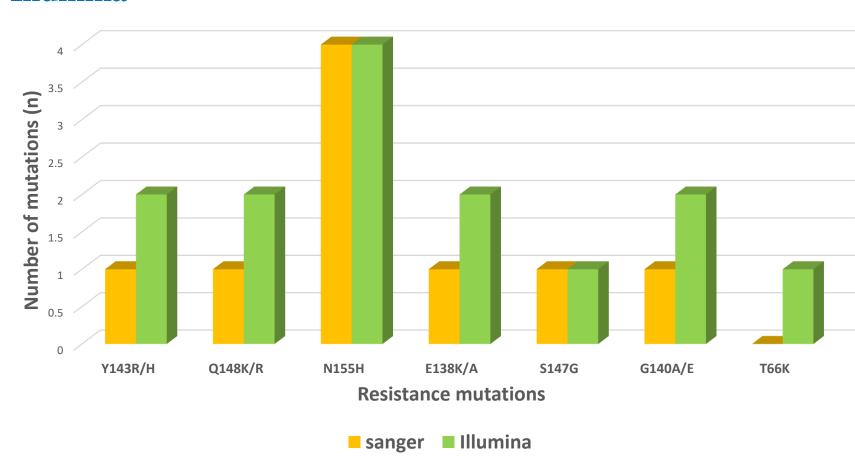

• Resistance to at least one ART, 97.8%, 81.9% and 56.6% in FF, SF and RF. Any NNRTI resistance, 38.5%, 96.4%, 75.5%, and 53.8% in N, FF, SF, and RF. Any PI resistance, 30.8% and 23% in second line and RAL failures respectively. Any INSTIs resistant mutation in 38.2% RF.

HIV-1 infected patients failing on RAL-based regimen with primary and/or secondary (compensatory) INSTI mutations

Primary/secondary mutations	n (%)	DTG	RAL	EVG
M50I/L/MR	1(3.0)	S	S	S
M50I,L74I	1(3.0)	S	S	S
T97A	1(3.0)	S	Р	Р
T97A,G163R,L74M	3(8.8)	S	L	L
N155H	2(6.0)	Р	Н	Н
N155H ,T97A	1(3.0)	Р	Н	Н
N155H ,T97AT	1(3.0)	Р	Н	Н
N155H ,T97A,E157Q,L74I	1(3.0)	Р	Н	Н
N155H ,E157Q,G163R,M50L,L74I	1(3.0)	Р	Н	Н
Y143R, T97A	2(6.0)	S	Н	L
Y143R ,T97AT,G163R	1(3.0)	Р	Н	1
Y143R ,T97A,M50I,L74LM	1(3.0)	Р	Н	1
E138A ,T97A,V151A	1(3.0)	Р	I I	1
E138K,G140A,S147G,Q148K	1(3.0)	Н	Н	Н
T66A ,T97A,G163R,L74M	1(3.0)	S		Н

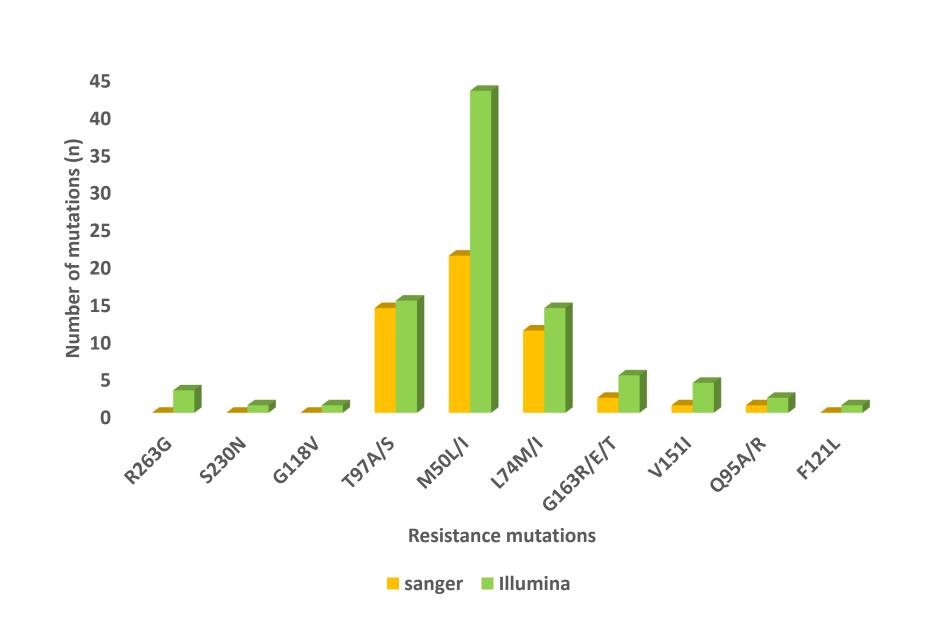
In all 400 patients; Y143R (0.75%), Q148K (0.25%), N155H (1.5%), E138A/K (0.5%), G140A (0.25%), S147G (0.25%). Accessory mutations; T97A (8.75%), M50I 6.5%), L74M/I (3%), E157Q (1.25%), V151I/A (2%), G163R (1.5%). In bold, are integrase major resistance mutations.


