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ABSTRACT 
 

 

Introduction: Patient head motion is a well-recognised problem in single photon emission computed 

tomography (SPECT) of the brain. Motion occurring between or during the acquisition of projections can 

lead to reconstruction artifacts that compromise accurate patient diagnosis. Although some form of 

restraint tends to be used in practice, motion incidence and magnitude is still high enough to warrant 

frequent repeat studies or the application of motion correction. The motivation for this work was the 

outstanding need for a high-performance motion correction strategy for brain studies. Such a strategy 

should accurately correct general rigid-body motion. The optimal strategy would also be non-invasive, 

have a high degree of automation, and be fast, convenient (requiring little or no calibration, patient 

cooperation, and extra gadgetry), and robust with respect to noise. We describe and implement a fully 3D, 

non-invasive, data-driven approach that is suitable for use with clinical data and is potentially automatic. 

The approach is based on a comparison of measured and estimated projection data. Acquired projections 

are segregated into groups corresponding to discrete locations held by the brain during scanning and the 

largest group is reconstructed. The position and orientation of this reconstruction is optimised for each 

remaining group by comparing the measured projections with those generated from the transformed 

reconstruction. After each optimisation, the current reconstruction estimate is updated with the relevant 

projections using the ordered-subsets expectation maximisation (OSEM) algorithm. 

 

Methods: Three sets of experiments were carried out on different types of data to validate the motion 

correction procedure and investigate practical aspects of implementing the approach clinically. In the 

initial set of experiments, seven noisy motion-corrupted projection sets simulating 2-4 head positions 

were generated from the digital Hoffman brain phantom. The angular location and extent of movement 

and the magnitude of rotation and translation with respect to each axis was varied for each set. Motion 

correction was applied to these data using various regimes: with/without attenuation included in the 

optimisation; with/without a second iteration. Extracted motion parameters were compared with the 

applied movements. The error between the extracted and applied parameters was quantified in terms of 

the mean registration error (MRE), an average displacement of the vertices of a box surrounding the 

brain. Overall improvement from motion correction was quantified in terms of a mean squared difference 

improvement ratio (MSDR). Corrected, uncorrected, and motion-free slices were also compared visually. 

For the second group of experiments, three physical Hoffman phantom studies containing single or 

double movements were obtained. The Polaris motion tracker was used to provide an independent 

measurement of motion. Motion parameters were extracted using our approach and compared with those 

measured by the Polaris. An investigation of cost function behaviour was also carried out by mapping the 

cost function in the neighbourhood of the Polaris solution. The third group of experiments constituted a 

preliminary clinical validation. Three volunteers underwent a motion-free scan followed by a scan in 

which they performed one head movement. A fourth volunteer underwent two scans, holding a single (but 



 xii

different) brain location in each. Again the Polaris was used to measure the motion independent of our 

technique. Data from the fourth volunteer was used to simulate two single-movement studies, facilitating 

a rigorous quantification of the improvement obtained from motion correction. Optimisations were 

performed with and without reduced projections, scatter correction, thresholding of background counts, 

compensation to avoid biasing from truncated data, and pre-smoothing of the acquired data. 

 

Results: In the digital phantom experiments, estimated rotations and translations were mostly within 2° 

and 1mm of the applied values. The MRE was less than 1 pixel in most cases. Accurate motion estimates 

could be obtained at over twice the speed by leaving attenuation out of the optimisation stage. Visually, 

there was a clear reduction in motion-induced artifacts after correction. Most MSDR values were well in 

excess of 2, and the MSDR tended to increase with increasing corruption. A second iteration of correction 

did not provide sufficient improvement to warrant the additional time cost. In the physical phantom 

experiments there was good agreement between the extracted and Polaris measurements for the x and y-

rotation and z-translation parameters. A systematic discrepancy existed for the remaining parameters. The 

discrepancy was reduced for the third dataset (two movements); in this case the corrected study closely 

resembled that obtained using the Polaris values. Analysis of the cost function indicated that the MSD 

was fairly insensitive to large rotations whilst being sensitive to typical translations. Discrepancies 

appeared to be the result of object symmetry. In all of the volunteer studies, sets of motion parameters 

were obtained that closely followed the trend of the Polaris. In general, however, there was a systematic 

discrepancy from the actual Polaris values. Scatter correction had little effect on accuracy. Using reduced 

projections (greater proportion of the image occupied by brain) tended to provide estimates as good or 

better than using larger projections. Pre-smoothing generally lead to less accurate estimates. For large 

movements, tracking the plane of truncation was necessary to obtain sensible estimates. Thresholding was 

important in removing background counts and confining the solution to a sensible portion of the cost 

function. For all volunteers there was a clear improvement in image symmetry and contrast after using 

our approach. In certain cases, correction was better than that obtained from the Polaris. Of particular 

concern is the method used for attaching the head target. Poor attachment can lead to decoupling of target 

and head movement. For the two semi-simulated studies, the MSD improved by approximately 4 and 2 

respectively, whereas the Polaris provided no improvement. 

 

Conclusion: We have demonstrated that complex brain movements in simulated and real data can be 

accurately estimated and corrected using this data-driven approach. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Single Photon Emission Computed Tomography 

 

Single photon emission computed tomography (SPECT) is a nuclear medicine imaging modality used for 

assessing physiological function. A radiopharmaceutical is injected into the patient and a series of two-

dimensional (2D) images of the radionuclide distribution are collected using a rotating gamma camera. 

These data are then reconstructed to give a stack of transverse slices representing the estimated three-

dimensional (3D) distribution of radioactivity in the organ or region of interest. 

 

SPECT resolution and sensitivity are far worse than for the structural modalities like computed 

tomography (CT) and magnetic resonance imaging (MRI). The external collimator, required to produce 

useful images, is the primary cause of poor detection efficiency, leading to the low-count (high noise) 

images characteristic of SPECT. Efficiency can be improved by increasing the administered dose and/or 

the scan time, though patient comfort and safety impose a limit on both of these. Photon attenuation in the 

patient tissues, and scatter within the tissues and detector crystal, are additional factors affecting image 

quality and quantification. Compensating for these and other physical and geometric factors is non-trivial. 

Compared with planar gamma camera imaging, SPECT provides greater image contrast and better 

delineation of overlapping structures, as well as reproducible and quantifiable activity distributions. 

Despite its limitations, SPECT remains a widely used and vital tool for assessing and diagnosing the 

functional state of organs and tissues, particularly in brain and heart. A thorough coverage of SPECT 

physics and quantification can be found in Fahey et al (1996) and Rosenthal et al (1995). 

 

 

1.2 Patient Motion 

 

Patient movement during an acquisition is a well-known cause of distortion and artifacts in reconstructed 

SPECT data. This has been shown to compromise accurate patient diagnosis. The character, extent, and 

incidence of artifacts have a complex dependence on many factors, including the size, direction, timing 

and duration of motion. Motion incidence is expected to be high in brain studies due to the large number 

of patients presenting with epilepsy and dementia. Moreover, when patients are physically limited and/or 

non-compliant, the task of acquiring useful, motion-free data is made more difficult. 
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Head restraint is used routinely in brain SPECT acquisitions to minimise voluntary and involuntary 

patient motion. Despite this, motion can be significant enough to thwart attempts to reconstruct 

diagnostically accurate images. Unless a repeat study free of motion is performed, robust motion 

correction is required. A brief review of relevant literature on patient motion and various detection and 

correction strategies is provided in the next chapter. 

 

An optimal motion correction strategy for brain SPECT would certainly compensate for six degree-of-

freedom (DOF) rigid-body motion. The strategy should also be 

★ Fully automated 

★ Fast 

★ Non-invasive 

★ Robust with respect to noise 

★ Convenient, i.e. requiring minimal additional equipment, calibration, and patient involvement 

 

The motivation for this work was the outstanding need for a strategy that satisfies most of these desirable 

features. We describe and implement a fully 3D, non-invasive, data-driven approach that is suitable for 

use with clinical data and which is potentially automatic. 

 

 

1.3 Principle of Data-Driven Motion Correction 

 

Fundamentally, motion correction is the task of obtaining consistent projection data. When motion occurs 

between discrete acquired projections, consistency is lost and errors will be propagated to the 

reconstructed estimate. Within certain limits, the reprojections generated from this estimate are 

distinguishable from their measured counterparts and can yield information about the corruption. This in 

turn may be used to reverse the effects of motion. A number of previous authors have demonstrated that 

motion correction is feasible in SPECT using a comparison of the acquired projections with projections 

generated from the reconstruction1 (eg. Lee and Barber 1998, Arata et al 1995). Armed with knowledge 

of the detector orientation relative to the object at each projection angle, provided projections can be 

incorporated into the reconstruction according to this orientation, then a means for reversing motion is 

obtained. This principle is illustrated schematically in Figure 1.1. 

 

 

 

 

                                                            
1 Relating measured and estimated projection data has a much broader scope and application than SPECT, eg. Penczek et al 1994. 
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1.4 Introduction to the Motion Correction Approach 

 

The principles of the approach have been described in detail in Hutton et al (2002). Moreover the 

feasibility of detecting and correcting general 3D patient brain movement using this method has been 

established (Hutton et al 2002, Kyme et al 2001). A brief summary is provided here. 

 

 

 

 

 

 

 

 

Figure 1.1. Principle of motion correction using a comparison of the 
measured and estimated (reprojected) projections. Motion information 
from this comparison enables the measured projections to be 
incorporated into the reconstruction consistent with the orientation 
they were acquired at. 

 

 

A dual-90° detector gamma camera is used to acquire a full set of projection data consisting of orthogonal 

pairs of projections. These data are then reconstructed and the resulting estimate is reprojected. 

Comparison of the measured projection pairs with the corresponding reprojected pairs using a mean 

square difference (MSD) similarity measure enables groups of projections acquired for the same brain 

orientation to be identified. For each group, the projection pair exhibiting the greatest dissimilarity 

(largest MSD) is selected as the pair to determine the orientation for the group. The downhill-Simplex 

optimisation routine is used to try various rigid-body (3 rotations, 3 translations) transformations of the 

reconstruction. After each 3D transformation tested by the Simplex routine, the reconstruction is 

reprojected and the relevant projection pair compared with its measured counterpart. Convergence to a 

solution is determined by whether the similarity measure is within a user-defined tolerance or if a 

specified number of iterations are reached. Once the orientation has been estimated, the projection pairs 

associated with this orientation must be incorporated into the reconstruction. The ordered-subsets 

expectation maximisation (OSEM) algorithm is used for this. OSEM allows starting reconstructed 

estimates to be updated with additional projection information. Using the reconstruction resulting from 

the Simplex optimisation stage as the starting image, all projection pairs belonging to the same group as 

the optimised pair are made to update the reconstruction. The procedure repeats until all projection pairs 

from all groups have been incorporated consistently into the reconstruction. A flow chart of the approach 

is shown in Figure 1.2. 

 

 

Measured Data 

Reconstruction 

Reprojected Data

(Compare) 

(Reconstruct) 

(Project)
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The main results from previous work are summarised below: 

✤ Comparison of the measured and estimated (reprojected) projections enabled clear identification of 

flat peaks and troughs corresponding to different locations of the brain during acquisition. 

✤ Increasing noise in the projection data caused an increasing MSD offset in the curves without 

compromising the ability to distinguish peaks and troughs. This was true at a level of noise typical of 

a clinical study and also at much higher levels. 

✤ Optimising the orientation of the reconstruction enabled six DOF simulated motion to be estimated 

accurately. Accuracy varied for different DOF at any particular noise level, and worsened for all 

parameters as noise increased. 

✤ The feasibility of correcting discrete 3D motion using this technique was demonstrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2. Flow diagram of the data-driven motion-correction approach. Additional details can be found 
in the text and in Hutton et al (2002) and Kyme et al (2001). 
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1.5 Objectives of the Present Work 

 

The present work builds on previous methodology and results. We seek to validate the approach for 

simulated and real data as well as provide a detailed framework for practical implementation of the 

approach. Our objectives can be summarised as: 

(i). Validate the approach for correction of complex brain motion in simulated SPECT data 

(ii). Demonstrate feasibility of the approach for correcting complex brain motion in real data 

(phantom and human subjects) 

(iii). Identify practical considerations when implementing the approach with real data 

(iv). Suggest a protocol for data-driven motion correction in clinical brain SPECT 

 

 

1.6 Thesis Structure 

 

The present work has been structured as follows: 

✤ Chapter 2 provides background material on image reconstruction, registration and processing 

relevant to the motion correction technique. The second half of the chapter provides a review of the 

literature on motion in medical imaging and methods for tackling this problem. 

✤ Chapter 3 provides a formal introduction to the algorithm used in the simulation and real data 

validation stages of the work. 

✤ Chapter 4 details the methods and results of the digital phantom validation experiments. 

✤ Chapter 5 details the methods and results of the physical phantom validation experiments. A 

description of the gold standard used for the real data experiments (Chapters 5 and 6) is also 

provided. 

✤ Chapter 6 details the methods and results of the clinical validation experiments. Important practical 

considerations in implementing the approach with real data are also described. 

✤ Chapter 7 provides a general discussion and summary, describes avenues for future investigation of 

this problem, and describes ways in which the technique could be further tested and enhanced. We 

also provide general conclusions of the work. 

 

 

1.7 Publications and Published Abstracts 

 

The following is a list of publications and published abstracts arising from this work. 

(1) Kyme AZ, Hutton BF, Hatton RL, Skerrett DW, and Barnden LR. Practical aspects of a data-driven 

motion correction approach for brain SPECT. IEEE Trans. Med. Imag., 22:722-729, 2003. 
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(2) Hutton BF, Kyme AZ, Lau YH, Skerrett DW, and Fulton RR. A hybrid 3D 

reconstruction/registration algorithm for correction of head motion in emission tomography. Trans. 

Nucl. Sci., 49:188-194, 2002. 

(3) Kyme AZ, Hutton BF, Hatton RL, Skerrett DW, and Barnden LR. In Yves Bizais, editor, 

Proceedings of the VIIth International Conference on Fully 3D Reconstruction in Radiology and 

Nuclear Medicine, Saint-Malo, France, July 2003. 

(4) Kyme AZ, Hutton BF, Hatton RL, Skerrett DW, and Barnden LR. Considerations in applying data-

driven motion correction in real SPECT data. J. Nucl. Med., 44 (5 suppl.), page 64P, 2003. 

(Abstract.) 

(5) Kyme AZ, Hutton BF, Hatton RL, and Barnden LR. Optimizing data-driven motion correction in 

brain SPECT: partial reconstruction and attenuation correction. J. Nucl. Med., 43 (5 suppl.), page 

222P, 2002. (Abstract.) 

(6) Kyme AZ, Hutton BF, Hatton RL, and Skerrett DW, Barnden L. Practical aspects of a data-driven 

motion correction approach for brain SPECT. ANZ Nucl. Med., December:143-147, 2002. 

(7) Kyme AZ, Hutton BF, Hatton RL, and Skerrett DW. Evaluation of factors that influence the 

performance of an automatic motion correction algorithm for brain SPECT. Nucl. Med. Commun., 

22:923, 2001. (Abstract.) 
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CHAPTER 2 

 

BACKGROUND AND REVIEW OF LITERATURE 
 
 
PART A: BACKGROUND 

2A.1 Image  Reconstruction 

 

A brief description of the reconstruction problem and methods is provided here. Lalush (2003), Defrise 

(2002), and Bruyant (2002a) provide a comprehensive coverage of the theory and practice of analytical 

and iterative reconstruction techniques. 

 

SPECT image reconstruction is the task of solving for an emitting distribution given projections of the 

distribution. The problem has traditionally been performed using 2D back-projection where data from all 

projection bins corresponding to a particular transverse slice are projected back through the imaging 

volume. Appropriate filtering (convolution) of the projection data removes back-projection artifacts. 

Provided there is sufficient angular sampling, no noise, and no physical effects such as attenuation, 

filtered back-projection provides a theoretically exact reconstruction. Analytic 2D reconstructions are also 

performed in the Fourier domain, taking advantage of the fact that the Fourier transform of a line in the 

projection space corresponds to an oblique line through the Fourier transform of the object (Fourier 

projection theorem). The object distribution is obtained from the transformed projections by applying the 

inverse Fourier transform. The method is prone to artifacts induced in the Fourier domain interpolation. In 

general, all analytic techniques are limited because only simplistic modelling of the photon physics is 

possible. 

 

Many good iterative methods have now been developed to solve for tomographic reconstructions. Since 

these methods are numerical, the physics of photon emission and detection may be accounted for at any 

level of complexity. All iterative techniques are based on a feedback model aimed at achieving 

consistency between estimated and measured data. At the outset, the object (distribution) is initialised to 

some arbitrary value. This is projected and the estimated projections compared with measured data to 

derive a set of error projections. Error projections are in turn transformed to the image space and used to 

update the estimate. The process continues until the errors are within some specified tolerance. A general 

schematic for iterative reconstruction is shown in Figure 2.1. 

 

Mathematically, projection of the distribution is modelled by a matrix H, the elements hji of which 

describe the probability that voxel i in the object contributes to projection bin j. All of the physics 

modelling emission, passage through a medium, and detection of photons may be incorporated into this 

matrix. 
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Figure 2.1. Generalised flow model of an iterative reconstruction 
algorithm. (Lalush DS. Iterative image reconstruction. In Wernick 
and Aarsvold, editors, Emission Tomography: The fundamentals of 
PET and SPECT. Elsevier (to appear). 
 

 

Noise and other inadequacies in the data (such as motion) mean that clinical data are almost never 

‘consistent’ – i.e. there is no object that, when projected, would give rise to the measured data. Statistical 

reconstruction algorithms account for the fact that there is variation expected in the acquired data. The 

problem then becomes one of finding the most likely solution from an array of possible solutions. 

Variation in the data, due, for example, to the random nature of nuclear decay, gets described by a 

statistical criterion. The iterative algorithm seeks the solution specified by this criterion. 

 

Early on, the gold standard in iterative algorithms was maximum likelihood expectation maximisation 

(ML-EM) which combines the ML Poisson statistical criterion with the EM algorithm (Shepp and Vardi 

1982). Iterative algorithms such as ML-EM provide good image quality and noise characteristics (eg. 

Shepp et al 1984, Chornoboy et al 1990, Soares et al 2000). Although the likelihood of a correct solution 

increases with increasing iteration number, noise also increases, thereby requiring that the process be 

terminated after some specified number of iterations. The solution subsequently may be smoothed to a 

visually and diagnostically acceptable level. 

 

Ordered-subsets EM (OSEM) (Hudson and Larkin 1994) is a block-iterative variant of ML-EM that 

provides significant computational advantages. Here projection data are grouped into subsets of a desired 

size. Each update of the object is based on information from a single subset rather than the complete set 

of projections. This provides an update of similar quality to one, complete iteration of ML-EM, but 
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proportionately faster by a factor approximately equal to the number of subsets. An underlying 

assumption of OSEM is that each subset is equally likely to contain counts1. This is known formally as 

the subset balance condition. As a result, subsets are normally chosen to have maximum angular variation 

within and between them. However, as Lalush (2003) points out, reconstructions do not appear overly 

sensitive to ordering. 

 

OSEM has no proof of convergence, even in the noise-free case as ML-EM does. It can be shown that 

OSEM converges to multiple solutions, and successive iterations oscillate between these in a process 

known as limit cycling. Despite the theoretical limitations, from a practical point of view OSEM has 

proved to be a popular and stable algorithm to work with in SPECT, possibly because the limit cycle 

solutions are very similar in general. It has been shown that OSEM is a special case of a more general 

block-iterative formulation that has a stronger theoretical basis (Soares et al 2000). In this formulation, 

convergence to a unique solution is proven in the noise-free case. One implementation, the rescaled 

block-iterative (RBI) algorithm, is not constrained by subset balance and therefore does not have any 

specific requirements on the projections within each subset (Byrne 1996, Byrne 1997, Byrne 1998). The 

row-action maximum likelihood algorithm (RAMLA) (Browne and Di Pierro 1996) is also very similar to 

OSEM. A relaxation parameter controls the impact of successive iterations and also permits single 

projection subsets to be used. 

 

It has been shown that OSEM reconstruction facilitates 3D motion correction (Fulton et al 1994, Hutton 

et al 1997). If projections corresponding to similar locations of the object are grouped into subsets, an 

initial estimate may be reoriented according to motion knowledge such that each projection subset is used 

consistent with the orientation it was acquired at. This methodology is a core component of our motion 

correction approach and will be discussed in more detail in Chapter 3. 

 

 

2A.2 Image Registration 

 

Image registration refers to the spatial or temporal alignment of images. It is particularly relevant to 

medical imaging since patients routinely undergo imaging on multiple modalities and combining 

information from these scans is diagnostically advantageous (eg. Pelizzari et al 1989). Registration of 

images from one or more modalities can improve identification of disease, quantification of anatomical 

and physiological parameters, treatment planning and follow-up (eg. Picard and Thompson 1997, Radau 

et al 2000, Meltzer et al 1990). Much literature exists on the theory and practice of intra and inter-

modality registration techniques. Van den Elsen et al (1993), Maintz and Viergever (1998a), and Hill et al 

(2001) provide a thorough coverage of the subject. 

                                                            
1 Mathematically this is equivalent to requiring ∑ hji be constant over all subsets. 
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Registration is the problem of finding the mapping from one image coordinate space to another (Barber 

1992). The computational demand of this task is determined by the mathematical complexity of the 

mapping function. For some applications such as intra-subject brain registration, a rigid-body model may 

be sufficient (eg. van den Elsen 2002). For many other applications (eg. blood vessel visualisation and 

inter-subject registrations), an affine model is more correct. There are numerous examples in the literature 

of non-rigid spatial warping methods to twist a group of control points on two separate images into 

coincidence (eg. Pickens and Price 1987, Barber 1992, Dann et al 1989). 

 

Given sufficient reference landmarks the mapping can be solved algebraically or a solution can be 

searched for iteratively. Generally, registration procedures make use of a searching algorithm 

(optimisation strategy) to minimise or maximise a cost function describing the similarity between images. 

Press et al (1992) provides a summary of the principles of some common optimisation strategies and 

Capek et al (2001), Meijering et al (1999), Hill et al (2001), and Penney et al (1998) have described the 

choice of and performance of common similarity measures. 

 

Comparison of grey values is a simple and intuitive method for intra-modality registration (eg. Eberl et al 

1996). Measures used to quantify spatial agreement include minimising the sum of squared differences 

(eg. Slomka et al 1995), maximising the cross-correlation (eg. Eisner et al 1987), and minimising the 

standard deviation of the ratio of the images (eg. Woods et al 1992). Direct grey value comparison 

techniques need to be applied differently for inter-modality registration problems since the images have a 

non-linear grey value relationship. Intensity re-mapping (eg. van den Elsen et al 1994) can be applied first 

so that the intensity distributions resemble each other more closely. 

