Recent Advances in Transition-Metal Catalyzed Oxidative Annulations to Benzazepines and Benzodiazepines

Álvaro Velasco-Rubio, Jesús A. Varela and Carlos Saá*
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
E-mail: carlos.saa@usc.es

Received: ((will be filled in by the editorial staff))

Abstract

Benzazepines and benzodiazepines, benzofused seven-membered N-heterocycles, compose an important family of natural products and pharmaceuticals. Although certainly important and effectives, classical synthetic methods of these cyclic compounds involve methodologies that often require multistep procedures, with generation of waste materials and lack of sustainability. By contrast, cycloadditions based on transition metal catalyzed C-H bond activations (oxidative annulations) have emerged as appealing strategies for more sustainable synthetic processes. In this review, we focus our attention to describe the state-of-the-art transition-metal catalyzed annulations via C-H activations to benzazepines and benzodiazepines.

1 Introduction

Seven-membered N-heterocycles, azepines, are important skeletal motifs found in numerous natural products and pharmaceuticals. ${ }^{[1]}$ Due to their interesting biological properties, a large number of synthetic methods have been developed to access the azepine nuclei throughout the years. ${ }^{[2]}$ Moreover, the benzofused analogs, benzazepines and benzodiazepines, ${ }^{[3]}$ which compose a wide family of natural products and pharmaceuticals with unique biological activity, have also received considerable attention. ${ }^{[4]}$ The azepine unit can be benzofused from three different sides of the ring (b, c or d) and, therefore, 1-benzazepine, 2-benzazepine or 3benzazepine integrate the whole benzazepine family (Figure 1). The remarkable biological activity of this family arises from their interaction with specifi25 human receptors in the Central Nervous System (CNS), such as D_{1}-receptor (dopamine) ${ }^{[5]}$ or $5-\mathrm{HT}_{1 \mathrm{~A}}$ recepto 26 (serotonine), ${ }^{[6]}$ where benzazepines can act either as agonist or antagonist. For instance, Alsterpaullone has been described as a potent antitumoral agent, ${ }^{[727}$

Figure 1. Representative benzazepines

Benzodiazepines, dinitrogenated benzofused members, are classified depending on the relative
position of both nitrogens in the azepine ring as 1,2-1,3-, 1,4-1,5- and 2,3-benzodiazepines (Figure 2). ${ }^{[10]}$ They are suitable drugs to affect the binding to human receptors such as GABA $_{A}{ }^{[11]}$ AMPA (e.g., Nerisopam) ${ }^{[12]}$, even DNA (e.g., Anthramycin) ${ }^{[13]}$ as well as inhibitors of bromodomains. ${ }^{[14]}$ For instance, 1,4-benzodiazepines are one of the most common drugs owing to their extensive use to treat anxiety, ${ }^{[15]}$ insomnia, ${ }^{[16]}$ or cancer, ${ }^{[17]}$ 1,2-benzodiazepines are highlighted as cancer inhibitors (e.g., CB-6644), ${ }^{[18]}$ and 1,5-benzodiazepines are potent CNS active agents (e.g., Clobazam). ${ }^{[19]}$

2,3,4,5-tetrahydro- 1 H benzo[c][1,2]diazepine 1,2-Benzodiazepine

2,3,4,5-tetrahydro- 1 H benzo[d][1,3]diazepine 1,3-Benzodiazepine

2,3,4,5-tetrahydro- 1 H benzo $[e][1,4]$ diazepine 1,4-Benzodiazepine

2,3,4,5-tetrahydro- 1 H benzo $[b][1,4]$ diazepine 1,5-Benzodiazepine

2,3,4,5-tetrahydro- 1 H benzo[d][1,2]diazepine 2,3-Benzodiazepine

Clobazam

Nerisopam

Figure 2. Representative benzodiazepines

A large number of synthetic routes to benzazepines and benzodiazepines have been described throughout the last decade, ${ }^{[20]}$ the most used are those based on condensations, ${ }^{[21]}$ cyclizations, ${ }^{[22]}$ cycloadditions ${ }^{[23]}$ and ring expansions. ${ }^{[24]}$ All these classical strategies might be considered useful although they usually lack sustainability in their transformations.

In a step further toward more sustainable approaches, catalytic methods have been successfully employed to synthesize both benzazepines and benzodiazepines. Thus, transition-metal-catalyzed Heck type reactions, ${ }^{[25]}$ cycloadditions, ${ }^{[26]}$ metathesis, ${ }^{[27]}$ oxidative couplings, ${ }^{[28]}$ intramolecular C- and N-aryl(alkyl)ations, ${ }^{[29]}$ tandem processes ${ }^{[30]}$ or hydroamin(d)ation of alkynes ${ }^{[31]}$ has been successfully employed.

Álvaro Velasco-Rubio, born in Salamanca (Spain), received his BSc in chemistry at the University of Salamanca, Spain, in 2015. He completed his MSc in Organic Chemistry in 2016 for research about transition-metal catalyzed heteroannulations via C-H bond activation under the supervision of Profs. Carlos Saá and Jesús A. Varela at
 Universidad de Santiago de Compostela, Spain. He spent a short research stay at Caltech working on synthetic methodology to access fully substituted α-amino ketones under the supervision of Prof. Brian Stoltz. He is currently a fourth year Ph D candidate working on "Sustainable Synthesis of Benzazepines and Benzodiazepines" under the supervision of Profs. Carlos Saá and Jesús A. Varela.

> Jesús A. Varela was born in 1971 in Lugo, Spain and studied chemistry at the Universidad de Santiago de Compostela, Spain. He completed his MSc in 1994 and his Ph D thesis in 1999 (excellent award) under the supervision of Prof. Dr. Carlos Saá. After a predoctoral research training period in Harvad University under supervision of Prof. Dr. Matthew Shair and a postdoctoral period from 1999 to 2001 as an Alexander von Humboldt and Marie Curie Fellow with Prof. Dr. Paul Knochel at LMU in Munich (Germany), he joined the faculty at the Universidad de Santiago de Compostela as Ramón y Cajal researcher, and since 2008 as Associate Professor. His research interests are focused on organometallic catalysis towards the synthesis of bioactive compounds and molecular materials.

Carlos Saá born in Lugo (Spain), studied chemistry at the Universidad de Santiago de Compostela (Spain) where he received his PhD in 1985 under the supervision of Profs. L. Castedo, R. Suau and J. M. Saá. After postdoctoral studies with Prof. Vollhardt at the University of California, Berkeley, he was appointed as Associate Professor
 In 1990 at the University of Santiago de Compostela, and since 2004 as a full Professor. His research interest centers on the development of new methodology of organometallic catalysis and their applications to the synthesis of bioactive compounds and organic conductive materials.

The current challenges in transition-metal-catalysis lies in developing more ecofriendly strategies to access highly valuable benzofused seven-membered azaheterocycles. In this sense, annulation reactions, in which two bonds are formed in a single step, are among the most efficient methods for the synthesis of cyclic compounds. ${ }^{[32]}$ Particularly, dehydrogenative
annulation reactions via metal-catalyzed C-HB7 activation provide straightforward access to common8 cyclic scaffolds from easily available substrates. ${ }^{[333} 39$ Several strategies have been reported to obtain five40 and six-membered benzofused azaheterocycles vict 1 transition-metal catalyzed C-H bond activation, ${ }^{[34]}$ bu\#2 few are known for the medium sized seven-membered 3 analogs. In this review, the state-of-the-art metal44 catalyzed annulations to synthesize benzofused seven45 membered azaheterocycles are highlighted. Syntheti\&6 strategies, directing groups (DGs) and coupling7 partners used to obtain benzazepines and 4 benzodiazepines, as well as the mechanism of thes 49 transformations, will be conveniently discussed. W 50 have organized the sections according to the type o\$1 heterocycle and number of atoms involved in th 52 annulation.

