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Abstract
Parsing large expressions, in particular large polynomial expressions, is an important
task for computer algebra systems. Despite of the apparent simplicity of the problem,
its efficient software implementation brings various challenges. Among them is the fact
that this is a memory bound application for which a multi-threaded implementation
is necessarily limited by the characteristics of the memory organization of supporting
hardware.

In this thesis, we design, implement and experiment with a multi-threaded parser
for large polynomial expressions. We extract parallelism by splitting the input character
string, into meaningful sub-strings that can be parsed concurrently before being merged
into a single polynomial. Our implementation targeting multi-core processors is realized
with the Basic Polynomial Algebra Subprograms (BPAS). Experimental results show that
the approach is promising both in terms of speedup factors and memory consumption.

Keywords: BPAS, Sparse Polynomials, Polynomial Arithmetic, Data Structures,
High-Performance, Merge Sort, Parallel Parsing, Polynomial Parsing, Polynomial Multi-
plication
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Lay Summary
Parsing large polynomial datasets is a time-consuming and computationally expensive
process. In this thesis, we present a high-performance parallel parser that utilizes the
front end compiler phase as its core operation. We will use lexical and semantic analysis
programs, flex and bison, to automate the process. We apply data parallelism to con-
currently parse split chunks of input sub-string in a multi-core processor. In conclusion,
we gained significant speedup with lower memory footprints in parsing large polynomial
datasets.
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Chapter 1

Introduction

Parsing large expressions, in particular large polynomial expressions, is an important
task for computer algebra systems. While parsing may not be regarded as an algebraic
operation, it participates to the process of solving hard algebraic problems. Indeed,
solving such problems symbolically often generate large intermediate expressions that
one may want to write to a file before reloading them and parsing them.

The problem of parsing large polynomial expressions can become challenging because
reading from disks or other storage devices can be significantly slower than producing
data at the top of the memory hierarchy, say in registers or in cache memories. Therefore,
for hard algebraic problems requiring to parse large intermediate expressions, parsing can
consume a substantial amount of computing resources and can even be a bottleneck in
some applications.

In the context of modern computer architectures, it is desirable to design multi-
threaded algorithms for parsing and implement those algorithms on multi-core proces-
sors, which brings a third challenge. Indeed, parsing the algebraic expressions commonly
manipulated by a computer algebra system can be done by deterministic context-free
grammars (DCFGs) thus in time essentially proportional to the size of the input. There-
fore, parsing such expressions is a memory bound application, that is, where the amount
of work is proportional to the amount of data which is being read from and written to
RAM memory. Such applications are difficult to parallelize on multi-core processors, as
speedup factors are limited by the architecture (in particular the numbers of memory
controllers and channels, which is typical less than the number of cores).

Another challenge in parsing algebraic expressions is the variety of input format.
Focusing on polynomials, the topic of this dissertation, input polynomials may be ex-
panded, that is, formatted as a sum of terms, or factored, that is, “smaller” formatted
as a product of polynomials. Since polynomials in a computer algebra system often use
canonical representations1 for computational efficiency, parsing different input formats
necessarily require data conversions and algebraic calculations. Popular data-structures
for polynomials include:

1. linked lists (where each cell stores one non-zero term or a fixed number of such
1A canonical representation is a data-structure so that two polynomials that are mathematically

different are encoded differently with that data-structure; in other words mathematical equality between
two polynomials can be decided by comparing the data-structures representing those polynomials.

1



2 Chapter 1. Introduction

terms; this is an effective representation for expanded sparse polynomials)
2. multidimensional arrays (where each array element contains a coefficient, zero or

not, and is indexed by an exponent vector; this is an effective representation for
dense polynomials)

3. alternating arrays (where coefficients and exponent vectors of non-zero coefficients
are alternated in a compact format to minimize costs related to memory accesses,
in particular cache; this is an effective representation for sparse polynomials).

Hence a polynomial parser must dynamically choose an appropriate data-structure, or an
appropriate combination of data-structures, in order to optimize memory usage. We note
that the computer algebra system Maple and the Basic Polynomial Algebra Subprograms
(BPAS), both used in this study, are examples of software where the above data-structures
are available and where the implementation of polynomial arithmetic is highly optimized.

1.1 Contribution

Our goal is to design and implement a parser for polynomial expressions, which can
take advantage of multi-core processors. It is natural to consider a solution where the
input is split into several segments, which are then parsed concurrently, before merging
the parsed polynomials into a single polynomial. As mentioned above, since the parsing
algorithms that we shall use run in linear time, parallelizing overheads (due to scheduling
and synchronization) may offset the benefits of concurrent execution. Moreover, for
a data-intensive application like parsing, speedup factors on multicore processors are
limited by hardware characteristics like the number of controllers.

In addition, polynomials being structured objects (similarly to well-parenthesized
expressions) splitting the input cannot be done without a preliminary pass through the
data in order to determine positions where to split. While this preliminary pass could
theoretically be done in a parallel fashion, the resulting tasks would too fine-grained
(similarly to the parallelization of vector addition) for multicore processors.

Despite of the challenges paused by this approach, this is the path that we have chosen
to follow. This thesis dissertation reports on the algorithms that we have designed, im-
plemented and experimented. We have gained speedup factors that can reach 4x for large
enough data on a 12-core processor. Because of the hardware limitations discussed above
(there are, indeed, three memory channels on the processor that we were using for our
experimentation) we believe that this is a promising result. Nevertheless, improvements
could still be made in the future, including:

1. parallelizing the algebraic operations involved in the parser, in particular polyno-
mial multiplication,

2. parallelizing the splitting of the input, using a Graphics Processing Unit (GPU) on
which the parallelization could bring benefits, in the same way that vector addition
can be optimized on such devices.



1.2. Related works 3

1.1.1 Details of our approach
As mentioned above, the first step of our approach is to determine how to split the input
polynomial into segments that can be parsed concurrently. Since this splitting procedure
is executed serially, its code is highly optimized so as to minimize its contribution to
the whole application. The segments are organized in a way that they can easily be
processed by a multithreaded algorithm. This latter works in a divide and conquer
manner. The combine phasis requires arithmetic operations (addition, multiplication).
The input polynomial is assumed to be sparse. A representation based on linked lists
is used until switching to an alternating array representation is detected to be a better
choice. The multithreaded algorithm is implemented with CilkPlus [18].

1.2 Related works
Parsing is an important problem with application in every scientific discipline such as
compiler design, natural language processing, parsing markup languages, etc. Algorithms
that adopt front end compiler design architecture for solving parsing problems typically
rely on a few core techniques aiming at maximizing performance. These core techniques
include lexical analysis to prepare the input for parsing, syntactic, and semantic analysis
to make sure the input data-set is valid and error-free. These core techniques are provided
by software tools like Flex and Bison [13].

The problem of utilizing a multicore processor during parsing is not new. The Project
presented here [15] applies to processing large input files that range up to hundreds of
gigabytes. These large input files are broken into chunks before being processed. Those
chunks of datasets are stored back as multiple files. Our approach avoids creating files.
Moreover, in our case, the input data is structured, making the problem of splitting more
difficult.

Another study describes a general-purpose parser generator (PA-PAGENO), which
produces an efficient deterministic parallel parser exhibiting significant speedup when
parsing large text on modern multi-core machines [3]. These large texts include XML
files and real JSON documents. The researchers noted that the generated parser relies on
the properties of Floyd’s operator precedence grammars to provide a naturally parallel
implementation of the parsing process. Hence, parallelism is extracted at the level of the
parsing algorithm, not at the level of data. This approach is orthogonal to our approach.
Combining them would be an interesting future work.

The study [7] discusses parsing XML-based documents, based on data-parallel pro-
cessing. The input XML document is partitioned into substrings, and a DFA-based lexical
analysis tool runs on the substring concurrently. The authors apply automated analysis
tools such as Flex. The paper does not clearly describe the tools used to parallelize
the process. Although the research geared towards parsing large XML documents, the
steps described correlates with our research. However, this work is restricted to parsing
regular languages and no experimentation is reported. Recall that our parser handles
context-free grammars.

In a survey of parallel parsing strategies for natural language processing, the problem
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of parsing large input using a context-free parser in parallel is described. In the discussion,
a scheme where more than one traditional parser is used, and this parser is assigned to
split on non-deterministic choices during parsing [17]. One scheme where the number
of processors used depends on the length of the sentence being parsed and other on the
grammar size. Although it is a survey, the idea of a data-parallel approach parsing is
described but not implemented.



Chapter 2

Background

In compilers design, parsing is a crucial step in the compilation process when translat-
ing one language to a different language. These parsing techniques used in compilers
can be applied in computer algebera to parse large polynomials. In computer algebra,
the parsing process plays an important role to generate an efficient data structure from
large input polynomials. In this background section, we introduce topics necessary to
understand the parsing process in compilers and the algorithm used in a parser generator
program called Bison.
We will briefly discuss the theory of computation, and grammars and their limitations in
Section 2.1.1. Then we will touch upon context-free grammars (CFG) in Section 2.1.2. In
Section 2.2.1, we will have an in-depth look at the parse tree and some of its limitations.
Then in Section 2.2.4, we will cover the different types of parsers and their correspond-
ing algorithm. Our focus is to understand how the LALR(1) parsing algorithm works.
To understand this algorithm, we have to understand all the other parsing algorithms
because they are an improved version of one another. Lastly, we will talk about the
anatomy of compilers, how we apply the front end compiler technique to implement our
parser in Section 2.3 and Section 2.7, respectively.

2.1 Parsing

Parsing is one of the fundamental problems in computer algebra; a parsed input is struc-
tured to linear-representation1 in accordance with a given grammar [11]. Also, it is the
problem of taking a string of terminals and figuring out how to drive it from the root
symbol of the grammar [1]. During parsing, we can report syntax errors early in the
parsing process when the input is not conforming with the grammar structure.

1An input polynomial in the form of a character array or a string.

5
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2.1.1 Theory of computation
One of the important questions that can be answered by the theory of computation is
the limitation of computers, the ability to compute certain problems concerning speed
and memory usage. The theory of computation can help us to develop a mathematical
model of computation that reflects the real-world computers to determine computability,
i.e., a way to classify problems as solvable or unsolvable [19]. A concept that deals with
the definitions and properties of different computational models are called automata the-
ory. Some of these models include finite automata and context-free grammar, etc. Finite
automata are a model for computers with a limited amount of memory. Finite automata
(FA) otherwise called a finite state machine (FSA), can be divided into two broad cate-
gories: FSA with output and FSA without output. The following are some concepts to
be familiar with before we formally define finite automaton: symbols are any characters
that are elements of an alphabet; ∑ is a collection of symbols; and strings are a sequence
of symbols.

So, a finite automaton is a 5-tuple (Q, ∑, σ, q0, F), where [19]
1. Q is a finite set called the states,
2. ∑ is a finite set called the alphabet; the elements of ∑ are called symbols,
3. σ : is the transition function,
4. q0 ε Q is the start state, and
5. F ⊆ Q is the set of accepted states.

The mathematical theory of finite automata represented using a state diagram. More
information regarding state diagrams can be referenced here [19]. Every state in de-
terministic finite automata (DFA) has a unique state. Given a current state, it is easy
to determine the next state of a DFA. In contrast, non-deterministic (NDFA) finite au-
tomata are the opposite of DFA. In addition, the DFA transition function, σ, produces
Q × ∑→Q states. Whereas, NDFA transition function, σ, produces Q × ∑→2Q states.
A language can be accepted or rejected by the Finite state machine; any language that
is accepted by FSA is called a regular language. In computer science, a language (formal
language) L is a finite or infinite set of strings over a finite alphabet ∑—symbols or
characters.

There are four Machine-Based hierarchy of language classes [19, p.32]:
• Regular languages, which can be accepted by some finite state machines.
• Context-free languages, which can be accepted by some pushdown automaton.
• Decidable languages,
• Semidecidable languages,

One method of describing a regular language is as regular expression. Regular ex-
pressions can be considered as the algebraic description of a regular language. Regular
expressions can be defined by the following rules:
• ε and ∅ regular expressions
• For each a ∈ ∑, a is a regular expression
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• If R1 and R2 are regular expressions ,then R1 ∪ R2, R1R2, and R∗ are also regular
expressions.

Therefore, if L is a language and we can only say L is regular if and only if there
exists a regular expression that describes it [19].

A grammar G is a set of production rules for a string in a language L. A formal gram-
mar is a way to characterize a language L or list which string is in the language L or not.
Simply, for a given grammar G, L(G) represents the set of all strings generated from
grammar G. A grammar can have different categories: ambiguous, and unambiguous
(Section 2.2.3); deterministic, and non-deterministic. Ambiguity addresses the actual
syntactical structure of the grammar but determinism relates to the properties of the
language. In addition to this, grammar can also be categorized based on performance
and efficiency. For each language class, Noam Chomsky gave a mathematical model of
a grammar which is effective for writing computer languages called the Chomsky hierar-
chy [19, p.539]. The basis for the Chomsky hierarchy is the amount of memory required
and its organization to process the languages at each level.

Chomsky used the terms type 0, type 1, type 2, and type 3 to describe the four levels
in his model:
• type 0 (Unrestricted grammars): no memory constraint and accepted by Recur-

sively enumerable language
• type 1 (Context-sensitive grammars): memory limited by the length of the input

string
• type 2 (Context-free grammars): unlimited memory but accessible only in a stack
• type 3 (Regular grammars): finite memory

2.1.2 Context-free grammars
In this thesis, we will only elaborate on type 2 grammars or Context-free grammars
(CFG). As mentioned in the previous section, grammars describe the hierarchical struc-
ture of a language. CFG is more powerful than finite automata or regular expression, it
cannot define all the possible languages but it is useful for hierarchical or nested struc-
tures. In CFG, the basic idea is to use variables to stand for sets of strings. These vari-
ables are defined recursively in terms of one another. In recursive rules or productions,
only concatenation is involved, whereas alternative rules for variables allow unions. For
example, an if-else statement in C programming language can have the following form:

if (expression) statement else statement
The above statement has if and else as keywords. To complete the if-else statement, it
is concatenated with an expression surrounded by parenthesis and two statements. To
create a production for the above statement, consider the statement below; stmt and
expr are a more general terms or variables for expression and statement, respectively:

stmt → if (expr) stmt else stmt
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In general, a CFG is just like a regular grammar in which every rule must have a left-hand
side that is a single nonterminal and a right-hand side that is ε or a single terminal or a
single terminal followed by a single nonterminal. The only difference is that CFG must
have a left-hand side that is a single nonterminal and a right-hand side [19]. If we con-
sider the above if-else production statement, we can see that it is a context-free grammars
that produces a string through concatenation, choice, and identification mechanisms to
link the name of a nonterminal to the right-hand side of the rule. So, production is for a
nonterminal if the nonterminal is the head of the production. A string of terminals are
a sequence of zero or more terminals.

To summarize the above paragraph, context-free grammar has four components:
1. A set of terminal symbols, i.e., elementary symbols of the language defined by the

grammar.
2. A set of nonterminals that represents a set of strings of terminals.
3. A set of productions where each production consists of a nonterminal called the

head or left side of the production; an arrow; and a sequence of terminals and/or
nonterminals called the body or right side of the production.

4. One of the nonterminals as the start symbol.

Deterministic context-free grammar

The deterministic context-free grammar (DCFG) is a subclass of the context-free gram-
mars. DCFG have the property that they can be recognised by a deterministic pushdown
automata [5, 9]. A pushdown automaton, or PDA, is a finite state machine that has been
augmented by a single stack [19]. DCFGs are always unambiguous, and are an important
subclass of unambiguous CFGs. DCFG parsers can run in linear time [19].

Context-free grammar notations

There are different styles of notations computer scientists use to represent context-free
grammars. Backus-Naur Form (BNF) is the first CFG used to define ALGOL 60 (com-
puter programming language for publishing algorithms). Any grammar expressed in BNF
is a context-free grammar. BNF uses angle brackets to enclose non-terminals, semicolons
to terminate or derive rules, and vertical bar to also denote the derive rules. For exam-
ple, Figure 2.1 shows the classic expression grammar in BNF. Another notation used to
represent context-free grammar is the Extended Backus-Naur Form (EBNF). EBNF is a
collection of extensions to Backus-Naur form, for more reference [11, p.28].

2.2 Parsing Algorithms

2.2.1 Parse tree
In the previous section, we have described the role of a grammar as a precise rule that a
language prescribes to generate a well-formed syntactic structure. Grammars offer more
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〈expr〉 : 〈term〉 + 〈expr〉
| 〈term〉

〈term〉 : 〈factor〉 * 〈term〉
| 〈factor〉

〈factor〉 : ( 〈expr〉 )
| 〈const〉

〈const〉 : integer

Figure 2.1: Expression grammar in Backus-Naur Form (BNF).

Figure 2.2: A parse tree for the production stmt → if (expr) stmt else stmt.

than rules; they can reveal syntactic ambiguities, design issues, and with the right pars-
ing algorithm can detect syntax errors. To parse a string according to a grammar means
to reconstruct the production tree. The production tree shows how the given string can
be produced from the given grammar. Constructing a production tree based on Type 2
or context-free grammar has another name known as parser tree. It is important to note
that Type 0 and Type 1 grammars are only capable of producing production graphs and
their consequent parsing yields parsing graphs.

In this section we will introduce a parse tree. A parse tree determines the specific
semantic attached to a specific rule [11, p.62]. A parse tree pictorially shows how the
start symbol of a grammar derives a string in the language. If the nonterminal stmt has
a production stmt→ if (expr) stmt else stmt, then a parse tree may have an interior node
labeled stmt with seven children labeled as if, (, expr, ), stmt, else, and stmt, from left to
right as shown in Figure 2.2. So, in a CFG, a parse tree holds the following properties:
the root is labeled by the start symbol, each leaf is labeled by a terminal or ε, and each
interior node is labeled by a nonterminal.

Size of a parse tree

The size of a parse tree is directly proportional to the number of tokens generated. For
an input string of n tokens (Section 2.2), a parse tree consists of n nodes belonging to
a terminal, plus several nodes belonging to non-terminals. Let CG be a constant that
depends on the grammar, provided the grammar has no loops. Therefore, there cannot
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E → E + E
E → E * E
E → id

Figure 2.3: A simple ambiguous grammar rule.

be more than CGn nodes belonging to non-terminals in a parse tree with n token nodes.
This means that the size of any parse tree is linear in the length of the input [11, p.62].