 

Inter-modality registration can also be achieved using surface (eg. Turkington et al 1995) or marker (eg. 

Malison et al 1993) matching. However, such methods are limited by the consistency of the data (Levin et 

al 1984). An alternative is to use a global similarity measure, of which mutual information (MI) (Wells et 

al 1996, Maes et al 1999) is a popular choice. MI operates under the principle that improved registration 

leads to lower variance in the joint pixel-intensity histogram of the two images. In other words, as 

registration improves, there will be an increased probability of correctly predicting the grey value of a 

pixel of one image given the value in its assumed counterpart in the second image. A multi-variate MI 

registration approach where additional information is included from a third image can improve robustness 

in locating global extrema (Boes and Meyer 1999). 

 

Segmentation is the manual or automated extraction of specific structures in an image. Numerous intra 

and inter-modality approaches rely on segmentation of one or more of the images to achieve registration 

(eg. Collins et al 1995 , Ardekani et al 1995).  
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Many motion correction approaches in the literature are based on registration of volume images from a 

time sequence (eg. Maas et al 1997, Picard and Thompson 1997, Pappata et al 2002) or alignment of 

planar images in the projection space prior to reconstruction (eg. Groch et al 1985, Levin et al 1984, 

Geckle et al 1988, Leslie et al 1997, Pellot-Barakat et al 1998). Essentially the motion correction problem 

is equivalent to the registration problem since motion leads to temporal or spatial misalignment between 

images. 

 

A registration technique resembling our own approach to motion correction in SPECT has been described 

by (Surova-Trojanova et al 2000). Here planar emission images were registered to reprojected CT (rCT) 

images based on a comparison in projection space. The orientation of the CT reconstruction was 

optimised so as to maximise similarity between the rCT image and planar transmission image. Following 

this step, the rCT image and planar emission image were in registration by virtue of the fact that the 

emission and transmission data were acquired simultaneously. An extension of this method to register 

SPECT and CT volumes using two planar views has been described (de Vries and Moore 2001). 

 

 

2A.3 Similarity Measures (Cost Functions) 

 

A similarity measure, or cost function, is a criterion of registration quality. It is used to quantify the 

degree of similarity between two or more sets of data. Specifying an appropriate cost function for a 

particular registration problem is critical since this determines the multi-dimensional shape of the solution 

space, as well as the speed and reliability with which the solution may be found by an optimisation 

procedure. The optimal choice of cost function has been shown to depend on the modalities involved (eg. 

Penney et al 1998). Processing techniques such as smoothing alters the cost function shape and can make 

the measure more favourable (eg. Roche et al 1999). Some of the more common similarity measures used 

in medical image registrations are described here. 

 

2A.3.1 Cross-Correlation 

The cross-correlation function value is a summation of the product of corresponding pixels in each image, 

over an arbitrary number of dimensions. Variable offset parameters for each dimension are optimised to 

maximise the function and thereby obtain the shift in each dimension necessary to register the two 

images. The cross-correlation function has a high threshold due to noise and is unsuitable for detecting 

rotations and large-amplitude motion spread out in time (Eisner et al 1987). A description of the measure 

can be found in Buzug et al (1998) and Meijering et al (1999), and examples of its use in Eisner et al 

(1987), O’Connor et al (1998) and Penney et al (1998). 
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2A.3.2 Sum of Squared Differences (SSD) and Mean of Squared Differences (MSD) 

As the name suggests, the SSD function is calculated by summing all values of the squared difference 

image. Dividing this value by the number of elements in the image gives the MSD function (also known 

as the cross-structure function). Like the cross-correlation function, these measures are based on actual 

grey values. A description of the measure can be found in Buzug et al (1998) and examples of its use in 

Bidaut and Vallee (2001) and Hoh et al (1993). 

 

2A.3.3 Sum of Absolute Differences 

This is calculated by summing all values of the absolute difference image and is a minimum at 

registration. (Eberl et al 1996) found it to be the most reliable and accurate similarity measure in 

registering SPECT and PET images when compared with the stochastic sign change (see deterministic 

sign change below), sum of products, and standard deviation of ratios measures. Other examples of using 

this measure can be found in Slomka et al (1995) and Hoh et al (1993). 

 

2A.3.4 Deterministic Sign Change 

A periodic pattern is imposed on one image before it is subtracted from the second image. Registration 

assumes the periodic pattern is maximally preserved in the difference image. Progress to a global solution 

can be hindered by local extrema. Gradient-based optimisation procedures cannot be used with this 

measure since it is discrete. A description of the deterministic sign change technique can be found in 

Buzug et al (1998) and examples of its use in Penney et al (1998) and Slomka et al (1995). 

 

2A.3.5 Histogram-based methods 

These methods operate on the principle that the difference of two registered images will have low-

contrast. Common to them is an initial subtraction of images followed by formation of the normalised 

grey value histogram. A number of functions, such as energy and entropy of the histogram of differences, 

have well-defined extrema in certain applications. Probably the most common histogram measure is the 

mutual information (MI) (Wells et al 1996, Maes et al 1999). MI operates under the principle that 

improved registration leads to lower variance in the joint pixel-intensity histogram of the two images. It is 

used for global image registration and is particularly useful when a non-linear pixel relationship exists 

between images. MI produces well-defined extrema with excellent smoothness and steepness in CT-MRI 

registrations (Capek et al 2001). A multi-variate MI registration approach which includes information 

from a third image has demonstrated improved robustness in locating global extrema (Boes and Meyer 

1999). A further description of histogram-based measures can be found in Buzug et al (1998), Meijering 

et al (1999) and Maintz et al (1998b), and examples of their use in Penney et al (1998) and Roche et al 

(1999). 
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2A.4 Optimisation Strategies 

 

An optimisation strategy is a search procedure to locate the optimal state (extremum) specified by the 

criterion of registration quality (cost function). The search usually takes place in a multi-dimensional 

space. Optimisation procedures vary in robustness with regard to local extrema and convergence to a 

global solution. Some of the commonly used optimisation algorithms are described here. More detailed 

descriptions of these algorithms may be found in Press et al (1992), Ebert (1997a), Ebert (1997b) and 

Maes et al (1999). 

 

2A.4.1 Downhill-Simplex Routine 

The downhill-Simplex algorithm (Nelder and Mead 1965, Press et al 1992) is a non-exhaustive search 

procedure based on contortions of a geometric structure (simplex) that traverses the multi-dimensional 

space. Successive iterations of the routine are characterised by expansions, contractions, reflections, and 

scaling of the structure. Maes et al (1999) showed that the Simplex routine reliably located the global 

minimum and out-performed Powell’s method and the steepest gradient descent method in CT-MR image 

registrations. Other examples of its use can be found in Slomka et al (1995) and Hoh et al (1993). 

 

2A.4.2 Powell’s Method 

The cost function is minimised for each dimension independently.  The solution in one dimension 

becomes the origin for the following search in the next dimension. It has been found to converge more 

rapidly than the downhill-Simplex and gradient methods for high resolution studies, but slower in low-

resolution studies. An example of its use can be found in Faber et al (1991). 

 

2A.4.3 Steepest Gradient Descent 

This is similar to Powell’s method but, at each minimum, optimisation occurs in the direction of steepest 

descent. In general it is not the optimal algorithm choice because of slow convergence. 

 

2A.4.4 Stochastic Methods 

Stochastic methods such as simulated annealing are another branch of optimisation algorithms. They are 

less ‘systematic’ and rely on random perturbations to explore the solution space. The changes are 

accepted if the cost function proceeds closer to the optimal value. If local minima are expected to be 

problematic, a stochastic approach is preferable. A drawback of stochastic methods is slow convergence. 
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2A.5 Image Processing 

 

2A.5.1 Volume Projection 

Many techniques for volume projection are described in the literature. These are broadly classified into 

pixel-driven and ray-driven methods depending on whether the process is considered as a filling of 

projection bins or an emission from volume bins respectively. Approaches differ in accuracy and speed 

according to the complexity of sampling and interpolation used. Computationally efficient projection of 

image data for tomographic image reconstruction and simulation can be achieved by appropriate rotation 

of the data followed by summation along the primary matrix axes (eg. DiBella et al 1996, Lalush 2003). 

This approach has been used for reprojecting image volumes in the present work. 

 

2A.5.2 Interpolation 

Standard image processing often requires interpolation of sampled data. For example, non-orthogonal 

rotation requires interpolation of either the original image or the rotated image. If the interpolation 

scheme is inappropriate, image counts may not be preserved, uniformity can be degraded, positional 

errors can be introduced, and excessive or angle-dependent blurring can result (Wallis and Miller 1997). 

This in turn can degrade optimisation procedures, registrations (Hill et al 2001, Meijering et al 1999), and 

quantitative analyses (eg. Kuhle 1992). 

 

The ideal kernel for interpolation is the (infinite) sinc function. For practical, efficient processing, this is 

often approximated using either piecewise polynomials or windowing. The simplest piecewise 

polynomials give rise to the nearest neighbour and linear interpolation schemes, the latter being by far the 

most widely used approach in general applications. Meijering et al (1999) showed that linear interpolation 

is the best option when two grid points are used to define the kernel. A cubic kernel is the best approach 

when four grid points are used. When additional grid points are used, windowing the sinc provides more 

accurate interpolation than polynomial approximations, though the choice of window function is critical. 

A rectangular window (truncated sinc) for example gives poor results. The choice of kernel is 

complicated by a dependence on the imaging modalities involved and the 3D plane selected. Wallis and 

Miller (1997) described a rotator that redistributes source image counts according to Gaussian blobs. 

Performance with respect to count preservation, uniformity, positional errors, computational speed, and 

angle-dependent blurring was superior to other algorithms tested (including bilinear interpolation). In the 

present work we used the bilinear scheme for 3D transformations because it provides the best speed and 

accuracy for a simple kernel and cubic-voxel basis. Bilinear interpolation is also applied in our OSEM 

reconstruction software. 
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PART B: REVIEW OF LITERATURE 
2B.1 Motion in Medical Imaging Modalities 

 

Many authors have sought to describe and characterise the sources and impact of patient motion in 

various medical imaging modalities. A brief coverage of the literature is provided here with particular 

attention paid to the nuclear medicine modalities SPECT and PET. 

 

2B.1.1 Types of Motion 

Patient motion can be classified broadly into involuntary and voluntary motion, and subdivided further 

into rigid and non-rigid (elastic) motion. Heartbeat motion, respiratory motion (and associated movement 

of organs with the diaphragm) (eg. Klein et al 2002, Bruyant et al 2002b, Nehmeh et al 2002, Blodgett 

2002), cardiac “creep” (translation of the heart up the chest after exercise due to changing diaphragm 

position) (Friedman et al 1989, Eisner et al 1988, Tsui et al 2000), and peristalsis (eg. abdominal) are all 

examples of involuntary, non-rigid motions that do occur during medical imaging. The periodicity and 

temporal characteristics of these motions vary considerably. 

 

Other examples of involuntary motion that may or may not be expressed as rigid motion are vibrational 

motion such as cardiac or respiratory-induced head motion (Freire et al 2002, Maas et al 1997, Calhoun et 

al 1998), sneezing, coughing, pain reflexes, tremor and other movement disorders, and slow rotational 

and translational drifting motions (Fulton 2000, Pandos et al 2002, Bloomfield et al 2003). 

 

Voluntary movement can result from general restlessness, adjustment to relieve pain or discomfort, leg-

crossing, response to stimulus in the room, and compliance with activation paradigms where the 

physiological effect of performing certain tasks is being tested (Lopresti et al 1999, Linney and Gregson 

2001, Fulton 2000, Pandos et al 2002, Freire et al 2002, Maas et al 1997, Calhoun et al 1998, Zeffiro 

1996). Placing arms behind the head in cardiac SPECT is a common source of rapid, discrete heart 

motion (Geckle et al 1988). Germano et al (1994) and Pandos et al (2002) have observed a ‘settling’ 

period early in the scan and subsequent ‘discomfort’ period late in the scan, with less motion mid-scan. 

 

Cumulative head motion increases with increasing scan time irrespective of restraint (Green et al 1994, 

Fulton 2000). In any given time period there are multiple statistically significant mean positions. The 

cumulative increase therefore results from differences in the frequency and amplitude of non-random 

movements rather than an increase in the frequency and amplitude of random movement about a single 

mean (Lopresti et al 1999). Random motion is spatially symmetric about an average for each DOF and is 

generally low amplitude and high frequency. Non-random movement tends to be high amplitude and low 

frequency, leads to a change in mean position, and results from speaking, leg-crossing, sneezing, 

coughing and pain. Slow, continuous movement can last minutes and often follows large, non-random 

movements (Lopresti et al 1999). These results are in agreement with Bloomfield et al (2003) and Fulton 
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(2000) who detected sharp, rapid movements (up to 4° rotations and 15mm translations) interspersed by 

periods of stability or slow drift (1.5° and 2-3mm) when monitoring normal volunteers and epilepsy 

patients. Pandos et al (2002) found a similar pattern amongst patients (dementia, psychiatric, 

fibromyalgia, and chronic fatigue syndrome) and normal volunteers. Thus commonplace head motion is 

characterised by slow shifts in position in all DOF, as well as random, discrete, rapid movements of 

relatively large amplitude. 

 

2B.1.2 Effects of Motion 

It is well known that patient motion can cause artifacts in medical imaging modalities, particularly 

tomographic modalities (eg. Yang et al 1982, Eisner et al 1987, Silver et al 1994). Cooper and 

McCandless (1995) defined motion-induced artifacts as any streaking, smudging, defects or hot spots 

unexplained by physiology or pathology that are improved by motion correction. 

 

Many authors have sought to characterise artifacts produced by various types of patient movement (eg. 

Silver et al 1994). One group defined the primary groupings for SPECT artifacts as streaking at high 

contrast boundaries occurring for all types and combinations of motion, boundary discontinuities induced 

by translational motion, and distortions of shape and size in weak contrast objects (Yang et al 1982). In 

general, artifacts can be manifest in many ways, some examples being blurring and loss of resolution, hot 

and cold spots masking true physiology, general distortion, reduced contrast, mis-positioning/splitting of 

activity, and deformation (Depuey and Garcia 1989, Klein et al 2002, Germano et al 1993, Ivanovic et al 

2001). 

 

The presence of motion-induced artifacts in any modality can affect quantitation. Examples are false 

positive results for SPECT radiotracer uptake in brain structures (Pappata et al 2002), erroneous lung 

lesion characterisation using PET (Nehmeh et al 2002), and altered lung density values from CT 

(Blodgett 2002). In digital subtraction angiography (DSA)1, tiny patient motions can lead to false blood 

vessel visualisation and distortion of true vessels (Meijering et al 1999). Small motion is also problematic 

in functional magnetic resonance imaging (fMRI)2, leading to spurious signal intensity changes unrelated 

to the specific task performed (Zeffiro 1996, Freire et al 2002, Maas et al 1997, Calhoun et al 1998). 

 

Random motion appears to induce smaller artifacts than non-random motion (O’Connor et al 1998), and 

non-returning motion more serious artifacts than periodic motion (O’Connor et al 1998, Matsumoto et al 

2001). Movements affecting a single projection have little effect on the final reconstruction, though for 

any given amplitude, artifacts become more severe as the number of projections affected increases (Silver 

                                                            
1 DSA involves subtraction of a baseline X-ray image from a contrast-enhanced X-ray image in order to visualise blood vessels. A 
good coverage of motion in this modality can be found in Meijering et al (1999). 
2 fMRI is used for imaging task-induced changes in cerebral blood flow and typically involves a time series acquisition. Motion of 
the head caused by cardiac and respiratory vibration, or performance of the task itself, regularly leads to inaccurate activation 
signals due to mis-registration of the time series images. 
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et al 1994). Gross patient motion is considered by some authors (eg. Germano et al 1994) to be the cause 

of most, and typically the worst, motion-induced artifacts. It has been demonstrated that artifacts induced 

by complex motion involving more than one DOF exhibit the same features as those induced by the 

individual components of the motion, suggesting the impact is approximately additive (Yang et al 1982, 

Botvinick et al 1993). However, there are no simple rules governing artifact production. In general, the 

location, extent, and abundance of motion-induced artifacts has a complex dependency on the time of 

occurrence in the acquisition, direction, amplitude and duration of motion (Botvinick et al 1993, Prigent 

et al 1993, Friedman et al 1989). Moreover, alignment of transmission data for attenuation correction 

(Bailey 1998), the object size and location in the field of view (FOV) (Li et al 1995b), the detector 

resolution (Green et al 1994), the direction of camera rotation, scan time, and clinical pathology (eg. 

Pandos et al 2002) are all influential factors. Modalities become increasingly susceptible to motion-

induced artifacts the better the scanner resolution. For example, high resolution CT (sub-mm resolution) 

and state-of-the-art PET (2-3 mm resolution) make small patient movements problematic. In nuclear 

medicine studies, occurrence of motion artifacts is exacerbated by long scan times, typically 20 mins to 2 

hours (Ivanovic et al 2001, Silver et al 1994). As a result, motion is more likely in single-detector scans 

where the scan time must be increased compared to multi-detector acquisitions so that sufficient counts 

are obtained (Matsumoto et al 2001). Moreover, various authors (eg. O’Connor et al 1998, Matsumoto et 

al 2001, Hillier and Wallis 1999) have made the observation that multi-detector acquisitions are more 

sensitive to motion (and hence motion-induced artifacts) since multiple views are acquired 

simultaneously. By contrast, multi-rotation schemes employing alternating rotation of detectors has been 

shown to be less sensitive to motion (eg. Britten et al 1998, Germano et al 1994). Complicating the matter 

further is the fact that artifacts show dependency on the properties of restraining devices (Green et al 

1994, Menke et al 1996). 

 

The threshold of artifact production is an important consideration for day-to-day scanning. However, the 

complex dependency of artifact production on the nature of motion and other variables makes dogmatic 

specification of such a threshold difficult. Practically, it is helpful to have rough guidelines, and numerous 

authors have suggested one-pixel motion (Prigent et al 1993, Botvinick et al 1993, Matsumoto et al 

2001), or more conservatively, half-pixel motion (Eisner et al 1987, Eisner et al 1988, Friedman et al 

1989). Motion that can be identified visually was the threshold suggested by Cooper et al (1993), though 

Yang et al (1982) reported significant artifacts based on a more conservative limit. The threshold of 

artifact production is also a vital consideration from the perspective of design and performance of 

correction algorithms. A range of algorithms with low sensitivity (~ 4-5 pixels) (eg. Passalaqua and 

Narayanaswamy 1995) to high sensitivity (~ 0.5 pixels) (eg. Germano et al 1993) have been published. 

 

Authors report motion occurrence in cardiac studies for between 10-40% of cases (eg. Eisner et al 1988, 

Cooper and McCandless 1995, Botvinick et al 1993, Prigent et al 1993, Germano et al 1994). The number 

of mis-diagnoses reported from scans identified as having motion is also quite variable (4-40%) (eg. 
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Prigent et al 1993, Botvinick et al 1993, Cooper and McCandless 1995). O’Connor et al (1998) estimated 

10-20% of cardiac SPECT studies either required application of motion correction or a repeat scan 

because of significant motion-induced artifacts. Such figures can be misleading in isolation and should be 

interpreted with respect to the type and size of motion. Head rotations exceeding 1° are readily observed 

in Parkinsonian patients according to Menke et al (1996). Pandos et al (2002) monitored the head motion 

of 15 dementia, 8 psychiatric, 10 fibromyalgia and 18 chronic fatigue syndrome patients, as well as 23 

normal volunteers. They found 71% of subjects moved > 1mm or 1°, and 10% moved > 4mm or 4°. 

Moreover, 65% of the subjects moved at least three times during the 30-minute scan. 

 

In certain cases it has been demonstrated that applying motion correction can produce or enhance motion 

artifacts (eg. Cunneen et al 2001), however this appears to be due to limitations in the algorithms 

(Matsumoto et al 2001). 

 

 

2B.2 Prevention of Motion in Medical Imaging 

 

It is said that prevention is the best form of medicine and many authors hold to a preventative philosophy 

with regard to patient motion. In fact, authors across the modalities generally agree that irrespective of 

whether motion correction is applied to data or not, some form of motion prevention during the 

acquisition should be mandatory practice. 

 

Immobilisation techniques such as stereotactic frames (eg. Bergstrom et al 1981, Enzmann and Freimarck 

1984) have been used to secure the head. More recent approaches include mouldable polyurethane head 

holders or thermoplastic masks (Mawlawi et al 1999, Green et al 1994, Ruttiman et al 1995). Simpler 

measures such as Velcro® straps appear to be commonplace in many nuclear medicine departments. Such 

measures reduce, but do not eliminate, motion (Fulton 2000). For example Mawlawi et al (1999) quoted 

average head movements of approximately 2mm and 4mm using polyurethane holders and thermoplastic 

masks respectively, and Green et al (1994) observed movements of 3-10mm for subjects wearing the 

thermoplastic mask. 

 

Motion prevention devices requiring patient cooperation such as bite plates and handgrips (eg. Feldkamp 

1994) have been used to restrict motion, but these may not be appropriate for less compliant patients. 

Patient positioning and comfort is a simple but important motion prevention measure, particularly for 

long scans. To limit internal and gross patient motion in cardiac SPECT, Kiat et al (1992) employed 

prone positioning. Devices such as the Patient Support Device® (Cooper and McCandless 1995) provide 

additional support to parts of the body such as the back and arms to promote comfort. 
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Artifacts induced by respiratory motion have been minimised using appropriate breath-holding protocols 

(eg. Blodgett 2002). Gating, although not strictly a preventative technique, allows data acquired during 

different intervals of the respiratory cycle to be segregated and binned into separate images. Cycle 

information is measured via optical monitoring of the chest surface, spirometric techniques, chest 

impedance techniques, air flow and temperature techniques, pressure transducer techniques, and data-

driven techniques (eg. Klein et al 1998, Cho et al 1999, Klein et al 2001). Cardiac gating involves the 

same principle applied to the heart cycle and makes use of the ECG signal as a gating trigger (Germano et 

al 2001). 

 

Other preventative measures described in the literature include reduction of scan time (eg. Richie et al 

1992, Germano et al 1994, Passalaqua and Narayanaswamy 1995), administration of drugs such as 

glucagon to minimise peristaltic motion in the abdomen (Harrington 1983, Rabe et al 1982), anaesthesia 

to minimise gross patient motion (particularly useful for paediatric and non-compliant patients), and use 

of devices such as abdominal compression bands to displace overlying organs and tissue from the area of 

interest (eg. Boxt 1983). 

 

To summarise, preventative measures alone do not, and in certain cases cannot, eliminate motion. They 

may also be impractical and cumbersome for routine clinical use. Immobilisation techniques can be 

invasive, cause a considerable amount of discomfort, and even be counter-productive (Cooper and 

McCandless 1995, Bloomfield et al 2003). Other forms of restraint are often insufficient to prevent 

motion-induced artifacts, and in some cases lead to device-dependent features (Green et al 1994). 