2 Benzazepines via Transition-Metal Catalyzed Oxidative Annulations

2.1 1-Benzazepines

Key	Annulation	M etal	DG	Unsaturated partner
a	$(3+2+2)$	Pd	X-Type	Alkynes
b	$(5+2)$		$\left\{\begin{array}{l}\text { L-Type } \\ \text { X-Type } \\ \text { X-Type }\end{array}\right.$	Alkynes 1,3-dienes Allenes
		Ir	L-Type	Allyl carbonates
c	$(6+1)$	Rh		CO

Figure 3. 1-Benzazepine disconnections catalysis using nitrogenated substrates bearing L-Typ87 (amines) and X-Type (amides) DGs vig8 multicomponent and standard annulations. ${ }^{[35-40]}$ They 59 have been also synthesized under Ir catalysis in a $(5+2) 0$ annulation of o-alkenylanilines and ally 171 carbonates. ${ }^{[41]}$ In addition, a Rh-catalyzed $(6+1) / 2$ carbonylation of N -cyclopropylanilides (carbonylativ93 $\mathrm{C}-\mathrm{C}$ activation) rendered benzazepin-5-ones (Figure94 3). ${ }^{[42]}$

75
One of the pioneering examples of multicomponent 6 annulations was reported by Wang and co-workers ing 2013. ${ }^{[35]}$ They probed that isatins $\mathbf{1}$, a cyclic anilide 78
type substrate, can react with two equivalents of alkynes $\mathbf{2}$ to give 1-benzazepines $\mathbf{3}$ in a formal (3+2+2) cycloaddition (Scheme 1). ${ }^{[36]}$ The authors suggested a mechanism which starts with the ligand exchange to give $\mathbf{I} .{ }^{[35]}$ This is followed by two consecutive 1,2insertions of alkynes to generate the butadienylpalladium intermediate III. Finally, C-H activation (via Concerted Metalation Deprotonation, CMD) led to the eight-membered palladacycle IV, which subsequently underwent reductive elimination to yield the 1-benzazepine 3 . The reaction afforded excellent yields with aromatic alkynes. However, when non-symmetrical alkynes were used, moderate to high yields of a mixture of regioisomers were obtained. The reaction tolerated all types of electrondonating and electron-withdrawing substituents in the aromatic ring of the isatin.

Scheme 1. Pd-catalyzed (3+2+2) annulation of isatins and alkynes to 1-benzazepines.

In 2015, Luan and co-workers reported a Pdcatalyzed (5+2) heteroannulation between o arylanilines $\mathbf{4}$ and alkynes $\mathbf{2}$ to produce dibenzo[b,d]azepines 5 (Scheme 2). ${ }^{[37]}$ The authors proposed a mechanism that is initiated with an anilineassisted (L-type DG) C-H bond activation (via CMD) to form the dimeric six-membered palladacycle \mathbf{I}. This dimeric complex is broken in the presence of the alkyne to form the coordinated species II that undergo 1,2-migratory insertion into the C-Pd bond to give an eight-membered palladacycle III. Subsequent C-N reductive elimination delivers the enamine dibenzo $[b, d]$ azepine IV and concomitantly regenerate the $\operatorname{Pd}(\mathrm{II})$ catalyst to restart the cycle. Finally, tautomerization of the enamine to the thermodynamically more stable imine leads to the final dibenzo $[b, d]$ azepine 5. Both aromatic and aliphatic alkynes afforded good to high yields and excellent diastereoselectivities ($>19: 1$). In the case of nonsymmetrical alkynes, moderate to excellent yields of both regioisomers in modest to good diastereoselectivies were obtained. Furthermore, many rings of the arylaniline were well tolerated.
 6 and 1,3-dienes (Scheme 3). ${ }^{[8]}$ The mechanism suggested for this transformation involves the initial formation of the six-membered palladacycle I (cis- $\mathrm{PdX}_{2} \mathrm{~L}_{2}$) via electrophilic palladation. Then, coordination (II) and migratory insertion of the 1,3diene forms an eight-membered palladacycle III, which is further stabilized with the second double bond of the diene ($\mathrm{Pd} \sigma$-allyl complex). Finally, C-N reductive elimination delivers the dibenzo $[b, d]$ azepine 8 with concomitant regeneration of the active $\mathrm{Pd}(\mathrm{II})$ species to reinitiate the catalytic cycle. Monosubstituted 1,3-dienes gave good to excellent yields of the corresponding 1-dibenzo $[b, d]$ azepines as a single diastereoisomer. However, 1,1-disubstituted 4_{8} 1,3-dienes also worked in good yields, but in a lower 5:1 diastereoselectivity.

49

Scheme 3. Pd-catalyzed (5+2) annulation of aryl tosylanilides and 1,3-dienes to dibenzo $[b, d]$ azepines.

Simultaneously, the groups of Mascareñas/Gulías ${ }^{[39]}$ and Zeng ${ }^{[40]}$ reported a Pdcatalyzed (5+2) annulation of ortho-alkenylanilides 9 (triflamides or tosylamides) and allenes $\mathbf{1 0}$ to give 3alkylidene 1-benzazepines 11 (Scheme 4). Mechanistic studies supported by DFT calculations suggested the initial formation of a six-membered palladacycle I through a $\mathrm{C}-\mathrm{H}$ bond activation (via CMD). Then, allene coordination (II) and regioselective migratory insertion into the C-Pd bond forms a π-allylic palladacycle III, which undergoes reductive elimination to the 1-benzazepine 11. Oxidation of the resulting $\mathrm{Pd}(0)$ with $\mathrm{Cu}(\mathrm{OAc})_{2}$ and air regenerates the active catalytic $\mathrm{Pd}(\mathrm{II})$ species. Either mono-, di- or tri-substituted allenes give the corresponding 1 -benzazepines in good to excellent yields and usually as single isomers. Electronwithdrawing and electron-donating substituents in the aryl ring of the anilide were also well accepted.

Scheme 4. Pd-catalyzed (5+2) annulation of o alkenylanilides and allenes to 1-benzazepines.

In 2010, You and co-workers described an Ircatalyzed ($5+2$) heteroannulation of o-alkenylanilines 12 and allyl carbonates 13 to 1-benzazepines 14 in a tandem allylic vinylation/allylic amination reaction (Scheme 5). ${ }^{[41]}$ Furthermore, the allyl-vinyl intermediate I (via C-H activation) could be isolated and readily cyclized into the seven-membered azaheterocycle. The tandem reaction afforded α-vinyl 1-benzazepines in fairly good yields and excellent enantioselectivities upon employment of phosphoramidites $\left(\mathbf{L}^{*}\right)$ as chiral ligands. Either electron-withdrawing or electron-donating groups were well-tolerated in the 4 and 5 position of the aryl ring. 1,1-Disubstituted styrenes were also efficiently cyclized.

Scheme 5. Ir-catalyzed (5+2) annulation of oalkenylanilines and allyl carbonates to 1-benzazepines.

In 2018, Bower and co-workers reported a Rhcatalyzed ($6+1$) annulation of N-cyclopropylanilide 39 15 and CO (carbonylative C-C activation) to benzazepine-5-ones 16 (Scheme 6). ${ }^{[42]}$ The carbonylative cyclization involves a tandem C- 30 (carbonylation) / C-H bond activation (Friedel-Craft ${ }^{3} 1$ type cyclization) process. The proposed mechanisn ${ }^{3} 2$ begins with the C-C bond activation of the 33 cyclopropane assisted by the carbonyl group of the 34 amide to form the rhodacyclopentanone I upon CO35 insertion. This intermediate subsequently undergoes 36 an aryl $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-H bond activation to form the bicyclie ${ }^{7}$ rhodacycle II that, after $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ reductive ${ }^{38}$ elimination and protodemetalation, releases the 139 benzazepin-5-one 16. Electron-poor and electron-rich 40 aryl and heteroaromatic rings were well tolerated 41 Enantioenriched 1-benzazepinones were accesse 42 from enantioenriched substrates.