2.2.2 Determinism
When an action is automatically performed in response to a stimuli it is an automaton.
A non-deterministic automaton has several possible moves and the particular choice is
not predetermined. By restricting the number of possible moves of a non-deterministic
parsing automaton, we can achieve determinism. Since deterministic automaton involves
no choice, the moves are determined unambiguously by an input stream. So, if a grammar
is an unambiguous deterministic automaton, it can produce only one parsing tree. A
deterministic automaton control mechanism is lookaheads. A deterministic automaton
with a k lookahead match predicts and decides unambiguously what to do next [11].

2.2.3 Ambiguity
A grammar G is ambiguous if there is at least one string in L(G) for which, G produces
more than one parse tree. To show that a grammar is ambiguous, all we need to do is find
a terminal string that yields more than one parse tree. Such a string with more than one
parse tree usually has more than one meaning. Therefore, we need to design unambiguous
grammars. Otherwise, we need to add an additional rules to resolve the ambiguities.
On the other hand, if a language is regular, there is no reason to be concerned with
ambiguity; a regular language does not care about assign internal structure to a string.
In a context-free language, assigning internal structure to a string is crucial. Given a
string w, if we want to assign meaning to w, it has to be unique. It is impossible to
assign unique meaning to w if the parse tree is not unique. So, an ambiguous grammar
which fails to produce a unique parse tree is a problem to a context-free language. The
solution to this problem is to convert ambiguous grammar to unambiguous grammar, also
known as disambiguity rule. Converting ambiguous grammar to unambiguous grammar
can be done by applying recursion—a variable calling itself. There are two types of
recursions: left recursion and right recursion. The question arises when and how to
apply these recursions when parsing an ambiguous grammar. For example, we would
like to generate a parse tree for the string id + id * id using the grammar rule in Figure
2.3. This ambiguous grammar rule is capable of generating two different parse trees for
the same input strings. To turn this grammar to unambiguous grammar, we need to
use recursion. A grammar is left recursive if the leftmost symbol of the right-hand side
(RHS) in the production is the same as the left-hand side (LHS). Since our input has
two different operators, we need to consider operator precedence when converting our
grammar to a left recursive unambiguous grammar. The grammar in Figure 2.4 is a left
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E → E + G |ε
G → G * H |ε

H → id
Figure 2.4: A simple unambiguous grammar rule.

Figure 2.5: Restricting parser tree growth using associativity.

recursive grammar that obeys operator precedence. Recursion restricts the parse tree to
grow on one side only. Also, to define precedence in the grammar we used levels within
productions, so productions with the highest precedence have the least level (farther away
from the start symbol) as shown in Figure 2.5. Similarly, a grammar is right recursive,
if the right-most symbol of the right-hand side (RHS) in production is the same as the
left-hand side (LHS).

Left factoring

Most parsers, especially top-down parser (Section 2.2.4) do not work properly with left
recursive and non-deterministic grammars. This is because most left recursive parsers
could get trapped into a never-ending loop by recursively calling the rightmost symbol
of the RHS before checking other productions [1]. Consider the following left recursive
grammar A → Aα/β, the language generated by this grammar is βα*. We see that A is
calling itself recursively without doing anything, as shown in Figure 2.6. One would think
converting left recursive grammar to right recursive grammar might resolve the issue. But
it is not always guaranteed, it might even generate a different grammar. The solution is
to use a grammar transformation process called left refactoring [1, p.214]. If the language
A→ βα* has to be generated, we have to use the right recursive equivalent grammar of A
→ Aα/β as shown in Figure 2.7. It is a general left recursive rule that can be applied to
any production. So, left factoring produces a right recursive equivalent grammar without

Figure 2.6: Left restricted parse tree calling A with a never ending loop.
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A → βA’
A’ → αA’ |ε

Figure 2.7: A left factored grammar of an original left recursive grammar.

E → E’
E’ → ε|+GE’

G → G’
G’ → ε|*HG’
H → id

Figure 2.8: A simple example of left factored grammar rule.

altering the original grammar. Figure 2.8 shows right recursive equivalent grammar for
the grammar in Figure 2.4. We can also apply left factoring to convert non-deterministic
grammars to deterministic grammars in the same manner.

2.2.4 Types of parsers
There are two most commonly used general types of parsers, especially in compiler design:
top-down and bottom-up parsers. Both methods scan the input from left to right; top-
down parser build the parse tree from the top (root) to the bottom (leaves), i.e., it imitates
the original production process by rederiving the input from the start symbol [1]. Bottom-
up parser start from the leaves and work its way up to the root, i.e., it rolls back the
production process to reduce the input back to the start symbol [1]. There are different
categories of top-down and bottom-up parsers, but in this thesis we will only elaborate
on deterministic parsers; detailed information about the other methods can be found in
[11].

FIRST and FOLLOW functions

When constructing both top-down and bottom-up parsers two functions are used to
construct the table, FIRST and FOLLOW. Given an input symbol, these functions allow
us to choose which production to apply. FIRST is a function given a sequence of grammar
symbols, returns the set of symbols with which the strings derived from that sequence
can begin. Consider the symbol c and FIRST(α) returned a production, the production
could be α → cβ/ε. In a similar way, FOLLOW(B) returns the production A → cB/ε
if c may follow B at some point in a derivation. To handle end-of-string conditions in
the FOLLOW function, we add an extra production to a grammar called augmented
production. For A → cB/ε, the augmented production is A’ → A$/ε; therefore, A’ is a
nonterminal that replaces A as start symbol and $ is a terminal symbol representing the
end of input [1, 220].

Deterministic top-down parser

Left-to-right leftmost production (LL) parser is the only deterministic top-down parsing
method. This top-down parser constructs a parse tree for an input string starting from
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the root by creating the nodes of the parse tree in preorder or depth-first order. It can
also be viewed as finding the leftmost derivation for an input string. At each step of an
LL parsing, the key problem is to determine the production to apply for a nonterminal.
Once a production is chosen, the rest of the parsing process consists of matching the
terminal symbols in the production body with the input string. LL parser is also called
LL(k) parser because it is one of the parser that can perform predictive parsing with k
symbols lookahead in an input. In this thesis we will only elaborate on k = 1 : LL(1)
parser.

Both deterministic top-down and bottom-up parsers have four general components:
the input stream, prediction stack (stack memory), parsing algorithm, and transition
tables. The input stream is the actual input to be parsed and the prediction stack
is the data structure used by the parsing algorithm to stack input tokens. The transi-
tion table is used to create a derivation rule, it is constructed using the parsing grammar.

To generate an LL(1 ) parsing tree, we need four general components as stated in the
previous paragraph. One of the crusial component in this list is the transition table; to
generate the transition table we first need to build the FIRST and FOLLOW table from
a left factored grammar. For example, consider the following left factored grammar in
Figure 2.9; Table 2.1 is the FIRST and FOLLOW table constructed according to thier
definition in the previous section. Once this FIRST and FOLLOW table is constructed,
the next step is to generate the LL(1 ) transition table. Table 2.2 show the transition
table constructed using FIRST and FOLLOW table for the example grammar in Figure
2.9. Using the four components of an LL(1 ) parser, we can create an LL(1 ) parse tree.
Depending on what is present in the prediction stack, there are two actions performed
by the LL(1 ) parser: prediction and matching. The function Predict(E,t) performs pre-
diction if the top of the prediction stack is the non-terminal E. In order to do this, the
non-terminal E is popped from the top of the prediction stack and a look up in the tran-
sition table using the current token reads column E and row t will be performed: cell[E,
t]. The result will be pushed onto the stack and the process will continue to consume the
input string from left to right till the end of the input stream is reached. If the resulting
return value from cell[E, t] in the transition table is empty, there is a syntax error in the
input string.

Similarly, The function Match(e, t) performs matching if the top of the prediction
stack is the terminal e. If the token t matches with the token read from the input e, t
will be consumed and the input stream will be advanced by one to the right. Otherwise,
if no match is found, there is a syntax error in the input string. When the prediction
stack is empty, the LL(1) parser will be terminated and the input is accepted if and only
if it is completely consumed without any error.

Deterministic bottom-up parser

Bottom-up parsing is the process of reducing an input string w to the start symbol of the
grammar [1]. One form of bottom-up parsing is Shift-reduce; here, tokens are processed
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E → TE’
E’ → +TE’ |ε

T → FT’
T’ → *FT’ |ε
T → id/(E)

Figure 2.9: An example grammar to demonstrate the construction of LL(1) parser.

Table 2.1: FIRST and FOLLOW table for grammar in Figure 2.9
FIRST() FOLLOW()

E → TE’ {id, (} {$, )}
E’ → +TE’/ε {+, ε} {$, )}
T → FT’ {id, (} {+, ), $}
T’ → *FT’/ε {*, ε} {+, ), $}
T → id/(E) {id, (} {*, +, ), $}

Table 2.2: LL(1) parse table generated for grammar in Figure 2.9
id + * ( ) $

E E → TE’ E’ → +TE’
E’ E’ → +TE’ E’ → ε E’ → ε
T T → FT’ T → FT’
T’ T’ → /ε T’ → *FT’ T’ → /ε T’ → /ε
T T → id T → (E)

from an input stream by pushing them on the stack. When shifting a token by pushing
it atop, the stack reduces some sequence of terminals and nonterminals atop the stack
back to some nonterminal symbol [1]. Thus, one of the following four actions is carried
out during Shift-reduce parsing: shift the next input symbol to the top of the stack;
reduce; accept; and error detction [1]. At each reduction step, a matching body of the
production is replaced by a nonterminal at the head of that production. Some of the
decisions made during bottom-up parsing includes, when to decide to reduce and what
production to apply.

Any grammar can be parsed bottom-up using a shift-reduce parser, but the parser
might not be deterministic. This could result in guessing whether to apply shift-reduce
and if the choice is wrong whether to backtrack the steps. So, the deterministic shift-
reduce parser can not parse all grammars no matter how good the grammar is con-
structed. When a deterministic shift-reduce parser encounters a conflict, it can not
parser a grammar or it enters a state where it cannot tell what action to take. There
are two types of conflicts, shift-reduce conflicts and reduce-reduce conflicts. In a shift-
reduce conflict, the parser cannot tell if it needs to perform a reduction or add the symbol
to the stack. In a reduce-reduce conflict, the parser knows that it needs to replace the
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top symbols on the stack with some nonterminal, but it cannot tell what reduction to use.

The left-to-right rightmost (LR) production method is the most powerful type of
deterministic bottom-up parsing method that we will elaborate on next. Just like the
LL method, the LR method performs predictive parsing; LR(k) parsing uses k for the
number of input symbols of lookaheads that are used in making parsing decisions. In
this case k = 0 and k = 1 are of practical interest. LR(k) parsing is more powerful
than LL(k) parsing, but it is the most complicated and difficult to understand. There
are three classes of LR parser: LR(0); simple LR(1) or SLR(1); and lookahead LR(1)
or LALR(1). These different classes of LR parser differ on their action and goto table
organization (Section 2.2) and the size of the transition table. LR(0) is theoretically
important but too weak to be useful; LR(0) parsers do not use lookahead: this is because
of k=0. SLR(1) is an upgraded version of LR(0) parser, but weaker than LR(1) parser—a
very powerful and memory consuming parser. Unlike LR(1), LALR(1) is both powerful
and practically applicable in most bottom-up parsers [12].

Constructing the different classes of LR(k) parsers follows the same process as LL(1)
parser; LR(k) parser uses prediction stack (stack memory), parsing algorithm, and tran-
sition tables. The difference between LL(1) and LR(k) parsers is when generating or
constructing the transition table. An LR parser makes a shift-reduce decision by main-
taining the state of the parser position [1, p.242]. To construct the parsing table for LR
parsers, we will use an LR(0) item called the canonical LR(0) collection; both LR(0)
and Simple LR(1) classes of parsers use the canonical LR(0) collection to construct their
parsing table. For lookahead LR(1) parser we will use an LR(1) item called the canon-
ical LR(1) collection [1, p.243]. An item is a production in the grammar with a dot at
some position of the production body: S → .AA is an item. This dot in the production
signifies anything to the right of the dot is not consumed or reached; once the dot is in
the far right-hand side, every terminal or nonterminal is consumed and the production
is ready to be reduced.

The canonical collection of LR(0) items is the starting point to create deterministic
finite automata that are used to make parsing decisions. To briefly describe the major
steps involved in constructing canonical collection of LR(0) for a grammar, we will use
the following example in Figure 2.10. The first step is to redefine the grammar by adding
augmented production as shown in Figure 2.11. The augmented production is used to
indicate the parser when to stop and accept parsing the input. When constructing the
canonical LR(k) collection for a grammar, we consider two functions; CLOSURE and
GOTO. Given a grammar and a set of an item, CLOSURE(I) will use the following two
rules:
• At the beginning we add every item of I to CLOSURE(I)
• given a production A → a.B is in CLOSURE(I), if B → c then B → .c will be

added to CLOSURE(I).
Similarly, for the function GOTO(I, A), where I is the sets of item and A is a grammar
symbol, defines the consumption of A in the grammar symbol—calling GOTO(I, A) in
the production A → a.B produces A → aB. [1, p.245].
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Constructing LR(0) parsing table

We will start by constructing the parsing table for an LR(0) parser. First, we need to
create the goto-graph or transition diagram using the two functions described in the pre-
vious paragraph: CLOSURE and GOTO. Figure 2.12 shows the transition diagram or
goto-graph for LR(0) parser using the grammar in Figure 2.11. Each node or state of the
goto-graph is labeled with I0..n. Once the goto-graph is constructed the next step is to
create the LR(0) parsing table. The parsing table consists of two parts, the results from
the ACTION function labeled as action and the result from the GOTO function labeled
as Goto. Furthermore, the action section consists of all the terminals, whereas the goto
section consists of all the nonterminals. In our example, a, b, and $ are terminals that
reside in the action sections of the parsing table. Similarly, A and S are nonterminals
that occupy the goto sections of the parsing table. The ACTION function takes two
arguments, a state and a terminal; the resulting outcome from the function could trigger
either one of the following actions accompanied by a state number: shift, reduce, or ac-
cept. If any of the mentioned actions are not triggered, it means an error has occurred;
an empty cell without any state can only be reached when there is an error. Each cell
in the table with a transition state describes the action and production number or the
actual production to transition to. In the case of SHIFT, the table cell will contain In,
where n is the production number. In the case of REDUCE, it is described by the word
REDUCE and a production value. The GOTO function, just like in the goto-graph,
maps a state and a nonterminal to a new state. The Goto column in the table has a
value that is neither shift nor reduce, but it provides the production number to reduce
to. For example, the grammar in Figure 2.11 labelled each production with numbers.
When the parsing table calls for reduce, the number in the subscript should match with
the production number.

There are rules to follow when constructing an LR(0) parsing table. For the grammar
in Figure 2.11, the parsing table is shown in TABLE 2.3. By following the rules below
we can construct an LR(0) parsing table for any grammar:

1. Initial state is A’ → .A
2. If A → aB. is in Ii set ACTION(i, a) to reduce to A → aB
3. If A’ → A. is in Ii set ACTION(i, $) to accpet
4. If A → a.B is in Ii set successor(Ii, a) = Ij and then set ACTION(i, a) to shift
5. Any entries that is not defined by the above rule is an error
6. If a nonterminal in the successor(Ii, A) = Ij then GOTO(i, A) = i

Once the parsing table is constructed, we can parse an input string using the LR(0)
parser by following the same steps introduced during parsing an LL(0) parser. The only
difference is an LR(0) parser uses a different algorithm and parsing table. An LR-parsing
program algorithm and a detailed step by step guide on how to use an LR(0) parser can
be referenced in [1, p.251].
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S → AA
A → aA/b

Figure 2.10: An example grammar to demonstrate the construction of LR parser.

S’ → S
S → AA1
A → aA2
A → b3

Figure 2.11: An example of augmented grammar to demonstrate the construction of LR(1)
parser.

Figure 2.12: A transition diagram or goto-graph for an LR(0) parser.
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Table 2.3: Parsing table for LR(0) parser. Where In is transitioning to n state according to the
transition diagram in Figure 2.12.

Action Goto
a b $ A S

0 I3 I4 I2 I1
1 AcceptS’ → S
2 I3 I4 I5
3 I3 I4 I6
4 ReduceA → b ReduceA → b ReduceA → b
5 ReduceS → AA ReduceS → AA ReduceS → AA
6 ReduceA → aA ReduceA → aA ReduceA → aA

Constructing SLR(1) parsing table

We have stated that both LR(0) and SLR(1) use canonical LR(0) collection items to con-
struct their parsing tables. Also, we stated that all LR(k) parsers use the same parsing
components, such as memory stack and LR(k) parsing algorithm. The question to ask
is what makes an LR(0) parser different from SLR(1) parsers? One obvious difference
is, an LR(0) parser uses zero tokens of lookahead to determine the next action to take.
Therefore, the parser must have an unambiguous action to choose—either it shifts a spe-
cific symbol or applies a specific reduction. If there is more than one choice to make, the
parser fails and it is no longer an LR(0) parser. Furthermore, an LR(0) parser cannot tell
whether it encountered shift-reduce conflicts or reduce-reduce conflicts because it is not
allowed to peek at the next token of an input. In contrast, SLR(1) performs a lookahead
to decide whether it should reduce or shift. So, the difference between LR(0) and SLR(1)
parser is this extra ability to help decide what action to take or makes a smart decision
when there is a conflict. For this reason, any grammar that can be parsed by LR(0)
parser can be parsed by SLR(1) parser. However, not all grammars that are parsed by
SLR(1) cannot be parsed by LR(0) parser.

Table 2.4 shows the parsing table for SLR(1) parser. The only difference between
SLR(1) and LR(0) table is that when a state is a final item in LR(0) parser, reduction is
eminent to all the terminals. Where as, in SLR(1) parser it is not the case; for example,
state I5 has a final item S → AA. as shown in Figure 2.13; since the character after the
"." is $, we can call FOLLOW on the left hand side. So, FOLLOW(S) returns $, and we
can only place a reduce on the $ column of the SLR(1) parsing table. Therefore, SLR(1)
parser says first call FOLLOW function on the left hand side of final item, then apply
reduction to terminals returned by the function.
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Table 2.4: Parsing table for SLR(0) parser. Where In is transitioning to n state according to
the transition diagram in Figure 2.12.