Moreover, restraint does not limit motion to the level necessitated by state-of-the-art scanner resolution. 

Promotion of patient comfort is important and necessary but incidence of motion can still be high (Cooper 

and McCandless 1995). 

 

 

2B.3 Solving the Motion Problem 

 

There are two critical stages in any method for solving the motion problem in medical imaging. The first 

stage is motion detection, which may or may not include estimation of the motion. The second stage is 

motion correction where information from the detection stage is applied in some way to compensate for 

motion and give rise to a more consistent set of data for the task required. Detection and correction will 

be treated separately, though it should be noted that most authors describe detection and correction 

methodologies together when presenting a motion correction approach. The reason for treating the stages 

separately is because, in many cases, techniques from each stage can be ‘mixed and matched’. 
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2B.4 Motion Detection 

 

As mentioned above, stage one of any motion correction approach is to detect motion. All motion 

detection techniques can be classified as either external or internal. External detection techniques are 

based on independent measurement of the patient motion, i.e. motion information is separate from the 

actual image data of interest. Internal, or data-based, techniques use the measured data itself to detect 

motion. 

 

2B.4.1 External Motion Detection 

Electromagnetic motion tracking systems have been used to measure head motion in PET (eg. Green et al 

1994, Goldstein et al 1997). A reference field induces currents in orthogonal coils fixed to the patient. 

The size and direction of currents can be converted to positional information via calibration data. Eddy 

currents induced by nearby conductors (eg. detector gantry) degrade the stability of electromagnetic 

systems (Goldstein et al 1997). 

 

Mechanical tracking arms have been implemented for motion detection in nuclear medicine (eg. Fulton 

2000). The arm is secured to the object of interest and sensors at the device joints generate electrical 

signals based on the degree of rotation enabling object movements to be computed. 

 

Optical techniques dominate the literature. For example Picard and Thompson (1997) used video cameras 

to detect the position of light emitting diodes on the patient. A similar system developed by Goldstein et 

al (1997) for emission tomography involved tracking the triangulation of three incandescent lights fixed 

to the head. This device had similar performance to an electromagnetic tracking system. Web cameras 

were used in SPECT studies by Gennert et al (2002b) to enable detection and computation of the patient 

surface as it changed with motion. 

 

Infrared devices have the advantage of being insensitive to ambient light levels. Menke et al (1996) 

achieved high performance (50 Hz sampling, 0.2mm accuracy) 3D head motion tracking in PET using 

two CCD video cameras to collect reflections from infrared targets attached to a device secured to the 

patient’s teeth. The system in use by many research groups presently is the infrared Polaris motion tracker 

developed by Northern Digital Inc1. Four infrared reflectors on a target secured to the patient head enable 

six DOF (3 position, 3 orientation) data to be sampled. The Polaris was applied in PET by Lopresti et al 

(1999) who sampled at 1 Hz and obtained 0.5 mm and 0.5° accuracy for translations and rotations 

respectively, suitably inside the recommendations suggested by Green et al (1994). An accuracy 

assessment by Watabe et al (2002b) indicated < 2mm and < 0.5° errors for translation and rotation 

respectively. They also demonstrated that the error propagated to the whole motion-corrected brain was < 

                                                            
1 Northern Digital Inc., Waterloo, Ontario, Canada. 
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2%. Numerous other authors have recently applied the Polaris to brain SPECT (eg. Pandos et al 2002) and 

PET (Fulton 2000, Fulton 2002, Woo et al 2002, Watabe et al 2002a, Bloomfield et al 2003). 

 

If quantitative information from an external device is to be applied in a motion correction scheme, the 

mapping from device coordinates to imaging (eg. gamma camera) coordinates must be computed. 

Gennert et al (2002a) developed a calibration phantom for this task. Other examples of obtaining the 

mapping for particular devices can be found in Fulton (2000) and Goldstein et al (1997). 

 

2B.4.2 Internal (Data-Based) Motion Detection 

As a general quality control measure during SPECT imaging, an operator typically views the cinematic 

sequence of projection images (cine). This also serves as a qualitative means of assessing the presence 

and degree of patient motion (eg. Depuey and Garcia 1989, Matsumoto et al 2001, Germano et al 1994), 

being additionally sensitive for multi-detector acquisitions (O’Connor et al 1998). The approach is limited 

by being operator-dependent. 

 

A sinogram is a plot of source distribution along the detector FOV as a function of angular position of the 

detector. For a general distribution this appears as a complex pattern of superimposed sine curves. 

Discontinuities in the sinogram caused by patient motion can be detected visually (Eisner et al 1987) 

provided the motion is large enough. A less subjective approach using the sinogram was described by Lu 

and Mackie (2002) who incorporated high activity/contrast nodal markers in the object. The motion-

corrupted sinogram trace of nodal regions appears as prominent but distorted sine waves in sinogram 

space. This trace can be used to estimate the expected trace, from which motion parameters are derivable. 

They demonstrated feasibility of detecting in-plane respiratory motion in CT and emission CT 

applications using this method. Linney and Gregson (2001) described a motion detection approach in 

brain CT using opposing views acquired at different times to estimate the time derivative of the sinogram. 

From this, a sinogram of motion was derived. However, only limited extraction of the motion component 

was demonstrated, even for simplistic in-plane movements. 

  

Motion is also identifiable via the frequency spectrum of acquired data. Such an approach is not common 

in SPECT because of the long scan times. One example is Groch et al (1985) who identified regular, non-

random peaks in the frequency domain resulting from cardiac, breathing, and exercising movements in 

multi-gated blood-pool studies. Frequency domain techniques are far more common in fMRI because of 

the much smaller temporal scale. For example the ‘navigator’ echo technique (eg. Anderson and Gore 

1994, Ulug et al 1995) enables the measurement of phase-shift information related to patient movement. 

Another example is phase-only matched filtering which has been used to extract rotational offsets 

between two images (eg. Maas et al 1997, Calhoun et al 1998). 
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Cross-Correlation Techniques: Cross-correlation in the projection space is the basis of many approaches 

to motion detection (eg. Eisner et al 1987, Lee and Barber 1998, Arata et al 1995, Ivanovic et al 1998, 

Pellot-Barakat et al 1998, Passalaqua and Narayanaswamy 1995, Britten et al 1998, Leslie et al 1997). 

For example, Eisner used the cross-correlation function to detect in-plane translational motion in cardiac 

SPECT. Motion was seen as abrupt spikes in the frame-to-frame correlation. In the dual-scan approach of 

Passalaqua, cross-correlation of projections from an initial fast scan and a subsequent slow scan was used 

to determine inter-scan translational motion. Ivanovic and Pellot-Barakat obtained multiple projections at 

each angle using a full 360° orbit protocol with triple-detector gamma camera. Projections were then 

cross-correlated with two others at the same angle to produce correlation plateaus. The method was 

extended to hybrid PET/SPECT systems by cross-correlation of partial sinograms (Pellot-Barakat et al 

2001) but this technique was limited to the detection of fast, discrete motion and had low sensitivity 

(translations > 1cm, rotations > 10°). A multi-rotation scheme over 180° followed by cross-correlation of 

corresponding projections was used by Britten to measure 1D axial translation of the heart. Cross-

correlation of a cutaneous fiducial marker was shown to enable more accurate tracking of cardiac motion 

than cross-correlation of cardiac activity (Leslie et al 1997). In general, frame-to-frame effects such as 

object asymmetry, and gantry motion inconsistencies can hamper precise quantification using cross-

correlation measures. A more sophisticated correlation approach was described by Dhanantwari et al 

(2001) for x-ray CT cardiac imaging. A spatial overlap correlator scheme was applied to data from 

multiple rotations of the scanner to extract the phase-amplitude stamp of organ motion as a function of 

time. The method is limited to the detection of ‘cyclical’ (not necessarily periodic) motion and is 

therefore not generally applicable in brain SPECT where patient motion has no predictable trace. 

Moreover, a high temporal sampling rate is required which is not feasible in SPECT due to low 

sensitivity. 

 

Centre-of-Mass (COM) Techniques: A COM technique to detect head movement during cerebral blood 

flow studies of the brain was performed by Reichmann et al (2002). Here two complete (360°) 

acquisitions using a triple-detector gamma camera were collected fifteen minutes apart. COM matrices 

were derived for each scan and quantitatively compared to infer whether significant motion had occurred. 

The method was sensitive to motion amplitudes ~2mm. It has been well reported that respiratory motion 

causes organ movement during chest and torso emission imaging. Gating of data according to the 

respiratory cycle is a more sophisticated alternative to breath-holding regimes to correct for such motion. 

Recent papers have demonstrated that effective respiratory gating is possible using the data itself. 

Computation of the axial COM in dynamically acquired SPECT (eg. Bruyant et al 2002b) or in list mode 

PET (eg. Klein et al 2001, Klein et al 2002) provides a robust measure of heart position. The amount of 

data available for each COM calculation can be small, this being the main limitation of a data-driven 

approach. The “diverging squares” method (Geckle et al 1988) and 2D-fit method (Cooper et al 1993) are 

two other COM techniques described in the literature. In the former, a region is positioned over the heart 

in each image of a cardiac sequence so as to maximise counts, and motion is estimated from the offset 
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between regions in successive frames. Cooper and McCandless (1995) found the “diverging squares” 

method tracked motion superiorly to cross-correlation, but also resulted in false-positive detection. 2D-

fitting successfully followed sinusoidal and linear, random and non-random movements for both single 

and dual-90° detectors (down to 0.7mm amplitude). Movements of this size were found to be below the 

threshold of cross-correlation (Eisner et al 1987). 

 

Marker Techniques: Various authors (eg. Friedman et al 1989, Botvinick et al 1993) have used external 

radioactive markers to detect gross heart motion. Groch et al (1985) tracked the cardiac centroid in 

sequential projections using an external 241Am marker. Low counting statistics in the 241Am window and 

inability to detect or correct motion perpendicular to the imaging plane limited this technique. 

Furthermore, upward “creep” of the heart post-exercise caused the chest marker to become uncorrelated 

with internal heart movement. Germano et al (1993) also corrected gross patient motion in myocardial 

SPECT studies by tracking a point source placed on the sternum. The motion histogram for the source 

centroid over the sequence of projections indicated peaks at the significant positions held during the 

study. Ivanovic et al (2001) used 22Na point sources attached to phantoms to enable robust, automated 

registration of multiple, fast scans. However, in real studies, use of external radioactive markers in well-

defined anatomical locations such as the xiphoid or segments of the spine may not enable consistent 

tracking of rigid-body heart movement and does not enable tracking of internal motion (Geckle et al 

1988). Moreover, internal heart motion can mask rigid-body motion (Friedman et al 1989, Botvinick et al 

1993). 

 

Reprojection techniques: Motion in SPECT can be detected and estimated by comparing the measured 

projections with projections generated from the reconstruction (Lee and Barber 1998, Arata et al 1995, 

Matsumoto et al 2001, Hutton et al 2002, Kyme et al 2001, Kyme et al 2003). Apart from Hutton and 

Kyme, the techniques described in the literature are restricted to detection of translational motion in the 

projection plane. 

 

2B.5 Motion Correction 

 

The second stage in solving the motion problem involves applying information from the detection stage to 

perform correction. For tomographic modalities, motion correction techniques may be classified broadly 

as projection-based or volume-based. This distinction is drawn based on whether motion correction is 

achieved primarily through processing of raw projections or reconstructed data respectively. 

 

2B.5.1 Projection-Based Correction 

In projection-based methods, motion correction is achieved by obtaining geometric consistency in the 

projection data prior to reconstructing. The most common way of doing this is to retrospectively align the 

projection data in accordance with motion estimates that have been derived from an external device, the 
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data itself, or visually by the user. These methods seek to utilise all of the acquired data. The alternative is 

to leave out data that is not geometrically consistent, an approach referred to as ‘motion purging’. 

 

Eisner et al (1987) and Passalaqua and Narayanaswamy (1995) performed shifting of projections based 

on the cross-correlation between successive projections in a scan. Germano et al (1993) also used this 

approach but tried to enhance the accuracy using a point source on the sternum. Axial and transaxial 

translations were corrected with an accuracy of 0.5mm. In multi-gated blood-pool studies, Groch et al 

(1985) determined patient motion by tracking the coordinates of an 241Am point source attached to the 

patient, and applied these data as correction offsets to 99mTc data to correct for rigid-body heart motion of 

exercising patients. The “diverging squares” method was used by Geckle et al (1988) to obtain 

translational offsets necessary to align motion-corrupted projections. They demonstrated a reduction in 

streak artifacts, hot spots and defects caused by 2.5cm in-plane translations, though the presence of 

background counts did cause images to become worse in some cases. O’Connor et al (1998) showed that 

simple manual shifting of projection data was effective in correcting small, continuous and bouncing 

sinusoidal motions, and linear random and non-random translations in a cardiac SPECT phantom. 

 

Passalaqua and Narayanaswamy (1995) shifted projections based on the cross-correlation between 

projections in a fast scan (assumed to be motion free) and a subsequent slow scan. After alignment, the 

corrected slow-scan data were reconstructed and summed with the fast-scan data to produce a motion-

corrected study. Compared to cross-correlation between successive projections from a single scan, the 

dual-scan correction approach produced better visual and quantitative results. Bruyant et al (2002b) used 

tracking of the axial COM in dynamically acquired SPECT cardiac data to determine the translational 

shifts necessary to correct for respiration-induced cardiac motion. These shifts were applied to align the 

projection data prior to reconstruction. 

 

A number of authors have tried to align measured projections based on a correlation between these data 

and projections generated from the reconstruction (eg. Huang and Yu 1992, Lee and Barber 1998, Arata 

et al 1995, Matsumoto et al 2001). Translational shifts in the projection plane (Arata et al 1995, 

Matsumoto et al 2001) and axially (Lee and Barber 1998) were demonstrated initially. Arata applied 

various filters to the raw data and reprojected data prior to the correlation. Lee and Barber recognised that 

applying the method iteratively may improve the motion estimates. Surova-Trojanova et al (2000), Hutton 

et al (2002), and Kyme et al (2003) have demonstrated the applicability of the approach to general 3D 

motion by incorporating an optimisation stage. 

 

Analytic and iterative reconstruction algorithms have been modified to incorporate motion information 

and account for motion directly. For example Li et al (1995a) described a filtered back-projection 

algorithm for fanbeam SPECT to compensate for in-plane motion. The same group described an 

approximate 3D extension to this technique that included axial tilt correction (Li et al 1995b). Analytic 
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reconstruction techniques only enable handling of simplistic motions. In order to account for fully general 

motion, 3D geometric consistency between projections must be achieved, i.e. each projection must be 

incorporated into the reconstruction consistent with the 3D location in space at which it was acquired. 

This has been achieved using iterative techniques such as OSEM (eg. Fulton et al 1994, Fulton et al 

1999). Here, patient motion was conceptualised as groups of projections being acquired on the surface of 

different cylinders, translated and/or rotated with respect to each other. By applying the inverse 

movement to the current reconstruction estimate, projections on any particular “cylinder” were used to 

update the estimate correctly. The present work is based on this approach to motion correction. 

 

Traditionally SPECT and PET data are binned into 2D projections (frames) with each one containing 

photons detected over a particular area for a period of seconds to minutes. During this time the patient is 

free to move and thus induce inconsistencies in the data. Subsequently, many motion correction 

techniques in the literature rely on an assumption that the patient moves only between frames (eg. 

Weinzapfel and Hutchins 2001, Ivanovic et al 2001). High frame acquisition rates are necessary for this 

assumption to be reasonable (Fulton et al 2002). More recently, list mode data acquisition has been used 

in PET to circumvent this assumption. However, it is feasible to correct for motion within a frame by 

considering the object voxels as having a time varying position, and then incorporating a time-averaged 

probability matrix1 in the iterative reconstruction algorithm. With this adaptation, abrupt movements 

during a frame were shown to be correctable (Fulton et al 1993). 

 

In PET, obtaining motion-free raw data by geometrically transforming lines of response (LORs) in 

accordance with motion knowledge was proposed initially by Daube-Witherspoon et al (1990). Numerous 

authors have since adopted the approach. For example Menke et al (1996) implemented the geometric 

shifting of LORs and demonstrated improved speed using a look-up table of LOR correction factors.  

More recently authors have demonstrated feasibility of this method in list mode PET where each 

coincidence event is corrected based on measurements by the Polaris motion tracker (eg., Watabe et al 

2002a, Woo et al 2002, Bloomfield et al 2003). A hardware concept for achieving this in real time has 

been proposed by Jones (2001). Error propagation experiments on clinical data indicated that brain 

images could be corrected for motion with < 2% error using this method (Watabe et al 2002b). 

Bloomfield provides a thorough description of the technique and includes normalisation corrections for 

detector efficiency and geometry, crystal interference and dead time (also Qi and Huesman 2002). 

Corrected sinograms were rebinned to 2D before being reconstructed with 2D FBP. Other authors have 

focussed on issues related to the reconstruction of the motion-corrected sinograms, in particular 

incorporating motion information into EM reconstruction algorithms (eg. Thielemans and Mustafovic 

2003, Rahmim et al 2003). Current work is focussed on adequately accounting for re-positioned LORs 

falling outside the FOV and instances where the object leaves the FOV for some part of the scan. 

                                                            
1 The transition matrix modelling the emission and detection process is described in §2A.1. 
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Lu and Mackie (2002) described a technique for emission CT applications in which the sinogram trace of 

nodal density/contrast regions was used to estimate an expected trace. The sinogram was interpolated and 

scaled so as to coincide with the expected trace and produce a motion-corrected sinogram. Reasonable 

correction was obtained for data corrupted by simulated respiratory motion. The technique is limited to 

motions with a simple mathematical description. 

 

Although DSA is not a tomographic modality, motion correction is projection-based, and is regularly 

required to compensate for tiny voluntary and involuntary motions occurring between the two images (eg. 

Buzug et al 1998). For example, Levin et al (1984) used simple manual shifting to align images and 

Pickens and Price (1987) used a series of fiducial markers on the patient to drive a polynomial warping of 

the contrast image to the baseline image. 

 

In X-ray CT imaging, Dhanantwari et al (2001) described a data-driven motion correction approach based 

on knowledge of the phase-amplitude stamp of the motion. From this, coherent (motion-free) sinograms 

were compiled at selected phases of interest. The technique is appropriate for cyclical motion where 

organ positions are repeated over time without necessarily being periodic. 

 

Methods based on the exclusion of corrupt data can be used to correct general 3D motion since they do 

not depend on accurate estimates of motion. Such methods however do require robust detection of 

motion. The temporal image fractionation protocol for SPECT (Germano et al 1994) is based on rotating 

a triple-detector camera repeatedly through a 120° partial orbit in alternating directions to acquire 

multiple projections at each angle. The patient has a greater opportunity to remain still since up to two out 

of the three projections at each angle may be purged. Alternation of the rotation reduces susceptibility to 

directional movements that cause artifacts (eg. upward “creep” of the heart). The method was shown to 

correct for axial and lateral non-returning motion and simulated upward “creep”, as well as improve 

perfusion artifacts in clinical cardiac studies. Cross-correlation between corresponding projections from 

multiple scans was used by Ivanovic et al (1998) and Pellot-Barakat et al (1998) to determine the 

maximum amount of consistent data at each projection angle. This was then assimilated to produce a final 

motion-free set in which the inconsistent data was left out. They showed that completely motion-free sets 

could be reconstituted provided the patient was motionless for at least 1/3 of the study. Applying the 

method to sets corrupted with axial translations (0.5cm) and anticlockwise rotations (0.5°), they were able 

to generate reconstructions extremely similar to the motion-free reference. 

 

2B.5.2 Volume-Based Correction 

As the name suggests, volume-based methods operate in the object domain. The most common approach 

involves registration of multiple volume images (each with negligible/minimal motion) using motion 

estimates derived from an external device (eg. motion tracker), from an automated registration program, 

or visually. 
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Green et al (1994) proposed the idea of registering and summing reconstructed PET data obtained from a 

number of fast, short acquisitions rather than a single, long study. Another approach by Picard and 

Thompson (1997) involves segregating 2D PET data into a new frame each time head movement above a 

given threshold is detected by a motion monitoring system. The separate frames are reconstructed and 

aligned to a common reference based on the motion measurements, then summed to produce the final 

image. Fulton et al (2002) demonstrated correction of head motion in a volunteer by applying this method 

using six DOF motion data from the Polaris to align the frames. The approach was also extended to 3D 

PET acquisitions with appropriate compensation for attenuation and scatter (Fulton et al 2001). Moreover, 

a variation on this technique involving list mode data acquisition has been shown to correct for motion 

that would normally occur within a frame. Here, list mode data are binned into separate frames in 

response to the detection of significant movements. Each frame is reconstructed separately and aligned 

according to the Polaris measurements. 

 

Summing multiple dynamic frames of projection data can reduce motion artifacts through averaging 

provided the majority of projections represent a single brain location (Ivanovic et al 1998, Pellot-Barakat 

et al 1998). Moreover, summing dynamic frames acquired using an alternating direction of rotation can 

also reduce motion artifacts in the reconstruction by averaging uni-directional and drifting motions 

(Germano et al 1994). 

 

Menke et al (1996) described a volume-based method involving local convolution of corrupt 

reconstructed slices using kernels derived from motion knowledge. Pellot-Barakat et al (2001) described a 

technique for hybrid PET/SPECT systems where partial sinograms of events at each gantry angle get 

cross-correlated across multiple temporal sets. Pre-motion and post-motion data are reconstructed 

separately, then registered and summed for motion correction. Ivanovic et al (2001) used a more 

simplistic approach involving 22Na point source markers to drive the registration of reconstructions from 

multiple fast scans. 

 

In fMRI, signal changes due to activation paradigms are generally as small as 2-5%. Therefore it is 

critical to compensate for motion between reconstructed temporal frames. Correcting for the motion is 

complicated by inhomogeneity in the external static and rotating magnetic fields, inhomogeneity in the 

magnetisation of the head, and correlation between the stimulus and motion (eg. Freire et al 2002, 

Calhoun et al 1998). The latter complication has also been demonstrated in PET (eg. Pappata et al 2002). 

fMRI time series motion correction is typically implemented by rigid registration of the multiple 

reconstructed images (eg. Woods et al 1992, Woods et al 1993). A Fourier-space approach has been 

described by Maas et al (1997). Here, rotational mis-registration between images in the time series is 

determined using phase-matched filtering. After reversal of the rotation, translational mis-registration is 

corrected by multiplication with a complex exponential. This technique was optimised with respect to 

interpolation and speed by Calhoun et al (1998). The “navigator echo” technique (eg. Lee et al 1996) is 
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another method for fMRI motion correction. An initial echo is used to determine the correct plane for the 

imaging echo. A similar idea was used in diffusion-weighted fMRI (Anderson and Gore 1994, Ulug et al 

1995). 