Scheme 6. Rh-catalyzed (6+1) annulation of N cyclopropylanilides and CO (carbonylative C-C activation) to 1-benzazepine-5-ones.

Figure 4. 2-Benzazepine disconnections

2-Benzazepines have been synthesized under Rh catalysis using nitrogenated substrates bearing either X-Type (amides) DGs via ($4+3$) annulations or L-type (amines) via intramolecular cyclizations. ${ }^{[43-45]}$ A Pdcatalyzed ($6+1$) carbonylation assisted by a bidentate LX-type DG rendered 2-benzazepinones (Figure 4). ${ }^{[46]}$

In 2013, Glorius and co-workers reported a formal Rh-catalyzed (4+3) annulation of benzamides 17 and α, β-unsaturated aldehydes or ketones 18 to produce 2benzazepinones 19 (Scheme 7). ${ }^{[43]}$ The proposed mechanism involves an initial formation of the fivemembered rhodacycle I through the coordination of the benzamide to a $\mathrm{Rh}($ III) species to activate the $o-\mathrm{C}-$ H bond (via CMD). Then, coordination and 1,2migratory insertion of the α, β-unsaturated compound gives the seven-membered rhodacycle II. After protonation (III) and addition of the N -Rh bond across the carbonyl group, the Rh-alkoxide intermediate IV was obtained. Protonolysis to give the sevenmembered hemiaminal and final dehydration delivers the 2-benzazepinone. Electron-rich and electron-poor benzamides were well tolerated, as well as substituted aldehydes and methyl vinyl ketone, to give moderate to good yields of the corresponding 2-benzazepinones.

$\stackrel{17}{ }$
$\left[\mathrm{Cp}_{\mathrm{AghCl}}^{2}\right]_{2}(2.5 \mathrm{~mol} \%)$

Dioxane, $60^{\circ} \mathrm{C}, 12 \mathrm{~h}$

19

Scheme 7. Rh-catalyzed (4+3) annulation of benzamide44 and α, β-unsaturated aldehydes or ketones to 245 benzazepinones.

In 2013, Cui and co-workers reported the Rh49 catalyzed $(4+3)$ annulation of benzamides 20 an $\$ 0$ vinylcarbenoids 21 (Scheme 8). ${ }^{[44]}$ The proposed mechanism involves the initial formation of the fivemembered rhodacycle I through the coordination of the benzamide to activate the o-C-H bond (via CMD). Then, coordination of the vinylcarbenoid followed by N_{2} extrusion affords a Rh-carbene that undergoes a 1,1-migratory insertion to afford the six-membered rhodacycle II. A subsequent 1,3-allylic migratory insertion generates the eight-membered rhodacycle III that evolves via reductive elimination followed by N O bond cleavage to the observed 2-benzazepinone 22 with regeneration of the active catalyst. Several electron-rich and electron-poor substituents in the aryl ring of the benzamide were well tolerated. Regarding the vinylcarbenoid, electron-withdrawing groups ar§ 1 necessary to stabilize the carbene and promote the reaction (esters or ketones); alkyl and aryl substituent 52 in the olefin were also tolerated.

Scheme 8. Rh-catalyzed (4+3) annulation of benzamide and vinylcarbenoids to 2-benzazepinones.

In 2018, Kim and co-workers reported the Rhcatalyzed cyclization of 2(benzylamino)methacrylates I to form 2-benzazepines 25 (Scheme 9). ${ }^{[45]}$ The starting substrates were prepared in situ from addition of primary benzylamines 23 to allylic acetates 24 derived from methyl methacrylates. As a result, the whole process could be considered as a Rh-catalyzed (4+3) heteroannulation. The proposed catalytic cycle was supported by DFT calculations and mechanistic experiments. The secondary benzylamine coordinates to the Rh catalyst and undergo $\mathrm{C}-\mathrm{H}$ bond activation II (via CMD). Then, the pending olefin becomes coordinated and subsequently undergoes a migratory 1,2-insertion to afford the seven-membered rhodacycle III. Finally, β-hydride elimination releaseß 1 the secondary 2-benzazepine IV (after reductive
elimination) with concomitant recovery of the active catalyst in the presence of oxidants to reinitiate the catalytic cycle. A final N -allylation gives rise to the observed tertiary 2-benzazepine 25. A variety of substituents on the aryl ring and at the benzylic position of the starting benzylamine as well as in the allylic ester partner were well tolerated.

Scheme 9. Rh-catalyzed (4+3) heteroannulation of benzylamines and allylic acetates (from methylacrylates) to 2-benzazepines.

In 2019, Carretero and co-workers reported the Pdcatalyzed $(6+1)$ heteroannulation of γ arylpropylamine derivatives 26 and CO (Scheme 10). ${ }^{[46]}$ The mechanism of the carbonylation, supported by DFT calculations and deuterium-labeling experiments, begins with the formation of the sevenmembered palladacycle I assisted by the chelation of the pyridine (bidentate LX-type ligand). Then, CO ligand exchange takes place (II) to further undergo a 1,1-migratory insertion (III) and reductive elimination to the 2-benzazepinone $27^{[47]}$ with the regeneration of the Pd -active catalyst in the presence of the silver salt and BQ . The reaction tolerated a range of substituted aminoacid derivatives both on the activated aryl ring and on the alkyl chain; simple amines could also be employed instead of aminoacid derivatives.

3

4

Scheme 10. Pd-catalyzed (6+1) annulation of γ arylpropylamine derivatives and CO to 2-benzazepinones.

2.3 3-Benzazepines

Key	Annulation	Metal	DG	Unsaturated partner
	(5+2)		$\left\{\begin{array}{l}\text { L-Type } \\ \text { X-Type }\end{array}\right.$	Allenes 1,3-dienes
b	$(3+2) /(5+2)$	Rh	X-Type	Alkynes
c	(5+2)	Rh	X-Type	$\mathrm{ArB}(\mathrm{OH})_{2}$

Figure 5. 3-Benzazepine disconnections

3-Benzazepines have been synthesized under $\mathrm{P}{ }_{41}^{40}$ catalysis using nitrogenated substrates bearing L-Typ 42 (amines) and X-Type (triflamides) DGs via $(5+243$ annulations. ${ }^{[48,49]}$ In addition, they have been als 44 synthesized under Rh catalysis in a tandem 45 $(3+2) /(5+2)$ annulation of vinyl iminocarbenes and 46 alkynes, ${ }^{[50]}$ and in a formal (5+2) annulation of yne 47 enoates and boronic acids (Figure 5). ${ }^{[51]}$

In 2014, Ariza and co-workers reported the Pd_{49}^{48} catalyzed $(5+2)$ annulation of α, α-disubstitute 50 phenethylamines 28 with allenes 10 to give 3_{51} benzazepines 29 (Scheme 11). ${ }^{[48]}$ The use of α, α_{52} disubstituted phenethylamines is mandatory for 83 successful annulation. The proposed mechanism fo 54 this transformation involves the coordination of the 5 amine to promote the o-C-H activation (via CMD56 with the generation of the six-membered palladacycle 57 I (trans- $\mathrm{PdX}_{2} \mathrm{~L}_{2}$). Then, the regioselective insertion of the allene into the Pd -C bond affords the π-allylif9 9 species II. Finally, an outer-sphere $\mathrm{S}_{\mathrm{N}} 2$ attack by the0 nitrogen delivers the 3-benzazepine 29 with th81 concomitant regeneration of the $\mathrm{Pd}(\mathrm{II})$ active catalys F_{2} in the presence of a mixture of $\mathrm{BQ} / \mathrm{AcOH}$. The α, α_{63} disubstitution on the phenethylamines was necessary for a favorable Thorpe-Ingold effect for cyclization. Furthermore, polarized allenes were needed to undergo a regioselective Tsuji-Trost allylic alkylation in moderate to very good yields.