Action Goto
a b $ A S

0 I3 I4 I2 I1
1 AcceptS’ → S
2 I3 I4 I5
3 I3 I4 I6
4 ReduceA → b ReduceA → b ReduceA → b
5 ReduceS → AA
6 ReduceA → aA ReduceA → aA ReduceA → aA

Constructing LALR(1) parsing table

Lookahead LR(1) or LALR(1) is the most powerful and practically applicable bottom-up
LR(k) class of parser. In the worst case, an LALR(1) parser has a time complexity of
O(n). Comparing the parser size, both SLR(1) and LALR(1) parser tables are the same
in size because they have the same number of states. Also, it is expected that sets of
shift and accept transitions in these two parsers will be identical; whereas, sets of re-
duction actions in the LALR(1) parser is a subset of sets of reduction actions in SLR(1)
parser. So, the difference between SLR(1) and LALR(1) parser becomes indisputable
when applying the reduction action for a reducible item. We said SLR(1) parser applies
reduction to any lookahead in the following sets of the LHS of the reducible item. In con-
trast, LALR(1) parser will only include the lookaheads which are feasible in the context
of the state. This means LALR(1) uses canonical LR(1) collection—the combination of
canonical LR(0) collection and a lookahead. For example, given the canonical LR(0)
collection S → .aA,[a,b], a and b are the lookaheads for canonical LR(0) collection. The
benefit of this lookahead comes when we reach the final item—S → aA. is the final item.

When we are constructing LR(0) parsing table, if the final item is reached, we placed
the reduced action for every terminal at its corresponding state number. Similarly, for
SLR(1) parser, we placed the reduced action in the follow of LHS. However, in LALR(1)
parser, reduce action is placed on the lookahead symbols. So, to determine the looka-
head symbols for every canonical LR(0) collection and to construct the parsing table for
LALR(1) parser, first we need to generate a goto-graph or transition table. For this we
can follow this simple rule:
• Start with the augmented production, this production lookahead is always a $.
• If A → a.Bb, is not a final item, production for B should be added as part of the

current state. It should also use the FIRST function to determine the lookaheads.
Figure 2.13 shows the transition table or goto-graph for LALR(1) parser. Once the

goto-graph is generated, we can follow the same steps as SLR(1) parser to construct the
parsing table for LALR(1) parser. Table 2.6 show the parsing table constructed according
to goto-graph for LALR(1) parser. The table size for LALR(1) parser is almost twice
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Figure 2.13: A transition diagram or goto-graph for LALR(1) parser.

the size of SLR(1) parser because of lookaheads. In order to reduce the table size we will
combine the states with similar production but different lookaheads to the same row as
shown in Table 2.6.

Table 2.5: Parsing table for LALR(1) parser. Where In is transitioning to n state according to
the transition diagram in Figure 2.12.

Action Goto
a b $ A S

0 I3 I4 I2
1
2 I6 I7 I5
3 I3 I4 I8
4 ReduceA → b ReduceA → b ReduceA → b
5 ReduceS → AA
6 I6 I7 I9
7 ReduceA → b
8 ReduceA → aA ReduceA → aA
9 ReduceA → aA

2.2.5 CYK parsing algorithm
Cocke-Younger-Kasami algorithm (CYK) is a parsing algorithm that operates on context-
free grammars. CYK is based on dynamic programming and can recognize CFG lan-
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Table 2.6: Revised parsing table for LALR(1) parser. Where In is transitioning to n state
according to the transition diagram in Figure 2.12.

Action Goto
a b $ A S

0 I{3,6} I{4,7} I2
1
2 I{3,6} I{4,7} I5

{3,6} I{3,6} I{4,7} I8
{4,7} ReduceA → b ReduceA → b ReduceA → b
5 ReduceS → AA
6 I6 I7 I9

{8,9} ReduceA → aA ReduceA → aA ReduceA → aA

guages in at most O(n3) time for strings with length n [1]. A Graphics Processor Units
(GPUs) implementation is reported in [22] with 26x speedup w.r.t. a sequential C imple-
mentation

2.3 Anatomy of a compiler

A program that can read a source language and translate it to a target language is known
as a compiler. There are different types of compilers; the two major ones are the target
program generator and an interpreter [1]. In this thesis we are interested in utilizing
certain steps of the compiler process to implement our parser; for this, we need to un-
derstand the structures of a compiler. For an average user, a compile is one big box
that takes in an input and produces an output. This box can be divided into two major
parts: analysis or front-end and synthesis or back-end. During the compilation process,
the analysis part takes in the source program or inputs and breaks them down into the
constituent pieces and introduces a grammatical structure on them. In this step, impor-
tant information about the input source is collected and stored in a symbol-table data
structure. Then the synthesis part constructs the desired output using the information
passed to it from the analysis part [1, p.5]. Figure 2.14 depicts conceptual structure of
a compiler.

When both the analysis and synthesis part of a compilation process are examined
in detail, we discover that they operate in sequences of phases. Figure 2.15 is the
decomposition of the front-end and back-end process of a compiler into phases. To
construct our parser, we will use the analysis phases of the compiler process—lexical
analysis, syntax analysis, and semantic analysis—with the help of front-end analysis
tools: flex and bison.
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Figure 2.14: Conceptual structure of a compiler.

Figure 2.15: Front-end and back-end compiler process decompose into phases.
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Figure 2.16: A syntax tree for the token of stream generated from the example x = y + z * 5.

2.3.1 Lexical analysis
In the first phase of the compilation process, the lexical analyzer is also known as a scan-
ner that reads the input or source program one character at a time. During this process
stream of characters making up the input or source program are grouped into meaningful
sequences called lexemes. These lexemes are associated with an attribute value and a
token name to produce what is called a token. A token is the smallest element or an
atomic unit of an input or source program that is meaningful to a compiler. Most lexers
use white space as a separation point for tokens.
There are many reasons why lexical analysis is separate from syntax analysis, the two
major grounds are efficiency and modularity. In general, analysis is faster if lexical analy-
sis is separated from syntax analysis because it is the simplest part of the parsing process.
Similarly, if the analysis process is modular, the syntactical description of the language
will not be cluttered with lexical details and will be easier to read and to understand.

It is easy to write a simple lexer by hand, though as the input program gets larger
and complex, it is difficult to maintain these lexers. Hence, we can use lexer-generator
to generate human-readable specifications of tokens including whitespace, into tokens.
Lexer specification is written using regular expressions: algebraic notation for describing
sets of strings Section 2.1.1. This is so the lexer can distinguish between several different
types of tokens that are described by a regular expression. For our parser we will be
using a program called flex to generate lexer for syntax analysis; this program takes in
sets of token definitions and generates output to feed another program called bison.

2.3.2 Syntax analysis
The second phase of the process is syntax analysis, it is also known as parsing; it uses the
result from lexical analysis to create a tree-like intermediate representation that depicts
the grammatical structure of the token stream [1, p.8]. The structure of a Syntax tree
is an interior node representing an operation and the children of the node represent the
arguments of the operation. So if the leaves are read from left to right, the sequence is
the same as the input text. In addition, the syntax analysis conducts error detection; it
rejects invalid inputs and reports them as syntax error. For example, x = y + z * 5 is
an operation in which the assignment has to be performed; Figure 2.16 shows its syntax
tree. Tree nodes with variables are represented with a token name and value; the syntax
table matches the corresponding token-value with the variable.
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2.3.3 Semantic analysis
The semantic analysis phase uses the syntax tree and the syntax table to check the input
text or source program for semantic consistency. A context-free grammar or the human-
readable format BNF grammar imposes a structure on the input string that is used to
check this consistency. Besides, type checking is done so each operation has a matching
operand. If type checking fails, a syntax error will be reported. Another important step
in semantic analysis is coercions; it applies the correct type to a declared variables; for
instance take x = y + z * 5, if y and z have floating-point type, the assigned value to x
will be floating-point, despite the integer lexeme 5.

2.4 Polynomials
We recall the definition of a polynomial in an unformal way. A monomial is a product of
powers of variables. A term is a product of a monomial and a coefficient. A polynomial
is a sum of terms. For example, the polynomial p(x,y) = 8x5y4 + 6xy + 3y + 2. It has
4 terms, namely 8x5y4, 6xy, 3y and 2. We can see there are essentially two parts which
make up each term of a polynomial, the numerical coefficient and the multiplicative com-
bination of the variables. This multiplicative combination is called a monomial. We say
that the coefficients belong to some ring, R, and that the polynomial is formed over that
base ring [4]. In other words, polynomials over R to mean a ring of polynomials whose
coefficients belong to R. In the above example, the polynomial p(x,y) is a polynomial
over Z with variables x and y. The ring formed by such polynomials is denoted by Z[x,y].

In general, polynomials can be univariate or multivariate polynomials over R. A poly-
nomial ring in the variables x1,...,xn over the base ring R is represented by R[x1,...,xn] [4].
We say it is univariate if variables v = 1 and multivariate if v > 1. In addition, specific
polynomials have some aspects of internal structures. For example, a non-zero polyno-
mial p ∈ R[x1,...,xn] have the following properties: leading terms, the first non-zero terms
of p; leading coefficient, the coefficient of leading term; total degree, the maximum sum
of exponent of a single non-zero term, etc. Detail reference regarding polynomials rings,
definitions, notations, and internal structures can be found in [21] [4]. Some aspects of
these internal structures can be used to perform polynomial ordering (term ordering).
The two common polynomial orderings are lexicographical and degree lexicographical.

Given a bivariate monomial lexicographical ordering looks like [4]:

xnyn > xn-1yn > ... > xyn > ... > x > yn > yn-1 > ... > y > 1.

Given a bivariate monomial degree lexicographical ordering looks like [4]:

xnyn > xnyn-1 > xn-1yn > ... > x2y > xy2 > x2 > xy > y2 > x > y > 1.

Sorting the parsed polynomial is important to define not only leading or first but
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also canonical representation of a polynomial. This representation is computationally
important to efficiently perform operations such as degree, leading term, and equality
testing. For our parsing library, we use lexicographical ordering.

There are dense and sparse polynomial representations. Dense polynomials include
terms whose coefficients are zero, whereas sparse polynomial terms always include non-
zero coefficients values. Simply put, a sparse polynomial is one whose zero coefficients
are not explicitly stored. A natural sparse representation of a polynomial is a list of
nonzero coefficient-exponent tuples. The parser uses sparse data-structures (linked-lists
and alternating arrays) thus assuming by default that the input polynomial is sparse.

2.5 Basic polynomial algebra subprograms
Basic Polynomial Algebra Subprograms (BPAS) is an open-source library for high-performance
polynomial operations; it is mainly written in C for performance and C++ to take ad-
vantage of object-oriented programming, interface portability, and end-user usability [4].
These high-performance polynomial operations include arithmetic, real root isolation,
and polynomial system solving. BPAS makes use of the CilkPlus extension tool for par-
allelization and improved performance on multi-core processes [2]. It is within this library
that we include our parallel polynomial parsing library that generates BPAS compati-
ble polynomial data structure. Our parsing library is highly optimized to parse both
dense and sparse polynomials; to accomplish this task, during the parsing process, we
take advantage of the highly optimized functions available in the BPAS library for some
arithmetic operations.

2.6 Alternating array
The BPAS library uses an alternating array data structure to effectively and efficiently
represent a polynomial. An alternating array polynomial representation stores both co-
efficients and monomials side-by-side in the same array. When coefficient and monomials
are side-by-side, it increases the locality of a coefficient with respect to its monomials [4].
On the other hand, storing the coefficients directly in the array increases the distance
between adjacent monomials or coefficients. This decreases the locality of monomials
with respect to its adjacent monomials and vice versa.

A single polynomial term is a combination of a coefficient (integer or rational number)
and monomial. Since the BPAS library requires multi-precision coefficients, it uses GMP
(GNU Multi-Precision arithmetic)—a highly optimized library for operating arbitrary
precision arithmetic on integers and rational numbers—to encode coefficients [10]. Sim-
ilarly, monomials need optimal representation. Monomials contain an unsigned integer
vector (array) of exponents and their associated variables; we only need to encode the
exponent vector because we imposed lexicographical ordering on the variables. Although
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encoding exponent vectors improves memory used by an alternating array, the BPAS
library uses an exponent packing strategy to further improve memory footprint. Expo-
nent packing is a method of encoding multiple integers into a single (64-bit) machine
word; this can be accomplished using bit-masks and shifts [4, 36]. For more about how
exponent vectors are packed into a single (64-bit) machine word, refer to [4].

Exponent packing has a huge advantage in BPAS alternating array polynomial repre-
sentation. It saves memory and has an important computational advantage since it uses
a single machine word for each monomial [4]. Using a single machine word monomial im-
proves the overheads associated with Arithmetic algorithms memory usage and machine
instruction size [4].

2.7 Bison and flex
Flex and Bison are open source tools used to build programs that handle structured
input [13]. There are many reasons why we chose to use Flex and Bison to build our
parser; in general, these tools together generate a parser that is faster for any complex
grammar in a short time; also, updating and fixing Flex and Bison source code is easier
than debugging custom designed parsers source code. In addition, parsing specific types
of polynomial has its challenges; manually writing a parser that handles nested polyno-
mials is impossible and difficult but Flex and Bison can easily resolve this challenge.

2.7.1 Flex
Scanning is the process of looking for a pattern in an input. For example, in a binary
arithmetic operation, there are two operands and an operator. The operands can be
variables assigned to a number or constant values. To describe these patterns we will use
regular expressions. A Flex program consists of a list of regular expressions with instruc-
tions on what to do when the input matches called actions. Therefore, a flex generated
scanner reads the input and matches the input against the regular expression and per-
forms the appropriate actions [13]. As we stated earlier, a flex scanner uses a rich regular
expression language. This pattern description uses a metalanguage, a language used to
describe what we want the pattern to match. Although flex can generate a scanner for
many programming languages, by default flex generates a C programming source code.
The output generated by flex is fed to Bison as an input to create a parser.

2.7.2 Bison
Once the input streams are divided into pieces or tokens, we use the Bison program to
group them logically. To do this first we specify a grammar so bison can recognize it.
Bison takes a grammar that we specified and writes a parser that recognizes a syntacti-
cally valid sentence.
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When running a Bison generated parser, the parser works by looking for rules that
might match the tokens seen so far, then it creates a set of states with the possible
positions in a partially parsed rules [13]. As a token is read, if it doesn’t complete a
rule, it is pushed to an internal stack and switches to a new state that reflects the token
it read. This step is known as shift. Similarly, if a right-hand side symbol from the
grammar that matches the sets of tokens in the stack is found, they are popped from the
stack and replaced by the right-hand side symbol. This process is known as reduction.
Few parsing algorithms follow the above steps. Bison generates an LALR(1) parser by
default [13]. In addition to this, bison is capable of recognizing ambiguous grammars,
and shift-shift or shift-reduce conflicts.
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Serial parser

In this chapter, we will discuss our serial parser and its implementation. We will start
with a brief introduction on why we chose linked-list over an alternating array as our
default data structure in Section 3.1. Scanning and parsing requires defining a regular
expression to tokenize an input polynomial and using grammar to validate its structure.
In Section 3.2, we will discuss regular expressions and grammars used in Flex and Bison
generated codes, and in Section 3.2.3, we will explore all the grammar productions and
their action codes. Finally, we conclude the chapter with a conclusion, Section 3.3.

3.1 Disadvantage of packed alternating array in pars-
ing

In general, parsing an input polynomial has two main steps. Initially, we run it through a
lexical analyzer or a scanner to divide the input into meaningful chunks or tokens based
on a predefined regular expression. Then a syntax analyzer or parser takes these tokens
to group them logically [13]. During these two steps, tokens passed from the scanner to
the parser are assembled into terms and afterward to polynomials. We can accomplish
this using the C code defined in the action section of the bison grammar as described in
Chapter 2.

The actions taken throughout each reduction step during syntax analysis—executing
codes associated with the rule—determines the time efficiency of our parser. It implies
each time tokens are grouped into a term production, the time to reallocate contiguous
memory location for an alternating array will significantly affect run time. While packed
alternating array polynomial is an effective and efficient data structure to perform poly-
nomial operations, it is not an efficient data structure to use for our parser.

To level with this difficulty, we used a linked-list as our parser’s main data structure.
It is faster to operate our parser using a linked-list data structure and later convert the
result to an alternating array. An additional reason to choose a linked-list is that it
is a dynamic data structure, its size can grow and shrink at runtime by allocating and
deallocating memory. Also, insertion and deletion of nodes can be done at constant time,

28
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i.e., saving time wasted to re-allocating memory for fixed-size data structures like an al-
ternating array. During the parsing process, every node in the linked-list is a polynomial
term. Whenever tokens are grouped into a term, the reduction action will create a new
linked-list for the first time or perform an update on an existing linked-list with constant
time, i.e., O(1).

3.2 Scanning and parsing
In the previous section, we stated the two main steps involved in parsing an input poly-
nomial: scanning and parsing. In this section, we will see how these steps are combined
to create a serial parser. As described in Chapter 2, we will be using flex and bison to
generate a scanner and parser library.

3.2.1 Scanning with flex
Tokenizing input data using a lexical analyzer such as flex to produce tokens requires
rich regular expression language. Flex uses regular expression—pattern description us-
ing metalanguages—to describe what we want the pattern to match [13]. This regular
expression language used in flex is a POSIX-extended regular expression. It means the
metalanguages are standard text characters to represent themselves and their patterns.
Luckily, generating a pattern description or regular expression for an input polynomial
is not as complicated as it sounds. Table 3.1 shows all patterns used to tokenize a
string polynomial using our scanner, and their return types. The Token column shows
the definition of the tokens, whereas the Token Values column shows the actual regu-
lar expressions. For example, when tokenizing the polynomial term 8∗xˆ5, the scanner
recognizes the following patterns: [rational numbers],[multiply], [variables], [power ], and
[digit]. Once a token is recognized by one of the regular expressions in Table 3.1, it is
returned by the function yylex—a entry point C function name that flex program gives
to the scanner. This return value passed to the parser generator (Bison) as a string type
and grouped logically based on a pre-defined grammar.