 

 

2B.6 Summary 

 

In summary, patient motion is a well-recognised problem in medical imaging and has been particularly 

well documented in the nuclear medicine modalities SPECT and PET. The lengthy scan times in nuclear 

medicine has lead to a plethora of methods being developed to rectify the problem. These include both 

prevention and correction techniques. However, despite some form of restraint generally being used in 

practice, robust motion correction solutions remain elusive. 
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CHAPTER 3 

 

GENERAL METHODOLOGY AND IMPLEMENTATION 

 

 

The principles underlying our novel approach to 3D motion correction and the feasibility of 

implementation have been described briefly in Chapter 1 and detailed in previous work by this group 

(Hutton et al 2002, Kyme et al 2001). In this chapter we present formally the comprehensive algorithm 

used for the phantom and real data validation experiments detailed in Chapters 4-6. 

 

3.1 General Methodology 

 

3.1.1 Definitions 

We wish to estimate the radionuclide distribution g(r), where r denotes position in the 3D-object space. 

We define the acquired (measured) projections, in projection space s, according to 

 

 (1) 

 

where pi is the i-th simultaneously-acquired group of projections, i is the set {0, 1, �, imax}, and imax is 

given by 

 

 (2) 

 

Each pi contains the same number of projections, equal to the number of detectors on the gamma camera. 

 

Let Fi be the operation of forward projecting (reprojecting) at the angles corresponding to the i-th group. 

We also define the process  

 

 (3) 

 

where gs
*(r) is the updated reconstruction obtained when an iterative reconstruction algorithm, R, is used 

to reconstruct an arbitrary set of projections, Q(s), beginning with an initial image estimate, gs(r). (Note 

that the position variables, r and s, have been left out for simplicity.) 

 

3.1.2 Identification of Misaligned Projections 

We obtain the first estimate, ĝu, by reconstructing the full set of measured projections, P, using a flat 

(grey) image, U, as the starting reconstruction, viz. 
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 (4) 

 

The subscript denotes that this reconstruction is uncorrected and therefore may contain motion artifacts.  

 

To identify groups of projections corresponding to discrete locations of the brain, we compute the square 

of the norm of the difference between the forward projections and measured projections. The similarity 

measure for two discrete (projection or object) functions, x and y, is given by 

 

 (5) 

 

where Nx is the number of non-zero elements in x. If for each i, the value Γ given by 

 

 (6) 

 

is calculated, sets of pi can be identified for which the position/orientation of the brain was fixed. In other 

words, we identify Pm ⊆  P such that 

 

 (7) 

 

Here Im is a subset of I containing the indices of all acquired groups pi that were collected with the brain 

at, or �close to�, location m. 

 

3.1.3 Estimation of Motion 

To estimate motion parameters for each change in brain location, consider using a transformation operator 

T to apply a rigid-body transformation (3 rotations, 3 translations) in the object space. The aim is to 

choose the transformation so as to minimise C(Pm,P'm), where P'm here is given by 

 

 (8) 

 

P'm is thus the set of forward projections generated from (transformed) ĝu at all angles identified as 

belonging to movement m. Denoting the optimised transformation from location m-1 to location m as Tm, 

the set of Tm�s (m≥1) are sought using a direct-search optimisation algorithm. 

 

3.1.4 Motion Correction 

We form the partial reconstruction using projections acquired at the m = 0 brain location 

 

 (9) [ ] .,0
)0(� UPgc R=

[ ] .,� UPgu R=

,),(C
2

xN

yx
yx

−
=

{ } .: mim IipP ∈=

( )[ ]{ } .:�'
muim IigP ∈= TF

[ ]( )ugiip �,C F=Γ



 31

The superscript on ĝc indicates that this reconstruction is taken to be the initial motion-corrected estimate. 

If we define a cumulative transformation operator according to 

 

 (10) 

 

 

then updated motion-corrected estimates (m>0) are given by the recurrence relation 

 

 (11) 

 

When m = M = max{m}, the motion-corrected result is obtained. This can be returned to the initial frame 

of reference by applying the inverse cumulative transformation, SM
-1. The general methodology is 

illustrated in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Flow model showing the basic methodology of data-driven motion correction. Various modes 
of correction (A, NA, I2) described in chapter 4 are also illustrated here.  
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3.2 Implementation 

 

3.2.1 Detector Geometry 

The methodology in §3.1 is applicable to any multi-detector gamma camera. Components of rotational or 

translational head motion that are perpendicular to the face of a detector cannot be resolved using a 

comparison of the projection images obtained from that detector [Milanfar 1999]. This means that to 

detect all rigid-body DOF, a single detector is inadequate � as is any pair of diametrically opposed 

detectors. For this technique, natural choices of detector geometry would be an orthogonal configuration1 

in the dual-detector case, and an equilateral triangle configuration (detectors spaced at intervals of 120°) 

in the triple-detector case. We simulated dual-90° detector acquisitions for the digital phantom 

experiments (Chapter 4), and obtained triple-120° detector acquisitions for the physical phantom 

experiments (Chapter 5) and volunteer experiments (Chapter 6). 

 

3.2.2 Reconstruction 

The operator R was defined above as any iterative, tomographic reconstruction algorithm capable of 

updating some specified start image with an arbitrary set of projections. We chose the OSEM algorithm 

(Hudson and Larkin 1994). The projection sets, Pm, used in each motion-correction update were divided 

into OSEM subsets. For the digital phantom experiments in Chapter 4, a subset size of 2 was used when 
1/3 of the data or less were available, otherwise a subset size of 4 was used. For the physical phantom and 

clinical experiments in Chapters 5 and 6, simultaneously-acquired projections were grouped together 

using a subset size of 3. 

 

It has been suggested (eg. Hudson and Larkin 1994) that OSEM reconstructions preferably should be 

based on subsets of well-dispersed angles so that the information added per sub-iteration is maximised. In 

the present work, we applied this principle of a balanced addition of the available projection data by 

manually creating OSEM files with high angular dispersion within and between subsets. Also, where 

possible, {Pm} were chosen so that consecutive m�s did not correspond to spatially adjacent angle groups 

(see Figure 4.5). The potential limitations of OSEM with respect to subset structuring and possible 

alternatives that may prove more robust are discussed further in Chapter 7. 

 

3.2.3 Optimisation 

The similarity measure was minimised using the downhill-Simplex algorithm (Nelder and Mead 1965, 

Press et al 1992). This optimisation was terminated if successive function evaluations differed by less 

than a specified tolerance or if a specified maximum number of function evaluations were computed. We 

used a tolerance of 10-5 and set the maximum number of function evaluations to between 250 and 350. 

The downhill-Simplex algorithm was chosen for its simplicity of implementation, its common use in 

                                                            
1 Robinson and Milanfar (2001) sought to estimate 2D motion fields by estimating the components of projected motion for at 

least two independent directions. Using orthogonal views they demonstrated excellent estimation of 2D translational motion. 
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registration problems, and its good performance in reasonably well behaved parameter spaces (Maes et al 

1999). 

 

3.2.4 Detection of Motion Groups 

The first stage of the algorithm is to reconstruct ĝu using all the measured data and then to compute the 

similarity function from (6) for each allowed value of i. Plots of these data are used to indicate 

differentiated groups of projections. Even if clearly differentiated groups are visible, this plot alone is not 

sufficient to define the movement groups Pm conclusively since completely different motions could easily 

result in the same MSD. The limitation is true of all motion detection methods that are �blind� to the 

actual motion. Such methods rely on the presence of inconsistencies within the data, and although they 

enable projections to be classified as �aligned� or �misaligned�, without additional information, they 

provide no correlation between a particular degree of inconsistency and specific movement. In our case, 

we seek to obtain additional information regarding the start and end points of head movements by 

transforming ĝu prior to forward projection. The transformation in this case is an arbitrary set of rigid-

body parameters. We used a random number generator to obtain transformations within specified bounds. 

Computing Γ = C(pi,Fi[ĝu]) as a function of i after applying each of these transformations to ĝu enables a 

more conclusive picture of the motion-relationships between angles to be established. An example of this 

technique is shown in Figure 4.3. 

 

In the present work, identification of motion groups from the multiple Γ = C(pi,Fi[ĝu]) versus i curves 

was done visually. However, since the variation of Γ = C(pi,Fi[ĝu]) within a motion group tends to be 

much smaller than between groups (Hutton et al 2002, Kyme et al 2001), an automatic peak-finding and 

correlation method to ascertain the motion groups from the multiple plots is feasible and will be one of 

the avenues of future development of this technique. 

 

3.2.5 Collimator Geometry 

It was stated above that motion components perpendicular to the face of a detector are �invisible� to that 

detector. Technically this is only true for parallel-hole collimation. In the case of fanbeam collimation, the 

slanted holes enable motion components perpendicular to the detector face to be measured via a distance-

dependent magnification effect. Fanbeam collimator geometry was investigated to determine the extent to 

which this effect enhances motion detectability. Simple translational motion away from a single detector 

was simulated using the Hoffman brain phantom1 (Hoffman et al 1990). The magnitude of simulated 

motion was increased from 1 to 6 pixels (pixel size = 4.4mm). The resulting motion-corrupted 

reconstructions were reprojected at the relevant angle and the projection compared with the measured 

projection for this angle. A repeat of the experiment was performed for parallel-hole collimation. 

 

                                                            
1 Note that a full description of how data were simulated from the Hoffman brain phantom is provided in Chapter 4 as part of the 

digital phantom validation experiments. 
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The results are plotted in Figure 3.2. Similarity between the reprojected and measured projections is 

recorded on the vertical axis. Movement perpendicular to the detector was hardly resolved using parallel-

hole collimation. By contrast, this movement was detected using fanbeam collimation, and the 

detectability increased with motion magnitude. However, MSD values were considerably smaller than 

what has been observed previously for 1-3 pixel motion using orthogonal parallel-hole detectors (Hutton 

et al 2002), suggesting the additional detection benefit using fanbeam collimation is small. In the present 

work we have chosen to use a multi-detector parallel-hole regimen in all experiments. 

 

3.2.6 Partial Reconstruction 

Instead of optimising the orientation of ĝu (uncorrected reconstruction) to estimate the motion parameters 

for each movement (§3.1.3), a partial reconstruction can be used. The partial reconstruction is generated 

from a consistent, but incomplete, set of projection data. First we form the initial motion-corrected 

estimate as in (9) but choose P0 as the largest of the Pm�s. Then the Tm�s are obtained by minimising the 

similarity function Γ = C(Pm,P'm), where P'm in this case is given by 

 

 (12) 

 

P'm is therefore the set of forward projections generated from the (m-1)th estimate at all angles identified 

as belonging to movement m. Note here that m > 0 and updates proceed as before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.2. Mean square difference between acquired and generated 
projections for simulated translational motion normal to a single detector. 
The motion was practically �invisible� for parallel-hole collimation at all 
magnitudes. Fanbeam geometry enabled detection, this improving with 
translation magnitude. (Pixel size = 4.4mm.) 
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3.2.7 Basis for Using a Partial Reconstruction 

Here we provide justification for §3.2.6 � that is, use of a partial reconstruction in order to get improved 

motion parameter estimates. Two experiments were conducted to determine the impact of partial 

reconstruction on the detection and correction of motion respectively. 

 

In the first experiment, two complete sets of projections, P1 and P2, were generated by analytically 

projecting the digital Hoffman phantom at two different orientations. �Hybrid� projection sets, Hi, 

containing an increasing proportion of P2 projections were formed. To determine whether forward 

projections generated from the fully or partially reconstructed data enabled better differentiation between 

P1 and P2, a distinguishability index was calculated as 

 

 (13) 

 

where, for the full reconstruction case Hi
* is equivalent to Hi, and for partial reconstruction case Hi

* is the 

subset of Hi belonging to P1. Operator F (without subscript) denotes forward projection at all angles. The 

experiment is illustrated in Figure 3.3. 

 

Results are shown in Figure 3.4. This is a plot of d versus the number of P1 projections contained in the 

full and partial reconstructions. For the full reconstruction case, the effectiveness of using the forward 

projections to differentiate P1 and P2 data rapidly declined to a minimum as the proportion of P2 data in 

the hybrid set, H, increased to 50%. By comparison, forward projections generated from the partial 

reconstruction enabled excellent differentiation even when < 1/4 of the P1 data were used to reconstruct. 

On the assumption that improved motion parameter estimation results when there is improved 

differentiability of data, these results suggest that use of a partial reconstruction should provide more 

robust motion correction. 

 

In the second experiment, two noisy motion-corrupted datasets were simulated from the digital Hoffman 

brain phantom1. The two datasets correspond to sets 1 and 7 respectively in Figure 4.2. Set 1 contained a 

single motion (two brain positions), and set 2 contained three motions (four brain positions). The actual 

movements simulated are provided in Table 4.1. The movements in each set were estimated by optimising 

the orientation of (a) the full reconstruction (reconstructed from the full set of projections) and (b) a 

partial reconstruction (reconstructed from a subset of consistent projections). These movement estimates 

were compared with the applied values. 

 

 

 

                                                            
1 Note that a full description of how data were simulated from the Hoffman brain phantom is provided in Chapter 4 as part of the 

digital phantom validation experiments. 
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Figure 3.3. (a) The hybrid projection sets formed from P1 by increasing the 
proportion of P2 projections. (b) Each hybrid set was reconstructed and the resulting 
reconstruction forward-projected. Using (13) we estimated the ability of the full 
reconstruction to distinguish between P1 and P2 data. Performance of the partial 
reconstruction to differentiate P1 and P2 data was estimated in much the same way 
but in this case Hi was made up of P1 data exclusively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Results showing how effectively the full and partial reconstructions 
enabled the sets P1 and P2 to be distinguished (see Figure 3.3). Error bars indicate 
the standard deviation of MSD/projection values used to derive the distinguishability 
index. 

 

 



 37

Table 3.1 shows the movement parameters extracted using the full and partial reconstruction regimes for 

the two datasets. The performance of the two regimes was comparable for the lesser corruption (dataset 

1). Note the large deviations in rotational parameters for dataset 2 using the full reconstruction and the 

general improvement in accuracy when a partial reconstruction was used. 

 

In the present work a partial reconstruction approach was used in all motion correction experiments in 

order to enhance our ability to detect and correct for motion. 

 

 

Table 3.1. Movement parameters extracted for the two datasets using a partial and full reconstruction. For 
dataset 2 the movements were estimated in the order: movement 2 (16 projections), movement 1 (16 
projections), movement 3 (16 projections). Rotations are in degrees and translations in pixels. 
 

 Movement 1 Movement 2 Movement 3 

Dataset 1 X°     Y°     Z°     X     Y      Z   

Applied -8.0   -3.0    5.0   -1.0   0.5   -2.0   

Full -8.3   -1.2    4.3   -0.8   0.4   -2.0   

Partial -6.2   -2.2    4.9   -1.0   0.8   -1.9   

    

Dataset 2 X°     Y°     Z°     X     Y      Z X°    Y°     Z°     X     Y      Z X°     Y°     Z°     X    Y      Z 

Applied 0.0     4.0    4.0    0.0   1.5   1.0 2.0    7.0    7.0    0.5   2.0   1.5 4.0   10.0    7.0    1.0   2.5   2.0 

Full 1.4     3.7    3.3    0.1   1.5   1.1 2.4    4.3    3.4    0.4   2.0   1.4 2.5     4.0    2.9    0.9   2.2   1.7 

Partial 0.1     5.1    7.2    0.0   1.5   1.0 1.5    6.5    5.3    0.4   1.8   1.4 4.1   11.2    8.9    0.9   2.5   1.9 
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CHAPTER 4 

 

DIGITAL PHANTOM VALIDATION EXPERIMENTS 

 

 

4.1 Data Simulation 

 

Projection data for the simulations were obtained from a 128 x 128 x 80 voxel version of the digital 

Hoffman brain phantom (Hoffman et al 1990). Voxels were 2.2 mm in each dimension. This phantom 

was projected using in-house analytical projection software. We modelled high-resolution parallel-hole 

collimation with depth-dependent blur and included uniform tissue attenuation. Scatter was not modelled. 

To generate the attenuation map, the slices of the phantom were converted to binary, filled to give 

uniform closed regions, Gaussian filtered to enlarge the extent of the brain, and lastly converted back to 

binary grey levels. Thus the attenuation slices followed the contour of the corresponding brain slices but 

were slightly larger to account for skull attenuation. The attenuation coefficient modelled was µ = 0.12 

cm-1. Using the projector we produced 64 emission projections of dimension 64 x 40 pixels. Pixels were 

square with length 4.4 mm. To model Poission noise in the projection data, each pixel was replaced by a 

random Poisson deviate using the actual grey value as the distribution mean. The Poisson-distributed 

values were generated after scaling the data so that the maximum total counts per projection were 50k. 

This value was judged to give a level of noise equivalent to a typical clinical brain study. 

 

To simulate projection sets corrupted by patient motion, various rigid-body transformations were applied 

to the digital Hoffman brain phantom. After each transformation it was projected as above. Projections 

from the resulting sets were then combined to simulate a motion-corrupted acquisition. Since we were 

modelling dual-90° detector geometry, projections were always transferred as orthogonal pairs. Motion 

was simulated to be discrete and as having occurred between projections. Motion occurring during the 

acquisition of a projection pair was not simulated1. The method is illustrated in Figure 4.1. 

 

 

4.2 Datasets 

 

Seven studies containing from one to three discrete head movements (two to four discrete head positions 

respectively) were simulated. The motions included 3D head tilting, twisting and sliding, i.e. feasible 

sharp and discrete movements that may result from coughing, discomfort, tiredness, and other involuntary 

actions of a real patient (Green et al 1994, Lopresti et al 1999, Fulton PhD, Barnden personal com). The 

                                                            
1 Treatment of motion occurring during a projection can be found in Hutton et al (2002). 
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seven simulated sets were constructed to have considerable variation in the angular location and extent of 

movement and the magnitude of motion in each DOF. A diagrammatic representation of the motion-

corrupted datasets is shown in Figure 4.2 and a summary of the simulated motions is given in Table 4.1. 

 

 

4.3 Motion Detection 

 

Projection groups were identified as described in §3.2.4. An example illustrating the application of this 

method to dataset 4 is provided in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Steps involved in simulating motion-corrupted datasets. 
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Figure. 4.2. Schematic showing the location of 
movements (A, B, C) incorporated into the 7 digital 
phantom datasets. Table 4.1 shows the parameters 
corresponding to each motion. A', B' and C' represent 
angles at 90° to A, B and C respectively. 

 

 

Table 4.1. Simulated rotations (°) and translations 
(pixels) and the number of angle pairs affected for the 7 
digital phantom datasets 
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Figure 4.3. Similarity (MSD) between acquired and forward projections for the 
indexed (i) angle pairs of a simulated phantom study (dataset 4). With no 
transformation of the reconstruction (a) was obtained. Transforming the 
reconstruction 3 different ways before calculating the similarity gave (b), (c), and 
(d). Note that at certain orientations of the brain (e.g., (b)), some movements may 
not be detected. These data suggest 3 distinct angle groups (ie. 3 brain positions 
adopted during the acquisition): pairs {5-10}, pairs {17-22}, and pairs {1-4, 11-16, 
23-32}. 

 

 

 

4.4 Motion Correction 

 

As described in Chapter 3, motion correction involves identification of motion groups followed by a 

series of Simplex-driven optimisations to estimate the brain orientation for each identified group. After 

each optimisation the current estimate is updated with the projections from the relevant group. Once all 

data are included, the resulting reconstruction is regarded as motion-corrected. Four motion correction 

regimes based on this basic methodology were compared for each of the 7 datasets. 

 

Regime A (�attenuation�): Attenuation was included in the reprojection process. Recall that reprojection 

is used when identifying the projection groups (detection stage) and when estimating the motion for each 

group (optimisation stage). To ensure that the attenuation map was registered to the partial reconstruction, 

they were always transformed synchronously1. For any particular orientation of the partial reconstruction, 

a 2D attenuated projection was generated by: 

                                                            
1 See Fulton et al (2002) for another example of this approach. 
 

(a) (b) 

(c) (d) 
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(i) Rotation of the partial reconstruction and attenuation map axially by the negative of the desired 

projection angle (measured from the vertical) 

(ii) Formation of the cumulative sum of the attenuation map in the vertical direction 

(iii) Exponentiation of the cumulative attenuation map 

(iv) Voxel-by-voxel multiplication of the partial reconstruction by the exponentiated array 

(v) Summation vertically through the columns 

 

No resolution (blurring) effects were modelled in the reprojection process. Once the motion of each group 

had been estimated, the partial reconstruction was updated with the relevant projections. The 

synchronously transformed attenuation map was used to correct the current estimate for attenuation at 

each update. 

 

Regime NA (�no attenuation�): It has been suggested previously that leaving attenuation out of the 

motion identification and estimation stages of the algorithm should not adversely affect the accuracy of 

motion estimation (Hutton et al 2002). We used the NA regime to test this hypothesis. Although 

attenuation was unaccounted for to obtain each motion estimate and updated reconstruction, once all 

estimates were obtained, the initial partial reconstruction was updated from the beginning, this time with 

attenuation correction. Thus the final motion-corrected studies presented here were all corrected for 

attenuation irrespective of whether or not attenuation was included in the motion identification and 

estimation stages. 

 

Regime I2 (�second iteration�): This regime constitutes a second iteration of regime A. The regime A 

result was substituted for the initial partial reconstruction. Motion parameters for each group were re-

estimated by optimising the orientation of this reconstruction. After each estimate of motion, no updates 

were performed. Once estimates for all motion groups were obtained, the initial partial reconstruction was 

successively updated (as for regime A) to produce a motion-corrected study. 

 

Regime A+ (�ideal�): For this regime we used the known movements as the motion estimates. This 

represented the best correction achievable from the current implementation. 

 

The four correction regimes are illustrated in Figure 4.4 and Figure 3.1. For each regime the updates were 

carried out as described in §3.2.2. Projections to be included at each update were structured into subsets 

of size 2 or 4. A projection and its orthogonal partner (acquired simultaneously) always shared the same 

subset. Achieving angular dispersion of projections within and between subsets was done manually. For 

datasets containing multiple brain orientations, successive Simplex optimisations did not necessarily 

correspond to adjacent motion groups. By choosing the projection groups in an alternating fashion (Figure 

4.5), the angular information provided to OSEM was further dispersed. 
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Figure 4.4. The four regimes used to estimate motion parameters and derive motion-corrected studies. All 
regimes contained the basic steps of (1) acquisition, (2) partial reconstruction, (3) optimisation, and (4) 
updating. Regime A and I2 involved input of an attenuation map in step (3). This map was reoriented 
according to the emission volume and used to generate attenuated reprojections. Once the corrected study 
was obtained using regime A, a second iteration (I2) could be performed using this reconstruction in place 
of a partial reconstruction. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. When multiple movement groups are present (represented here by the different colours), the 
order of optimisation and updating becomes more important. This is because the reconstruction is biased 
toward information contained in the particular subset used in an update. By choosing successive motion 
groups carefully, we can avoid adding spatially adjacent angles on consecutive updates and thereby 
achieve a more balanced incorporation of the projection data. Adding angles this way should give rise to a 
truer estimate at any particular stage, and therefore better motion estimates. In this example the black 
projections represent those used for the initial partial reconstruction. The order then proceeds as blue 
followed by red followed by green. 
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4.5 Analysis 

 

Visual and quantitative assessments were performed after motion correction to measure the performance 

of the algorithm and the improvement in motion-induced perfusion artifacts. 