Scheme 11. Pd-catalyzed (5+2) annulation of $\alpha, \alpha-$ disubstituted phenethylamines and allenes to 3benzazepines.

$$
\mathrm{c}
$$ heteroannulation phenethyltriflamides $\mathbf{3 0}$ and 1,3-dienes 7 to yield 3benzazepines 31 (Scheme 12). ${ }^{[49]}$ The proposed mechanism for this transformation was supported by DFT calculations and involves an initial o-C-H activation (via CMD) with the generation of the sixmembered palladacycle $\mathbf{I}\left(\right.$ cis $\left.-\mathrm{PdX}_{2} \mathrm{~L}_{2}\right)$. Then, coordination of the less substituted olefin of the 1,3diene followed by a 1,2-migratory insertion yields the π-allylic intermediate II. The most favored pathway involves the decoordination of the DG from the Pd to form a zwitterionic species III, that subsequently undergoes an outer-sphere $\mathrm{S}_{\mathrm{N}} 2$ attack to render the observed 3-benzazepine 31. Notably, the typical reductive elimination from II was higher in energy and did not account for the observed diastereoselectivity. Reoxidation of the $\mathrm{Pd}(0)$ to the active $\mathrm{Pd}(\mathrm{II})$ catalyst was carried out in the presence of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and O_{2}. Several monosubstituted 1,3-dienes and electron-rich and electron-poor aromatic rings of phenethyltriflamides were tolerated. Interestingly, the reaction of α-substituted phenethyltriflamides was completely diastereoselective as compared to β substituted with only a $3: 1$ ratio of diastereomers.

2 Scheme 12. Pd-catalyzed (5+2) annulation of phenethyl triflamides and 1,3-dienes to 3-benzazepines.

In 2015, Li and co-workers reported a tandem Rh 30 catalyzed $(3+2) /(5+2)$ heteroannulation of 4-aryl tosyltriazoles $\mathbf{3 2}$ with alkynes $\mathbf{2}$ to yield 3benzazepines 33 (Scheme 13). ${ }^{[50]}$ The author ${ }^{3} 1$ proposed a mechanism that starts with the generatio 32 of the Rh-carbenoid intermediate \mathbf{I}. The addition of ap3 alkyne affords a zwitterionic species II whick4 undergoes an electrophilic cyclization to give the five 35 membered ring intermediate III ([3+2] annulation) 36 Then, a second $(5+2)$ annulation with the alkyne lead 87 to the 3-benzazepine intermediate IV (via a transien 38 $\mathrm{Rh}-\mathrm{H}$ species) that evolves in two different pathway 39 depending on the substituents of the alkyne. Wher40 aromatic alkynes are used, cleavage of the C-Rh bon 41 with the aid of $\mathrm{Cu}(\mathrm{OAc})_{2}$ through hydration with $\mathrm{H}_{2} \mathrm{O} 2$ (or ROH) affords the benzylic alcohol and regenerat 43 the active $\mathrm{Rh}(\mathrm{III})$ catalyst. On the other hand, whe4 4 aliphatic alkynes are used, C-Rh bond is cleaved b45 $\mathrm{Cu}(\mathrm{OAc})_{2}$ followed by a β-hydride elimination to giv 46 the exo-methylene 3-benzazepine 34. A variety of substituents on the aryl ring and symmetrically and asymmetrically substituted alkyl/aryl alkynes were well tolerated to give fairly good yields of the corresponding 3 -benzazepines.

Scheme 13. Tandem Rh-catalyzed (3+2)/(5+2) annulation of 4-aryl tosyltriazoles and alkynes to 3-benzazepines.

In 2017, Darses and co-workers reported an intriguing enantioselective Rh-catalyzed (5+2) annulation of yne-enoate derivatives 35 with arylboronic acids $\mathbf{3 6}$ to yield 3-benzazepines $\mathbf{3 7}$ (Scheme 14). ${ }^{[51]}$ The authors suggested a mechanistic pathway that involves transmetallation of the arylboron reagent to the hydroxo $\mathrm{Rh}(\mathrm{I})$ complex followed by regioselective alkyne insertion to give a vinylrhodium intermediate \mathbf{I}. Then, 1,4-rearrangement (C-H activation) occurs to give an arylrhodium species II that undergo a conjugated addition to the enoate to deliver, after hydrolysis, the 3-benzazepine 37 with the concomitant regeneration of the active $\mathrm{Rh}(\mathrm{I})$ catalyst. Halogenated, electron-rich and electron-poor arylboronic acids were well tolerated giving fairly good yields of the corresponding 3-benzazepines.

Scheme 14. Rh-catalyzed (5+2) annulation of yne-enoate derivatives and arylboronic acids to 3-benzazepines.

Very recently, the groups of Chauvin/Cui ${ }^{[52]}$ and 5 Zhang/Fan ${ }^{[53]}$ reported the Rh-catalyzed $(4+3$ B6 heteroannulation of N-arylpyrazolidinones 38 and 7 propargyl derivatives 39 to 1,2-benzodiazepines 498 (Scheme 15). The proposed mechanism involves th 99 initial formation of the five- membered rhodacycle 40 through the coordination of the pyrazolidinone t41 activate the o-C-H bond (via CMD). Then42 coordination of the alkyne followed by regioselective43 1,2-insertion (attributed to the oxygen coordination)44 affords the seven-membered rhodacycle II. Finally45 protonolysis of the $\mathrm{C}-\mathrm{Rh}$ bond (III) followed by46 nucleophilic substitution delivers the 1,2-benzazepine47 40 with regeneration of the active catalyst. Electron48 rich and electron-poor substituents on the aryl ring of 9 the pyrazolidinone were well-tolerated as well a wid50 range of substituted propargylic derivatives.

In 2015, Zhou, Yang and co-workers reported a Rh-
catalyzed $(5+2)$ heteroannulation of N catalyzed (5+2) heteroannulation of N methoxycarbamoyl indolines 41 and aryl alkynes 2 to give 1,3-benzodiazepines 42 (Scheme 16). ${ }^{[4]}$ The proposed mechanism for this transformation involves proposed mechanism for this transformation involves
the coordination of the N-methoxy urea DG to promote the o-C-H activation (via CMD) with the generation of the six-membered rhodacycle I. Coordination and
insertion of alkyne into Rh-C bond affords the eightthe six-membered rhodacycle I. Coordination and
insertion of alkyne into Rh-C bond affords the eightmembered rhodacycle II that, after reductive elimination, renders the N-methoxy 1,3 benzodiazepine III. Oxidative addition of $\mathrm{Rh}(\mathrm{I})$ species to this N-methoxy derivative regenerates the Rh (III) active catalyst and releases the final 1,3benzodiazepine 42. A variety of indolines and aryl
alkynes were well tolerated whereas aliphatic alkynes alkynes were well tolerated whereas aliphatic alkynes failed, providing isoquinolones as the major product ($4+2$ annulation).

III

$65-80 \%$

54\%

80%

60\%

1,3-Benzodiazepines have been synthesized under Rh catalysis using nitrogenated substrates bearing XType (ureas) ${ }^{[54]}$ and L-Type (guanidines) ${ }^{[55]}$ DGs via (5+2) annulations (Figure 7). 52

Scheme 15. Rh-catalyzed (4+3) annulation of N-aryl pyrazolidinones and propargyl derivatives to 1,2benzodiazepines.