3.2.2 Parsing with bison explain
As described in the Bison introduction paragraph in Chapter 2, Bison logically groups
sets of tokens using a well-defined grammar. Since we are using the default LALR(1)
algorithm, bison takes a pre-defined grammar and writes a parser that recognizes valid
polynomial syntax. Grammar 3.1 shows all the production steps involved to generate
a parser that returns a single linked-list polynomial data structure before converting it
into an alternating array.

In the previous paragraph, we stated that Grammar 3.1 generates a single linked-list
polynomial data structure from an input polynomial. Depending upon the input type,
it is not always the case. When an un-expanded input polynomial is used, i.e., one
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that requires arithmetic operation such as multiplication, the semantic value assigned to
the production will change from a linked-list to an alternating array. It is because our
parser depends on the BPAS arithmetic operation helper library—SMQP_Support—for
arithmetic operations. These functions take in an alternating array as input and return
an alternating array. Some of these arithmetic functions used from the library include:
addPolynomials_AA, to add two alternating arrays; exponentiatePoly_AA, to exponen-
tiate an alternating array; and multiplyPolynomials_AA, to multiply two alternating
arrays. Although we stated that linked-list to be our parser main data structure, if an
arithmetic operation is required in the parsing process, the linked-list data structure will
be converted to an alternating array. Section 3.2.3 will clarify the previous statement
when we talk about the action codes triggered by poly production rules.

Tokens Token Values Return type Enum
digit [0− 9]+ NUM

variables [a− zA− Z_] [_a− zA− Z0− 9] ∗ VAR
whitespace [ \t] ∗
newlines [\n] \n
period ”.” exit

rational numbers [0− 9] + \/[0− 9]+ RATNUM
negative rational numbers [−][0− 9] + \/[0− 9]+ MINUS RATNUM

minus ”− ” MINUS
plus ” + ” PLUS
divide ”/” DIVIDE

left bracket ”(” L_BRACE
right bracket ”)” R_BRACE

multply ” ∗ ” MULTIPLY
comma ”, ” COMMA

left square bracket ”[” LS_BRACE
right square bracket ”]” RS_BRACE

power ”ˆ” POWER

Table 3.1: Alternating Array definition and helpers

To understand how our Bison’s parser generates an alternating array, we will look into
each production and their corresponding action code. Our Bison generated parser uses
eight productions with multiple rules to parse a flat1 or un-expanded2 input polynomial
to an alternating array as shown in Grammar 3.1. Depending on the input type (flat
or un-expanded), it will return an alternating array or a linked-list that requires an
additional step to convert it to an alternating array. Once converted, the alternating
array monomials are simplified to contain only the exponent vector. For this reason, to
keep track of the exponent vectors and their size, our parser uses two helper properties

1plain simple polynomial without any nested components
2nested polynomial
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〈polynomial〉 ::= 〈poly〉
| 〈polynomial〉 〈other〉
| 〈empty〉

〈poly〉 ::= 〈poly〉 ‘+’ 〈poly〉
| 〈poly〉 ‘-’ 〈poly〉
| ‘(’ 〈poly〉 ‘)’‘^’ 〈exponent〉
| 〈MINUS〉 ‘(’ 〈poly〉 ‘)’‘^’ 〈exponent〉
| 〈poly〉 ‘*’ ‘(’ 〈poly〉 ‘)’
| 〈poly〉 ‘*’ 〈term〉
| 〈term〉 ‘*’ ‘(’ 〈poly〉 ‘)’
| 〈coef 〉 ‘*’ ‘(’ 〈poly〉 ‘)’
| 〈poly〉 ‘+’ 〈term〉
| 〈poly〉 ‘-’ 〈term〉
| ‘(’ 〈poly〉 ‘)’
| 〈MINUS〉 ‘(’ 〈poly〉 ‘)’
| 〈term〉

〈term〉 ::= 〈coef 〉
| 〈powerVariable〉
| 〈coef 〉 ‘*’ 〈term〉
| 〈powerVariable〉 ‘*’ 〈term〉

〈powerVariable〉 ::= 〈variable〉 ‘^’ 〈exponent〉
| 〈variable〉

〈variable〉 ::= 〈VAR〉
| 〈MINUS〉 〈VAR〉

〈exponent〉 ::= 〈NUM 〉

〈coef 〉 ::= 〈NUM 〉
| 〈MINUS〉 〈NUM 〉
| 〈MINUS〉 〈RATNUM 〉
| 〈RATNUM 〉

〈other〉 ::= 〈variable〉
| ‘[’ 〈other〉
| 〈other〉 ‘]’
| 〈other〉 ‘,’ 〈variable〉

Grammar 3.1: Bison grammar that reduces non-terminal term into non-terminal poly.
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of type string array and an integer. These properties are defined as g_variables and
g_num_variables. These properties are returned with the parsed polynomial.

3.2.3 Bison grammar rules and action codes
Since Bison is a bottom up parser, we will start explaining Grammar 3.1 production
rules starting from the last production. The bottom production, coef, has six rules:
NUM, MINUS NUM, RATNUM, and MINUS RATNUM. These rules are matching ter-
minal symbols used in the regular expression Table 3.1 column Return type Enum. When
one of these rules are a match, the token returned is a coefficient. All six rules have simple
action, i.e., to convert the token value to a string. Listing 3.1 shows rule MINUS NUM
action code; the symbol $2 and $$ are reference to NUM token and coef, respectively.

Listing 3.1: Bison grammar production coef action codes for rule MINUS NUM

1 char * negative_num = (char *) calloc ( strlen ($2)+2, sizeof (char));
2 strncat ( negative_num , "-", 1);
3 strncat ( negative_num , $2 , strlen ($2));
4 $$ = negative_num ;

The exponent production, as the name suggests identifies exponents; this production
is triggered if NUM token is followed by a POWER token. The production has one rule
that converts token NUM to a string as shown inListing 3.2.

Listing 3.2: Bison grammar production exponent action codes for rule NUM

1 $$ = strdup ($1);
2 free($1);

The variable production has two rules: VAR, a rule that matches variable token; and
MINUS VAR, a rule that matches a negative variable. All variables without coefficient
are considered to have a 1 as their coefficient. Similarly, a negative variable has -1 as
its coefficient. Therefore, similar to the expoenent production, the action taken by the
variable production converts the token value to a string.

The powerVariable production is matched when a monomial with a single variable
introduced. This production has two rules: variable POWER exponent, and variable. As
discussed in Chapter 2, Bison uses stack memory as part of the parsing process. If stack
memory matches one of these rules, it will reduce to a monomial with a single variable.
As a result, a special struct type called powervar is returned by the action code. To
create this type, we used a helper function called create_power_var that combines a
variable and a power exponent. Listing 3.3 shows action code for the first rule (variable
POWER exponent). Similar action can be applied to the second rule with an exponent
value of 1.
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Listing 3.3: Bison grammar production powerVariable action codes for rule NUM

1 powervar * temp_power_var ;
2 temp_power_var = create_power_var ($1 , strtoul ($3 , NULL , 10));
3 $$ = temp_power_var ;

After creating one or more powervar struct types in the powerVariable production,
the next step is to generate a polynomial term. The term production action code gen-
erates a term; it is a combination of one or more powervar preceded with or without a
coefficient. We used a special C struct type, term_q to represent a polynomial term in
our parser. To match the term production, the matching token on top of the memory
stack must be preceded and followed by either a PLUS or MINUS token. The following
five rules define the structure of a polynomial term:

1. Rule coef : a number or coefficient,
2. Rule powerVariable: a combination of a variable followed by an exponent or pow-

ervar type,
3. Rule coef MULTIPLY term: the product of a number or coefficient and a term_q

type,
4. Rule powerVariable Multiply term: the product of multiple powervar type,
5. Rule powerVariable MULTIPLY L_BRACE term R_BRACE : any term_q type in

parenthesis muliplied by a powervar type

To generate a term_q type we used two helper functions: create_term_empty_q,
instantiate term_q structure; and linked_list_fill_term_exponent, initialize the struc-
ture components. Listing 3.4 shows the action code used for rule powerVariable in term
production. The action code initially creates an empty term_q type in Line 2. Since
the coefficient value is 1, Line 3 checks if it is preceded by a MINUS token to apply the
correct sign. The function in Line 7 initializes the empty term_q components instanti-
ated in Line 2. All the other rules from the term production share similar action code
as Listing 3.4 with a few exceptions (refer the full source code).

Listing 3.4: Bison grammar production powerVariable action codes for rule NUM

1 term_q * local_term ;
2 local_term = create_term_empty_q ( pParserEntry -> g_num_variables );
3 if( pParserEntry -> is_negative_var ){
4 mpq_set_str (local_term ->coef , " -1", 10);
5 pParserEntry -> is_negative_var = 0;
6 }
7 linked_list_fill_term_exponent ( pParserEntry -> g_variables ,
8 local_term ->deg ,
9 $1 ->var ,
10 $1 ->exp ,
11 &( pParserEntry -> g_num_variables )
12 );
13 $$ = local_term ;
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Finally, the last production that will generate a linked-list or alternating array is
the poly production. This production has multiple rules that are carefully crafted to
reduce any parsing conflicts. To reduce tokens residing in the stack memory into a poly
production type, i.e., linked-list or alternating array, it must contain one or more term_q
types. One or more terms can make up a polynomial. When term_q types that make up
a single polynomial are shifted (pushed) into the stack, they are preceded and followed by
a PLUS or MINUS tokens. Below is a list of all the possible rules and their descriptions
to create of a poly type:

1. Rule term: reduces one or more terms to poly,
2. Rule MINUS L_BRACE poly R_BRACE : negates a poly surrounded by a paren-

theses and reduced to a poly,
3. Rule L_BRACE poly R_BRACE : a poly surrounded by a parentheses is reduced

to a poly,
4. Rule poly MINUS term: a term subtracted from a poly is reduced to a poly,
5. Rule poly PLUS term: a term added to a poly is reduced to a poly,
6. Rule coef MULTIPLY L_BRACE poly R_BRACE : a coefficient multiplied by a

poly surrounded by parentheses is reduced to a poly,
7. Rule term MULTIPLY L_BRACE poly R_BRACE : a term multiplied by a poly

surrounded by parentheses is reduced to a poly,
8. Rule poly MULTIPLY term: a poly multiplied by a term is reduced to a poly,
9. Rule poly MULTIPLY L_BRACE poly R_BRACE : a poly multiplied by a poly

surrounded by parentheses is reduced to a poly,
10. Rule MINUS L_BRACE poly R_BRACE POWER exponent: a poly surrounded

by parentheses is negated and exponentiated then reduced to a poly,
11. Rule poly MINUS poly: a poly subtracted from a poly is reduced to a poly,
12. Rule poly PLUS poly: a poly added to a poly is reduced to a poly,

Most poly production rules return a linked-list semantic3 value; the following are rules
that return an alternating array: MINUS L_BRACE poly R_BRACE POWER exponent;
poly MULTIPLY L_BRACE poly R_BRACE ; poly PLUS poly; and poly MINUS poly. If
the input polynomial type, i.e., flat or un-expanded, affect the semantic type (linked-list
or alternating array) of the parsed polynomial to change from a linked-list to an alter-
nating array, some of the poly production rules action codes have a conditional statement
that dynamically guide to the correct action code. These conditional statements rely on
a boolean variable called ret_type, i.e., one of the many C properties defined to assist
the Bison code. ret_type is a return_type enum that keeps track of the current state
of poly semantic value pushed into the stack memory. It means, if a poly production
semantic value is linked-list, ret_type is assigned LINKEDLIST_TYPE, otherwise it is
an ALTARRAY_TYPE. For example, if poly PLUS poly rule is invoked, and if the first
poly semantic value pushed to the stack as a linked-list and the second poly semantic
value is an alternating array, a type mis-match error will occur.

Most poly production rules have similar initiation action code or algorithm before

3a production return value; bisons $$ contains the return value from its corresponding action code
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generating a linked-list or an alternating array. Listing 3.5 shows the action code for the
term rule. If this rule is called for the first time, ret_type will be LINKEDLIST_TYPE.
Then an empty linked-list created using a helper function create_linked_list_q. The
value associated with the rule is referenced using $1. This value has a C struct type
called term_q. The value is inserted into the empty linked-list created in Line 11 using
the helper function called linked_list_insert_q in Line 12.

Listing 3.5: Bison grammar production poly action codes for rule term

1 if( pParserEntry -> ret_type == return_type :: ATLARRY_TYPE ){
2 AltArr_t * temp_aa = makePolynomial_AA ( DEFAULT_AA_SIZE ,
3 pParserEntry -> g_num_variables );
4 parser :: add_packed_degree_term_to_smqp_aa (temp_aa ,
5 (( term *)$1)->exp ,
6 (( term *)$1)->coef ,
7 pParserEntry -> g_num_variables );
8 $$. list_ret = temp_aa ;
9 $$. cur_num_vars = pParserEntry -> g_num_variables ;
10 }else{
11 linked_list_q * temp_ll = create_linked_list_q ();
12 linked_list_insert_q (temp_ll , NULL , ( term_q *)$1);
13 $$. list_ret = temp_ll ;
14 $$. cur_num_vars = pParserEntry -> g_num_variables ;
15 }

When the poly production rule MINUS L_BRACE poly R_BRACE match the stack
memory for reduction, the action code invoked depends on the ret_type value. If the
value is an alternating array, a BPAS helper function is invoked to negate the alternating
array. On the contrary, for a linked-list, a similar helper function is used to negate the
polynomial referenced by $3.list_ret. Listing 3.6 shows the action code for this rule.

Listing 3.6: Bison grammar production poly action codes for rule term

1 if( pParserEntry -> ret_type == return_type :: ATLARRY_TYPE ){
2 negatePolynomial_AA (( AltArr_t *) $3. list_ret );
3 $$. list_ret = $3. list_ret ;
4 $$. cur_num_vars = pParserEntry -> g_num_variables ;
5 }else{
6 linked_list_negate (( linked_list_q *)$3. list_ret );
7 $$. list_ret = $3. list_ret ;
8 $$. cur_num_vars = pParserEntry -> g_num_variables ;
9 }

One of the simplest action codes in the poly production is for the rule L_BRACE
poly R_BRACE as shown in Listing 3.7. It extracts the value of a production that is
surrounded by parentheses, and returns a linked-list.
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Listing 3.7: Bison grammar production poly action codes for rule term

1 $$. list_ret = $2. list_ret ;
2 $$. cur_num_vars = pParserEntry -> g_num_variables ;

The rules poly PLUS term and poly MINUS term use arithmetic operations to add
or subtract a term to or from a polynomial. The rule with the PLUS token uses
addPolynomial_AA. It is BPAS helper function that adds a term to an alternating array
if ret_type is ALTARRAY_TYPE as shown in Line 8; the alternating array is created
in Line 2 using makePolynomial_AA helper function. On the other hand, if ret_type a
is LINKEDLIST_TYPE, the term in ($3 ) is inserted into an existing linked-list in ($1 ).
The same algorithm is applied to the rule with the MINUS token except it negates the
term to reflect the correct term_q coefficient. Listing 3.8 shows the action code to add a
negated term_q type to an alternating array or linked-list depending upon ret_type value.

Listing 3.8: Bison grammar production poly action codes for rule poly MINUS term

1 if( pParserEntry -> ret_type == return_type :: ATLARRY_TYPE ){
2 AltArr_t * temp_aa = makePolynomial_AA ( DEFAULT_AA_SIZE ,
3 pParserEntry -> g_num_variables );
4 parser :: add_packed_degree_term_to_smqp_aa (temp_aa ,
5 (( term *)$3)->exp , (( term *)$3)->coef ,
6 pParserEntry -> g_num_variables );
7 negatePolynomial_AA ( temp_aa );
8 $$. list_ret = addPolynomials_AA (( AltArr_t *)$1.list_ret ,
9 temp_aa ,
10 pParserEntry -> g_num_variables );
11 $$. cur_num_vars = pParserEntry -> g_num_variables ;
12 freePolynomial_AA ( temp_aa );
13 free_linked_list_term_q (( term_q *)$3);
14 }else{
15 mpq_t temp_coef ;
16 mpq_init ( temp_coef );
17 mpq_set_str (temp_coef , " -1", 10);
18 mpq_mul ((( term_q *)$3)->coef ,
19 (( term_q *)$3)->coef ,
20 temp_coef );
21 linked_list_insert_q (( linked_list_q *)$1.list_ret ,
22 NULL ,
23 ( term_q *)$3);
24 $$= $1;
25 mpq_clear ( temp_coef );
26 }

When the stack memory matches a rule that multiplies a coefficient with a linked-list
in a parenthesis, the reduction rule coef MULTIPLY L_BRACE poly R_BRACE is in-
voked. The helper function linked_list_multiply_constant_coef is used to evaluate their
products as shown in Listing 3.9. The coefficient and linked-list values are referenced
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using the symbol $1 and $4, respectively.

Listing 3.9: Bison grammar production poly action codes for rule poly MINUS term

1 linked_list_multiply_constant_coef (
2 ( linked_list_q *)$4.list_ret ,
3 $1
4 );
5 $$. list_ret = ( linked_list_q *)$4. list_ret ;
6 $$. cur_num_vars = pParserEntry -> g_num_variables ;

Similarly, when we multiply a term with a polynomial, the stack memory is reduced to
the following rules: term MULTIPLY L_BRACE poly R_BRACE, and poly MULTIPLY
term. Listing 3.10 shows the action code for the production rule term MULTIPLY L_-
BRACE poly R_BRACE. In Line 1, helper functions linked_list_multiply_constant_-
term_q are invoked. It multiplies a term referenced by $1 and a polynomial linked-list
referenced by $4.