 

For each digital phantom simulation, difference images were formed between the motion-free reference 

(ĝr) and each motion-corrupted and corrected study in order to assess residual errors. Extracted rigid-body 

motion parameters (from Simplex) for each movement were compared with the applied parameters. The 

mean registration error (MRE) was used to provide a summary figure for the quantitative accuracy of an 

optimisation. MRE is the average linear distance between the vertices of a bounding box enclosing the 

brain in the true location and the extracted location (Figure 4.6). 

 

To quantify the overall improvement in image accuracy derived from motion correction we used a mean 

square difference ratio (MSDR). This was calculated as 

 
 (12) 

 

 

For this calculation, the motion-corrupted (ĝu) and motion-free (ĝr) reconstructions were transformed to 

the orientation of the motion-corrected reconstruction (ĝc). 3D convolution1 with a Gaussian kernel 

(FWHM = 9 mm) was applied to the studies before measuring the MSDR so that measured differences 

were due primarily to corruption rather than noise. The MSDR was calculated over 19 central brain slices. 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 4.6. Calculation of MRE. The shaded box represents the target 
object and the wire frame the rigidly-registered object. Registration 
error was assessed by computing the average distance (pixels) between 
each target vertex and the corresponding registered vertex (red arrows). 

                                                            
1 Convolution was first applied in-plane using a 2D kernel and then across-plane using a 1D kernel. 

( ) ( )( )
( ) ( )( ) .)(�,�C

�,�C

M
M

cMr

MuMr

gg

gg
MSDR

SS

SS
=



 45

4.6 Results and Discussion 

 

The accuracy of extracted motion parameters for each of the applied movements is summarised in Table 

4.2 in terms of the MRE. The majority of values were considerably less than 1 pixel. Generally the MRE 

obtained after a second iteration of motion correction (I2) was an improvement on the single iteration (A) 

value as expected. There was no clear indication that including attenuation (A) in the motion estimation 

process produced better motion estimates on a consistent basis. In Figure 4.7a, the deviation (°) of the 

extracted x, y and z-axis rotations from the applied values is plotted for the 13 movements. Most points 

were clustered within 2° of the applied movement, with tight groups near 0-deviation except in the case of 

z-axis rotation. For translations (Figure 4.7b), most data points were within 1mm of the applied 

movement. The general impression of these data was that a second iteration gave slightly more accurate 

motion estimates, and for a single iteration, attenuation did not have a significant influence on accuracy. 

Clearly all of the rotational and translational DOF were transparent to the algorithm. Maximum deviation 

from the applied values (across all optimisations) was 3.6° (x-rotation), 4.2° (y-rotation), 5.6° (z-rotation), 

1.8mm (x), 2.2mm (y), and 0.9mm (z). The mean absolute deviation, calculated as |applied � extracted|, is 

shown in Table 4.3 for each DOF and each correction regime. These were similar using a single iteration 

with and without attenuation (A and NA) but were smaller in all DOF using a second iteration (I2). The z-

axis rotation was the most error-prone rotation parameter and the z-axis translation the most accurate 

translation parameter, irrespective of the correction regime used. 

 

Upper, middle, and lower brain slices are shown for datasets 5 and 7 in Figure 4.8a and 4.8b respectively. 

Rows (top to bottom) correspond to motion-free (R), motion-corrupted (U), and motion-corrected (A, 

NA, I2) slices. Severe edge defects and distortions in perfusion were evident in the motion-corrupted 

slices of both datasets. After motion correction using each regime, slices resembled their motion-free 

counterparts much more closely. Only minor differences were apparent between the correction regimes. 

 

The same vertical sequence of slices is shown in Figure 4.9 with the difference image between each slice 

and its motion-free counterpart shown alongside. The last row (A+) corresponds to the best correction 

achievable, i.e. that obtained using the known parameters. For dataset 5 (Figure. 4.9a), prominent 

differences around the perimeter of the motion-corrupted slice were reduced by a similar extent using all 

correction regimes. For dataset 6 (Figure. 4.9b), distortion in the motion-corrupted slice was 

predominantly anterior and posterior. The bulk of these differences were removed by motion correction. 

A second iteration (I2) removed the postero-lateral difference still present after correction using regime A. 

Importantly, the same defect was removed using a single iteration without attenuation (NA). Clear 

residual differences existed after motion correction. However, the close resemblance between the 

difference images indicates motion-induced distortions were reduced close to the potential of the 

technique. Possible causes of the residual errors are noise, and interpolation incurred between OSEM 

updates. 
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TABLE 4.2. Mean registration error (MRE) for the estimate of 
each movement in the 7 simulated datasets using three 
correction regimes. Values are in pixels. A second value 
appears in parentheses in some cases where the movement was 
detected as two separate groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 
 
 
 
 
TABLE 4.3. Mean absolute deviation of extracted rotations (°) 
and translations (pixels) from applied parameters, shown for 
each DOF for each correction regime 
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Figure 4.7a. Deviation (°) of extracted x, y, and z-axis rotations from the applied motion parameters. 
There were a total of 13 movements across the 7 datasets. Values are plotted here according to the 
correction regime used. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7b. Deviation (pixels) of extracted x, y, and z-axis translations from the applied motion 
parameters. There were a total of 13 movements across the 7 datasets. Values are plotted here according 
to the correction regime used. 
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Figure. 4.8. Upper, middle, and lower (left to right) brain slices for (a) dataset 5 and (b) dataset 7. The 3 
slices are shown for the motion-free (R), motion-corrupted (U), and motion-corrected (A, NA, I2) 
reconstructions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4.9. (a) Dataset 5 and (b) dataset 7. A middle brain slice (left column) is shown for the 
motion-free (R), motion-corrupted (U), motion-corrected (A, NA, I2), and ideal-corrected (A+) 
reconstructions. Shown alongside each slice is the difference image formed by subtracting the 
corresponding motion-free slice. Difference images were scaled to the same range. 
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The MSDR values calculated for each correction regime are shown in Table 4.4. All corrections resulted 

in an improvement, generally by a factor of 2 or more. Comparison of the values obtained for datasets 1 

and 2, 3 and 4, and 5 and 6 indicates that improvement increased with the magnitude and extent of 

corruption. Applying a second iteration of motion correction (I2) bettered the single iteration result in all 

cases, though this additional benefit was minor (dataset 7 the exception). This suggests most errors get 

corrected in the first pass. Moreover, ignoring attenuation during optimisation (NA) gave higher MSDR 

values than the I2 regime for 3 of the datasets (2, 6, 7), and equal or marginally smaller MSDR values for 

the remainder. 

 

MSDR results are expressed as a fraction of the ideal values (obtained for A+ reconstructions) in Figure 

4.10. For the NA and I2 regimes this fraction was > 80% in all cases. Regime A became less effective as 

the magnitude and extent of corruption increased, being least effective for dataset 7. 

 

 

TABLE 4.4. MSDR values after motion correction using the variuos 
regimes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 4.10. MSDR values for each correction regime, expressed as a 
fraction of the MSDR for the ideal (A+) correction. 
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CHAPTER 5 

 

PHYSICAL PHANTOM VALIDATION EXPERIMENTS 

 

 

After the preliminary validation experiments using simulated data, the next phase of validation was to 

test the method on real data, beginning with acquisitions of the physical Hoffman brain phantom. 

Unlike the simulations outlined in Chapter 4 in which movements were known, an independent 

reference (gold-standard) motion measurement was required for the real data experiments in order to be 

able to validate the data-driven estimates. In this chapter we provide a brief outline of the theory of 

rigid-body matrix transformations and then go on to describe the operation and implementation of the 

Polaris motion tracker used for independent motion measurement. The second half details the methods 

and results of the physical Hoffman brain phantom experiments performed. 

 

 

5.1 Theory 

 

A 3D vector is typically represented as the sum of scaled orthogonal unit vectors, viz. 

 

 (13) 

 

Here, x, y and z are the unit vectors and x, y and z the corresponding scale factors. An alternative is to 

represent the vector using matrix notation: 

 

 

 (14) 

 

 

The latter representation is convenient because certain geometric transformations, including translation, 

rotation, and scaling, can be described using a matrix. Computing the transformed vector t΄ is then 

equivalent to performing the matrix multiplication 

 

 (15) 

 

where H is the matrix describing the transformation. In the present work, the transformations of interest 

are translation and rotation. 
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Translation by the vector ax + by + cz is equivalent to multiplying t from the left by: 

 

 

 (16) 

 

 

Similarly, rotations about each of the x, y, and z-axes are described respectively by: 

 

 

 (17) 

 

 

 

 

 (18) 

 

 

 

 

 (19) 

 

 

 

Positive angles substituted into these rotation matrices will describe anti-clockwise rotations about the 

relevant axis when viewed from the positive direction toward the origin. Multiple translations or 

rotations applied in sequence have a description as a single transformation matrix. This matrix is 

calculated by successively multiplying each component matrix from the left. For example, the matrix M 

describing a general translation followed by rotation ψ about the x-axis then rotation θ about the y-axis 

then rotation φ about the z-axis is given by: 

 

 (20) 

 

The multiplication of component matrices is not commutative. Therefore to generate the matrix for a 

desired transformation it is necessary to define an order of operations. Likewise, decomposing a 

transformation matrix into the component translational and rotational matrices requires a particular 

order of operation be specified. 
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Since a 4x4 matrix can describe the 3D transformation of a vector, it also describes the switch in 

coordinates in going from one frame of reference to a second frame that is rotated and translated with 

respect to the first. This property is applied in §5.2.3. 

 

Quaternion mathematics (Hamilton 1969) provides an alternative means of describing 3D rotations. A 

quaternion is a complex number with three imaginary parts and represents a single rotation about an 

arbitrary axis that is not, in general, one of the primary axes. Unit quaternions are written: 

 

 (21) 

 

where q0 is the real part, wx, wy and wz are the imaginary parts, and 

 

 

 (22) 

 

 

 (23) 

 

 

Using a single quaternion to describe any combination of rotations is compact and avoids phenomena 

such as gimbal lock. The conversion from a unit quaternion to standard rotation matrix form is given by 

 

 

 

 (24) 

 

 

 

 

5.2 Motion Measurement System (Polaris) 

 

5.2.1 Basic Operation 

The Polaris is an optical motion-tracking device manufactured by Northern Digital Inc1. A rigid target is 

firmly secured to the object of interest and monitored at regular intervals by the Polaris in order to 

determine changes in position and orientation of the object. Two modes of operation are available. In 

passive mode, the Polaris exposes the field of view with infrared radiation and detects signals reflected 

                                                            
1 Northern Digitial Inc., Waterloo, Ontario, Canada 
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back from passive reflective markers on the target. In active mode the target is made up of infrared light 

emitting diodes so that both the Polaris and the target emit infrared radiation. A physical connection 

between the Polaris and light emitting diodes is required in active mode. The Polaris was operated in 

passive mode for all of our experiments. 

 

Up to three separate targets may be monitored at any one time. The Polaris samples the reflective 

markers on these targets at up to 20Hz in passive mode. A sample consists of a position and orientation 

measurement for each target being monitored. Position data are returned as three-element vectors, (px, 

py, pz), and orientation data as unit quaternions, q. 

 

5.2.2 Target 

Three to six passive reflective markers are arranged on a rigid substrate. Inter-marker separation 

distances must be constructed in accordance with rules provided by the manufacturer. An accurate 

description of the target is then stored in an on-line target file. The object target consisted of a 3mm 

thick, grey polyethylene square substrate with four spherical infrared reflective markers attached as 

shown in Figure 5.1a. For the physical phantom experiments, the object target was attached to the 

phantom securely using adhesive tape. The reference target consisted of four commercial adhesive-

backed 10mm diameter reflective discs bonded to black paper on an aluminium substrate (Figure 5.1b). 

This target was permanently fixed to the gamma camera gantry. The arrangement of reflector positions 

on the reference target was different from the object target since the former had no size restriction. Four 

markers were used on each target to introduce redundancy into the location measurement and thereby 

improve accuracy. 

 

5.2.3 Coordinate Transformation 

Since SPECT data are collected with respect to the camera coordinate system and motion data with 

respect to the Polaris system, it is necessary to determine the transformation between these systems in 

order to apply the measurements usefully for motion correction. This is achieved by attaching a tiny 

point source of activity to the centre of the reflective marker classified as the target origin. The target is 

moved to various locations in the gamma camera (and Polaris) field of view, and two orthogonal 

SPECT views are acquired at each location for long enough to give quality planar images of the point 

source. The centroid of the point source is then determined from the two views. Once the location of the 

source is known in the gamma camera and Polaris frames, the transformation matrix Tc relating these 

two frames can be determined according to the method detailed in Fulton (2000), pp. 102-105. Staff at 

the institution from which our data were supplied used this method to calibrate the Polaris. We were 

provided with the calculated Tc matrix. 

 

The transformation matrix Tc is only valid for the particular gantry-Polaris positioning at the time the 

calibration was performed. Clearly this is inflexible for routine use, i.e. where the Polaris is likely to be 
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re-positioned and/or the gantry adjusted. To enable flexible re-positioning without the need for re-

calculation of Tc, a reference target was constructed and secured to an immovable part of the SPECT 

gantry. If Tr denotes the position and orientation of the reference target in Polaris coordinates when Tc 

was computed, and Tr' denotes the position and orientation after a relative movement between the 

Polaris and gantry, then the change in position of the reference target in Polaris coordinates is given by: 

 

 (25) 

 

Without loss of generality we can consider any relative movement between the Polaris and gantry to be 

caused by movement of the Polaris. The change for the Polaris is then the inverse of (25), i.e. (T∆r)-1. 

The modified transformation matrix Tc' is then given by: 

 

 (26) 

 

The reference target set-up can be seen in Figure 5.1 and the principle of using a reference target for 

immunity to Polaris and/or gantry adjustment is illustrated in Figure 5.2. 

 

5.2.4 Interface and Raw Data Processing 

The requested brain phantom scans were acquired on a Philips Irix triple-detector gamma camera1 with 

the three detectors spaced at 120° from each other. The reconstructed pixel size was 3.5mm/pixel (no 

zoom). In each acquisition, 120 2D projections (40 per detector) were collected over 360°. Polaris 

motion data were acquired simultaneously2. 

 

Northern Digital Inc. provide a PC interface for the Polaris hardware. Custom software3 was used to 

interface the Polaris with the SUN platform. This software was supplied to Queen Elizabeth Hospital 

for their own implementation of the Polaris using SUN workstations. Based on the raw data output from 

the Polaris, the software produces a text file listing the position and orientation data for each sample and 

from all targets monitored by the Polaris in a given run. For n monitored targets the file contains n lines 

per sample. The most important values on each line are a target identifier and six floating point values 

describing the x, y, and z-axis rotational components of object orientation and the x, y, and z-axis 

translational components of object position. In our case there were two targets: a reference target and 

object target. An example segment of one of the text files generated is shown in Figure 5.3. Note that all 

motion components are tabulated in Polaris coordinates. For each acquisition the Polaris recorded a total 

of 80 measurements, i.e. two samples per SPECT projection. 

 

                                                            
1 Philips Medical Systems, Cleveland, Ohio, USA. 
2 Image and motion data were acquired by staff at the Department of Nuclear Medicine, Queen Elizabeth Hospital, Adelaide. 
3 C language utility programs written by Roger Fulton, Department of Nuclear Medicine, Royal Prince Alfred Hospital, Sydney. 
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Figure 5.1a. The head target. Four infrared-reflective spheres were 
attached to a 3mm square slab of polyethylene to form this target. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1b. View from the Polaris. The larger reference target fixed to 
the gantry and the smaller head target attached to the perspex case of the 
brain phantom are both in the Polaris field-of-view. The three detectors 
used for imaging the phantom are also seen in this photograph. 
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Figure 5.2. The principle of using a reference target to achieve immunity from relative motion between 
the gamma camera gantry and the Polaris motion tracker. Here P refers to the Polaris coordinate system, 
C to the original camera system, and C' to a translated and/or rotated camera frame. Without tracking of 
the relative motion between the gantry and Polaris, the Polaris would record the location of the �new 
object� with respect to the original C frame, since the matrix Tc was calibrated to transform between 
these two systems. Thus such relative movement will appear as head movement. However, knowledge 
of the shift/rotation undergone by the reference target enables us to compute the location of the �new 
object� with respect to the shifted/rotated frame C'. Using the modified matrix Tc', true head movements 
are distinguished. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3. A section of the text output produced by the Polaris motion tracker in 
response to sampling of the physical Hoffman phantom with fiducial marker attached. 
The first digit represents the sample number. For each sample number, the time of 
measurement is recorded and the position of the reference target (A) and phantom target 
(B) are recorded in yaw, pitch, roll, x, y, z format (the six floating point numbers on the 
right). It can be seen here that the reference target remained fixed relative to the Polaris, 
but the phantom (target B) underwent a change in location at sample 61-62. Altogether 
there were 80 samples recorded. 
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Communication between the Polaris and gamma camera workstation can be set up in order to facilitate 

synchronisation between Polaris sampling and the start and stop of a SPECT acquisition. However, 

since the movements in our phantom and patient studies were of significant duration and were modelled 

as discrete, this accuracy was not required, and a simpler approach of initiating the two systems 

independently at approximately the same time was employed. 

 

We were supplied with an IDL1 program2 to process the Polaris data from a given run and enable the 

user to select Polaris motion samples between which the change in object location should be computed 

(Figure 5.5). The program decomposes this change from a standard transformation matrix to pitch, yaw, 

roll (the orientation components) and x, y, z (the position components) format, in gamma camera 

coordinates. The operation of the processing program is summarised as follows: 

 

1. Tc (transformation matrix describing Polaris to camera coordinate conversion) read in from file 

2. Tr (transformation matrix describing the reference target location in Polaris coordinates at the time 

when Tc was derived) read in from file  

3. Reference target data from the Polaris measurement record (text) is read in to six (pitch, yaw, roll, 

x, y, z) 80-element (number of Polaris samples) vectors 

4. Object target data from the Polaris measurement record is read in to six (pitch, yaw, roll, x, y, z) 

80-element (number of Polaris samples) vectors 

5. User selects two Polaris samples (graphically) 

6. Transformation matrix computed for each selected sample ⇒ Ts1 and Ts2 

7. Transformation matrix representing the change computed as Ts2(Ts1)-1 

8. Result is decomposed into six pure rigid-body component motions 

 

 

5.3 Coordinate System Validation 

 

It was pointed out in §5.1 that when motions are considered as a sequence of pure rotational and 

translational movements about/along the primary axes, specifying component angles and shifts (eg. in 

pitch, yaw, roll, x, y, z format) alone is ambiguous; the order of application must also be specified since 

matrix multiplication is non-commutative. 

 

During motion estimation in the data-driven approach, the Simplex optimisation routine samples sets of 

six rigid-body parameters based on the current cost function value. Two modifications were required in 

order to achieve consistency with the processed Polaris motion estimates. The first was a reordering of 

                                                            
1 Interactive Data Language, RSI Systems, Boulder, Colorado, USA. 
2 Original program written by Leighton Barnden, Department of Nuclear Medicine, Queen Elizabeth Hospital, Adelaide. This was 
modified for use at our own institution. 
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the projection data.  Gamma camera settings forced the first projection collected to be posterior to the 

supine phantom. Direct reconstruction of these acquired data produced inverted transverse slices. We 

reordered the projections so that the first projection was anterior. Without this modification the data-

driven routine would extract motion parameters of the same magnitude (ideally) as the Polaris, but the 

signs would be wrong. We modelled 3D transformations by concatenating a sequence of pure-

movement matrices. The sequence was x-rotation, y-rotation, z-rotation, and lastly (3D) translation. 

Firstly we confirmed that the processed Polaris motion estimates reflected this order of operation. With 

this confirmed, the parameters were directly comparable provided the definition of axes was identical in 

both cases. We confirmed the orientation of axes was common, but that the definition of positive and 

negative was not. Therefore the second modification was to reverse three of the signs in the processed 

Polaris motion measurements to achieve overall axis consistency between the two measurement 

systems. 

 

After applying these modifications, a simple validation experiment was carried out to demonstrate that 

the motion measurements from the Polaris were sensible and comparable with our own system. The 

phantom was filled with approximately 250 MBq of 99mTc thoroughly mixed in water, and then 

positioned supine on the patient bed in the �unmoved� position. A catheter was wrapped obliquely 

around the outer cylindrical casing of the phantom and secured with tape. It was then filled via syringe 

with approximately 50 MBq of activity in water. The phantom and fiducial marker were imaged in the 

unmoved position, then reoriented and shifted to a new, arbitrary location in the field of view and 

imaged a second time. Acquisitions were performed with the parallel-hole low-energy high-resolution 

collimators mounted and contained a total of 120 projections (40/detector), each collected into a 1282 

pixel matrix for 30 seconds. The reconstructed pixel size was 3.5mm (zoom = 1). Some sample 

projection images from the two acquisitions are shown in Figure 5.4. We used an independent 3D-

motion registration package to register the first study (unmoved position) to the second study (moved 

position). The registration package is based on a Simplex-driven maximisation of the normalised mutual 

information cost function. We modified the registration package to incorporate the same 3D 

transformation routine as used in our data-driven approach. Results of this validation experiment are 

shown in Table 5.1. Clearly the signs were consistent and good agreement in the magnitudes suggests 

the Polaris was providing sensible, comparable output. 
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Figure 5.4. Projection images (1, 20 and 40 moving left to right) of the physical 
Hoffman phantom used in the coordinate system validation experiment. The top 
and bottom rows correspond to the unmoved and moved positions respectively. 
The hot fiducial marker (catheter) is clearly seen wrapped around the surface of 
the phantom. 

 

 

Table 5.1. Motion parameters for movement of the physical Hoffman phantom with fiducial marker 
attached. Parameters were obtained using both the Polaris and an independent registration. 
 

 X° Y° Z° X (pix.) Y (pix.) Z (pix.) 