Scheme 16. Rh-catalyzed (5+2) annulation of N33 methoxycarbamoyl indolines and aryl alkynes to 1,3benzodiazepines.

Recently, Saá and co-workers reported the Rhcatalyzed $(5+2)$ heteroannulation of cyclic arylguanidines 43 and alkynes $\mathbf{2}$ to give 1,3benzodiazepines 44 (Scheme 17). ${ }^{[55]}$ The use of O_{2} $(\operatorname{method} B)$ as the sole oxidant in place of typical metal oxidants, like AgOAc (method A), clearly improves 4 the efficiency of the oxidative annulation. The striking mechanism for this ($5+2$) annulation was supported by5 DFT calculations. When AgOAc was used, the $\mathrm{C}-\mathrm{H}$ bond activation follows a classic CMD path (energetically favored) to give the six-membere 36 rhodacycle I whereas, in the case of O_{2}, a $S_{E} A r$ path i37 favored. Coordination and 1,2- migratory insertion oB8 alkyne into $\mathrm{Rh}-\mathrm{C}$ bond affords the eight-membere 39 rhodacycle II. Curiously, the typical reductive 0 elimination step was higher in energy than the 1 decoordination of the benzimidazole moiety an\#2 subsequent $\mathrm{S}_{\mathrm{N}} 2$ attack to the cationic Rh species tha43 releases the 1,3-benzodiazepine 44. Exergoni\&4 deprotonation and reoxidation of $\mathrm{Rh}(\mathrm{I})$ to $\mathrm{Rh}(\mathrm{III})$ wat5 more favorable for O_{2} as compared to AgOAc. A6 variety of electronically substituted indolines as wel47 as both aromatic and aliphatic alkynes gave good t 48 excellent yields of 1,3-benzodiazepines under the tw 49 oxidative conditions employed.

50

Scheme 17. Rh-catalyzed (5+2) annulation of cyclic arylguanidines and alkynes to 1,3-benzodiazepines.

			$\tilde{n}_{\tilde{N}-R}$	
Key	Annulation	Metal	DG	Unsaturated partner
a	(5+2)	Pd	L-Type	Alkynes

Figure 8. 1,5-Benzodiazepine disconnection

In 2017, Sun and co-workers reported the Pdcatalyzed (5+2) annulation of o-indoloanilines 45 and alkynes 2 to yield 1,5-benzodiazepines 46 (Scheme 18). ${ }^{[56]}$ The authors propose a mechanism for this annulation similar to the one made by Luan for the case of o-arylanilines. ${ }^{[37]}$ It is initiated with an anilineassisted (L-type DG) C-H bond activation (via CMD) of the 2 H -indole to form the dimeric six-membered palladacycle \mathbf{I}. This dimeric complex is broken in the presence of the alkyne to form the coordinated species that undergoes 1,2 -migratory insertion into the $\mathrm{C}-\mathrm{Pd}$ bond to give an eight-membered palladacycle II. Subsequent $\mathrm{C}-\mathrm{N}$ reductive elimination delivers the enamine 1,5-benzodiazepine III and concomitantly regenerates the $\mathrm{Pd}(\mathrm{II})$ to restart the catalytic cycle. Finally, tautomerization of the enamine to the thermodynamically more stable imine leads to the final 1,5-benzodiazepine 46. Other o-heteroarylanilines like o-pyrroloanilines and o-imidazoloanilines led to the corresponding 1,5-benzodiazepines in moderate to good yields. Both electron-rich and electron-poor indole rings and aromatic alkynes afford the corresponding 1,5-benzodiazepines in good yields.

58-87\%

27-60\%

$50-76 \%$
$\mathrm{X}=\mathrm{C}, \mathrm{N}$
$X=C, N$

60 Scheme 18. Pd-catalyzed (5+2) annulation of o61 indoloanilines and alkynes to 1,5-benzodiazepines.

Key	Annulation	Metal	DG	Ünsaturàed partner
	(5+2)		$\left\{\begin{array}{l}\text { L-Type } \\ \text { X-Type }\end{array}\right.$	$\begin{gathered} \text { Diazoketo- } \\ \text { esters } \\ \text { ACPs } \end{gathered}$

Figure 9. 2,3-Benzodiazepines disconnection

In 2017, Zhu and co-workers reported the Rh_{50} catalyzed (5+2) heteroannulation between N -Bog hydrazones 47 and diazoketoesters 48 to 2,3benzadiazepines 49 (Scheme 19). ${ }^{[57]}$ As related antecedents, the proposed mechanism involves the initial formation of the five-membered rhodacycle I through the coordination of the N-Boc hydrazone to activate the $o-\mathrm{C}-\mathrm{H}$ bond (via CMD). Then, coordination of the carbene would afford a Rh-carbene that undergoes a 1,1 -migratory insertion to afford the six-membered rhodacycle II. Subsequent protonolysis of the C-Rh bond releases the transient ketone III and regenerates the active catalyst. Finally, a sequence involving intramolecular C-N cyclization, N-H deprotonation leading to the $\mathrm{C}=\mathrm{N}$ double bond (IV) and N-Boc cleavage delivers the final product 49. The reaction tolerated electron-rich and electron-poor substituents on the aryl ring of the N-Boc hydrazone, as well as alkyl substituents both on the benzaldimine and on the diazoketoester.

Scheme 19. Rh-catalyzed (5+2) annulation of N-Bo 64 hydrazones and diazoketoesters to 2,3-benzodiazepines.

In 2018, Bai, Li and co-workers reported the $\mathrm{Rh} \frac{68}{6}$ catalyzed ($5+2$) heteroannulation of azomethin 69 imines 50 and alkylidenecyclopropanes $51(\mathrm{ACPs})$ to 1 bicyclic 2,3-benzodiazepines 52 (Scheme 20). ${ }^{[58]}$ The 1 proposed mechanism involves the initial formation of ${ }^{2}$
the six-membered rhodacycle I through the coordination of the azomethine imines to activate the $o-\mathrm{C}-\mathrm{H}$ bond (via CMD). ${ }^{[58]}$ The proposed mechanism involves the initial formation of the six-membered rhodacycle I through the coordination of the azomethine imines to activate the $o-\mathrm{C}-\mathrm{H}$ bond (via CMD). Then, coordination of the ACP and subsequent regioselective 1,2 -migratory insertion of the Rh -aryl bond provides the cyclopropyl Rh intermediate II, which undergoes a β-C elimination to afford the Rhalkyl species III. Subsequent β-H elimination followed by reductive elimination affords the transient 1,3-diene IV with the concomitant recovery of the active $\mathrm{Rh}($ III) catalyst after oxidation with AgOAc. Finally, an intramolecular (3+2) cycloaddition delivers the bicyclic 2,3-benzodiazepine 52. Electron-rich and electron-poor substituents either on the aryl ring of the azomethine imine or on the ACP were well tolerated giving fairly good yields and diastereoselectivities ($>20: 1$).

Scheme 20. Rh-catalyzed (5+2) heteroannulation of azomethine imines and ACP to bicyclic 2,3benzodiazepines.

4 Summary and Outlook

Transition-metal catalyzed annulation reactions that involve the direct activation of aromatic C-H bonds are among the most elegant and environmentally friendly methods to construct azaheterocyclic compounds. Regioselectivity (ortho activation) is commonly addressed by using substrates that bear L-type and Xtype DGs capable of precoordinating the metal catalyst. In this review we have described the state-of-the-art advances in the transition-metal catalyzed annulations via C - H bond activation to synthesize benzofused seven-membered azaheterocycles, benzazepines and benzodiazepines, whose members typically show potent and useful biological/pharmacological properties.
The difficulty to obtain seven-membered azaheterocycles using this sustainable methodology
compared to five- or six-membered analogs, and th 57 large synthetic application of this type of compound 58 makes their synthetic exploration an emerging field59 Indeed, it is necessary to increase the availability o 00 seven-membered azaheterocycles in the pharm61 pipeline. These new synthetic methodologies oper 62 access to valuable drug-like scaffolds with many 63 potential therapeutic targets. Future work should4 provide new DGs, coupling partners and mechanistig5 insights to expand the synthetic toolbox towar8 86 bioactive azaheterocycles. In addition, total synthesi 87 and industrial application of selected members, e. g_{68} 1,4-benzodiazepines, and the use of more-abundant 69 metals than Pd and Rh as catalysts should b C_{0}^{9} increasingly explored in the near future.