Listing 3.10: Bison grammar production poly action codes for rule poly MINUS term

1 linked_list_multiply_constant_term_q (
2 ( linked_list_q *)$4.list_ret ,
3 ( const term_q *)$1 ,
4 pParserEntry -> g_variables ,
5 pParserEntry -> g_num_variables
6 );
7 $$. list_ret = $4. list_ret ;
8 $$. cur_num_vars = pParserEntry -> g_num_variables ;

When two polynomials are multiplied, the rule poly MULTIPLY L_BRACE poly R_-
BRACE is matched. The resulting polynomial is an alternating array. This is because
we are utilizing the BPAS helper function called multiplyPolynomials_AA. The function
takes in the polynomials as a sorted alternating array arguments. This means the input
arguments are alternating arrays that require to be sorted before invoking the function.
Even worse, if one or both the input arguments are linked-list, they have to be sorted
and converted to an alternating array. Listing 3.11 shows the action code applied to
reduce a stack memory that matches the product of two polynomials.

Listing 3.11: Bison grammar production poly action codes for rule poly MULTIPLY L_BRACE poly
R_BRACE

1 if( pParserEntry -> ret_type == return_type :: ATLARRY_TYPE ){
2 AltArr_t * temp_aa_result = makePolynomial_AA (
3 DEFAULT_AA_SIZE ,
4 pParserEntry ->

g_num_variables
5 );
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6 mergeSortPolynomial_AA (( AltArr_t *)$1. list_ret );
7 mergeSortPolynomial_AA (( AltArr_t *)$4. list_ret );
8 temp_aa_result = multiplyPolynomials_AA (
9 ( AltArr_t *)$1.list_ret ,
10 ( AltArr_t *)$4.list_ret ,
11 pParserEntry ->

g_num_variables
12 );
13 $$. list_ret = temp_aa_result ;
14 $$. cur_num_vars = pParserEntry -> g_num_variables ;
15 }else{
16 AltArr_t * temp_aa_result = makePolynomial_AA (
17 DEFAULT_AA_SIZE ,
18 pParserEntry ->

g_num_variables
19 );
20 AltArr_t *first = convert_linkedlist_to_altarr_q (
21 ( linked_list_q *)$1.list_ret ,
22 pParserEntry ->

g_num_variables
23 );
24 mergeSortPolynomial_AA (first);
25 linked_list_destroy_q (( linked_list_q *)$1. list_ret );
26 AltArr_t * second = convert_linkedlist_to_altarr_q (
27 ( linked_list_q *)$4.list_ret ,
28 pParserEntry ->

g_num_variables
29 );
30 mergeSortPolynomial_AA ( second );
31 linked_list_destroy_q (( linked_list_q *)$4. list_ret );
32 temp_aa_result = multiplyPolynomials_AA (first ,
33 second ,
34 pParserEntry ->

g_num_variables
35 );
36 $$. list_ret = temp_aa_result ;
37 $$. cur_num_vars = pParserEntry -> g_num_variables ;
38 pParserEntry -> ret_type = return_type :: ATLARRY_TYPE ;
39 }

When exponentiating a polynomial, the rules L_BRACE poly R_BRACE POWER
exponent and MINUS L_BRACE poly R_BRACE POWER exponent matches during
reduction. Also, the action code uses the BPAS helper function, exponentiatedPoly_AA.
Both rules have similar action code that produces an alternating array. The only differ-
ence is that the second rule has a MINUS token in front of the polynomial, i.e., poly ($2)
must be negated before exponentiation. Listing 3.12 shows the action code for the rule
L_BRACE poly R_BRACE POWER exponent. Initially, the linked-list polynomial to
exponentiate is sorted in Line 1. Then it is converted to an alternating array in Line
6. Line 14 exponentiates the polynomial to return an alternating array.
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Listing 3.12: Bison grammar production poly action codes for rule L_BRACE poly R_BRACE POWER
exponent

1 $2. list_ret = serial_list_sort (
2 ( linked_list_q *)$2.list_ret ,
3 pParserEntry -> g_num_variables ,
4 CACHE , MAX_SORT
5 );
6 AltArr_t *arr = convert_linkedlist_to_altarr_q (
7 ( linked_list_q *)$2.list_ret ,
8 pParserEntry -> g_num_variables
9 );
10 linked_list_destroy_q (( linked_list_q *)$2. list_ret );
11 AltArr_t *ret = makePolynomial_AA ( DEFAULT_AA_SIZE ,
12 pParserEntry -> g_num_variables
13 );
14 ret = exponentiatePoly_AA (arr , atoi($5),
15 pParserEntry -> g_num_variables
16 );
17 $$. list_ret = ret;
18 $$. cur_num_vars = pParserEntry -> g_num_variables ;
19 pParserEntry -> ret_type = return_type :: ATLARRY_TYPE ;

The last two rules of poly production are poly PLUS poly and poly MINUS poly;
these rules add and subtract two polynomials respectively. If the semantic value of these
rules is an alternating array, we can utilize the addition function addPolynomial_AA.
Otherwise, we will use linked_list_cat_q to concatenate two linked-list. Both rules have
similar action code, except during subtraction, the polynomial to subtract is negated.
Listing 3.13 shows the action code for adding two polynomials.

Listing 3.13: Bison grammar production poly action codes for rule poly PLUS poly

1 if( pParserEntry -> ret_type == return_type :: ATLARRY_TYPE ){
2 AltArr_t * temp_aa_result = makePolynomial_AA ( DEFAULT_AA_SIZE

,
3 pParserEntry -> g_num_variables
4 );
5 mergeSortPolynomial_AA (( AltArr_t *)$1. list_ret );
6 mergeSortPolynomial_AA (( AltArr_t *)$3. list_ret );
7 temp_aa_result = addPolynomials_AA (( AltArr_t *)$1.list_ret ,
8 ( AltArr_t *)$3.list_ret ,
9 pParserEntry -> g_num_variables
10 );
11 $$. list_ret = temp_aa_result ;
12 $$. cur_num_vars = pParserEntry -> g_num_variables ;
13 }else{
14 linked_list_cat_q (( linked_list_q *)$1. list_ret ,
15 ( linked_list_q *)$3. list_ret
16 );
17 $1. list_ret = serial_list_sort (( linked_list_q *)$1.list_ret ,
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18 pParserEntry -> g_num_variables , CACHE ,
MAX_SORT

19 );
20 $$. list_ret = $1. list_ret ;
21 $$. cur_num_vars = pParserEntry -> g_num_variables ;
22 }

Our Bison generated parser is a reentrant parser, i.e., a thread-safe parser that is
written in a C++ programming language (Chapter 2). The practical way to create a
parallel parser is to use a reentrant parser. We adapted this reentrant parser without
compromising efficiency so that we can organize all the parse-time variables used by bi-
son grammar in a C++ class. There are four C++ fields used as a parse-time variables4

in our Bison grammar. These parse-time variables, as defined in the source code are,
g_variables, g_num_variables, llist_q_data, altarr_data, and ret_type. The first two
parse-time variables are introduced in the last section; g_variables is an array that stores
all the variables used in the input polynomial, and g_num_variables tracks the array
size. After the input polynomial is parsed and returned as a linked-list, it is stored in
llist_q_data. Otherwise, if it is an alternating array it is stored in altarr_data. Fi-
nally, the property ret_type is an enum type; it is used to track the currently half way
parsed input type or the fully parsed polynomial type. This property is directly accessi-
ble in the grammar action code through a special Bison keyword. This keyword is called
%parse-param, it is used to access user defined parse-time variables by passing them as
argument [6].

Algorithm 1 shows a simple entry point class method to our serial parser. The algo-
rithm takes in two arguments. A string polynomial to parse, and a scanner variable that
is used by Flex program. The scanner variable of type yysacn_t is initialized using the
function yy_init. Once the scanner is initialized, the input string is streamed to an in-
ternal buffer(default scanned size limitation is 16Kb) using the function yy_scan_string.
In Line 3, yyparse function, i.e., a parser function generated by the Bison program, uses
the scanner variable and parses the input. If the parser is successful, an alternating array
or a linked-list will be returned. The variable result will return 1 if successful. The next
step is to generate the final output. The first step is to determine the parsed output
result; the variable ret_type of type return_type is used to track the return type of the
output. If it is an alternating array, the array is sorted using a merge sort algorithm and
returned. Otherwise, the linked-list is converted to an alternating array before sorting
and returning.

In the grammar, the production other scans additional information provided with
the input polynomial, i.e., variables used in the polynomial. This information helps the
parser to perform a single pass execution. Otherwise, we need to scan the input polyno-
mial twice, once to discover the variable, then to parse. This is an efficient step that will
speed up the serial parser; it does not need to update the array (linked-list or alternating)

4Parse-time variables are common values that are modified by the parser throughout the parsing
process
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variable count during parsing.

Algorithm 1: Bison parser entry point algorithm
Input: An Expanded or Nested String Polynomial input
Input: A flex scanner yysacn_t type scanner
Output: An Alternating Array altarr_data

1 yylex_init(scanner)
2 yy_scan_string(input, scanner)
3 result ←yyparse(scanner)
4 if result then
5 if ret_type == Alternating_Array then

mergeSortPolynomial_AA(altarr_data)
return altarr_data

6

7 else
altarr_data = convert_linkedlist_to_altarr_q(llist_q_data,
g_num_variables)
mergeSortPolynomial_AA(altarr_data)
return altarr_data

8

9 else
10 return NULL

3.3 Conclusion
Parsing a string input to a BPAS compatible polynomial using Grammar 3.1 is a gradual
process. Tokens are reduced from the stack if there is only a matching production rule.
If reduced, poly production holds a partially or fully parsed polynomial until the entire
input string is scanned. During the parsing process, if any action code in the poly produc-
tion rules uses functions from the BPAS helper library, the fully parsed input polynomial
data structure is returned as an alternating array. Usually, this happens when the input
string is a nested polynomial. Otherwise, a linked-list is generated; a linked-list is an
efficient data structure to our parser. Since the BPAS library operates on an alternating
array, we convert this linked-list to an alternating array for a final output. It is more
efficient and faster to process the input using a linked-list data structure during parsing
and convert it to an alternating array for final ourput.
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Parallel parser

In this chapter, we will introduce our parallel parsing algorithm. In Section 4.1, we will
have a background introduction to parallel parsing; Section 4.1.1, fork-join control flows
data management; and Section 4.1.3, CilkPlus, the extension tool used to parallelize our
parser. Also, we will do an in-depth explanation on how the CilkPlus tool works and
how it utilizes the fork-join design pattern. In Section 4.2, we will lay out our parallel
parser design architecture and explain the difference between our serial and parallel
implementations. Our parallel parser is divided into four stages: each stage has tasks
executed with a specific algorithm. Stages one and two, Section 4.2.1 and Section 4.2.2,
are where we split and organize the input. In stage three, Section 4.2.3, we parse the
split input in parallel. Finally, stage four, Section 4.2.4, is where we convert the input
polynomial to a BPAS compatible data structure if needed. Each stage has a specific
algorithm, we will examine each algorithm in-depth.

4.1 Introduction to parallel parsing
The opportunity for parallel execution of computations strongly depends on the archi-
tecture of the execution platform [20, p. 9]. All modern computers support hardware
parallelism through at least one of the many parallel features such as multithreaded
cores, multicore processors, vector instruction, and graphic engines, etc. [16, p. 1]. In
this chapter, our focus is on multicore processors. Our parser will be utilizing all the
available resources within a multicore processor at the instruction level to gain signifi-
cant performance increase [20, p. 9]. This is possible because we can approach practical
parallel programming problems with common parallel algorithm design patterns. To par-
allelize our parser, we will be using the fork-join [16, p. 20] design pattern with the help
of a high-level programming extension tool called CilkPlus.

4.1.1 Fork-Join control flow data managment
An algorithm has two fundamental components, tasks, and data. A task operates on
data, this creates data dependency. When a data dependency occurs, a task cannot
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execute before the data it needs is generated by another task [16, p. 39]. Control depen-
dency is another kind of dependency which occurs when an event due to I/O operations
results in ordering [16, p. 39]. These control flow dependencies can be managed using
task managements such as fork-join design patterns. To characterize the parallelism
available in processor types, we have to understand how they combine control flow and
data management. Flynn’s characterization is a classical categorization that divides par-
allel processors whether they have multiple flows of control, multiple streams of data, or
both. These categories include: Single Instruction Single Data (SISD), a single processor
element that has access to a single program and data storage; Single Instruction Multiple
Data (SIMD), a single operation or task executes simultaneously on multiple elements of
data; and Multiple Instruction Multiple Data (MIMD), where separate stream with own
flow control operating on separate data [16, p. 52]. Our parallel parser is categorized
under SIMD, where we use divide-and-conquer strategy to parse multiple data inputs on
multiple cores and generate a single output as an alternating array data structure.

4.1.2 CilkPlus language extension tool
CilkPlus is a language extension programming tool for C and C++ languages [18]. It is
used to express tasks and data parallelism. A divide-and-conquer problem is a befitting
candidate for CilkPlus extension; the problem can be divided into parallel independent
tasks and the result can be combined afterward. When utilizing the CilkPlus extension
to a C code, it is the responsibility of the programmer to structure the program to expose
its inherent parallelism [8]. On the other hand, the computational tasks on the parallel
processor are scheduled by the CilkPlus runtime system [8].

4.1.3 Dependency graph and fork-join pattern
Data dependency in an algorithm can be represented graphically; dependency graph
(DG) is used to illustrate data dependency in an algorithm task. A dependence graph
is a set of nodes and edge where the node represents the tasks, and the edge represents
the data used by the tasks. When a DG has no cycle, it is called direct acyclic graph
(DAG) [8]. When representing a parallel computation as a DAG, each node represents
the execution of an instruction. Therefore, the DAG of a computation represents a par-
tial ordering of dependencies between instructions in the computation [8].

The fork-join pattern forks control flow into multiple parallel flows that rejoin later [16].
The CilkPlus extension uses the fork-join pattern by generalizing serial calls to a parallel
call DAG. It can achieve this by letting code spawn a function instead of calling it [16].
A spawn call is a normal call, except the caller continues calling without waiting for
the callee to return. Therefore, forking control flow between caller and callee. Later, to
merge the control flow, the caller executes a join operation, i.e., sync, to wait for the
callee to return [16].
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CilkPlus, therefore, includes the fork-join model task parallelism features, spawn, and
sync. cilk_spawn is the CilkPlus extension keyword that specifies functions to be exe-
cuted in parallel with a reminder of the calling function. Similarly, cilk_sync keyword
specifies all spawned calls to complete before execution continues. These two keywords,
cilk_spawn and cilk_sync, express opportunities (not guaranteed) for parallelism. When
a function is cilk_spawned, part of the application that runs in parallel is determined
by the CilkPlus runtime. Once determined, an efficient work-steal scheduler implements
task parallelism [16].

CilkPlus extension uses a work-stealing scheduler that automatically balances the
fork-join load. In a work-steal strategy, spawned tasks maintain a double-ended queue.
These tasks are added to the back of a queue. When a processor has no work, it steals
a task from the front of some random victim processor’s queue that is a continuation of
the function that spawned a function call [16, p. 218].

4.2 Parallel parsing algorithms explained
When tasks are performed in sequence, one after the other due to data dependency, it is
called a serial algorithm [8, p. 7]. On the other hand, when there is data independence,
we can use tools such as CilkPlus to create a parallel algorithm that can execute tasks
in parallel. When combining these two classifications of an algorithm, we can create a
Serial-Parallel Algorithm (SPA). An SPA is one where tasks are grouped in stages such
that one or more tasks are executed in parallel and the stages are executed sequentially [8,
p. 8]. Our parallel parsing algorithm can be described as a Serial-Parallel Algorithm.

Our serial parser in Chapter 3, generates an alternating array from an input poly-
nomial in two stages. These include parsing, the first major stage with the task to
create BPAS compatible data structure; and the second major stage is tasked to sort
and convert the result obtained from the first stage. Both stages execute tasks in serial1.
When parsing in parallel, the number of stages are doubled. The first stage is tasked
to discover a splitting position within the input polynomial. In the second stage, these
splitting positions are used to build sub-polynomials and the results are stored in a single
array where these sub-polynomials are separated by a null terminator. Afterward, in the
third stage, the sub-polynomials are parsed in parallel to generate a single linked-list
(this depends on the input type as discussed in Section 4.2.3). Finally, the generated
linked-list is converted to an alternating array. Algorithm 2 is a top-level parallel parsing
function that executes the above four stages mentioned. Initially, in Line 1 we read the
user defined split size from file input using the function getSPlitSize. The split size value
defines how many polynomial terms to count from the input file before considering the
next character as a split position. It is used to divide the input polynomial into pieces.
Line 2 of Algorithm 2 call combines the first and the second stages of our parallel parser
architecture. The SplitInputAndPosition function takes in the input polynomial to be
parsed as a file descriptor and the split size result from Line 1; the results are a set

1serial or sequential are used interchangeably for the same meaning
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of data as described in the algorithm description that are required by ParallelMergeSort
function. Line 3 is stage three where we call the ParallelMergeSort function, in this stage
we parse the input in parallel. In Line 4, depending on the result returned from Line
3, if it is a linked-list, it will be converted to an alternating array before the function
returns. The function convert is used to convert the linked-list output to an alternating
array. The only stage that performs its tasks in parallel is stage three where we invoke
the ParallelMergeSort function; in the parsing stage, the parsing function (yyparser from
Chapter 3) is spawned on each splitted sub-polynomials in parallel. All the other stages
have a simple serial algorithm.

Algorithm 2: ParseParallel(f)
f, file descriptor reference; splitSize, split size; identifiers, variables;
identifiercount, number of variables; A, array of split positions;
Altarr, resulting alternating array or null; Linklist, resulting linked-list or null;
P, list of input in a single array separated by a null terminator; s, file size;
si, ei, start and ending index position for A; type, define the return type;
return (Altarr, identifiers, identifierCount)
1 splitsize←getSplitSize(SPLIST_SIZE.txt)
2 A, P, identifiers, identifierCount, s, A.length←SplitInputAndPosition(f, splitSize)
3 (Altarr, Linklist, identifiers, si, ei, type)←ParallelMergeSort(A, P, Altarr, Linklist, si, ei)
4 if type == LINKEDLIST_TYPE then
5 altarr←convert(Linklist, idetnifiers.length)
6 type ← ALTARR_TYPE
7 return (Altarr, identifiers, identifierCount)

Algorithm 3: SplitInputAndPosition(f, splitSize)
f, file descriptor reference; splitSize, split size; L, linked-list of split positions;
identifiers, variables; identifiercount, number of variables; A, array of split positions; A.length, Array A length
P, list of input in a single array separated by a null terminator; s, file size;
return (A, P, identifiers, identifierCount, s, A.length)
1 s ←getFileSize(f)
2 L, identifiers, identifierscount←GetVariableAndSplitPosition(f, s, splitSize)
3 A ←PositionLinkedListToArray(L)
4 P ←SingleArrayOfNullSeparatedSubPoly(f, s, L)
5 return (A, P, identifiers, identifierCount, s, A.length)

Figure 4.1 and Figure 4.2 depicts a general architecture of our serial and parallel
parsers. These diagrams resemble a DAG without the box. In these diagrams, a single
box depicts a stage where a specific task is executed sequentially or in parallel. Figure 4.1
shows two stages that execute tasks sequentially, tasks depicted with a circle. On the
other hand, Figure 4.2 shows multiple stages where tasks are executed in sequence, ex-
cept in stage three, where tasks forked into multiple nodes for parallel execution. When
these forked tasks complete execution, they are then joined to a single node before pass-
ing to the next stage.
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Figure 4.1: Input Polynomials is parsed in serial. Each stage has a single task that is executed
sequentially.