Polaris -7.1 -4.0 2.0 1.1 -3.6 12.7 

Independent 

Registration 

-5.5 -3.7 -2.0 1.6 -3.6 12.3 

 

 

 

5.4 Acquisitions 

 

Three physical Hoffman phantom studies were used in our experiments. Staff at a separate institution 

acquired these data upon our request1. The phantom was filled with approximately 200 MBq of 99mTc 

thoroughly mixed with water. Care was taken to remove large air bubbles. A total of 120 projection 

images of the phantom were collected over 360° using a 1282 pixel matrix. This corresponded to 40 

projections per detector. Each projection was collected for 30 seconds. The reconstructed pixel size was 

3.5mm (zoom = 1). 

 

                                                            
1 Department of Nuclear Medicine, Queen Elizabeth Hospital, Adelaide. 
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Movements of the phantom were applied manually by an operator. This was done (rapidly) between two 

neighbouring projections so as to minimise motion corruption within projections. Two of the studies 

acquired had a single 3D movement lasting for < 1/4 of the acquisition and the third had two 3D 

movements each lasting for 1/3 of the acquisition. Independent measurement of the applied motion was 

obtained using the Polaris motion tracking system. An example motion trace recorded by the Polaris is 

shown in Figure 5.5. 

 

 

5.5 Motion Detection and Correction 

 

Initially projection data were reconstructed without attenuation using 16 OSEM subsets and 8 

projections per subset. Angular dispersion of these subsets was maximised. Based on the method 

outlined previously, motion groups were detected and a partial reconstruction formed from the largest 

group of consistent projections. A directed 6-parameter downhill-Simplex search was performed to 

match the orientation of this reconstruction to each motion group. In the case of dataset 3, the partial 

reconstruction was updated with projections from the first optimised group before the second 

optimisation was performed. No account was taken of attenuation during motion detection and 

correction. 

 

 

5.6 Analysis 

 

Extracted motion parameters were compared with those measured by the Polaris. Motion-corrected 

reconstructions obtained using our motion estimates were assessed visually and compared with the 

corresponding motion-corrected reconstruction derived using the Polaris parameters. To characterise the 

behaviour of the cost function in the neighbourhood of a search solution, relevant parameters were 

manually driven about the solution values whilst other parameters were fixed at their solution values. 
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Figure 5.5. Polaris motion trace for the first physical Hoffman brain phantom dataset. The colour coding 
is: cyan, x-rotation; blue, y-rotation; orange, z-rotation; white, x-translation; red, y-translation; green, z-
translation. This scan contained a single movement of the phantom. The Polaris data is displayed here 
without reordering. Note the user-defined samples (marked with yellow arrows) between which the 
location change is computed. 
 

 

5.7 Results and Discussion 

 

The motion parameters recorded by the Polaris are listed in Table 5.2. Shown alongside these are the 

corresponding parameters extracted using the data-driven approach. For datasets 1 and 2 (each 

containing a single corrupting movement), there was good agreement for the x and y-rotation and z-

translation parameters. However, a reasonable discrepancy existed for the remaining DOF (x and y-

translation and z-rotation parameters). 

 

A surface plot of the cost function is shown in Figure 5.6 for dataset 1. The similarity measure was 

computed as the x-translational and z-rotational parameters were manually driven through the range �1 

to 8 pixels, and �4° to 5° respectively. Note that all other parameters were fixed at the Polaris values. 

The topology of this map indicates there was ambiguity identifying the parameters corresponding to the 

solution (minimum value of C) due to a broad, slowly-varying cost function. Based on this and other 

cost function maps (not shown) it was observed that each rigid-body parameter had a varying influence 

on the cost-function. The results suggest that the MSD is fairly insensitive to large rotations whilst 

being sensitive to typical translations (Figure 5.6). The significance of this for motion correction is that 

there may be difficulty in locating a minimum in the direction of low sensitivity unless the downhill-

Simplex algorithm can be made to search directly along such paths in the multi-dimensional space. 

Furthermore, combinations of the rigid-body parameters are correlated to a different extent. Correlation 

means that error in one parameter will propagate to error in other parameters. Z-translation is the only 

parameter that tends to act fairly independently from parameters paired with it. 
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Table 5.2. Data-driven and Polaris measured rotations (°) and 
translations (pixels) for the first (left) and second (right) 
physical phantom datasets. Both datasets contained single 
corrupting movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 5.6. Surface plot of the cost function near the solution 
extracted for the first physical phantom dataset. This shows a 
�valley� traversing the x-translation-z-rotation parameter 
space. The shallowness made locating the minimum difficult 
and resulted in a discrepancy between the extracted and 
Polaris-measured values. 

 

 

Much better overall agreement between the extracted parameters and Polaris parameters existed for the 

two movements in dataset 3 (Table 5.3). Reconstructed slices before correction, and after correction 

using our extracted parameters and the Polaris parameters, are shown in Figure 5.7. Motion artifacts, 

including severe anterior distortion, are clearly evident in the uncorrected slice. Motion correction 

resulted in a significant improvement. Some asymmetry in the uptake is noticeable in the motion-

corrected slices. A possible reason for this is that the unmoved phantom axis was slightly misaligned 

with the tomograph axis, i.e. these are not quite true transverse slices. It may also be a consequence of 

subset structuring, though this is yet to be investigated. It should be noted that the similarity of the 

corrected slices suggests that data-driven motion correction performed close to its potential in this case. 
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Table 5.3. Data-driven and Polaris measured rotations 
(°) and translations (pixels) for the third physical 
phantom dataset. This dataset contained two corrupting 
movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Upper, middle and lower brain slices (left to 
right) shown for physical phantom dataset 3 (3 head 
positions). The uncorrected study (U) had significant 
artifacts. Using the NA regime (NA) and Polaris 
measurements (P) for correction resulted in very similar 
slices, each with significantly reduced distortion. 

 

 

We postulate that discrepancy between the extracted and Polaris motion parameter measurements for 

certain DOF is a consequence of object symmetry. To demonstrate this we simulated the set of 

projections acquired from a uniform, off-centre cylinder of activity. A single, discrete axial rotation of 

the cylinder was incorporated into the acquisition according to the method of §4.1. The cost function 

neighbourhood of the true solution as a function of z-rotation and y-translation is shown in Figure 5.8. 

Clearly there is no unique solution (distinct minimum). An off-axis, axial rotation of a cylindrically 

symmetric uniform activity distribution cannot be uniquely estimated using the projection images. 

Cylindrical symmetry leads to ambiguity between axial rotations and x/y translations, both of which can 

give rise to the same projection image. This principle is illustrated in Figure 5.9a. The design of the 

physical phantom permits activity to spread around the central circular insert and also above and below 
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the insert. Thus there are significant activity contributions from regions with cylindrical symmetry. 

These appear in the projection data as a hot rectangle of activity surrounding the brain (Figure 5.9b). It 

is likely that this biases the parameter estimation by confusing axial rotation with translational 

movement in the plane of projection. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.8. Cost function shape near the solution (pure 
axial rotation) obtained for an off-axis, uniform 
cylindrical phantom. This is shown as a function of 
the z-rotation and y-translation parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. (a) When projections are being used to determine 3D movement, an off-axis axial rotation of 
a uniform cylinder is indistinguishable from a simple translation in the plane of projection; (b) a 
projection of the physical Hoffman phantom showing the �hot rectangle� around the periphery caused 
by activity between the brain and outer perspex case and also in compartments above and below the 
brain. 
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CHAPTER 6 

 

CLINICAL VALIDATION 

 

 

6.1 Introduction 

 

The final section of the present work describes methods and results obtained from data-driven motion 

correction applied to human volunteer data. This constitutes a preliminary clinical feasibility study that it 

is hoped will be a solid basis for further development of the method in future work. The aims of this 

section were to 

! Investigate the influence of various parameters on the data-driven detection and correction of motion 

in human subjects 

! Highlight important practical considerations of applying our method to human subject data 

! Propose a novel data-driven working procedure for obtaining improved clinical outcome in human 

studies affected by motion 

 

 

6.2 Methods 

 

6.2.1 Acquisition of Clinical Data 

We received controlled brain SPECT studies of three normal volunteers. Staff at a separate institution1 

acquired these data in conjunction with their own development of a research database of brain SPECT 

normals. 

 

Volunteers were injected with 300-400 MBq of 99mTc bound to HMPAO2. This dose was within 

NHMRC3 specifications for volunteer subjects. This dose is less than the standard dose of ≥ 600 MBq 

administered to patients undergoing a brain SPECT procedure. The Polaris motion tracker was set up to 

collect an independent account of patient motion over the course of the studies. It was operated in passive 

mode at a sampling rate of 2/projection (~0.05 Hz). The infrared reflecting target was the same as that 

used in the physical phantom studies described in §5.2.2. A standard welding mask with the visor 

removed was fitted to the patient and used as a base for attaching the target. Three semi-rigid plastic 

straps from the mask wrapped across the forehead, across the crown of the head, and under the back of 

the head respectively. The target was secured firmly to the modified mask at the crown of the head as 

shown in Figure 6.1. 

                                                            
1 Department of Nuclear Medicine, Queen Elizabeth Hospital, Adelaide. 
2 Hexa-methyl phenyl amine oxime 
3 National Health and Medical Research Committee 
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Figure 6.1. Modified welding mask used to attach the head 
target (grey slab with spherical reflectors) to the patient head. 
There are three semi-rigid plastic straps: one passing across 
the forehead, one across the back of the head, and one across 
the crown of the head. The target is secured to the top of the 
crown strap. 

 

 
 
A Philips Irix triple-detector gamma camera mounted with parallel-hole low-energy high-resolution 

collimators was used for the acquisitions. For each study, 120 projections were collected over 360° (40 

projections/detector, 38s/projection) giving a total acquisition time of approximately 25 minutes. The 

projection matrix size was 1282 pixels. A photopeak image (centre 140 keV, width 20%) and scatter 

image (centre 118 keV, width 10%) were collected in each acquisition. 

 

Each volunteer consented to undergo two scans. They were instructed to remain as still as possible for the 

duration of the first scan. This constituted our reference (motion-free) study. After a short break the 

second study was performed in which the volunteer was instructed to remain still until prompted by staff 

to alter their head position and orientation. This prompt was timed so that movement was substantially 

completed between projections. The resulting acquisition constituted our movement (motion-corrupted) 

study.  Note that only single-movement1 studies were collected and that in each case the two head 

locations involved were both well represented in terms of the total acquisition time.  

 

 

 

 

 

 
                                                            
1 Although a single step-wise movement was requested, other non-voluntary movements could have occurred. Therefore the Polaris 
trace was checked to ensure that this was a valid assumption. In all cases volunteers remained in a roughly constant location either 
side of the movement (Figure 6.10). Minor drifting was ignored; such movement, however, was minimal and unlikely to be the 
cause of significant artifacts visible over and above noise. 
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6.2.2 Preparatory Data Processing 

Three preparatory processing steps were performed to generate input data for the motion detection and 

estimation stages. Firstly, all projection data were reordered as described in §5.3 so that the first 

projection was anterior. This ensured the reconstructed slices would be correctly oriented. Secondly, the 

reordered movement study for each volunteer was corrected for scatter. The image collected using a 10% 

window centred at 118 keV served as a reasonable approximation of the scatter distribution in the 

corresponding photopeak image. We estimated scatter fraction using a simple linear drop-off 

approximation. The scale factor to multiply the scatter image was computed as 

 

 

 (27) 

 

 

where WPhoto and Wscatter are the % widths of the photopeak and scatter windows respectively. The 

principle is illustrated in Figure 6.2. In our case SF was unity, allowing us to use the scatter images 

unmodified. Before subtracting the scatter image from the corresponding photopeak image, it was filtered 

using a 2D Butterworth kernel (order = 5, cut-off = 0.3 x Nyquist) in order to reduce noise. After 

subtraction, any negative counts were zeroed. In our optimisations, both scatter-corrected and non scatter-

corrected data were used to estimate motion. 

 

The projected brain occupied less than half of the total available projection area in the 1282 images. 

Therefore it was reasonable to extract, from each projection, a reduced projection containing the whole 

brain but free of much of the zero-space in the original image. Based on the cinematic viewing of 

projections, a reduced matrix of 802 pixels was chosen in order to include the whole brain in both the 

unmoved and moved locations across all projections. In the transaxial dimension the matrix was extracted 

symmetrically to avoid introducing artificial centre-of-rotation errors. Axially, asymmetric extractions are 

permissible provided the same region is extracted in all projections. In our case the 80 axial rows were 

chosen to exclude much of the zero-space above the top of the head as well as a buffer1 of zero-space at 

the base of the image. The matrix extraction step was performed on the reordered movement scan for 

each volunteer. It enabled us to determine the effect that increasing the proportion of data-of-interest 

would have on motion estimation2. 

 

 

 

                                                            
1 This buffer was a zero-padded region created by the acquisition software to enable square images to be generated from non-square 
FOV detectors. 
2 Note that an added advantage of reducing matrix size is shorter processing times. Since the rate-limiting step of our Simplex 
optimisation procedure was the 3D transformation of the reconstruction, reducing the matrix size from 1283 to 803 reduced 
optimisation time by approximately a factor of 4. 
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Figure 6.2. Simple scatter subtraction. A window just downstream of the 99mTc 
photopeak is collected to provide an estimate of the distribution of scatter in 
the photopeak. The scatter profile in the photopeak is assumed to drop away 
linearly and the scatter image is scaled by a factor of half the ratio of window 
widths to account for this. 

 

 

6.2.3 Semi-Simulated Studies 

In the three volunteer studies staff did not attempt to ensure that the starting location of the head in the 

movement acquisition coincided with the location held during the reference acquisition. Indeed the break 

between acquisitions, during which the head target was removed and volunteers left the bed to return 

some minutes later, meant this could not be assumed. Although the reference target provides immunity 

from relative movement between the gantry and Polaris (even between scans), separate scans become 

disconnected if there is re-positioning of the volunteer relative to the bed, or of the head target relative to 

the head1. To compare one of our motion-corrected reconstructions with its corresponding reference the 

two needed to be aligned. Since the misalignment between the two studies was not directly measured, an 

independent 3D volume registration post-correction was required to align them2. 

 

We wished to quantify, using a single figure, the improvement obtained from motion correction, and then 

to compare this with the performance of motion correction based on the Polaris measurements. One 

robust method for doing this involves constructing new studies in which the reference and motion-

corrected data share a common brain location. This circumvents the need for independent alignment of 

the studies and the associated registration errors. The semi-simulation procedure can be summarised as 

follows: 

 

                                                            
1 Note that relative movement between the head target and head is problematic even within the same scan since head movement is 
de-coupled from the target. This scenario is not unlikely and is discussed in greater detail later in this chapter. 
2 The 3D independent registration is described later in this chapter. 
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(i) Reference and movement data (each consisting of photopeak and scatter images) were reordered. 

(ii) Movement data (photopeak and scatter) were corrected for radionuclide decay. The decay factor 

was calculated based on the time of acquisition recorded in the data header. This correction 

normalised counts in the movement data to counts in the reference data. 

(iii) Reference and (decay-corrected) movement data were scatter-corrected (see §6.2.2). 

(iv) Projections from the movement scan were then transplanted into the reference scan to simulate a 

discrete motion. Provided the location of the brain in the movement scan differed from the 

location in the reference scan, any such transplanted projection constitutes a ‘movement’. 

 

There are a number of advantages of generating semi-simulated studies. Firstly, we have a complete 

reference study and the known movement to align it with the motion-corrected study. This movement is 

simply the inverse of the Simplex solution. Secondly, there is no reliance on the accuracy of the Polaris 

measurements. And thirdly, there is no reliance on an independent 3D registration (with its associated 

errors) to enable a direct quantitative comparison. 

 

Therefore, in addition to the initial three volunteer studies, we requested a fourth volunteer study in order 

to implement the semi-simulation technique. Similarly to the earlier volunteers, the fourth volunteer 

underwent two brain scans. However, unlike the earlier scans, this volunteer held a single head position 

for the full duration of each scan and changed position between scans. Photopeak and scatter images were 

collected as before. From these data we derived two motion-corrupted semi-simulated data sets. These 

represented single-movement1 scans where the second position was held for 1/2 and 1/8 of the total scan 

respectively. 

 

Using the modified welding mask, operators reported observing a ‘catching’ of the posterior plastic strap 

(around the back of the head) with the patient bed as the volunteers moved. To minimise this scenario and 

the associated risk of the head and target movement becoming decoupled, the semi-rigid strap was 

removed from the mask and replaced by a soft fabric strap that fastened across the back of the head with 

Velcro® (Figure 6.3). Also, unlike the previous three volunteers, we requested that the fourth subject not 

have the head target removed between scans. This prevented relative movement between the target and 

head between scans. It also enabled us to transplant part of the Polaris output (eg. Figure 5.3) from the 

first scan directly into the output from the second scan, and use this hybridised text file to compute the 

movement that the Polaris would have measured had the movement occurred within a single scan. This is 

only permissible if the fixation of the target to the head is identical in the two studies. Moreover, we 

requested that the two scans be performed back-to-back to ensure that patient position relative to the bed 

was unchanged between the end of the first scan and start of the second. 

 

                                                            
1 See footnote 1 on p. 66. 
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Figure 6.3. Head target attachment mechanism for the fourth 
volunteer. The semi-rigid plastic strap that formerly passed 
across the back of the head was cut away and replaced with a 
soft strap fastened using Velcro®. This modification was 
aimed at minimising ‘catching’ of the device on the patient 
bed and thereby minimising the decoupling of target and head 
motion. 

 

 

6.2.4 Motion Detection 

Motion groups were identified according to the procedure described in §3.1.2 and §3.2.4. 

 

6.2.5 Simplex Optimisations (Motion Estimation) 

Downhill-Simplex optimisations (directed parameter searches) were used to estimate motion in the 

human subject studies. These searches were continued for a minimum of 300 iterations and a maximum 

sufficient to obtain relative stability in the estimates for at least 50 iterations. In practice this iteration 

value turned out to be between 300 and 450. It should be noted that stability in the parameters was often 

reached well before the minimum of 300 iterations. The simplex scale arguments were fixed for each 

particular volunteer to be approximately 10° for rotational DOF and approximately 5 pixels for 

translational DOF1. The tolerance argument was set to a value of 10-5 for all optimisations for all 

volunteers. Although the preceding arguments were not necessarily the same in each run, they were not 

the variables of interest. Rather, they were set to produce sensible, unchanging output. The variables of 

interest, i.e. those systematically changed from optimisation to optimisation, are described below. 

 

 

 

                                                            
1 Initial scale specification is not critical in most cases as the simplex can expand and contract in the multi-dimensional space. 
 



 71

Projection Size 

Optimisations were run with the original, reordered projection data (size 1282) as well as reduced 

projection data (size 802) (described in §6.2.2). The partial reconstruction size was 1283 and 803 for these 

data respectively. 

 

Thresholding 

We investigated the effect of thresholding the acquired projections. All pixels less than the threshold 

value were zeroed to exclude low-count background from contributing to, and potentially biasing, the cost 

function. The thresholds applied were 10% and 20% of the maximum count in a projection. Note that 

thresholding had the additional effect of sharpening projection edges. Thresholding was not applied to the 

reprojections since the smoothing effect of reprojection already averaged away any low-count 

background to zero. 

 

Smoothing 

The influence of smoothing the acquired projections was investigated. Projections were convolved with a 

2D, 2-pixel (7mm) FWHM, normalised Gaussian kernel prior to being compared with the corresponding 

reprojections. Since reprojection itself is a smoothing operation, reprojections were not further smoothed. 

 

Scatter Correction 

We investigated the effect of scatter correction on the estimation of motion. Scatter correction of 

projection data was described in §6.2.2. Once scatter-corrected, the original or reduced-size projection 

data were reconstructed to give a scatter-corrected partial reconstruction, the location of which was then 

optimised. 

 

Note that the thresholding, smoothing and scatter correction modifications were applied for the 

optimisation stage only. Once the single motions were estimated, motion correction was performed using 

the original projection data, ie. non-thresholded, unsmoothed, and non scatter-corrected data. 

 

Truncation 

In our motion correction approach, motion-corrupted projection data are grouped into projection sets 

according to identified movements. Reconstructing any such set produces a ‘partial’ estimate. Although 

the cost function calculation is performed on projections, motion correction essentially represents optimal 

3D alignment of one partial reconstruction to another. Transforming a partial reconstruction as part of the 

directed search for motion parameters can truncate part of the activity distribution. This in turn can lead to 

a large, but artificial, MSD between projections. The result is a biasing of the search toward a solution 

that optimally compensates for non-overlapping activity between the images caused by truncation. How 

influential this truncation effect is depends upon the actual head movement and the proximity of the brain 

to the FOV edge. The latter is exacerbated by the commonplace practice of positioning the camera above 
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the patient shoulders in order to minimise the radius of rotation. Thus the brain often sits close to the 

bottom of the FOV in the projections, with facial activity extending to the bottom edge. On account of 

this, any translation up the patient bed, or significant rotation about the x-axis, generates a truncated 

image. An example of the truncation effect for one of the volunteer studies is illustrated in Figure 6.4a. It 

can be seen that optimisation of the reconstruction has proceeded to a point where registration of the 

projection images is being strongly biased by non-overlapping facial activity. 

 

Methods to Avoid Truncation Effects: Fixed Mask and Roving Mask 

To minimise this effect it is necessary to select a reduced area on the projections over which the cost 

function is calculated. This area should identify a volume of activity common to the projections being 

compared. A simple implementation excludes everything below a fixed horizontal cut-off line. We 

implemented this approach, approximating the level of the line from the cine. The cost function was 

modified to compute the MSD only over pixels above the line. Figures 6.5 illustrates the principle and 

Figure 6.4b shows how this was applied in a volunteer study to exclude non-overlapping facial counts 

from the MSD calculation. 

 

Clearly this simple method is limited by actual brain movement: severe rotations preclude a fixed 

horizontal line being used to exclude biasing regions of the activity distribution whilst at the same time 

maximising inclusion of brain tissue. 

 

We developed a more general approach using a roving mask. This involved tracking the 3D orientation of 

the plane of truncation and restricting the cost function calculation to boundaries determined by the 

projection of this plane. The main steps of this algorithm were: 

(i) Define the centre of transformation 

(ii) Define a point on the plane 

(iii) Define the direction of the normal to the plane 

(iv) Define the level (vertical pixel index), in the projection space, of the projection of this plane 

(v) Combine the transformation matrices for the 3D reorientation/translation (Simplex) and the 2D 

(axial) rotation (to align the desired projection direction with the positive vertical axis). Note that 

application of this matrix enables the desired projection to be obtained by summing up columns 

(vi) Compute the location of the transformed initial point 

(vii) Compute the (normalised) normal to the transformed plane 

(viii) Compute the intersection of the transformed plane with the image volume faces 

(ix) Compute the projection of the upper-most boundary of this plane 

(x) Form the 2D mask containing all points above this projected boundary. If the computed 

boundary line is below the initial level, use the initial level as the boundary 
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Operations (v)-(x) are executed for each reprojection generated. In contrast to the fixed mask, the roving 

mask is defined by a variable cut-off line that is dependent on both the actual brain movement and the 

angular position of the projection required. Figure 6.6 illustrates the principle and Figure 6.4c shows an 

example of its application in a volunteer study. 