70

Acknowledgements

This work has received financial support from MINECO (projec7 6 CTQ2017-87939R and ORFEO-CINQA network RED201877 102387-T), the Xunta de Galicia (project ED431C 2018/04 and 8 Centro singular de investigación de Galicia accreditation 2019- 8 2022, ED431G 2019/03) and the European Union (European Re79 gional Development Fund - ERDF). A.V.-R. thanks Xunta de Ga80 licia for a predoctoral fellowship (ED481A-2018/34, 2018-2021) 81

References 83
[1] a) Balanol: P. Kulanthaivel, Y. F. Hallock87 C. Boros, S. M. Hamilton, W. P. Janzen 88 L. M. Ballas, C. R. Loomis, J. B. Jiang, B89 Katz, J. R. Steiner, J. Clardy, J. Am. Chem90 Soc. 1993, 115, 6452-6453; b) V. Pande9 1 M. J. Ramos, F. Gago, Anti-Cancer Agents) 2 Med. Chem. 2008, 8, 638-645; c) X. Heq3 M. Zhang, Y.-Y. Guo, X.-M. Mao, X.-A94 Chen, Y.-Q. Li, Org. Lett. 2018, 20, 632395 6326; d) Stemmona alkaloids: R. A. Pilli96 G. B. Rosso, M. d. C. Ferreira de Oliveira97 Nat. Prod. Rep. 2010, 27, 1908-1937; e98 M. C. McLeod, G. Singh, J. N. Plamping9 D. Rane, J. L. Wang, V. W. Day, J. Aubépo Nat. Chem. 2014, 6, 133-140; f) H. Gregథ01 Phytochem. Rev. 2019, 18, 463-493; g) X02 Yin, K. Ma, Y. Dong, M. Dai, Org. Lett03 2020, 22, 5001-5004; h) Chalciporone: P04 Spiteller, D. Hamprecht, W. Steglich, $\Psi 05$ Am. Chem. Soc. 2001, 123, 4837-4838. 106
[2] V. J. Ram, A. Sethi, R. Pratap, in "Sevem 07 Membered Heterocycles", The Chemistip08 of Heterocycles Elsevier, 2019, pp. 39 子 09 $425 . \quad 110$
[3] a) J. B. Bremner, S. Samosorn, in 1 "Azepines and their Fused-ring 2 Derivatives", Comprehensiq9 3 Heterocyclic Chemistry III, Vol. 13 (Eds. 14 A. R. Katrizky, C. A. Ramsden, R. J. K 15 Taylor), Elsevier, 2008, pp. 1-43, and
references therein; b) L. Yet, in "Benzodiazepines", Privileged Structures in Drug Discovery, Wiley \& Sons, 2018, pp. 15-58.
a) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257-10274; b)
L. Tan, W. Yan, J. D. McCorvy, J. Cheng, J. Med. Chem. 2018, 61, 9841-9878; c) S. Elangovan, A. Afanasenko, J. Haupenthal, Z. Sun, Y. Liu, A. K. H. Hirsch, K. Barta, ACS Cent. Sci. 2019, 5, 1707-1716.
[5] a) A. Zhang, J. L. Neumeyer, R. J. Baldessarini, Chem. Rev. 2007, 107, 274302 ; b) N. Ye, J. L. Neumeyer, R. J. Baldessarini, X. Zhen, A. Zhang, Chem. Rev. 2013, 113, 123-178; c) A. Hall, L. Provins, A. Valade, J. Med. Chem. 2019, 62, 128-140.
[6] a) J. Zhang, H. Zhang, W. Cai, L. Yu, X. Zhen, A. Zhang, Bioorg. Med. Chem. 2009, 17, 4873-4880; b) G. A. Higgins, P. J. Fletcher, ACS Chem. Neurosci. 2015, 6, 1071-1088.
a) P. Yin, N. Zheng, J. Dong, C. Xu, X. Zhang, G. Ding, Oncol. Lett. 2019, 17, 1177-1183; b) T. Watanabe, Y. Sato, H. M. A. A. Masud, M. Takayama, H. Matsuda, Y. Hara, Y. Yanagi, M. Yoshida, F. Goshima, T. Murata, H. Kimura, Cancer Sci. 2020, 111, 279-287.
[8] E. Simoni, S. Daniele, G. Bottegoni, D. Pizzirani, M. L. Trincavelli, L. Goldoni, G. Tarozzo, A. Reggiani, C. Martini, D. Piomelli, C. Melchiorre, M. Rosini, A. Cavalli, J. Med. Chem. 2012, 55, 97089721.
[9] a) P. M. O'Neil, S. R. Smith, N. J. Weissman, M. C. Fidler, M. Sanchez, J. Zhang, B. Raether, C. M. Anderson, W. R. Shanahan, Obesity 2012, 20, 1426-1436; b) S. Z. Yanovski, J. A. Yanovski, JAMA, J. Am. Med. Assoc. 2014, 311, 74-86.
[10] N. Arora, P. Dhiman, S. Kumar, G. Singh, V. Monga, Bioorg. Chem. 2020, 97, 103668.
[11] a) B. J. Melancon, C. R. Hopkins, M. R. Wood, K. A. Emmitte, C. M. Niswender, A. Christopoulos, P. J. Conn, C. W. Lindsley, J. Med. Chem. 2012, 55, 14451464; b) D. Lemoine, R. Jiang, A. Taly, T. Chataigneau, A. Specht, T. Grutter, Chem. Rev. 2012, 112, 6285-6318; c) T. Clayton, M. M. Poe, S. Rallapalli, P. Biawat, M. M. Savic, J. K. Rowlett, G. Gallos, C. W. Emala, C. C. Kaczorowski, D. C. Stafford, L. A. Arnold, J. M. Cook, Int. J. Med. Chem. 2015, 430248-430302; d) E. Sigel, M. Ernst, Trends Pharmacol. Sci. 2018, 39, 659-671.
[12] S. Solyom, I. Tarnawa, Curr. Pharm. Des60 2002, 8, 913-939.
[13] J. Mantaj, P. J. M. Jackson, K. M62 Rahman, D. E. Thurston, Angew. Chem63 2017, 129, 474-502; Angew. Chem. Int. E\$4 2017, 56, 462-488. 65
[14] a) D. S. Hewings, T. P. C. Rooney, L. E66 Jennings, D. A. Hay, C. J. Schofield, P. E67 Brennan, S. Knapp, S. J. Conway, J. Med68 Chem. 2012, 55, 9393-9413; b) G. Zhang69 S. G. Smith, M.-M. Zhou, Chem. Rev70 2015, 115, 11625-11668. 71
[15] a) R. Sakhuja, K. Bajaj, S. M. Abduฤ2 Shakoor, A. Kumar, Mini-Rev. Org. Chem. 3 2014, 11, 55-72; b) N. E. Calcaterra, J. C74 Barrow, ACS Chem. Neurosci. 2014, 575 253-260.

76
[16] a) C. E. Griffin, 3rd, A. M. Kaye, F. R77 Bueno, A. D. Kaye, Ochsner J. 2013, 1378 214-223; b) A. A. Elgarf, F. Steudle, P79 Scholze, A. A. Elgarf, D. C. B. Siebert, F80 Steudle, A. Draxler, M. Ernst, G. Li, S81 Huang, J. M. Cook, ACS Chem. Biol. 20182 13, 2033-2039.