Figure 4.2: Input polynomial is parsed in Serial-Parallel algorithm. Only on stage has its tasks
forked to be executed in parallel.

4.2.1 Determining split positions
Our parser accepts input polynomial in two formats, as a single null-terminated char-
acter array or as a text file. In Figure 4.2, stage 1, Algorithm 6 performs the task of
splitting the input polynomial into smaller pieces with few limitations. The algorithm
always expects the input polynomial to contain ASCII (American Standard Code for
Information Interchange) characters. When non-ASCII characters are discovered, the
input polynomial will be an invalid data, and the parser will exit with an error.

Before explaining our splitting algorithm, it is important to understand the structure
of an input polynomial. In Chapter 2, we examined the structure of a polynomial; we
said a polynomial is a mathematical function in some variables that is a linear com-
bination of multiplicative combinations of those variables. Also, a polynomial can be
considered flat when the polynomials’ terms are separated only by + or - characters.
On the other hand, it is a nested polynomial when the polynomial is not expanded into
its simplest form, i.e., it has one or multiple terms or polynomials that require expand-
ing. Equation 4.1 and 4.2 show an example of a flat and a nested polynomial respectively.

5∗x∗yˆ4+xˆ3+yˆ6∗xˆ7+yˆ2∗xˆ3∗zˆ5y∗xˆ3∗zˆ6∗wˆ4−7∗x∗y+.....+x+y+5 (4.1)

(x∗(5∗x∗yˆ4+xˆ6+yˆ9∗xˆ3−7∗x∗y))∗(xˆ2+yˆ8∗xˆ5−7∗x∗y)+yˆ7∗xˆ2−7∗x∗y (4.2)
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Our strategy to split a flat polynomial is a simple process. Given a splitSize n (number
of possible polynomial terms to count), we scan through the input polynomial character
by character and count the number of + or - character symbols discovered. Every time
we discover these character symbols, a possible split position is encountered. The number
of characters scanned and the possible split position are counted and saved to variables
count and d respectively as show in Algorithm 6. When d counts is bigger than splitSize,
a split position is discovered. count tells us the scanner head position, i.e., the character
count value used to determine the split positions. When a split position is discovered,
the current value of count, i.e., the index position of the character, is inserted into a
linked-list. The process will continue until all the characters in the input polynomial are
scanned and splitCount, Equation 4.3, numbers of split index positions are discovered.

splitCount = Number of terms in an input polynomials

n
(4.3)

Algorithm 4: PositionLinkedListToArray(L)
L, linked-list of split positions; A, array of split positions
return A
1 A←array(L.length) // allocate memory for an array of linked-list size
2 n←L.head // linked-list head is stored in a variable

// L.next check if the next node is empty
3 while L.next do
4 A[i]←n.positionStart // n.positionStart is the data stored in the node
5 n←n.next
6 i++ // progress the array index position

7 return A

Algorithm 5: SingleArrayOfNullSeparatedSubPoly(f, fsize, L)
f, open input file reference; fsize, file size; L, linked-list of split positions;
P, single array of null separated sub-inputs or sub-polynomials;
return P
1 P←array(fsize) // allocate memory for an array of linked-list size
2 n←L.head
3 while L.next do
4 p←read(f, n.positionStart, n.positionEnd) // read input file from give positions
5 memcpy(P+n.positionStart, p, p.length+1) // memory copy the read data to the exact position

into array P
6 n←n.next
7 return P

On the other hand, if the input polynomial is nested, priority is given to split the
nested region. It means, when the input polynomial is nested, part of the polynomial
is surrounded by an opening and closing parenthesis. During the scanning process, the
first time a left parenthesis is discovered, the numbers of left parenthesis count is incre-
mented and stored into a variable. When a matching right parenthesis discovered, the
count value decremented. If the parenthesis count is zero, left and right parenthesis are
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matched, and a possible split position is gained. When a valid split position is found,
its character count position is inserted into a linked-list that collects all the split positions.

So Algorithm 6 carries out two tasks. It computes the split positions and determines
all the identifiers (variables) used in the input polynomial. In the algorithm, the top-level
while loop reads a character from the input polynomial and stores it to curChar variable
for further processing. Also, a character count variable called count is incremented every
time a new character is read. This two informations, curChar and count, are dynamically
updated and used to determine split positions and identifiers.

Algorithm 6 identify identifiers if they start with non-numeric characters or an un-
derscore followed by one or more characters, underscores, or numbers. The pseudo-code
from Line 4 to Line 20 discovers a single identifier (variable). When an identifier has
more than one character, curChar value is bound between the ASCII character values 46
and 57. In addition, the boolean variable readIdentifer is set to true if we are scanning
part of an identifier. If non-numeric characters are scanned for the first time and rea-
dIdentifer is false as shown in Line 8 to Line 14, part of an identifier are temporarily
gathered in an array called temporaryVAR. temporaryVar array reserves index 0 to save
identifier length assuming that the variable-length does not exceed 255 characters. If
numeric characters are scanned as part of an identifier, Line 4 to Line 7 are executed,
this means readIdentifier is set to true. When all the above conditions are not satisfied,
Line 16 to Line 20 checks the variable in temporaryVar for duplication against the
other list of identifiers in an identifiers array. identifiers contain a unique list of variables
discovered in the input polynomial ordered as first come first serve.

When left or right parenthesis is scanned by the scanner, part of the pseudo-code in
Line 21 to Line 58 of Algorithm 6 are executed. Specifically, if curChar contains a
left parenthesis, Line 21 is satisfied. This prompts the countBracket (parenthesis count
variable) to increment by one. countBracket is used to keep track of the number of
left parentheses discovered; countBracket is decremented when previously discovered left
parenthesis match with the right parenthesis. When the value of countBracket is zero, all
the left parenthesis have a matching right parenthesis, and if the next character scanned
is not an asterix (multiplication symbol), a possible splitting position is discovered. Al-
gorithm 6 stores split position into the linked-list L. It is because the linked-list is an
efficient data structure compared to an array, i.e., unlike arrays, linked-list can insert
elements dynamically without modifying its size.

When the input is a flat polynomial candidate, the pseudo-code in Line 59 to Line
71 of Algorithm 6 are executed. In a flat polynomial, when + or - character symbols are
scanned, it means a polynomial term is discovered. We keep track of input polynomial
term counts in variable d; if the value in d exceeds the splitSize value, it is inserted into
linked-list L as a split position.

After the input polynomial is fully scanned and the split positions, and its identifiers
are discovered, the algorithm returns the following sets of values: a linked-list of split
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positions, L; a unique sets of variables used in the input polynomial, identifiers; and the
length of identifiers array, identifierCount.

4.2.2 Organizing input polynomial for parsing
In Stage 2, we invoke the functions PositionLinkedListToArray and SingleArrayOfNullSep-
aratedSubPoly as shown in Algorithm 3 Line 3 to Line 4. These two functions use data
passed from GetVariableAndSplitPosition in Line 2 and efficiently structure them before
adapting it for our parallel merge sort algorithm. Algorithm 4, PositionLinkedListToAr-
ray, is a simple algorithm that converts a linked-list of split positions in L to an array.
Initially, the Split positions are stored in a linked-list, each node containing the start and
end index position of a sub-polynomial. The function PositionLinkedListToArray con-
verts this linked-list L to an array with each element only containing the start splitting
index position. It makes sense because the ending splitting index position will be obso-
lete when the input polynomial is divided into smaller chunks, with each sub-polynomials
stored in a single array separated by a null terminator. This means, anytime we want
to access a specific sub-polynomial we position the reader head to the start index posi-
tion and read until the null terminator is reached. In addition, navigating to a specific
split position in an array data structure is more efficient than a linked-list. In stage
1, GetVariableAndSplitPosition benefitted from the dynamic nature of a linked-list data
structure to efficiently insert elements without updating the list size. In stage 2, Position-
LinkedListToArray convert this list to an array so that we can utilize this split positions
data efficiently in our parallel MergeSort algorithm.

As stated in the previous paragraph, Algorithm 5, SingleArrayOfNullSeparatedSub-
Poly, structures and stores the input polynomial into a single array. If the input poly-
nomial is a text file, accessing sub-polynomials requires moving around a file cursor to
the right position before reading. It is an inefficient process. Once the input polynomial
splitted into smaller chunks, we can efficiently access the sub-polynomials when they
are organized in a single array that are separated by a null terminator. For example, if
we want to access split position m where the sub-polynomial starts, we can change the
array A reference position by add m to it and point text reader to read until the first
null terminator is encountered. It significantly cut down the access time when extracting
sub-polynomial from an input polynomial during parsing.

4.2.3 Parsing input polynomial in parallel
Stage 3 is where we parse the input polynomial in parallel. Algorithm 7, ParallelMerge-
Sort, resolve the task using a merge sort algorithm to parse them in parallel with the help
of the CilkPlus extension tool. Once the pieces of polynomials are parsed, Algorithm 8
will merge them.
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Algorithm 6: GetVariablesAndSplitPosition(f, s, splitSize)
f, open input file reference, s, file size, splitSize, split size
L, linked-list of split positions, identifiers, polynomial variables, identifierCount, num-
ber of variables
return (L, identifiers, identifierCount)
1 While not f do {
2 curChar←readChar(f)
3 count++
4 if curChar > 47 and curChar < 58 then
5 if readingIdentifier then
6 temporaryVar[0]←temporaryVar[0] + 1
7 temporaryVar[temporaryVar[0] - 48]←curChar

8 else if (curChar > 64 and curChar < 91)or curChar == 95 or (curChar >
95 and curChar < 123) then

9 if not readingIdentifier then
10 temporaryVar←allocateMemory()
11 temporaryVar[0]←’0’
12 readingIdentifier←1
13 temporaryVar[0]←temporaryVar[0] + 1
14 temporaryVar[temporaryVar[0] - 48]←curChar
15 else
16 if readingIdentifier then
17 if not identifierMatch(identifiers, temporaryVar) then
18 identifierPosition++
19 identifierCount++
20 identifiers[identifierPosition]←temporaryVar

21 if curChar == ’(’ then
22 countBrackets++
23 if readingIdentifier then
24 if not identifierMatch(identifiers, temporaryVar) then
25 identifierPosition++
26 identifierCount++
27 identifiers[identifierPosition]←temporaryVar
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28 if curChar←’)’ then
29 countBrackets–;
30 if readingIdentifier then
31 if not identifierMatch(identifiers, temporaryVar) then
32 identifierPosition++;
33 identifierCount++;
34 identifiers[identifierPosition]←temporaryVar;
35 readingIdentifier←0;
36 if countBrackets == 0 then
37 curChar←readChar(f);
38 count++;
39 while not f and curChar == ’ ’ and curChar != ’(’ do
40 curChar←readChar(f);
41 count++;
42 if readingIdentifier then
43 if not identifierMatch(identifiers, temporaryVar) then
44 identifierPosition++;
45 identifierCount++;
46 identifiers[identifierPosition]←temporaryVar;
47 readingIdentifier←0;

48 if curChar != ’*’ then
49 if readingIdentifier then
50 if not identifierMatch(identifiers, temporaryVar) then
51 identifierPosition++;
52 identifierCount++;
53 identifiers[identifierPosition]←temporaryVar;

54 if L.tail == NULL then
55 n←createNode(positionStart, positionEnd);
56 if n != NULL then
57 insertNode(L, n);
58 d←0;
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59 if (curChar == ’-’ or curChar == ’+’)and (curChar == 0 or curChar ==
s) then

60 d++;
61 if readingIdentifier then
62 if not identifierMatch(identifiers, temporaryVar) then
63 identifierPosition++;
64 identifierCount++;
65 identifiers[identifierPosition]←temporaryVar;

66 if (d > splitSize or count == s) then
67 if L.tail == NULL then
68 n←createNode(positionStart, positionEnd);
69 if n != NULL then
70 insertNode(L, n);
71 d←0;

72 } . End of while loop
73 for i←0 to identifierCount do
74 if L.tail == NULL then
75 variableSize←GETINT(identifier[k][0]);
76 memcpy(temporary, identifiers[k]+1, variableSize)

identifiers[k]←temporary

77 return L, identifiers, identifierCount;
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The base case in ParallelMergeSort, Line 2 to Line 7 is where the actual parsing
takes effect. To satisfy the condition in the base case, the list of split position A is di-
vided into smaller units so that when index e and s, i.e., start and end index position
of A, point to the same element. This index element is used to access the split position
from array A and retrieve the sub-polynomial from P for parsing. The sub-polynomial
is then parsed using the same serial parsing algorithm described in Chapter 3. Once
parsed, the conditional pseudo-code in the base case checks the return type of the parsed
sub-polynomial. The return type can be ALTARRAY_TYPE or LINKEDLIST_TYPE
depending upon the input polynomial. The variable type holds a return type, which is
part of the set of values returned by this algorithm. On the other hand, if the split
position array A has more than one element, the function ParallelMergeSortit is called
recursively until the base case is satisfied. During the recursive call, the CilkPlus exten-
sion tool used to spawn multiple calls of ParallelMergeSort function in parallel to take
advantage of multicore processors. Once the spawned calls are returned, Algorithm 8,
Merge, merges the final output.

One of the return values from ParallelMergeSort, type, is used to identify the types of
the left and right sub-polynomial being merged to avoid type conflict. The conditional
statements in Line 1 to Line 14 in Algorithm 8, confirms if the sub-polynomials have
matching types. If both the left and right spawned function in ParallelMergeSort return
an alternating array, their type is a match, and addPolynomials_AA function is used to
merge the two polynomials. If one output is a linked-list and the other one is an alter-
nating array, the linked-list output is converted to an alternating array before merging.
For this reason, the return type of Merge depends upon the sub-polynomials to merge,
i.e., it could be an alternating array or a linked-list. Eventually, the function returns
with five sets of values: an alternating array, Altarr ; a linked-list, Linkedlist; variables
used in the parsed polynomial, identifiers; and the return type, type. Depending on the
return type, Altarr or Linkedlist is set to null.

4.2.4 Converting output
Stage 4 of the parallel parsing process has a simple task. Depending upon the final re-
sult of the ParallelMergeSort algorithm, if a linked-list is returned, it converts it to an
alternating array.
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Algorithm 7: ParallelMergeSort(A, P, Altarr, Linklist, s, e)
A, array of split positions; P, null separated sub-input; Altarr, generated an alternating array;
Linkedlist, generated a linked-list; identifiers, variables used in the input polynomials to be parsed;
s, e, start and ending index position for A; type, define the return type;
return (Altarr, Linklist, identifiers, s, e, type)
1 if e == s then
2 tempInput = P + A[s]
3 returnType←parse(tempInput) . Chapter 2 parsing algorithm is used
4 if returnType == ALTARR_TYPE then
5 type←ALTARR_TYPE
6 else
7 type←LINKEDLIST_TYPE
8 return (Altarr, Linkedlist, s, e, type)
9 mid←floor(s + e)/2

10 ls←s, le←mid, rs←mid+1, re←e
11 (lAltarr, lLinkedlist, ls, le, ltype) ← cilk_spawn ParallelMergeSort(A, P, lAltarr, lLinkedlist, ls, le)
12 (rAltarr, rLinkedlist, rs, re, rtype) ← ParallelMergeSort(A, P, rAltarr, rLinkedlist, rs, re)
13 cilk_sync
14 return merge(A, P, identifiers, (lAltarr, lLinkedlist, ls, le, ltype), (rAltarr, rLinkedlist, rs, re, rtype))

Algorithm 8: Merge(A, P, identifiers, (lAltarr, lLinkedlist, ls, le, ltype), (rAltarr, rLinkedlist, rs, re, rtype))
(lAltarr, lLinkedlist, ls, le, ltype), left half of the list to be merged
(rAltarr, rLinkedlist, rs, re, rtype), right half of the list to be merged
A, array of split positions; P, null separated sub-input; Altarr, generated an alternating array;
Linkedlist, generated a linked-list; identifiers, variables used in the input polynomials to be parsed;
s, e, start and ending index position for A; type, define the return type;
return (Altarr, Linklist, identifiers, s, e, type)
1 if ltype == ALTARRY_TYPE and rtype == ALTARR_TYPE then
2 Altarr ← addPolynomials_AA(lAltarr, rAltarr, identifiers.length)
3 type ← ALTARR_TYPE
4 else if ltype == LINKEDLIST_TYPE and rtype == LINKEDLIST_TYPE then
5 Linkedlist ← linked_list_cat_q(lLinkedList, rLinkedlist)
6 Linkedlist ← LinkedListMergeSort(Linkedlist, identifiers.length)
7 type ← LINKEDLIST_TYPE
8 else if ltype == ALTARRY_TYPE and rtype == LINKEDLIST_TYPE then
9 altarr ← convert(rLinkedlist, idetnifiers.length)

10 Altarr ← addPolynomials_AA(lAltarr, altarr, identifiers.length)
11 type ← ALTARR_TYPE
12 else if ltype == LINKEDLIST_TYPE and rtype == ALTARR_TYPE then
13 altarr ← convert(lLinkedlist, idetnifiers.length)
14 Altarr ← addPolynomials_AA(altarr, rAltarr, identifiers.length)
15 type ← ALTARR_TYPE
16 return (Altarr, Linklist, identifiers, s, e, type)

4.3 Conclusion
When parsing in parallel, the first two stages of the parsing process includes: splitting the
input polynomial into smaller peices and organizing them to an efficient data structure.
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Split positions are determined by scanning input polynomials character by character until
the index count value matches the predefined split size. Then these index positions are
collected to an array for further processing. The split size counts can be determined by
averaging input polynomial character term count with user defined split size input. After
the split positions are determined, the input polynomial is divided into sub-polynomials
and stored into a single array separated by a null terminator. Organizing the input
polynomial becomes important when accessing sub-polynomial during parallel parsing.
These sub-polynomials parsed using a merge sort algorithm, and the final result converted
to an alternating array.