 

Various other authors in the literature have described what is essentially a tomographic data truncation 

problem. Klein et al (2001) used the COM of list mode data to measure the respiratory cycle. They 

describe two masking techniques to selectively include cardiac events and thereby avoid biasing due to 

liver activity moving in and out of the FOV. The first excludes a fixed segment of data that does not 

contain the object of interest (heart). The second involves drawing a volume of interest on the 

reconstructed data and projecting this volume into sinogram space. These two methods are analogous to 

the two masking methods used in our work. Thielemans and Mustafovic (2003) describe normalising for 

sensitivity changes in list mode PET due to activity contributing to the FOV for only part of the time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. (a) Truncation occurring during the optimisation of the second volunteer study. 
Translation of the head upward (axially) has resulted in truncation of facial activity in the 
reprojection and caused an artificial mismatch between the acquired and reprojected 
images. The mismatch is indicated by the difference image (right column); (b) the fixed 
mask cut out everything below a horizontal line in the projection space; (c) the roving mask 
cut out everything below a (varying) sloped line in the projection space. 
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Figure 6.5. Principle of the fixed mask. (a) The plane (axial slice) 
corresponding to the base of the useful image; (b) a plane is estimated from 
the cine such that the object is never truncated superior to this plane; (c) the 
region superior to this plane is projected and the MSD calculated over the 
projected area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.6. Principle of the roving mask. (a) The plane (axial slice) 
corresponding to the base of the useful image is defined; (b) this plane is 
reoriented according to the transformation applied to the object; (c) the 
most superior points of intersection are projected as the boundary of the 
required region; (d) the region superior to this boundary is projected and the 
MSD calculated over the projected area. 

A B

C

A B

C D



 75

6.2.6 Motion Correction 

Changing Coordinate Systems 

If we denote the initial and final location of any particular brain movement by T1
c and T2

c respectively, 

where the superscript indicates measurement with respect to the original camera coordinate system, C, the 

change in location is given by 

 

 (28) 

 

For reconstructions generated from non-reduced projection data, T12
c is obtained directly from the 

downhill-Simplex optimisation procedure. However, if reduced square projections are extracted from the 

original projections as per §6.2, and if this extraction is asymmetric in the axial direction, the 

reconstructed matrix centre (camera frame origin) shifts axially. In this case the change we measure is 

given by 

 

 (29) 

 

where T1
c' and T2

c' denote the initial and final brain positions as measured with respect to the new shifted 

system, C'. Letting Tc'-c denote the matrix operator to convert from the new camera system to the original 

system, T1
c and T2

c may be expressed with respect to the new system as 

 

 

 (30) 

 

 

and substituting into (29) we obtain: 

 

 (31) 

 

Thus motion estimates in the new frame can be converted to estimates in the original frame provided Tc'-c 

is known. The shift magnitude is simply the difference between the y-index of the extracted matrix centre 

and the y-index of the non-reduced matrix centre (63.5). Directionally the shift is positive (+z) since it 

corresponds to translation down the patient bed (Figure 6.7). Therefore Tc'-c is given by 
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Motion estimates obtained from reduced projections were converted using (31). The new estimates were 

then directly comparable with the processed Polaris output (also a measurement of T12
c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Shift in coordinate system due to the reduction of the 
projection matrix size. The C'-C transformation is a positive shift 
since the relative brain location in the extracted projections is more 
centralised compared to the original images where the brain sits 
near the bottom of the FOV. 

 

 

Reconstruction 

Another advantage of the conversion just described is that motion-corrected reconstructions could always 

be generated from the original (non-reduced) projection data. These acquired projections contained excess 

space around the brain and thereby minimised edge effects during motion correction. 

 

During OSEM reconstruction, any voxels that get zeroed remain fixed at this value even if non-zero data 

are subsequently back-projected through these voxels. This is a consequence of the multiplicative 

iterative updating step. To compensate for the effect and preserve total counts, counts that would have 

filled a zeroed voxel are shunted to the edges of the voxel (or voxel neighbourhood), thus creating 

artificially high-count regions. Typically these high-count regions are produced outside the tissue of 

interest (brain and skull) and are therefore inconsequential to diagnosis and easily avoided in any 

quantitative measurement. Our motion correction approach involves transformation of the partial 

reconstruction prior to reconstruction updating. If these transformations are based on nearly exact 

estimates of the motion, the transformed reconstruction will in theory always serves as a good starting 

object. However, if there is a moderate error in the motion estimates, the transformed partial 

reconstruction will be slightly misaligned with respect to the projection data to be added. The updating 

+ 

_ 
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data can then be back-projected into zeroed regions and induce truncation or high-count artifacts. In our 

previous experience we have observed truncation of brain and skull as well as high-count edge effects 

close to the tissue of interest. To avoid this, once the current estimate was transformed, circular masks 

were created to surround the brain in each slice, and a pixel-wise logical operation was executed to 

impose a value of unity in the brain wherever a zero existed within the region defined by the mask. This 

ensured that the projection data used in an update would contribute all relevant counts to the new 

estimate. Although the procedure added counts to the starting object, these counts were subsequently 

removed from the brain during the update if they were inconsistent with the measured data. 

 

Motion Correction 

Once motion parameters had been estimated (and converted to the original coordinate system if 

necessary), they were applied in motion correction using the masking technique above. No attenuation 

correction was included in the estimation of motion or in the formation of the final motion-corrected 

result. All volunteer and semi-simulated studies had single, discrete corrupting movements and therefore 

required a single OSEM update for correction. Once corrected, the inverse movement was applied to 

return the corrected reconstructions back to their starting locations, i.e. the location of the initial partial 

reconstruction. 

 

6.2.7 Pre-Analysis 

This section details important results and pre-processing steps necessary before a thorough quantification 

of motion correction could be made. A description of the actual analyses performed is provided in the 

next section. 

 

Equivalent Smoothing 

It was necessary to determine the 3D Gaussian kernel (FWHM), which, when convolved with a noisy 

image, would reduce noise by the same extent as the interpolative smooth incurred in one application of a 

typical 3D transformation using our transformation routine. We generated a uniform, digital ‘block’ 

phantom in a 643 matrix and formed the set of projections of this phantom using an analytical projector. 

High-resolution parallel-hole collimation and depth-dependent resolution were modelled in the projection 

process. Attenuation was modelled by incorporating a uniform attenuation map (µ = 0.12). Noise was 

added to the attenuated projections at a level similar to the volunteer studies. The projections were then 

reconstructed with attenuation correction, and various arbitrary 3D transformations were applied to the 

reconstructed block using our transformation routine. For each transformation the noise was calculated in 

a uniform 203 region (8000 voxels) by dividing the standard deviation of counts in the region by the mean 

count in the region. The average of these measurements was 0.09 and was taken to be the noise level after 

a single interpolative smooth induced by 3D transformation. For comparison, we performed 3D 

convolution of the reconstructed block estimate using different FWHM of the Gaussian kernel. In each 

case the noise level was computed post-smooth. Based on these results (Figure 6.8) the interpolative 
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smooth from 3D transformation was shown to be equivalent to 3D1 convolution with a 1.1-pixel FWHM 

Gaussian kernel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Noise level after applying 2D convolution with a 
Gaussian kernel of different FWHM. The kernel FWHM that 
resulted in a degree of smoothing equivalent to the interpolative 
smoothing from one 3D transformation was 1.1 pixels. 

 

 

Motion-Corrected Reconstructions 

The motion-corrected reconstructions generated as per §6.2.6 were 1283 in size and positioned in the 

location of their respective (initial) partial reconstructions. In all cases this was the location consistent 

with the majority of projections. Each 1283 reconstruction was prepared for visual comparison with other 

motion-corrected studies by 3D Gaussian filtering using a 2-pixel FWHM kernel. An 803 block of voxels 

containing the whole brain was extracted from the unsmoothed reconstruction for use in an independent 

registration to determine the alignment between the reference and corrected reconstructions (described 

below). In the case of the semi-simulated studies, the same 803 block was extracted from the smoothed 

reconstruction for use in the computation of a mean square difference improvement ratio (MSDR). Note 

that the smoothing kernel was chosen to significantly reduce noise in the reconstructed image and thereby 

prevent biasing of the MSDR values. 

 

 

 

                                                            
1 A 2D symmetric Gaussian kernel was applied in-plane followed by a 1D kernel across-plane. 
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Uncorrected Reconstructions 

The reordered movement study for each volunteer was reconstructed without attenuation correction to 

produce a 1283 voxel estimate. This was 3D Gaussian filtered using a 2.28-pixel1 FWHM kernel in order 

to achieve a smoothness equivalent to the combination of one interpolative smooth (FWHM = 1.1-pixels, 

incurred in returning the motion-corrected reconstruction to its starting location), plus one post-correction 

smooth (FWHM = 2-pixels, see above). The filtered reconstruction was used for visual assessment. In the 

case of the semi-simulated studies, an 803 block of voxels (the same block as extracted from the corrected 

reconstructions) was extracted from the smoothed uncorrected reconstructions for use in the computation 

of MSDR values. 

 

Reference Reconstructions 

The reordered reference study for each volunteer was reconstructed without attenuation correction to 

produce a 1283 voxel estimate. This was 3D Gaussian filtered using a 2-pixel FWHM kernel. An 803 

block of voxels containing the whole brain was extracted from the unsmoothed reference reconstruction 

and input into an independent registration to determine the alignment between the reference and corrected 

reconstructions (described below). The output parameters of this registration were adjusted for the change 

in coordinates caused by the reduction (§6.2.6) and applied to the 1283 smoothed reference reconstruction 

to align it with the smoothed corrected reconstruction. Note that after this alignment the net smoothness 

of the corrected, uncorrected and reference (1283) reconstructions was equivalent. Finally, in the case of 

the semi-simulated studies, the same 803 block was extracted from the smooth, aligned reference 

reconstruction and normalised (decay adjusted) to the same total counts as the corrected study. It was then 

ready for the MSDR computation. 

 

Independent Registration 

For the first three volunteer studies, an independent registration of the motion-corrected and reference 

reconstructions was performed to align the two studies and hence enable a visual comparison of 

transverse slices. The registration was done using an in-house 3D medical image registration package 

based on the maximisation of normalised mutual information. We modified the package to use our own 

transformation routine and hence output the registration parameters according to the same order of 

operation as the downhill-Simplex routine. 

 

As described above, an 803 block of voxels containing the whole brain was extracted from both the 

unsmoothed motion-corrected reconstruction and the unsmoothed reference reconstruction. We loaded the 

reduced motion-corrected volume as the target image and the reduced reference volume as the floating 

image. 

 

                                                            
1 The net FWHM was calculated using the formula: FWHMnet = √(FWHM1

2 + FWHM2
2). 
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No independent registrations were required for the semi-simulated clinical studies since in this case the 

reference and movement projection data shared a common location. The motion-corrected reconstruction 

could be transformed back to exactly the same location as the reference reconstruction for the visual 

comparison. 

 

6.2.8 Analysis 

Qualitative Analyses 

We assessed the graphical Polaris motion traces visually for each volunteer. For the reference studies the 

assessment criterion was high stability over the entire acquisition – that is, minimal drift in all DOF. For 

the movement studies the criterion was presence of a single, sharp, discrete shift involving multiple DOF, 

with high stability in all DOF on either side of this shift. 

 

Visual assessment was also made of the motion-corrected, motion-corrupted, reference, and Polaris-

corrected reconstructions to compare the extent of motion artifacts before and after correction. 

 

Comparison of Parameters 

All motion estimates derived from our downhill-Simplex optimisations were compared with the 

corresponding motion measurement recorded by the Polaris. Note that estimates derived from 

optimisations involving reduced projection data were converted to the original camera coordinate system 

before this comparison was made. 

 

MSDR Computation 

The semi-simulated studies were used to generate a quantitative figure of improvement from motion 

correction. As described in preceding paragraphs, an 803 block containing the whole brain was extracted 

from the motion-corrected, uncorrected, and reference reconstructions. These volumes had approximately 

the same smoothness, equivalent to one interpolative smooth from 3D transformation and one direct 

smooth. Moreover, since the alignment parameters were known exactly, the reference and corrected 

reconstructions were perfectly registered. The overall improvement in motion artifacts post-correction 

was quantified by measuring the MSD of both the uncorrected and corrected reconstructions with respect 

to the reference reconstruction. Formally, this mean square difference improvement ratio, MSDR, was 

calculated according to (12) (§4.5): 

 
 

 (12) 

 

 

where ĝu, ĝr, and ĝc denote the uncorrected, reference and corrected reconstructions respectively, and 

other terms are defined in §3.1. The MSDR was computed over central brain slices. 
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A flow chart of the methods in overview (§6.2.1-§6.2.8) is shown in Figure 6.9. 

 

 

6.3 Results and Discussion 

 

Recorded Polaris motion traces for the initial three volunteers are shown in Figure 6.10. The reference 

studies (left column) reflect a high degree of stability in all but one DOF, the y-translation (red). This 

means that for volunteers 2 and 3 in particular, there was a slow, vertical head drift of a few pixels over 

the course of their scans. Despite the fluctuation of this parameter, it did not result in obvious artifacts in 

the reference reconstructions (Figure 6.14). Traces from the movement scans (right-hand column of 

Figure 6.10) reflect remarkably stable head positions either side of sharp, discrete movements. These 

plots indicate that our assumption of single movements for these studies was valid. Fluctuations in the 

reference scan must be considered with respect to the movement scan, and a straightforward comparison 

of magnitudes in these plots indicates that the reference scan movements were negligible compared to the 

requested movement. Traces measured for volunteer 4 and the two semi-simulated traces derived from 

these data are shown in Figure 6.11. Again, the overall stability of the parameters was excellent. 

Comparing the reference fluctuation and actual (simulated) movement is simpler and more direct in the 

semi-simulated traces since they contain part of the reference data and part of the motion data. The glitch 

in x-translation (white) near sample 60 is clearly seen to be small in comparison to the movement. 

 

In Figure 6.12 we present the Polaris data of two minimally constrained (elastic strap across forehead) 

patients over the course of a 30-minute SPECT brain scan (Pandos et al 2002). Figure 6.12a serves as a 

counter to the objection that movements in our clinical data represent an idealistic scenario. By the same 

token however, Figure 6.12b indicates that drifting motion also occurs during real studies, a pattern of 

motion we have not sought to correct in this validation. As described in §2B.1.1, patient motion is often 

characterised by both of these patterns. We have focused on sharp, discrete movements because they are 

better suited to our data-driven approach. However, the approach does have the potential to correct 

drifting motion provided such motion is approximated as a series of step-wise discrete movements (eg. 

dataset 7 in §4.2). 
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Figure 6.9. Flow chart of the methods used to estimate and correct motion in the human volunteer data. 
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Figure 6.10. Polaris motion traces for the reference (left) and motion (right) scans of volunteers 1 to 3 
(top to bottom respectively). 80 samples were recorded for each scan. The colour coding is: cyan, x-
rotation; blue, y-rotation; orange, z-rotation; white, x-translation; red, y-translation; green, z-translation. It 
can be seen from the traces in the left column that there was minimal fluctuation of the six DOF during 
the reference scans. Even the drifting of the y-translation is seen to be negligible in comparison to the 
requested motions represented in the right column. The movement scans (right column) reflect excellent 
stability either side of a sharp, discrete change in location. 
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Figure 6.11. Polaris motion traces for the reference (top left) and motion (top right) scans of volunteer 4, 
plus the two semi-simulated traces – one with 1/2 the projections affected (bottom left) and the other with 
1/8 of the projections affected (bottom right). 80 samples were recorded for each scan. The colour coding 
is the same as in Figure 6.10. The top traces show that volunteer 4 held a single position stably for each 
scan, with minimal fluctuation. The semi-simulated scans (bottom row) reflect a clean, sharp movement 
and indicate that this was much more significant than the involuntary fluctuations in the source data (eg. 
the x-translation (white) glitch near frame 60). 
 

 

 

 

 

 

 

 

 

 

 
Figure 6.12. Polaris motion traces measured for two minimally constrained patients during a 30-minute 
brain SPECT study. The colour coding is the same as that in Figures 6.10 and 6.11. Left: The first patient 
demonstrated distinct changes in mean head location at multiple times throughout the acquisition. It is 
this type of motion we have sought to reproduce and correct for in our volunteer studies. The yellow 
arrows indicate user-selected samples between which the change in head location will be computed. 
Right: the second patient demonstrated gradual drifting motion (particularly y-translational) similar to 
that observed in our volunteers. Here, yellow arrows indicate samples at which the study may be 
segmented in order to approximate motion as a series of discrete steps. Both of these types of motion 
present themselves in the clinical setting. Data is courtesy of Leighton Barnden, Queen Elizabeth 
Hospital, Adelaide. 
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Motion estimates extracted from our optimisations for each volunteer study are given in Table 6.1. The 

estimates recorded by the Polaris are shown in Table 6.2. Measurements in Table 6.1 for a particular 

volunteer are directly comparable with the corresponding measurement in Table 6.2 since all extracted 

estimates were converted to the original camera coordinate system. These data are presented graphically 

in Figure 6.13, blue lines representing sets of estimates obtained using our approach, the white line 

representing the Polaris measurement. In the case of volunteer 3 (Figure 6.13 (c)), the four extracted 6-

parameter estimates with least deviation from the Polaris measurement have been coloured green for 

clarity. For each set of data it is clear that we were able to generate multiple sets of motion estimates that 

followed the trend of the Polaris closely. The likelihood of outliers was greatest for volunteer 3. 

Importantly, the volunteer 3 study contained the largest angular and translational movements as recorded 

by the Polaris (and verified visually using the cine). The smallest spread in extracted results was obtained 

for the two semi-simulated data sets (Figure6.13 (d) and (e)). This was expected because of the additional 

control enforced when the source data for these sets were acquired (§6.2.3). 

 

Quantitative figures of improvement (MSDR) for the two semi-simulated data sets are shown in the right-

hand column of Table 6.1. Motion correction resulted in an improvement of the uncorrected study (closer 

to the reference) by a factor of >4 for the first set (1/2 of projections corrupted), and a factor of 

approximately 2 for the second set (1/8 of projections corrupted). This difference is not surprising since a 

greater degree of improvement is expected for greater corruptions. Note this result is in accord with the 

digital phantom experiments (§4.6). 

 

An important aim of the clinical experiments was to determine the conditions and constraints that would 

enable reliable motion estimates to be generated from data-driven optimisation. We assumed the Polaris 

data trend to be a reasonable reflection of patient movement for each volunteer. Data in Tables 6.1 and 

6.2 were subjected to three basic analyses as a means of drawing general conclusions regarding 

optimisations on clinical scans: 

(i) Observation of extracted estimates consistent with the Polaris trend 

(ii) Determination of the apparent cause of outlier data points 

(iii) Comparison of MSDR values obtained from optimisations for the two semi-simulated sets 

 

The conclusions were: 

✤ Reducing matrix size so that a greater proportion of the projection image was filled by brain resulted 

in estimates as good as or better than when a larger matrix with a lot of empty space around the brain 

was used. In particular, maximising the amount of brain in the projection appears necessary to obtain 

sensible estimates for large motions. For example, no reasonable estimates could be obtained for 

volunteer 3 using the full projection matrix size. Moreover, in general, when a smaller matrix was 

used, motion estimates appeared less sensitive to other parameters being varied. 
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✤ Failed (outlier) motion estimates generally exhibited significant deviation from the Polaris estimate 

in most DOF. In many cases these failed estimates were characterised by severely wrong 

registrations involving a large overlap of low-count background area (contributing minimally to the 

MSD), and a much smaller, very poorly registered high-count area of brain. This indicates that the 

typical clinical cost function is susceptible to local minima, though we suggest such solutions are far 

from the true solution and readily excludable by visual assessment. Thresholding was found to be 

effective in confining the solution to the region in which the sensible solution exists by removing 

background counts. This was of particular importance for volunteer 3 where the z-rotation was >40°. 

✤ For most volunteers the fixed-mask performed just as well as a roving mask. However, it is 

preferable to use a roving mask where large movements are suspected or detected from the 

cine/comparison of projections. For volunteer 3, use of a fixed-mask excluded too much brain and 

therefore prevented robust optimisation. The roving mask permits the maximum amount of brain to 

be included in the projection comparison. 

✤ Scatter correction had little effect on the estimates (and MSDR values). One exception was for 

volunteer 1 where it appears scatter correction (with reduced matrix) led to the outlier. Scatter 

subtraction does increase noise in the projections, though this did not appear to have an adverse 

effect on motion estimation. This is in accord with previous results suggesting the data-driven 

approach is very robust with respect to noise. 

✤ Although smoothing did not generally result in outliers, it tended to reduce the accuracy of estimates 

by a small degree. This should be further tested on studies with better count statistics eg. patient 

scans where the administered dose is higher. 

 

It should also be noted that optimisation can fail if the fixed mask is not chosen properly. We estimated 

the appropriate boundary of this mask from the cine: for all likely transformations tried by the downhill-

Simplex routine, there should be no truncated activity distribution above this boundary. From the 

projection images it is not possible to guarantee this; however, if motion is not too severe, and if chosen 

conservatively, the boundary will likely be valid. Choosing the boundary too low in an attempt 

(apparently) to include more brain can result in biasing and be counter-productive. For example, consider 

the two fixed-mask optimisations for volunteer 2 in Table 6.1. Here, projections of size 1282 were used 

with no thresholding, smoothing or scatter correction. A mask excluding the bottom 16 rows resulted in 

an outlier set of motion parameters, whereas the mask excluding the bottom 30 rows resulted in a set of 

motion parameters consistent with the majority of other optimisations. 

 



Table 6.1 (continued over page). State of optimisation variables and extracted parameters for all optimisations performed on the volunteer and 
semi-simulated data. For the semi-simulated sets, an MSDR describing the improvement due to correction is given in the far right column. 

 
Motion ParametersStudy Projection 

Size 
Scatter 

Correction 
Threshold 
(% of max. 

count)

Smoothing 
FWHM 
(pixels)

Truncation 
Solution x-rot. 

(°) 
y-rot. 

(°)
z-rot. 