83
[17] a) Q. Cai, H. Sun, Y. Peng, J. Lu, Z84 Nikolovska-Coleska, D. McEachern, L85 Liu, S. Qiu, C.-Y. Yang, R. Miller, H. Yi86 T. Zhang, D. Sun, S. Kang, M. Guo, L87 Leopold, D. Yang, S. Wang, J. Med. Chen 88 2011, 54, 2714-2726; b) F. Benedetti, M. 89 A. Perrin, S. Bosc, F. Chouteau, N90 Champion, A. Bigot, Org. Process Res 91 Dev. 2020, 24, 762-768.

92
[18] V. A. Assimon, Y. Tang, J. D. Vargas, G93 J. Lee, Z. Y. Wu, K. Lou, B. Yao, M.-K94 Menon, A. Pios, K. C. Perez, A. Madriaga95 P. K. Buchowiecki, M. Rolfe, L. Shawver96 X. Jiao, R. Le Moigne, H.-J. Zhou, D. J97 Anderson, ACS Chem. Biol. 2019, 1498 236-244.

99
[19] R. Verma, R. Bhatia, G. Singh, B. Kumaro0 S. Mehan, V. Monga, Bioorg. Chem. 2020,1 101, 104010.

102
[20] a) A. G. Meyer, A. C. Bissember, $\mathbb{C} 03$ Hyland, J. A. Smith, C. C. Williams, F04 Zamani, S.-A. G. Abel, in "Seveh05 Membered Rings", Progress 1106 Heterocyclic Chemistry, Vol. 29, Elsevier0 07 2017, pp. 579-633; b) A. G. Meyer, A. ©08 Bissember, C. J. T. Hyland, H. Pham, $1 \mathbf{1 0 9}$ "Seven-Membered Rings", Progress in 0 Heterocyclic Chemistry, Vol. 30, Elsevierr 1 2018, pp. 493-550; c) A. G. Meyer, A. ©12 Bissember, C. J. T. Hyland, J. A. Smith, $\mathbb{C 1 3}$ C. Williams, M. Szabo, M. A. Pearsal, 1114 K. Hyland, W. J. Olivier, in "Seven1 15 Membered Rings", Progress in6 Heterocyclic Chemistry, Vol. 31, Elsevier 17 2020, pp. 597-647.
a) 1-Benzazepines: L. Min, B. Pan, Y. Gu, Org. Lett. 2016, 18, 364-367; b) 2Benzazepines: T. O. Vieira, H. Alper, Org. Lett. 2008, 10, 485-487; c) P. Hasebein, K. Aulinger, D. Schepmann, B. Wuensch, Tetrahedron 2013, 69, 4552-4562; d) P. Hasebein, B. Frehland, K. Lehmkuhl, R. Froehlich, D. Schepmann, B. Wuensch, Org. Biomol. Chem. 2014, 12, 5407-5426; e) 3-Benzazepines: S. M. Husain, R. Froehlich, D. Schepmann, B. Wuensch, J. Org. Chem. 2009, 74, 2788-2793; f) 1,4BDZ: D. Antonow, D. E. Thurston, Chem. Rev. 2011, 111, 2815-2864; g) U. K. Sharma, N. Sharma, D. D. Vachhani, E. V. Van der Eycken, Chem. Soc. Rev. 2015, 44, 1836-1860; h) 1,5-BDZs: A. Pareek, N. Kumar, A. Agarwal, P. Sharma, D. Kishore, Res. J. Chem. Sci. 2013, 3, 90103; i) 2,3-BDZs: K. Okuma, Y. Tanabe, R. Itoyama, N. Nagahora, K. Shioji, Chem. Lett. 2013, 42, 1260-1262.
[22] a) 1-Benzazepines: D.-J. Cheng, H.-B. Wu, S.-K. Tian, Org. Lett. 2011, 13, 56365639 ; b) C. W. Suh, S. J. Kwon, D. Y. Kim, Org. Lett. 2017, 19, 1334-1337; c) 2Benzazepines: A. Kamimura, Y. Taguchi, Y. Omata, M. Hagihara, J. Org. Chem. 2003, 68, 4996-4998; d) M. So, T. Kotake, K. Matsuura, M. Inui, A. Kamimura, J. Org. Chem. 2012, 77, 4017-4028; e) 3Benzazepines: W.-D. Z. Li, X.-W. Wang, Org. Lett. 2007, 9, 1211-1214; f) K. Mori, K. Kurihara, S. Yabe, M. Yamanaka, T. Akiyama, J. Am. Chem. Soc. 2014, 136, 3744-3747; g) 1,4-BDZs: J. Yang, X. Che, Q. Dang, Z. Wei, S. Gao, X. Bai, Org. Lett. 2005, 7, 1541-1543; h) J.-Y. Wang, X.-F. Guo, D.-X. Wang, Z.-T. Huang, M.-X. Wang, J. Org. Chem. 2008, 73, 19791982; i) S. Wang, Y.-B. Shen, L.-F. Li, B. Qiu, L. Yu, Q. Liu, J. Xiao, Org. Lett. 2019, 21, 8904-8908; j) 2,3-BDZs: Y. Matsuya, N. Ohsawa, H. Nemoto, J. Am. Chem. Soc. 2006, 128, 13072-13073.
a) 3-Benzazepines: G. Zhan, M.-L. Shi, Q. He, W. Du, Y.-C. Chen, Org. Lett. 2015, 17, 4750-4753; b) 1,4-BDZs: J. Shin, J. Lee, D. Ko, N. De, E. J. Yoo, Org. Lett. 2017, 19, 2901-2904.
3-Benzazepines: A. Gini, J. Bamberger, J. Luis-Barrera, M. Zurro, R. Mas-Ballesté, J. Alemán, O. G. Mancheño, Adv. Synth. Catal. 2016, 358, 4049-4056.
a) 1-Benzazepines: H. Tabata, T. Yoneda, T. Tasaka, S. Ito, T. Oshitari, H. Takahashi, H. Natsugari, J. Org. Chem. 2016, 81, 3136-3148; b) 3-Benzazepines: S. G. Stewart, C. H. Heath, E. L. Ghisalberti, Eur. J. Org. Chem. 2009, 1934-1943; c) A.
A. Peshkov, V. A. Peshkov, O. P61 Pereshivko, K. Van Hecke, R. Kumar, E62 V. Van der Eycken, J. Org. Chem. 201563 80, 6598-6608.

64
[26] a) 2-Benzazepines: N. Iqbal, A. Fiksdah165 J. Org. Chem. 2013, 78, 7885-7895; b) 166 Benzazepines: C. Guo, M. Fleige, D67 Janssen-Mueller, C. G. Daniliuc, F68 Glorius, J. Am. Chem. Soc. 2016, 13869 7840-7843; c) L. Wang, S. Li, M. BluemeV,0 A. R. Philipps, A. Wang, R. Puttreddy, K71 Rissanen, D. Enders, Angew. Chem. 201672 128, 11276-11280; Angew. Chem. Int. Ed73 2016, 55, 11110-11114; d) Y. Li, M. Huß̧4 J.-H. Li, ACS Catal. 2017, 7, 6757-6761.75
[27] 1-Benzazepines: S. A. I. Sharif, E. D. D76 Calder, F. G. Delolo, A. Sutherland, J. Org. 7 Chem. 2016, 81, 6697-6706.