Chapter 5

Experimentation

In this chapter, we present experimental data for our parser. We will compare the per-
formance of our parser over a rational number polynomials using the Maple program
as a comparison point. For these experiments, we will use a randomly generated, flat1

(expanded) sparse polynomials and nested dense polynomials. The nested dense polyno-
mial is computation-intensive; it will utilize BPAS polynomial arithmetic functions for
a nested polynomial multiplication operation. The flat sparse polynomial does not re-
quire additional resources from the BPAS library; our parsing library will independently
generate the final output, i.e., alternating array, without invoking any external auxiliary
functions. The experimental data collected includes memory consumption; and running
time for splitting, parsing, and converting. The experimentation is conducted both in our
serial and parallel algorithms. All the experimental results are verified using the Maple
program.

We will discuss single-pass and multi-pass parsing (Section 5.1); multi-pass parsing
understanding is crucial before discussing the experimental data. Next, we will hav an
in-depth discussion on the experimental results for expanded sparse multivariate polyno-
mials (Section 5.2); we will analyze the data gathered for serial and parallel implementa-
tions. Lastly, we will analyze experimental data for nested dense multivariate polynomials
(Section 5.3); like the previous section, we compare and contrast data gathered for serial
and parallel implementations and draw our final conclusion.

5.1 Overview
The original goal of our research was to create a parser that parses polynomials in a single
pass—passing through the input polynomial only once to generate the output data struc-
ture, i.e., alternating array. With the use of front end compiler tools such as Bison and
Flex, it is possible to create a single-pass parser for a univariate polynomial. In a mul-
tivariate sparse polynomial, it is a different story. When parsing a multivariate sparse
polynomial, to maintain the single-pass process, we need information about exponent

1flat and expanded terms will be used interchangeably in this chapter to refer to expanded sparse
polynomial

56



5.2. Experimentation for expanded sparse multivariate polynomial 57

variables (exponent vectors and their size). The information becomes vital to allocate
the correct memory space for our output data structure. It means, during parsing, when
new variables are discovered, we have to visit previously generated terms to introduce
the new variable by reallocating additional memory space. To accomplish this, we have
to access and modify each polynomial term that resides in the memory stack. For this
reason, with multivariate polynomial inputs, backtracking the stack memory to update
with additional information is a must.

When part of the input polynomial is parsed and in the porcess if a new variable
is discovered, the vector exponents in the previously parsed section become incomplete.
Therefore, each polynomial term is revisited, and a bigger memory space is allocated
to accommodate the new variable. As the polynomial gets larger, this step significantly
slows down the parsing process. To alleviate this problem, we introduced an additional
production to our bison grammar. Each input polynomial needs to provide information
about variables; this new input polynomial structure includes all variables used as a tuple
followed by the actual polynomial. Though the suggested step only resolves the issue for
the short term, it introduces a new question; what will happen when the input does not
provide this variables information? For this reason, we concluded that single-pass parsing
works if we have enough information about the polynomial, otherwise, to generate an
error-free output, we have to revisit a previously parsed portion of the polynomial terms
multiple times and update the exponent vectors.

As mentioned in the previous paragraph, reallocating memory for the previously
parsed portion of the input polynomial consumes time and CPU resources (reallocating
a memory takes CPU time). Therefore, there are efficiency concerns when considering a
single-pass parser with a multivariate polynomial input. One way to resolve this issue is
to perform multi-pass parsing; the first pass runs through the input polynomial to dis-
cover all the variables, and the second pass does the actual parsing to generate the data
structure (alternating array). It is an efficient way of running a multi-pass parser because
the algorithm we used to discover all the variables in the input polynomial, Algorithm 3,
is significantly faster than the single-pass parsing process, a process mentioned in the
previous paragraph (revisiting and updating exponent vectors).

In this experiment, we collected data only for the algorithms that utilize a multi-pass
parsing strategy.

5.2 Experimentation for expanded sparse multivari-
ate polynomial

Throughout all benchmarks presented in this section, our benchmarks were collected
on a machine with an Intel Xeon X560 processor at 2.67 GHz, 32KB L1 data cache,
256KB L2 cache, 12288KB L3 cache, and 48GB of RAM. The total number of hardware
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threads available in this machine is 24. As mentioned in the introduction paragraph, our
experimentation used nested dense and sparse multivariate polynomials. Nested dense
polynomials are generated using the following parameters: number of variables, v; de-
gree’s, d; number of nested polynomial arithmetic operations, m (Equation (5.2)); and
randomly generated rational number coefficient with a maximum of five-digit integers
for both numerator and denominator. These nested dense polynomial data are gener-
ated using Maple script; the source code is available in Appendix A Listing A.1. In this
Maple script, the function PolyC in Listing A.1 invokes PolyA_No_terms m numbers
of iterations. On the other hand, PolyA_No_terms returns a randomly generated poly-
nomial that is converted to a string using the maple commands randpoly and convert,
respectively. Expanded sparse polynomial testing data are generated using the function
in Listing A.2, Appendix A. In this function the following parameters are used: num-
ber of variables, num_vars; list of variables, variables; number of terms to generate,
num_terms; maximum exponent value, max_degs_range; and value used in GNU GMP
random class to randomize the coefficient values, bits. Finally, benchmarks are collected
for both serial and parallel versions of the algorithms.

5.2.1 Serial and parallel implementations
We begin by comparing the running time and memory usage of pure serial parser against
a single-threaded parallel implementation. As described in Chapter 3, our serial parser
accepts a list of identifiers (variables) used as part of the input polynomial. If these
lists of identifiers are defined early, our serial parser can perform a single pass parsing.
Table 5.1 shows run time and memory usage comparison of an input polynomial with
or without identifiers defined. There is an eightfold decrease in run time when parsing
a randomly generated sparse polynomial with identifiers defined. It is because the pure
serial parser spends less time backtracking for an update. Similarly, memory usage goes
down by half when identifiers are defined; with the identifiers’ information, a pure serial
parser allocates the exact memory required before it scans the next polynomial term.
It is not always the case though users can provide input without overhead information
about identifiers. The most efficient way to overcome this issue is by utilizing multiple
passes on the input polynomial, i.e., first, discover identifiers, and then apply the parsing
algorithm. The splitting algorithm is responsible for discovering identifiers as discussed
in Chapter 4. Comparing run times of pure serial implementation against single-threaded
parallel implementation, when identifiers are defined, the data is almost comparable, as
shown in Table 5.1 and Table 5.2. It is because the split algorithm used in our parallel
implementation discovers all the variables faster than the pure serial parser that requires
backtracking for a variable update when input is provided without identifiers.

To further our experimentation, the effect of splitting and parallelizing expanded
sparse polynomials have on our parsing process we compare the running time for serial
and parallel parsing algorithms using Maple as a comparison point. Table 5.2 shows the
running time and memory usage data for our parallel parser and Maple program. Our
single-threaded parallel parser run time is significantly faster than the Maple program
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Time(s) Memory(MB)
n Size(MB) Defined Not Defined Defined Not Defined

1000 0.021 0.001 0.013 3 7
5000 0.101 0.015 0.136 4 8
10000 0.225 0.031 0.285 6 13
100000 2.3 0.338 3.04 45 91
500000 13 1.34 12.0 223 447
1000000 26 2.80 25.2 440 880
1500000 39 4.18 37.6 601 1202
2000000 53 5.47 49.3 726 1452
2500000 75 6.49 58.4 1014 2028
3000000 90 8.69 78.2 1196 2392
3500000 105 10.2 91.9 1311 2622
4000000 147 11.8 107 1825 3650
4500000 206 13.9 125 2124 4249

Table 5.1: Comparing running time and memory usage for randomly generated sparse polynomial
on a pure serial implementation with or without identifiers/varialbles defined.

because input data is organized into smaller pieces and passed to a parser that uses a
divide and conquers strategy. Table 5.3, data gathered for parallel parser with two
threads, breakdown the running time spent at each stage. Run time significantly change
during the parsing process as shown in column Parse(s). In this particular case, total run
time in Table 5.3 and serial column in Table 5.2 are almost identical. This is because to
see a speed-up in the parsing process, first, more worker threads are needed, and second,
the input polynomial must split at least twice the number of worker threads, i.e., the
splitCount, Chapter 4. This conclusion is reached after carefully optimizing the split size
(splitSize) input value provided by the user. Simply, the number of ways the input poly-
nomial split needs to be greater than the selected hardware thread value. When there
is more work for the worker threads, the CilkPlus runtime library work-steal scheduler
efficiently steals work for idle worker threads.

Returning to Table 5.2, comparing the running time for a flat sparse polynomial
input in a single-threaded parallel parser with Maple program, there is a significant run-
ning time improvement with our parallel parser when the number of terms n increases.
The data shows when tasks are organized into separate stages and executed sequentially
instead of being promoted as part one large task, the running time of the overall process
improves. Figure 5.1 shows the effect on running time as the number worker threads
increase when parsing flat sparse polynomials between our serial and parallel implemen-
tation and Maple program. When the hardware threads used are fixed between 4 and 8,
we observe a significant speedup. Since the experimentation was conducted on a 12 core
CPU, the threshold to achieve genuine parallelization is under eight hardware threads.
Over this threshold, the scale of the plot shows a slight speedup because it utilizes Intel’s
hyperthreading technology. Besides, looking at the plot for serial and Maple data, as
the input size increases (number of terms n), Maple program run time shows a steep
inclination. On the other hand, our serial implementation shows a gradual increase. It
means the Maple program does not utilize multi-core programming when parsing.
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Time(s) Memory(MB)
n Size(MB) Maple Serial(t=1) Maple Serial

1000 0.021 0.018 0.008 1 4
5000 0.101 0.056 0.022 8 5
10000 0.225 0.103 0.041 16 8
100000 2.3 5.41 0.438 160 49
500000 13 18.5 2.20 800 226
1000000 26 34.0 4.20 1600 449
1500000 39 46.7 6.02 2400 672
2000000 53 59.6 7.99 3200 894
2500000 75 75.7 10.69 4000 1135
3000000 90 83.8 12.6 4800 1360
3500000 105 108 14.8 5600 1587
4000000 147 145 19.5 7200 2064
4500000 206 155 21.8 8000 2291

Table 5.2: Comparing running time and memory usage for randomly generated sparse polyno-
mials on Maple program and single threaded parallel implementation.

n Size(MB) Total(s) Split(s) Parse(s) Convert(s) Memory(MB) Threads(t)
1000 0.021 0.016 0.001 0.014 0.0005 4 2
5000 0.101 0.023 0.005 0.015 0.002 5 2
10000 0.225 0.043 0.008 0.030 0.004 8 2
100000 2.3 0.427 0.087 0.291 0.048 47 2
500000 13 2.20 0.463 1.458 0.287 227 2
1000000 26 4.31 0.939 2.870 0.509 450 2
1500000 39 6.67 1.56 4.275 0.840 671 2
2000000 53 8.78 1.90 5.747 1.141 896 2
2500000 75 10.48 2.49 6.528 1.467 1135 2
3000000 90 13.4 2.98 8.885 1.578 1361 2
3500000 105 15.7 3.38 10.256 2.096 1586 2
4000000 147 19.9 4.74 12.699 2.530 2063 2
4500000 206 22.0 5.06 14.026 2.984 2293 2

Table 5.3: Running time for Randomly generated sparse polynomial on our parallel algorithm.
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Hardware Threads
Speedup(T1

Tp
) t=2 t=4 t=8 t=16

1.09 1.43 2 2.2

Table 5.4: Comparing Figure 5.1 speedup, a randomly generated expanded sparse polynomial.

Figure 5.1: Comparing run time of expanded sparse polynomial parsed in serial and parallel
implementation against Maple program. The number of terms varies on the x-axis, while the
algorithm and hardware threads vary as noted in the legend.

5.2.2 Experimental data for splitting, parsing, and converting
When parsing a flat sparse multivariate polynomial using our parallel algorithm, four
main steps are involved: splitting, organizing, parsing, and converting, as discussed in
Chapter 4. These are the main steps performed to efficiently generate the BPAS data
structure (alternating array) in parallel. In Figure 5.2, we compare run time against a
number of terms n changes at each step using a flat sparse rational multivariate poly-
nomial at different hardware threads. The splitting process performed over n number of
terms; Figure 5.2 (a) shows that run time is the same across different hardware threads
because splitting is performed in serial. Depending upon the final output, i.e., linked-list
or alternating array, converting is also a serial process. A detailed description of why
we need converting on the final output polynomial is available in Chapter 4. Run time
performance in this final converting process again is the same across different hardware
threads, Figure 5.2 (c). On the contrary, during the parsing step, we see a gradual in-
cline in run time performance across different hardware threads shown in Figure 5.2 (b).
The parsing step is where the majority of the work is done in our parallel algorithm; the
MergeSort function, Chapter 4, invoked to divide the work among different threads. As
the number of worker threads increases, the run time of our parser decreases. Therefore,
the splitting and sorting steps are considered as pre and post parsing steps, respectively;
this is because they always maintain the same run time across different hardware threads.
The total time is the run time accumulation of all these three steps; choosing the right
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split size and hardware threads affect the run time performance in parallel parsing.

(a) (b) (c)

Figure 5.2: Comparing three major parsing steps involved in our parallel algorithm.The randomly
generated sparse multivariate polynomial result is compared on a serial or single threaded and
multithreaded algorithm. Table (a) and Table (c) show the pre and post parsing steps, splitting
and converting respectively, of the parsing process compared across multiple threads. Table (b)
shows the parsing process across multiple threads.

5.2.3 Memory
There is a remarkable difference in memory usage between the Maple program and our
parser shown in Table 5.5. When parsing a randomly generated flat sparse polynomial,
our algorithm implementation uses five times less memory to perform the same operation.
It is because the linked-list data structure is very efficient to manage our partially parsed
input during parsing, i.e., the Maple program is using a simple array or an alternating
array. Similarly, Across the various fixed hardware threads used, memory consumption
stayed consistent.

5.2.4 Experimentation with large-scale expanded polynomial
datasets

Based on our experience running a small-scale operation, we conducted a run time anal-
ysis on large-scale datasets. These datasets, as shown in Table 5.6, range from half a
gigabyte to two gigabytes. Run time analysis shows our implementation is scalable and
sustains speedup with multicore processors and large-scale datasets.
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Memory(MB)
n Size(MB) MAPLE Serial t=2 t=4 t=8 t=16

1000 0.021 1.71 4.30 4.49 4.34 4.28 4.62
5000 0.101 8.12 5.98 5.86 6.20 6.17 6.44

10000 0.225 16.1 8.24 8.16 8.49 8.44 8.49
100000 2.3 160 49.2 47.9 49.4 48.2 50.5
500000 13 800 226 227 229 228 226
1000000 26 1600 449 450 453 458 454
1500000 39 2400 672 671 673 679 687
2000000 53 3200 894 896 898 904 913
2500000 75 4000 1135 1135 1137 1143 1156
3000000 90 4800 1360 1361 1364 1370 1381
3500000 105 5600 1587 1586 1589 1595 1606
4000000 147 7200 2064 2063 2067 2073 2086
4500000 206 8000 2291 2293 2296 2302 2315

Table 5.5: Comparing randomly generated expanded sparse polynomial memory usage in our
parallel parser implementation across different threads using Maple program as a reference
point.

Run Time(sec)
n Size(MB) MAPLE t=1 t=2 t=4 t=8 t=16

10000000 667 3175 152 106 88.8 79.2 85.7
20000000 1400 11874 364 258 193 182 182
30000000 2000 14470 609 409 346 313 296

Table 5.6: Comparing randomly generated expanded sparse polynomial runtime in our parallel
parser implementation across different threads using Maple program as a reference point. These
expanded sparse polynomial file size ranges in gigabytes.

Hardware Threads
Speedup(T1

Tp
) t=2 t=4 t=8 t=16

1.5 1.8 2 2.1

Table 5.7: Comparing Table 5.6 speedup a randomly generated expanded sparse polynomial.
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5.3 Experimentation for nested dense multivariate
polynomials

Since Maple has become the leader in a polynomial arithmetic operation, it is important
to assume that they are accompanied by efficient auxiliary functions for parsing. In the
previous section, we compared experimental results for a flat sparse polynomial on our
serial and parallel algorithm implementations using Maple as a comparison point. Dur-
ing this experimentation, we used a Maple command called parse to parse flat sparse
polynomials. It is clear from our experimental result, Maple program does not utilize
parallelization during parsing. Again, we will use the same Maple command, parse
to experiment on nested dense multivariate polynomials. To generate this experimen-
tal nested dense multivariate polynomials, two input polynomials f and g are randomly
generated with the following parameters: degree’s, d; number of polynomial terms, n;
and number of nested arithmetic operation (multiplication), m. These parameters are
used to create un-expanded nested dense multivariate polynomials as shown in Equation
(5.2). Since these polynomials are generated using Maple script, shown in Appendix A
Listing A.1, the number of polynomial terms, n changes depending on the number of
variable v used.

f i, gj ∈ Q[x1, . . . , xv] (5.1)

.
h = (f 1 ∗ g1) + · · ·+ (fm ∗ gm) (5.2)

When testing these experimental data in the Maple program, in addition to the parse
command, to expand this nested polynomial, we used another Maple command called ex-
pand. As the name suggests, the expand command distributes products over sums [14].
Expanding Equation (5.2) is a computationally-intensive process. It requires resolving
the product of polynomials (f) and (g) before invoking the parse command. Looking at
the data in Table 5.9, Maple’s expand command runs slower. As the nested dense multi-
variate polynomial degree d increases, Maple program run time performance will increase
exponentially i.e., as degree d increases the size of the dense polynomials f and g grows.
Eventually, it exhausts memory and crashes. For this reason and to have a concret data
for comparison, we kept our degree d value constant. Our parsing algorithm implemen-
tation, on the other hand, handles this efficiently by distributing this nested operation
across multiple hardware threads. It is important to note that during the splitting step,
our split algorithm prioritizes to split the nested region over user-defined split size as dis-
cussed in Chapter 4. Once these nested polynomial arithmetic operations are split, they
are distributed across multiple threads for computation. It gives our parallel parser algo-
rithm a significant speedup to parse large input polynomials compared to Maple program.
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5.3.1 Run time analysis for maple and BPAS implementations
Just like our flat sparse polynomial experimentation, we performed benchmarking for
nested dense multivariate polynomials on our parallel algorithm implementation using
Maple as a comparison point. In this experiment, when generating the nested dense mul-
tivariate polynomials, we applied a fixed number of degree d=4, and varying numbers of
variables (v) and nested arithmetic operation (m).

