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Abstract

Studies about ocean waves have been evolving over a period of time. Re-

cently, there has been renewed interest in problems of refraction, diffraction

and radiation of ocean waves around structures. In this thesis, the analytic

solutions for linear waves propagating in an ocean with variable bottom to-

pography and their applications in renewable wave energy are presented. In

the first part, we present an analytic solution to the shallow water wave equa-

tion for long waves propagating over a circular hump. As a useful tool in

coastal engineering, the solution may be used to study the refraction of long

waves around a circular hump. It may also be used as a validation tool for

any numerical model developed for coastal wave refraction. To validate the

new analytic solution, we have compared our new analytical solution with

a numerical solution obtained by using the finite difference method. The

agreement between these two solutions is excellent. By using the analytic so-

lution, the effect of the hump dimensions on wave refraction over the circular

hump are examined.

In the second part of this thesis, based on the mild-slope equation derived

by Smith and Sprinks [1] and the extended refraction-diffraction equation

developed by Massel [2], we have constructed a two-layer mild-slope equation

for interfacial waves propagating on the interface of a two-layer ocean model.

First, we follow Smith and Sprinks’s [1] approach to derive the mild-slope

equation for the propagation of interfacial waves, with the higher-order terms

proportional to the bottom slope and bottom curvature all being neglected.

We then derived the extended version of the mild-slope equation with the

higher-order terms included. While we were able to solve the first equation



analytically, we presented a numerical solution for the second equation. As

a part of the verification process, both solutions were compared with each

other and also with the single-layer mild-slope equation when the density of

the upper layer goes to zero. We then used the new solution to study the

effect of the hump dimensions on the refraction of the interfacial waves over

a circular hump.

Finally, in the final section of this thesis, we have used what we have

developed before to construct the two-layer mild-slope equation with free

surface on top. By utilizing this equation, we then derived an analytic solu-

tion for long waves propagating over a circular hump with a hollow circular

cylinder floating in the free surface. In order to validate our new analytic

solution, we have compared our problem with Mac Camy and Fuchs [3] solu-

tion, because our solution has reduced to their solution when the lower water

depth, h2, goes to zero. We have also compared our solution with the flat

bottom case in order to further verified our solution. Finally, by using the

new solution, both diffraction and refraction effects from the hollow cylinder

and hump dimensions are examined and discussed.
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