78
[28] a) 1-Benzazepines: R. Wang, R.-X. Jin79 Z.-Y. Qin, K.-J. Bian, X.-S. Wang, Chem80 Commun. 2017, 53, 12229-12232; b) Foß1 a Pd-catalyzed homocoupling o82 benzamides to dibenzo[c,e]azepine-5,783 diones, see: V. Kondapalli, X. Yu, Y84 Yamamoto, M. Bao, J. Org. Chem. 201785 82, 2288-2293.

86
[29] a) 2-Benzazepines: C. Bressy, D. Alberico87 M. Lautens, J. Am. Chem. Soc. 2005, 12788 13148-13149; b) Indolo-2-benzazepines89 Y. Xie, Y. Zhao, B. Qian, L. Yang, C. Xia90 H. Huang, Angew. Chem. 2011, 12391 5800-5804; Angew. Chem. Int. Ed. 201192 50, 5682-5686; c) 1,4-BDZs: J. D93 Neukom, A. S. Aquino, J. P. Wolfe, Org94 Lett. 2011, 13, 2196-2199; d) P. Kundu, A95 Mondal, B. Das, C. Chowdhury, Adv96 Synth. Catal. 2015, 357, 3737-3752; e97 1,5-BDZs: M. Weers, L. H. Luehning, V98 Luehrs, C. Brahms, S. Doye, Chem. Eur99 J. 2017, 23, 1237-1240. 100
[30] a) 1,4-BDZs: V. R. Jumde, E. Cini, A01 Porcheddu, M. Taddei, Eur. J. Org. Cherh02 2015, 1068-1074; b) V. Murugesh, B03 Harish, M. Adiseshu, J. Babu Nanubolu, 1804 Suresh, Adv. Synth. Catal. 2016, 35805 1309-1321.

106
[31] a) 3-Benzazepines: L. Zhang, D. Ye, Y07 Zhou, G. Liu, E. Feng, H. Jiang, H. Liu, J08 Org. Chem. 2010, 75, 3671-3677; b) A09 Álvarez-Pérez, C. González-Rodríguez, D. 0 García-Yebra, J. A. Varela, E. Oñate, M11 A. Esteruelas, C. Saá, Angew. Chem. 20115, 2 127, 13555-13559; Angew. Chem. Int. Ed13 2015, 54, 13357-13361. 114
[32] G. A. Molander, Acc. Chem. Res. 1998, 3115 603-609. 116
[33] a) N. Kuhl, M. N. Hopkinson, J. Wencell 17 Delord, F. Glorius, Angew. Chem. 201218 124, 10382-10401; Angew. Chem. Int. Ed. 2012, 51, 10236-10254; b) Z. Chen, B.

Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107-1295; c) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen, J.Q. Yu, Angew. Chem. 2016, 128, 1073410756; Angew. Chem. Int. Ed. 2016, 55, 10578-10599; d) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754-8786; e) X. Qi, Y. Li, R. Bai, Y. Lan, Acc. Chem. Res. 2017, 50, 27992808; f) P. Gandeepan, L. Ackermann, Chem 2018, 4, 199-222; g) C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M. Schnürch, Chem. Soc. Rev. 2018, 47, 6603-6743; h) For a book, see: X.-F. Wu, Transition Metal-Catalyzed Heterocycle Synthesis via C-H Activation, Wiley-VCH, Winheim, 2016.
[34] M. Gulías, J. L. Mascareñas, Angew. Chem. 2016, 128, 11164-11184; Angew. Chem. Int. Ed. 2016, 55, 11000-11019.
[35] L. Wang, J. Huang, S. Peng, H. Liu, X. Jiang, J. Wang, Angew. Chem. 2013, 125, 1812-1816; Angew. Chem. Int. Ed. 2013, 52, 1768-1772.
[36] However simple anilide derivatives gave $[3+2]$ oxidative annulations to indols D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 16474-16475.
[37] Z. Zuo, J. Liu, J. Nan, L. Fan, W. Sun, Y. Wang, X. Luan, Angew. Chem. 2015, 127, 15605-15609; Angew. Chem. Int. Ed. 2015, 54, 15385-15389.
[38] L. Bai, Y. Wang, Y. Ge, J. Liu, X. Luan, Org. Lett. 2017, 19, 1734-1737.
[39] B. Cendón, N. Casanova, C. Comanescu, R. García-Fandiño, A. Seoane, M. Gulías, J. L. Mascareñas, Org. Lett. 2017, 19, 1674-1677.
[40] L. Wu, Y. Meng, J. Ferguson, L. Wang, F. Zeng, J. Org. Chem. 2017, 82, 4121-4128.
[41] H. He, W.-B. Liu, L.-X. Dai, S.-L. You, Angew. Chem. 2010, 122, 1538-1541; Angew. Chem. Int. Ed. 2010, 49, 14961499.
[42] G.-W. Wang, J. F. Bower, J. Am. Chem. Soc. 2018, 140, 2743-2747.
Z. Shi, C. Grohmann, F. Glorius, Angew. Chem. 2013, 125, 5503-5507; Angew. Chem. Int. Ed. 2013, 52, 5393-5397.
S. Cui, Y. Zhang, D. Wang, Q. Wu, Chem. Sci. 2013, 4, 3912-3916.

Kang, S. H. Lee, R. Chun, S. Hong, J. S. Park, I. S. Kim, ACS Catal. 2018, 8, 742746.
[46] M. Martínez-Mingo, N. Rodríguez, R22 Gómez Arrayás, J. C. Carretero, Org. Lett23 2019, 21, 4345-4349.

24
[47] For a stoichiometric Pd [6+125 carbonylation to 2-benzazepinones, see: R26 Frutos-Pedreno, E. García-Sánchez, M. J27 Oliva-Madrid, D. Bautista, E. Martínezz8 Viviente, I. Saura-Llamas, J. Vicente29 Inorg. Chem. 2016, 55, 5520-5533. 30
[48] A. Rodríguez, J. Albert, X. Ariza, J31 García, J. Granell, J. Farrás, A. La Mela32 E. Nicolás, J. Org. Chem. 2014, 79, 957833 9585.

34
[49] Á. Velasco-Rubio, J. A. Varela, C. Saá35 Org. Lett. 2020, 22, 3591-3595. 36
[50] Y. Yang, M.-B. Zhou, X.-H. Ouyang, R37 Pi, R.-J. Song, J.-H. Li, Angew. Chem38 2015, 127, 6695-6699; Angew. Chem. Int 39 Ed. 2015, 54, 6595-6599.
[51] A. Claraz, F. Serpier, S. Darses, ACS Catal. 2017, 7, 3410-3413.
[52] T. Li, Z. Yang, Z. Song, R. Chauvin, X. Cui, Org. Lett. 2020, 22, 4078-4082.
[53] L. Zhang, Y. Xu, X. Zhang, X. Zhang, X. Fan, Org. Chem. Front. 2020, 7, 22842290.
[54] X. Wang, H. Tang, H. Feng, Y. Li, Y. Yang, B. Zhou, J. Org. Chem. 2015, 80, 6238-6249.
[55] N. Martínez-Yañez, J. Suárez, A. Cajaraville, J. A. Varela, C. Saá, Org. Lett. 2019, 21, 1779-1783.
T. U. Thikekar, C.-M. Sun, Adv. Synth. Catal. 2017, 359, 3388-3396.
[57] J. Wang, L. Wang, S. Guo, S. Zha, J. Zhu, Org. Lett. 2017, 19, 3640-3643.
D. Bai, T. Xu, C. Ma, X. Zheng, B. Liu, F. Xie, X. Li, ACS Catal. 2018, 8, 4194-4200.

REVIEW

Recent Advances in Transition-Metal Catalyzed Oxidative Annulations to Benzazepines and Benzodiazepines

Adv. Synth. Catal. Year, Volume, Page - Page

Álvaro Velasco-Rubio, Jesús A. Varela and Carlos Saá*

Benzazepines \& Benzodiazepines