HIV-1 genotypic resistance interpretation based on Sanger sequencing


HIVdb program Genotypic resistance interpretation algorithm from Stanford university HIV drug resistance database was used to predict the levels of susceptibility. A susceptible genotype is shown in green, intermediate and high level resistance is shown in yellow and red respectively.

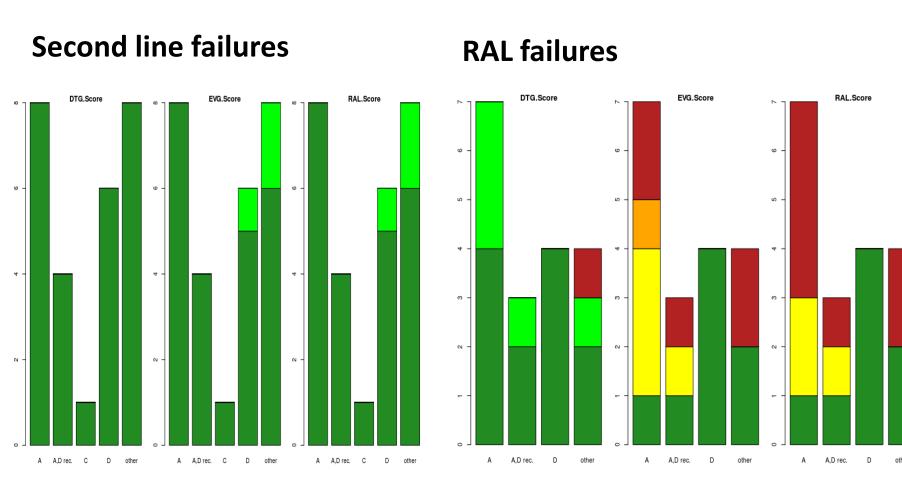
INSTIs DRMs detected by Population and Illumina in RAL failures

Illumina	Sanger
S147G, G140A, E138K, Q148K, S230N, M50L	S147G, G140A, E138K, Q148H
N155H, Y143H, M50I	N155H
Y143R, T97A, G163R	Y143R, T97A,
T97A, L74M, M50I	T97A, L74LM
T97A, N155H, L74I	T97A, N155H, L74I
T97A, L74M, V151I, G163R	T97A
T97A, M50I, N155H	T97AT, N155H
N155H, V151I	N155H
E157K, R263G, M50I	M50I
M50L	M50L
M50L	M50L
G118V, M50I	NONE
T66K	NONE
T97A, L74M, V151I, G163R	G163R, T97A, L74LM, V151I
M50L	M50L
M50L, L74M, T97A, V151I, G163R	L74M, T97A, V151I, G163R
M50I	NONE



Comparison of INSTIs major DRMs detected by Sanger and Illumina


Y143R/H, Q148K/R, G140A/E, 1.47%, 3.0%, S147G, 1.47%, 1.47%, T66K, 0.0%, 1.47% Sanger and Illumina respectively.


Comparison of INSTIs accessory DRMs detected by Sanger and Illumina

R263G, 0.0%, 4.4%, S230N, 0.0%, 1.47%, G118V, 0.0%, 1.47%, T97A/S, 20.5%, 22.0%, M50I/L, 30.8%, 63.2%, L74M/I, 16.17%, 20.5%, G163R/E/T, 2.94%, 7.35%, V151I, 1.47%, 5.88%, Q95A/R, 1.47%, 3.0%, F121L, 0.0%, 1.47% by sanger and Illumina respectively.

Genotypic resistance interpretation and scueal HIV subtype classifications from deep sequencing data.

A='A', A1='A', A2='A', A3='A', 'A,A1 recombinant'='A', 'A1,A2 recombinant'='A', D='D', 'A,D recombinant'='A,D rec.', 'A3,D recombinant'='A,D rec.', 'A1,D recombinant'='A,D rec.', 'A2,D recombinant'='A,D rec.', C='C'

Dark green = susceptible [0-10); light green = potential low-level resistance [10,15); yellow = low-level resistance [15,30); orange = intermediate resistance [30,60); red = high-level resistance [60, inf).

Conclusion

No primary DTG DRMs were found in 366 INSTIs naïve patients, and only one patient was found to have DTG resistance genotype in RAL failures. The very high NNRTIs resistance across all patient groups call for introduction of DTG or Bictegravir in treatment naïve patients in Uganda

Acknowledgement

- Joint Clinical Research Centre, Kampala, Uganda
- Dr Eric J Arts laboratory, department of Microbiology and Immunology, Schulich School of Medicine & Dentistry University of Western Ontario, London, Ontario, Canada