Table 5.9 shows the total run time taken in seconds when parsing a randomly gener-
ated nested dense polynomial between our parallel algorithm implementation and Maple
program. If the variable count in the nested polynomials (f) and (g) from Equation (5.2)
increases, the polynomial grows in size. When these nested polynomials size grows, the
number of nested arithmetic operations (m) performed, i.e., multiplication operations,
as shown in Equation (5.2), become computationally intensive and memory hungry. In
Maple program, though the expand command performs parallel operation, the parse
commands face a big challenge. Therefore, when analyzing the run time data from Table
5.9, as the variable counts(v) increase, the run time performance of the Maple program
drops. Whereas for our serial and parallel algorithm implementation, the performance
improves both with increased variable count and worker threads. As illustrated in Fig-
ure 5.3, when the number of variables (v) increases, Maple program run time shows
a steep incline. This shows that as the polynomial becomes larger and nested, arith-
metic operation m increases and the resulting polynomials become larger. As a result
the time taken to perform these operations combined with the time it takes to parse
causes the Maple program total run time to grow exponentially. On the other hand, in
our parallel algorithm implementation, there is a significant speedup as the number of
hardware threads increases. It is because as the input is divided across this nested arith-
metic operation, multiple worker threads take the task of parsing and solving arithmetic
operations in parallel. As shown in Table 5.9, when the hardware thread (t)=8, it has
become the threshold for genuine parallelization; at this threshold point speedup doubles.

The running time taken by our pure serial parser shows poor performance as the
variable count and number of iteration increases. Table 5.8 shows a total run time com-
parison between input with or without variable information. It shows that the Maple
program runs time performance in Table 5.9, outperforming our pure serial parser when
input data does not include variable information. This is because our parser relies on
BPAS Auxilary functions for arithmetic operations, this function is slightly slower than
Maple command expand. Besides, our serial parser performs multiple passes on the
parsed data structure to update newly discovered variables.

5.3.2 Memory consumption on maple and BPAS
Memory usage between the Maple program and our parallel algorithm implementation
when parsing a nested dense multivariate polynomial is not as promising as our first exper-
imentations shown in Table 5.10. When parsing a nested dense multivariate polynomial,
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Time(s) Memory(MB)
v m Size(MB) Not Defined Defined Not Defined Defined

16 0.038 3.12 1.99 38.3 23.028
4 32 0.078 7.14 4.57 61.2 36.7

64 0.156 15.6 10.0 106 63.8
128 0.621 35.3 22.6 203 122
16 0.128 27.5 17.6 123 61.8

6 32 0.256 61.1 39.1 254 127
64 0.511 136 87.3 530 265
128 1.2 294 188 833 555
16 0.321 144 92.2 415 277

8 32 0.641 323 206 902 601
64 1.3 2186 932 1956 1304
128 2.6 4922 2100 4156 2771

Table 5.8: Run time dataset and memory useage for parsing Nested Dense Polynomial in pure
serial parser with/without variable information defined followed by the input polynomial.

expansion is done by calling BPAS auxiliary function multiplyPolynomials_AA. In
Chapter 3, we have seen how our parser alternates between linked-list and alternating
array during parsing. When two or more polynomial expansion is required, and this
helper function invoked, the result is an alternating array. Once our parser semantic
value is an alternating array, the remainder of the data structure used during the parsing
process will be an alternating array. During this time, our parser memory efficiency is
highly dependent on this helper function. As we can see in Table 5.10, across different
hardware threads, memory consumption is the same. When comparing these columns
against the Maple program, our implementation memory usage was cut by one-third. It
shows that an alternating array data structure is not as efficient as linked-list when it
comes to parsing.

5.3.3 Run time analysis for splitting and parsing
Splitting a nested dense multivariate polynomial is different from the sparse multivariate
polynomial. As discussed Chapter 4, when selecting split positions, our algorithm gives
priority to opening and closing parenthesis. Specifically, the splitting process is not re-
stricted by split size d when a left parenthesis is scanned. Therefore, just like our sparse
mutlivariate polynomials experimentations, the splitting process run time show similar-
ities across different columns in Table 5.12 is because it is executed in serial. In the
parsing step, a fluctuating run time performance observed, as shown in Table 5.12. As
the hardware threads increase, there is a speedup. A significant speedup gained when the
number of worker threads matches the actual CPU cores. It means pure parallelization
is obtained by dividing each nested arithmetic operation amongst the worker threads at
the same time.
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Total Time(s)
v m Size(MB) MAPLE t=1 t=2 t=4 t=8 t=16 t=24

16 0.038 0.238 0.124 0.084 0.064 0.061 0.061 0.067
4 32 0.078 0.448 0.285 0.173 0.126 0.115 0.101 0.105

64 0.156 1.06 0.627 0.374 0.252 0.211 0.209 0.213
128 0.621 2.55 1.41 0.834 0.534 0.438 0.418 0.379
16 0.128 2.952 1.1 0.662 0.480 0.447 0.379 0.373

6 32 0.256 8.6 2.44 1.46 1.05 0.86 0.784 0.74
64 0.511 24.8 5.45 3.25 2.32 2.11 1.6 1.8
128 1.2 74.9 11.7 7.31 4.85 4.07 3.58 3.37
16 0.321 31.1 5.76 3.58 2.63 2.08 1.92 2.2

8 32 0.641 83.1 12.9 8.11 5.14 4.4 3.85 4.46
64 1.3 821 29.1 17.7 12 9.77 8.67 8.25
128 2.6 3063 65.6 40.5 27.9 21 18.6 18.4

Table 5.9: Run time dataset for parsing Nested Dense Polynomial; it includes total run time data
for BPAS serial and parallel implementation using Maple program as a reference point. We
fixed the degree, d, of the polynomial to 4. The number of variables, v, and nested arithmetic
operation (multiplication), m, of the polynomial vary as indicated.

Memory(MB)
v m Size(MB) MAPLE t=1 t=2 t=4 t=8 t=16 t=24

16 0.038 2 7 7 7 7 7 7
4 32 0.078 5 12 12 12 11 11 11

64 0.156 14 21 21 21 20 20 20
128 0.621 42 40 40 40 40 40 39
16 0.128 20 30 31 31 31 34 34

6 32 0.256 50 63 63 64 64 64 65
64 0.511 139 132 132 132 133 133 134
128 1.2 372 277 278 278 278 279 280
16 0.321 145 138 138 139 139 140 140

8 32 0.641 338 300 301 301 302 302 303
64 1.3 847 652 652 652 653 653 654
128 2.6 2304 1385 1386 1386 1389 1388 1388

Table 5.10: Comparing the effect alternating array data structure has on memory during parsing
a nested dense multivariate polynomial. We fixed the degree, d, of the polynomial to 4. The
number of variables, v, and nested arithmetic operation (multiplication), m, of the polynomial
vary as indicated.

Memory(MB)
Speedup(T1

Tp
) v t=2 t=4 t=8 t=16 t=24

4 1.7 2.52 3 3.1 3.1
6 1.67 2.33 2.57 3.4 3.4
8 1.65 2.43 2.85 3.43 3.45

Table 5.11: Comparing the speedup of a nested dense multivariate polynomial across different
variable vectors as shown in Figure 5.3.
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(a) (b)

(c)

Figure 5.3: Comparing runtime and number of multiplcation operations in the input over a
Nested Dense Multivariate Polynomial. Figure (a), (b), and (c) have variable number 4, 6, and
8, respectively. As the number of variable vectors increases the runtime significantly increases.
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Time(s)
t=1 t=2 t=4 t=8 t=16 t=24

v m Size(MB) Split(sec) Parse(sec) Split(s) Parse(s) Split(s) Parse(s) Split(s) Parse(s) Split(s) Parse(s) Split(s) Parse(s)
16 0.038 0.002 0.122 0.003 0.074 0.003 0.061 0.004 0.056 0.003 0.058 0.002 0.064

4 32 0.078 0.005 0.280 0.004 0.168 0.005 0.120 0.006 0.108 0.005 0.096 0.005 0.100
64 0.156 0.006 0.621 0.009 0.365 0.006 0.245 0.010 0.200 0.006 0.203 0.006 0.206
128 0.621 0.016 1.398 0.022 0.812 0.017 0.517 0.013 0.424 0.017 0.401 0.014 0.365
16 0.128 0.005 1.094 0.013 0.648 0.005 0.474 0.006 0.440 0.005 0.373 0.005 0.367

6 32 0.256 0.010 2.43 0.021 1.44 0.010 1.03 0.011 0.848 0.011 0.769 0.010 0.729
64 0.511 0.022 5.34 0.031 3.22 0.025 2.30 0.025 2.09 0.021 1.58 0.022 1.78
128 1.2 0.044 11.7 0.050 7.26 0.047 4.80 0.046 4.03 0.046 3.53 0.044 3.32
16 0.321 0.017 5.74 0.022 3.56 0.018 2.61 0.0179 2.06 0.015 1.91 0.019 2.18

8 32 0.641 0.030 12.9 0.037 8.07 0.030 5.11 0.032 4.37 0.030 3.82 0.032 4.43
64 1.3 0.057 29 0.066 17.6 0.061 11.3 0.06 9.71 0.046 8.62 0.058 8.19
128 2.6 0.113 65.5 0.173 40.3 0.112 27.8 0.117 20.9 0.110 18.5 0.123 18.3

Table 5.12: Runtime dataset for parsing Nested Dense Polynomials; it includes splitting and parsing run time data for BPAS parallel
implementation across different hardware threads. We fixed the degree, d, of the polynomial to 4. The number of variables, v, and nested
arithmetic operation (multiplication), m, of the polynomial vary as indicated.
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Conclusion

Polynomial parsing is a fundamental operation in computer algebra. It allows the use
of large polynomials for basic arithmetic operation. Our parser is designed to work
with the BPAS library, and most BPAS functions require an alternating array to work
with. Of course, it is possible to create an alternating array data structure from an
input polynomial manually. The problem is, creating these input polynomials manually
has a size limitation, or we have to rely on the in-efficient parser to generate this data
structure. Applying large polynomials to these functions becomes impossible. Therefore,
this is where our parallel parser makes it possible and open path to implementing a high-
performance algorithm for computer algebra that can be challenged by large polynomials.

When parallelizing a parser, it is important to consider different input types, i.e., uni-
variate or multivariate polynomials. A single-pass parser can efficiently run and generate
the BPAS data structure, but can not take all input types. A univariate polynomial has a
single variable. We can create a simple container that can store a polynomial term using
C structs. When multivariate input polynomials are introduced, information about vari-
ables and their corresponding exponents varies; the polynomial term type, i.e., C structs,
could have a varying size of exponent vectors dynamically allocated during parsing. Since
an input polynomial does not display variables with zero exponents, the exact count of
exponent vectors used is not clear until the input polynomial is fully scanned. For this
reason, multivariate polynomials need to be scanned twice, first to discover variables and
their corresponding exponent and then to parse. We took the approach of scanning it
twice instead of backtracking for an update because it is efficient.

In Chapter 3, we presented our serial parser that parsers both dense or sparse; and
expanded or nested polynomials. Our parser is architected using a front end compiler
design tools flex and bison. We showed regular expressions applied in the flex program
to generate tokens and grammars used to structure the input correctly to generate the
polynomials. The serial parser uses a linked-list as its default data structure. If arith-
metic functions are invoked from the BPAS library, the parser’s data structure semantic
changes to an alternating array. These BPAS auxiliary functions can only take an alter-
nating array input. So, the result of our serial parser alternates between linked-list and
alternating array, depending on the input polynomial. If the parser returns a linked-list,
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it is converted to an alternating array as a final result.

In Chapter 4, we presented our parallel parser architecture and its implementation.
We presented the divide and conquer strategy to parallelize the parsing process using
the CilkPlus tool [18]. Different steps are involved to parallelize the parser, i.e., split-
ting, organizing, parsing, and converting. Splitting the input into smaller pieces and
organizing them into a single array separated by a null terminator makes it efficient to
access the split input data. Parsing is done by recursively invoking the parsing function
generated using bison on these multiple chunks of polynomials as discussed in Chapter 3.
The parsing function algorithm utilizes the merge-sort strategy. Depending on the input
type, if a linked-list semantic is used in the parser, the final result is converted to an
alternating array.

Lastly, in Chapter 5, we conducted experiments to reveal the robustness of our parser
using the Maple program as our comparison point. We chose our experimental input to
be a randomly generated sparser polynomial, with varying numbers of polynomial terms
and a nested dense polynomial with various parameters such as the number of nested
inputs, number of polynomial terms in the nested inputs, etc. Across different threads,
our flat polynomial experimental result shows significant speed-up. Similarly, our nested
polynomial shows significant run time improvement, but as the input size grows, memory
consumption increases because an additional arithmetic operation is required to expand
the polynomial. Compared with the Maple Program, our parser utilizes multicore pro-
cessors for parsing large input polynomials faster.

However, our parallel parser could be yet further improved across nested polynomial
inputs. Currently, our parsers depend on the BPAS auxiliary function for arithmetic
operations such as multiplication. Once these functions are invoked, the semantic of
the parser switches from a linked-list data structure to an alternating array. Since an
alternating array is a special type of array, it is an inefficient data structure to use dur-
ing parsing. This could be further improved by implementing a stand alone linked list
arithmetic operation functions for the parser. Doing so will force the parser to rely on
the linked-list data structure. In this case, the input data will not swith its semantic to
an alternating array when parsing nested input polynomials.

Furthermore, we can use the PAPAGENO paper [3] to combine parallelism at the
level of parsing algorithm, not at the level of data. Using Graphics Processor Units
(GPUs) with a Cocke-Younger-Kasami algorithm (CYK) and a parallelized polynomials
multiplication function, we can double our speedup factor.
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Appendix A

Generate Experimental Data

Listing A.1: The maple source code gen_nested_poly generates a nested dense polynomial. The pa-
rameters include: filename, stores generated polynomial; variables used in the polynomial, n; maximum
exponent value, degrees; number of nested regions, iteration, and randomly generated coefficients, coef.

1 #n = variables as [x, y, z]
2 #d = degree
3 #m = terms
4 #coef = coefficients random value
5
6 PolyA_No_terms := proc(n, d, coef)
7 return convert ( randpoly (n, coeffs =coef , degree =d, dense),

rational )
8 end proc;
9
10 PolyC := proc(filename , n, d, m, coef)
11 f := fopen(filename , APPEND , TEXT):
12 for i from 1 to m do
13 res := convert ( PolyA_No_terms (n, d, coef)*

PolyA_No_terms (n, d, coef), string ):
14
15 if i=m then fprintf (f, "%s", res):
16 else fprintf (f, "%s", res): fprintf (f, "%s", "+"):
17 end if:
18
19 end do;
20 fclose (f):
21 return res;
22 end proc;
23
24
25 gen_nested_poly := proc (filename , vars , degrees , iteration , coef)
26 PolyC(filename , vars , degrees , iteration , coef):
27 end proc;
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Listing A.2: The C++ source code random_polynomial_cpp_rand_file generates flat (expanded) sparse polynomial. Generated polynomials is stored
in filename. It takes num_vars number of variables; list of variables, variables; number of terms to generate, num_terms; maximum exponent value,
max_degs_range; and value used in GNU GMP random class to randomize the coefficient values, bits.

1 std :: vector < unsigned int > degrees (int varSize , int range){
2 std :: vector < unsigned int > degs;
3 unsigned int first;
4 unsigned int sec;
5 for(int i=0; i< varSize ; i++){
6 first = gen_random ( range );
7 sec = gen_random (first );
8 degs. push_back ( gen_random (65534) %sec);
9 }
10 return degs;
11 }
12
13
14 void random_polynomial_cpp_rand_file (std :: string filename , int num_vars , std :: vector <std :: string > variables

, int num_terms , unsigned int max_degs_range , int bits){
15 std :: ofstream f;
16 f.open( filename );
17 if (!f){
18 std :: cout << " Error creating file." << std :: endl;
19 exit( EXIT_FAILURE );
20 }
21
22 gmp_randclass rr ( gmp_randinit_default );
23 rr.seed(time(NULL));
24 srand (time(NULL));
25 int sign = 1;
26 mpq_class e;
27 long long int i;
28 for (i = 0; i < num_terms ; i++) {
29 std :: vector < unsigned int > ds = degrees (num_vars , max_degs_range );
30 sign = 1;
31 e = sign * mpq_class (rr. get_z_bits (bits)+1, rr. get_z_bits (bits)+1);
32 if(i == 0 || sgn(e) == -1){
33 f << e;
34 for(int k=0; k< num_vars ; k++){
35 if(ds[k] == 0)
36 continue ;
37 if(ds[k] == 0)
38 continue ;
39 if(ds[k] == 1){
40 f << "*" << variables [k];
41 }else{
42 f << "*" << variables [k] << "^" << ds[k];
43 }
44 f. flush ();
45 }
46 }else{
47 f << "+" << e;
48 for(int j=0; j< num_vars ; j++){
49 if(ds[j] == 0)
50 continue ;
51 if(ds[j] == 0)
52 continue ;
53 if(ds[j] == 1){
54 f << "*" << variables [j];
55 }else{
56 f << "*" << variables [j] << "^" << ds[j];
57 }
58 }
59 }
60 }
61 f.flush ();
62 f.close ();
63 }
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