(°)
x-trans. 
(pixels)

y-trans. 
(pixels)

z-trans. 
(pixels)

           
Volunteer 1 128 X 10 2 Roving 4.03 -2.88 -24.88 0.23 0.49 -5.11 

 128 Yes 10 2 Roving 3.70 -2.93 -24.59 0.16 0.30 -5.21 
 128 X X X Fixed 5.53 -3.34 -24.93 0.88 1.17 -5.17 
 128 X 10 X Fixed 3.55 -2.50 -25.43 -0.06 0.34 -4.80 
 128 X 10 2 Fixed 3.83 -0.82 -24.94 -0.93 0.88 -5.01 
 128 X 10 X Roving 0.96 -2.23 -22.77 -0.90 -1.06 -5.09 
 128 X X X Roving 26.44 -40.51 -37.16 20.77 0.33 4.10 
 80 X 10 X Roving 3.75 -2.57 -24.25 -0.37 0.44 -5.06 
 80 X 10 2 Roving 2.83 -3.30 -23.59 0.14 -0.24 -5.08 
 80 Yes 10 2 Roving 9.57 -9.28 -22.41 4.93 2.34 -4.40 
 80 X X X Fixed 2.99 -2.88 -25.08 -0.07 -0.07 -5.20 
 80 X 10 X Fixed 2.43 -2.28 -24.32 -0.48 -0.24 -4.80 
 80 X 10 2 Fixed 2.83 -2.49 -24.79 -0.31 -0.03 -5.05 
            

Volunteer 2 128 X 10 X Roving -10.90 2.75 22.30 2.84 -3.99 -0.82 
 128 X 10 2 Roving -11.02 1.50 22.62 3.63 -3.83 -0.71 
 128 X X X Fixed -11.62 0.89 22.73 4.10 -3.94 -0.83 
 128 X 10 2 Fixed -6.80 7.49 21.83 -0.51 -2.80 -1.39 
 128 Yes 10 X Roving -11.33 2.25 21.86 3.17 -4.23 -0.86 
 128 Yes 10 2 Roving -12.02 2.27 22.83 3.48 -4.47 -0.74 
 128 X X X Fixed -7.43 6.33 21.25 0.01 -2.97 -1.41 
 80 X X X Roving -10.30 0.61 21.35 3.89 -3.45 -0.75 
 80 X 10 X Roving -11.35 3.94 21.08 2.07 -4.69 -0.83 
 80 X 10 2 Roving -11.98 0.89 22.35 4.11 -4.26 -0.48 
 80 Yes 10 X Roving -12.79 0.86 21.47 4.13 -4.74 -0.52 
 80 Yes 10 2 Roving -12.15 0.98 21.04 3.90 -4.54 -0.57 
 80 X X X Fixed -10.92 2.21 21.79 3.10 -3.97 -0.84 
 80 X 10 2 Fixed -11.66 2.93 21.04 2.76 -4.63 -0.61 

 
 
 
 
 
 



Motion ParametersStudy Projection 
Size 

Scatter 
Correction 

Threshold 
(% of max. 

count)

Smoothing 
FWHM 
(pixels)

Truncation 
Solution x-rot. 

(°)
y-rot. 

(°) 
z-rot. 

(°)
x-trans. 
(pixels)

y-trans. 
(pixels)

z-trans. 
(pixels)

MSDR 

            
Volunteer 3 128 X X X Fixed 20.17 -11.58 -46.30 3.89 6.82 0.27 - 

 128 X 10 X Fixed 14.27 -6.45 -50.59 -1.09 6.41 -0.03 - 
 128 X 10 X Roving 23.46 4.93 -44.96 -1.33 16.52 0.71 - 
 128 X 10 X Roving 18.50 -11.53 -53.39 2.48 5.46 0.58 - 
 128 X 20 X Roving 23.97 -14.52 -49.40 6.36 6.50 2.45 - 
 128 X X X Roving 57.77 -38.22 -83.22 23.30 -3.77 15.31 - 
 128 Yes X X Roving 49.65 -10.53 -75.36 16.69 12.81 6.47 - 
 80 X 10 X Roving 0.05 29.74 -34.49 -22.27 11.81 4.88 - 
 80 X X X Roving 7.87 43.33 -58.40 -19.06 29.39 8.78 - 
 80 Yes X X Roving -3.62 59.26 -46.46 -30.77 24.02 16.47 - 
 80 X 10 2 Roving 13.87 22.19 -44.77 -12.81 19.37 2.06 - 
 80 X 20 X Roving 14.97 23.02 -41.18 -13.09 19.37 2.92 - 
 80 Yes 10 2 Roving 11.60 21.92 -46.13 -13.52 18.30 2.14 - 
 80 Yes 20 X Roving 8.66 24.40 -50.05 -15.48 19.03 2.67 - 
             

Semi-sim. 1 128 X 10 X Roving -2.31 -1.58 36.53 5.59 6.04 1.56 4.3 
 128 X X X Fixed -2.12 -2.04 36.62 5.76 6.31 1.43 4.3 
 128 X 10 2 Roving -6.93 15.32 28.57 -1.87 -1.35 3.09 1.4 
 80 X 10 X Roving -3.06 -1.80 35.59 5.79 5.58 1.61 4.3 
 80 X 10 2 Roving -2.93 0.34 34.66 4.80 4.52 1.72 3.6 
 80 Yes 10 X Roving -4.44 -3.97 35.61 7.33 5.79 1.90 4.4 
 80 Yes 10 2 Roving -1.80 -4.45 36.55 6.72 7.17 1.37 4.0 
 80 X X X Fixed -2.31 -2.03 35.94 5.74 6.07 1.50 4.3 
 80 X 10 X Fixed -3.88 -2.41 36.02 6.43 5.37 1.96 4.3 
 80 X 10 2 Fixed -0.97 -3.21 36.22 5.84 7.07 1.46 4.1 
             

Semi-sim. 2 128 X 10 X Roving -5.86 -5.67 34.25 8.19 5.55 2.43 1.9 
 128 X 10 2 Roving -8.21 -5.99 32.27 8.93 4.24 2.84 1.7 
 128 Yes 10 X Roving -1.60 -2.36 32.79 5.45 6.38 1.43 2.0 
 128 Yes 10 2 Roving -0.72 -0.76 33.86 4.48 6.51 1.50 1.8 
 128 X X X Fixed -3.32 -3.80 33.72 6.73 6.14 1.82 2.1 
 80 X 10 X Roving -3.17 -2.89 33.67 6.30 5.87 1.97 2.0 
 80 X 10 2 Roving -3.12 -2.19 32.65 5.78 5.58 1.80 2.0 
 80 Yes 10 2 Roving -2.14 -4.37 33.29 6.58 6.80 1.49 2.0 
 80 X X X Fixed -2.16 -3.64 33.64 6.30 6.64 1.62 2.0 
 80 X 10 X Fixed -3.56 -2.85 34.21 6.38 5.69 2.02 2.0 
 80 X 10 2 Fixed -3.70 -3.47 33.62 6.66 5.78 1.96 2.1 

 



 
 
 

Table 6.2. Projections corresponding to each major brain location in the volunteer studies and the Polaris measurement of the major motions. 
An MSDR value is provided in the right column for the semi-simulated datasets. 
 

Acquired Projections Change in Position (Polaris) MSDR Study Location 

Det 1 Det 2 Det 3 x-rot. 
(°) 

y-rot. 
(°) 

z-rot. 
(°) 

x-trans. 
(pixels) 

y-trans. 
(pixels) 

z-trans. 
(pixels) 

 

            
Volunt. 1 1 [1-4], [21-40] [41-44], [61-80] [81-84], [101-120] 7.2 -4.0 -14.8 -0.29 1.46 -5.42  

 2 [5-20] [45-60] [85-100]        
            

Volunt. 2 1 [1-20], [38-40] [41-60], [78-80] [81-100], [118-120] -12.1 1.6 19.6 2.92 -5.10 -1.58  
 2 [21-37] [61-77] [101-117]        
            

Volunt. 3 1 [1-11], [21-40] [41-51], [61-80] [81-91], [101-120] 12.4 17.5 -40.9 -13.7 17.17 1.61  
 2 [12-20] [52-60] [92-100]        
            

Semi-sim. 1 1 [1-20] [41-60] [81-100] 0.3 -0.3 38.0 7.45 7.68 1.26 0.6 
 2 [21-40] [61-80] [101-120]        
            

Semi-sim. 2 1 [1-35] [41-75] [81-115] 0.3 -0.3 38.0 7.45 7.68 1.26 0.3 
 2 [36-40] [76-80] [116-120]        
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Figure 6.13 (a)-(b). Motion parameter sets (blue curves, blue points) extracted for (a) volunteer 1 and (b) 
volunteer 2. For both volunteers the majority of extracted parameter sets closely followed the trend of the 
Polaris (white curve, pink points) even though some parameter sets differed noticeably from the actual 
Polaris values in terms of magnitude. 
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Figure 6.13 (cont.) (c)-(e). Motion parameter sets (blue curves, blue points) extracted for (c) volunteer 3, 
(d) semi-simulation 1, and (e) semi-simulation 2. The Polaris data is superimposed in each case (white 
curve, pink points). The optimisations for volunteer 3 were the most prone to failure due to a large 
rotation and translation. In this case the four parameter sets closest to the Polaris trend have been coloured 
green for clarity. For the semi-simulated sets there was only one failure out of all optimisations 
performed. These optimisations exhibited the least dispersion, and, although closely following the Polaris 
trend, were offset slightly from the Polaris values in most DOF.  
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A series of smoothed central brain slices from the uncorrected, reference, and corrected reconstructions 

are shown in Figure 6.14. Slices corrected using our method and the Polaris method are shown. Without 

motion correction there were clear motion artifacts manifested as distortion and smearing, asymmetry, 

and areas of low perfusion. This is in agreement with what has been described in the literature. After 

correction using both methods there was a clear reduction of these artifacts and an improvement in image 

contrast. Some corruption was still evident after applying motion correction. For volunteer 3 and both 

semi-simulated studies this residual corruption appeared to be worse for the Polaris correction. 

 

For all volunteer studies we extracted motion estimates that closely followed the trend of the Polaris. 

However, in each case there was systematic variation from the Polaris measurements. This variation was 

further motivation for utilising semi-simulated data enabling rigorous quantification of motion correction. 

Variability between parameters was smallest for the semi-simulated sets, and extracted parameters 

obtained for semi-simulated data followed the Polaris parameters more closely than the initial 3 volunteer 

studies. However, the same systematic variation from the Polaris values was still present. For example, in 

the first semi-simulated set, the x and y-rotations were consistently larger and the x and y-translations 

consistently lower than those measured by the Polaris. 

 

These results are evidence both that a semi-simulation approach is an effective and rigorous means of 

testing and validating the approach on clinical data, but also that the current implementation of the Polaris 

for measuring motion requires some refinement. We believe that the primary consideration should be the 

head target attachment. Operators at the institution from which we received the data were aware of the 

potential for the forehead strap to lift from the head and for the posterior strap to ‘catch’ on the patient 

bed, both scenarios causing head and target movement to become momentarily independent. Even though 

precautions were taken to minimise this for the semi-simulated studies, it is possible that such slippage 

still occurred and went unnoticed. Although the Polaris provided improvement, with the current 

implementation it cannot be assumed an accurate gold standard. Recently, staff have developed a new 

design of head target attachment aimed at minimising contact between the attachment sections and the 

bed and maintaining good, close contact with the head at all times. This design (Figure 6.15) has yet to be 

tested. 
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Figure 6.14a. Upper, mid, and lower brain slices for the 
reference, uncorrected, and corrected reconstructions of 
volunteer 1. Images were filtered to the same degree of 
smoothness (see main text). In the uncorrected slices there is 
a general loss of contrast and a severe smearing artifact in the 
antero-lateral cortex of the upper brain (left column). The 
cortical artifact was removed and contrast and symmetry 
much improved after correction using both methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14b. Images for the second volunteer study. In the 
uncorrected slices there is a general blurring and loss of fine 
detail due to motion. Contrast is clearly improved after 
motion correction using both methods, however there is still 
distortion and loss of detail anteriorly and centrally. 
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Figure 6.14c. Images for the third volunteer study. This study 
had the most severe motion out of the initial three volunteers. 
Severe ‘ghosting’ and distortion is apparent in the 
uncorrected slices. This was significantly reduced after 
correction. The symmetry of the cerebellum was better after 
data-driven correction than Polaris correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14d. Images for the first semi-simulated study. 
Severe distortion is apparent in the uncorrected slices since 
the study was evenly divided between two quite distinct head 
locations. The data-driven motion-corrected slices show 
better contrast and alignment than the Polaris-corrected 
slices. 

 

 

 

Reference

Uncorrected

Corrected

Polaris

Reference

Uncorrected

Corrected

Polaris



 95

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14e. Images for the second semi-simulated study. 
Compared to the first semi-simulated dataset, motion 
corruption in the uncorrected slices was far less apparent 
since only 1/8 of the projections were affected by movement. 
The data-driven motion-corrected slices are clearly very 
similar to the reference slices and better than the Polaris-
corrected slices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. (a) New design for securing the head 
target (grey with white spherical reflectors) to the 
head. The design consists of four perspex ‘clasps’ 
that ensure constant contact with the head whilst 
minimising contact with the bed; (b) the design in 
action with an additional strap to provide extra 
stability of the target. 
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CHAPTER 7 

 

SUMMARY, CONCLUSIONS, AND FURTHER WORK 
 

 

7.1 Summary 

 

This thesis describes a method for patient head motion correction that is aimed at improving the 

diagnostic quality and accuracy of brain SPECT images. We sought to demonstrate the feasibility of six 

DOF rigid-body motion correction in clinical brain SPECT studies using the novel data-driven 

methodology and to provide a thorough treatment of practical considerations when implementing this 

approach in the clinical setting. 

 

Despite the use of restraining measures, patient head motion occurs frequently in brain SPECT studies 

and is a well-recognised source of artifacts in reconstructed data (Silver et al 1994, Cooper and 

McCandless 1995, Botvinick et al 1993, Green et al 1994). Apart from performing repeat studies, the 

alternative is to apply motion correction. Numerous strategies have been proposed in the literature to 

achieve this. Some methods lack data efficiency – for example those that involve multiple acquisitions 

(eg. Passalaqua and Narayanaswamy 1995, Britten et al 1998) or which fail to use all the acquired data 

(Germano et al 1994, Ivanovic et al 1998). Other methods involve marker sources being placed on the 

patient (Groch et al 1985, Ivanovic et al 2001). Methods requiring additional hardware for independent 

detection or measurement of motion add calibration and maintenance complications and often add extra 

time to already lengthy procedures (eg. Goldstein et al 1997, Green et al 1994, Lopresti et al 1999, Fulton 

et al 1999, Bloomfield et al 2003). The biggest shortcoming of most published methods is that they do not 

correct for motion in all six rigid-body DOF (eg. Arata et al 1995, Lee and Barber 1998, Li et al 1995). 

 

Among the published data-driven methods, none provides six DOF motion correction using a single scan, 

and in a potentially fully automated fashion. A novel data-driven approach is described in this work 

which satisfies these criteria. Motion correction is based on measured projection data being incorporated 

into a reconstruction consistent with the 3D orientation at which they were acquired. The method brings 

together various elements present in published techniques: a comparison of measured projections with 

projections generated from the reconstruction (Arata et al 1995, Lee and Barber 1998); an optimisation of 

the reconstruction (Surova-Trojanova et al 2000); and a 3D implementation of OSEM reconstruction 

(Fulton 2000). It has long been recognised that the radon (projection) transform relates projection 

movement to object movement (eg. Milanfar 1999, Robinson and Milanfar 2001). To our knowledge, this 

thesis is the first time a data-driven projection registration has been applied in brain tomography for the 

estimation of six DOF motion. 
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Initially the data-driven approach was validated in computer simulations. Datasets containing multiple, 

six DOF motions were simulated. Motions varied in magnitude, angular location, and angular extent. 

Accurate motion parameters were extracted after a single iteration of the approach. Corrected slices 

displayed a clear reduction in symmetry and perfusion defects. This was supported quantitatively. There 

was no requirement that attenuation be incorporated in the estimation process, enabling considerable 

benefits in performance. 

 

The second stage of validation was testing in real studies of the Hoffman brain phantom. Two single-

movement studies and one double-movement study were acquired by arbitrarily reorienting (six DOF) the 

phantom during a scan. The Polaris optical tracking device was used to provide an independent 

measurement of the applied movements. This device uses infrared reflections to determine the position 

and orientation of markers attached to the object of interest. Since data were received from a separate 

institution, modifications were made to obtain consistency between the camera coordinate system relevant 

to the acquisition and the system defined for motion correction. The x and y-rotation and z-translation 

parameters extracted using the data-driven approach were in good agreement with the Polaris 

measurements, however a systematic discrepancy was observed for the z-rotation and x and y-translation 

parameters. In the case of the double-movement study, all parameters were in good agreement, and the 

motion-corrected slices closely resembled those obtained using the Polaris. Symmetry in the activity 

distribution was shown to cause extended, shallow troughs in the cost function; this appeared to be the 

cause of erroneous motion estimations obtained in the high-quality physical Hoffman phantom data. 

 

The final stage of testing involved volunteer human subject data and constituted a preliminary clinical 

validation. Three volunteers underwent two standard triple-detector SPECT brain scans. For the first scan 

volunteers attempted to maintain a single head location; for the second scan they performed a single (six 

DOF) change in head location when prompted. A fourth volunteer attempted to maintain a single (but 

different) head location in each of two scans. Data from the fourth volunteer were used to simulate two 

additional single-movement studies. The Polaris provided an independent measure of subject motion. For 

all volunteers, sets of motion parameters that followed the trend of the Polaris closely could be generated. 

However, there was a systematic discrepancy between data-driven values and the Polaris values. Use of 

scatter correction had little influence on motion estimation. Use of smaller projections tended to provide 

estimates at least as good as larger projections. Pre-smoothing of acquired data generally led to less 

accurate motion estimates. Thresholding removed background counts and helped prevent wild estimates. 

Also, the need to account for data truncation during the optimisation was demonstrated, particularly in the 

case of large movements. For all volunteers, image symmetry and contrast improved after applying data-

driven correction. In certain cases, correction was better than that obtained from the Polaris. The method 

used for attaching the target to the patient head is an important consideration. Poor attachment can lead to 

decoupling of target and head movement as is likely the cause of poor Polaris results. 
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In summary, the contributions of this thesis are: 

✤ Development of a novel method capable of correcting for six DOF head motion in SPECT using the 

measured data alone 

✤ Development of methodology for its implementation in SPECT 

✤ Development and validation of methodology for six DOF data-driven motion correction in SPECT 

phantom studies 

✤ Demonstration of the feasibility of six DOF data-driven motion correction in SPECT scans of human 

subjects 

✤ Development of methodology for a clinical implementation of six DOF data-driven SPECT motion 

correction 

 

 

7.2 Conclusions 

 

We have described a novel data-driven approach capable of correcting for general rigid-body motion 

occurring during brain SPECT acquisitions. Practical aspects of the approach have been treated in detail: 

detection of motion, estimation of motion, reconstruction, attenuation correction, and validation. 

Successful correction of multiple complex movements in simulated data and real phantom data has been 

demonstrated. The feasibility of correcting for fully 3D head movements in SPECT scans of human 

subjects has also been demonstrated. We have considered discrete motions occurring between projections. 

The method is best suited to, but not limited to, this type of motion. Our technique is free of external 

gadgetry and is potentially fully automated. No prior knowledge of motion is required. It is easily adapted 

to different types of collimation and multi-detector geometries. 

 

 

7.3 Further Work 

 

(1) Clinical validation 

A thorough clinical validation of data-driven motion correction for human subjects should be carried out. 

In particular, multiple controlled motions of volunteer subjects, as well as motion in minimally 

constrained patients, should be considered. A robust independent measurement of the motion using the 

Polaris should be available. This would require a modification to the head target attachment used in this 

work (eg. that of Figure 6.15). A quality reference study (motion-free) would be required for each motion 

study, acquired back-to-back with the motion study in order that the Polaris measurements from the two 

scans be compatible. Qualitative assessment of motion correction should take the form of a receiver 

operator characteristic (ROC) study. 
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(2) Improvement in Efficiency and Automation 

There is a lot of scope to improve the efficiency of the technique. Currently the “bottle-neck” of the 

procedure in terms of time is the 3D transformation of the reconstruction during optimisation. An 

implementation of OSEM allowing projections to be incorporated at an arbitrary 3D orientation would 

significantly reduce the number of processor operations. Alternative optimisation algorithms may also 

provide an increase in speed. 

 

The motion estimation stage was fully automated in this work. Automating the updating stage is a simple 

extension. Automating the motion detection phase poses more of a challenge and would require well-

defined criteria for isolating and categorising the motion groups. The latter would enable the entire 

approach to be user-independent. 

 

(3) Alternative reconstruction algorithms 

It is recognised that identification of large angle groups could be less likely if motion is slow and 

progressive. In terms of motion correction this means more optimisations, the extreme case being a 

separate optimisation for each simultaneously-acquired angle group. For dual-90° detector geometry, this 

in turn would require reconstruction updates using subsets of two (pairs). Though OSEM may be limited 

here by the subset balance condition, the more general form of this iterative reconstruction algorithm, 

rescaled block iterative (RBI) algorithm, should have no such limitation. Further investigation of this is 

required. In theory then, the identification of angle groups is not a limitation, though at the current speed, 

failure to identify reasonably sized groups would make the algorithm prohibitively slow for practical use. 

 

An additional complicating factor when finding motion relationships between angles is the choice of 

reconstruction subsets. Our observation is that this choice influences the quality of the partial 

reconstruction and the successive reconstruction updates. Further investigation into how influential 

OSEM subset ordering is in distinguishing angle groups and estimating motion is necessary. Again, 

subset-based reconstruction algorithms not reliant on subset size or ordering may provide improvements. 

 

Although we have described methodology for multi-detector (non-opposite) configurations, we postulate 

that the approach could be implemented using a single detector gamma camera. Motion components 

orthogonal to the detector, although ‘missed’ in terms of motion detection, would not contribute corrupt 

information at that projection angle and therefore should not be of concern. Therefore, it is feasible that 

data-driven motion correction could be applied one projection at a time. This, however, would require the 

use of a reconstruction algorithm permitting singly populated subsets. The RAMLA algorithm is an 

option for investigation here. 
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(4) Understanding the effect of motion 

Clearly the number of possible movements and the pattern of patient movement is prohibitively large to 

test exhaustively. Nevertheless, in this work a range of motions were tested to enable some assessment of 

how the type, amplitude, angular location, and angular duration of motion influenced performance of the 

algorithm. Both a broader range of movements in real subjects, and an investigation into what qualifies as 

‘significant’ movement should be tested. To our knowledge, no comprehensive studies on the latter have 

been performed for brain SPECT. It is particularly important to assess the significance of motion as a 

source of artifacts visible over and above the noise likely to be encountered in the clinical setting. 

 

(5) Application to other organs  

A natural extension would be to apply the method in cardiac SPECT studies. The presence of significant 

activity in surrounding organs such as the liver will influence correction, but the nature of this problem is 

similar to the truncation problem already encountered in this work; a solution is therefore feasible. 
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