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Abstract 

 

The Celts are a collection of tribes and/or populations that inhabited much of Central 

Europe during the Iron Age and are still something of an enigma. The relationship among the 

spread of their material culture, the application of Celtic ethnicity, movements among the 

diverse populations possessing Iron Age Hallstatt and La Tène artefacts throughout Central 

Europe believed to have been spread by Celtic people, and/or spoken languages identified as 

Celtic have long been questioned by researchers. However, previous research has primarily 

focused only on chronological and typological descriptions and documentation of diachronic 

change. Diverse populations throughout Europe have been intrinsically linked based on 

perceived similarities in burial practice, art styles and material culture. Subsequently, these 

associations have resulted in the creation of the so-called La Tène=Celtic paradigm. Under 

this paradigm, the presence of La Tène artefacts designate a population as Celtic, which is 

still prevalent in the field of Celtic studies regardless of documented regional differences.   

The underlying biological diversity among presumed Celtic populations and processes 

driving the observed variation in artefacts, art styles and burial practices throughout the core 

and expansion regions (i.e., where the Hallstatt and La Tène material cultures initially 

developed versus those into which they subsequently spread during the 4th and 3rd centuries 

BC) are not well understood. The present study helps fill the void in the current 

understanding of underlying biological diversity among these populations in several ways. 

First, 36 morphological traits in 586 dentitions from 11 regional samples, from Britain and 

Europe, were collected using the Arizona State University Dental Anthropological System 

(ASUDAS). The above samples represent the core and expansion regions, along with a 

comparative European Iron Age sample outside the known range of Celtic expansion. 

Frequencies of occurrence for each dental and osseous nonmetric trait were recorded by 

sample. Second, the suite of traits was compared among samples using principal components 

analysis, (PCA) and the mean measure of divergence (MMD) distance statistic. 

Multidimensional scaling was subsequently employed on the symmetric MMD matrix to 

illustrate graphically inter-sample relationships. Phenetic patterns of overall biological 

similarity and dissimilarity among individuals and populations based on morphological traits  

were determined. MMD distances were then compared with geographic distances among 

samples, under the assumption that genetic affinity is inverse to spatial distance. 



  

 

 

 

The biological distance estimates suggest the following. First, populations in the 

expansion regions exhibit less biological diversity than those within the core. Specifically, 

two samples within these regions are biologically indistinguishable, the remaining two are 

biologically distinct, and all samples within the core are phenetically diverse. Thus, 

populations in the expansion regions are genetically distinct from those in the core and were 

likely acculturated, not genetically influenced by these groups. Limited intra-and-extra 

regional gene flow and genetic isolation explain the population structure within the above 

regions. Second, overall phenetic heterogeneity, biological diversity, and population 

discontinuity are indicated, as the majority of the samples within both regions are biologically 

distinct from one another. This diversity may also reflect genetic and linguistic boundaries 

among the samples. Third, waves of migration from the core during the 4th and 3rd centuries 

BC were not likely responsible for diachronic changes in material culture within the 

expansion regions. Fourth, the separation of populations and material culture into the core 

and expansion regions, and the application of Celtic ethnicity to diverse populations 

possessing artefacts and a spoken language(s) identified as Celtic may be a nominal 

association, i.e., in name only. Simply put, the comparative results suggest that these groups 

represent biologically distinct populations. 

These findings were compared with published archaeological, linguistic, genetic and 

bioarchaeological information to test for concordance between dental and other evidence. The 

present study does not support findings of previous studies and suggests there is more genetic 

diversity than previously assumed under the La Tène=Celtic paradigm. Thus, a combination 

of genetic isolation by distance, limited intra-and-extra-regional gene flow, trade, cultural 

diffusion and/or assimilation is likely responsible for the observed art style, burial practice, 

archaeological, genetic and linguistic diversity among populations possessing Hallstatt and 

La Tène artefacts and/or language(s). These diverse populations may have lost their cultural 

autonomy after being subsumed into a greater Celtic identity. Thus, the contemporary 

concept of Celts is likely a modern construct that has hindered understanding of the extent of 

regional diversity and cultural autonomy among diverse populations throughout Iron Age 

Europe.  
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Chapter 1: Introduction 

 

The Celts are a collection of tribes and/or populations that inhabited much of Central 

Europe during the Iron Age and are still something of a conundrum to archaeologists and 

historians. These groups are linguistically defined as an assemblage of populations who 

spoke languages identified as Celtic, which are categorized as a branch of Indo-European (IE) 

languages common throughout Europe and Asia. Descendant languages spoken today include 

Irish and Scottish Gaelic, Manx, Welsh, Cornish, and Breton. The term Celt has been applied 

to various groups and/or cultures since 700 BC and has been used to describe populations at 

various levels of specificity (See page 91). Populations and/or tribes throughout Europe that 

possessed similar cultures and spoken languages have been described by the Greeks and 

Romans as Keltoi/Celtae and Galli/Gallia. The Romans and Greeks habitually used these 

terms interchangeably, as we do today (Chapman, 1992; Collis, 1996, 1997, 2003; Cunliffe, 

1997, 2018; Karl, 2002, 2004, 2007, 2010, 2012; Moore, 2012; Rankin, 1995).   

In this thesis, the term Celt is used to refer to populations associated with the Hallstatt 

and La Tène cultures; which constitute Iron Age material cultures found throughout Central 

Europe and are believed to have been spread by Celtic people. Artefacts considered to be 

characteristic of these periods include brooches (fibulae) and neck rings (torcs). Diverse 

populations and/or groups throughout Europe have been intrinsically linked with the Celts 

based on perceived similarities in burial practice (e.g., chariot burials and square barrows), art 

styles and the jewellery and dress accessorizes described above. Subsequently, these 

associations have led to the creation of the so-called La Tène=Celtic paradigm, under which 

the presence of La Tène material culture designates a population as Celtic (See page 19) 

(Collis, 2003; Cunliffe, 1997, 2009, 2018; Giles, 2012; Koch, 2006). This concept is still 

prevalent in the field of Celtic studies regardless of any documented regional differences. The 

theoretical frameworks that surround modern Celtic scholarship are derived from 

interpretations of ethnicity, interpopulation connectivity, population history and the 

contextualization of material culture using a culture history approach, where past societies are 

categorized simply on such associations (Jones, 1996; Trigger, 2006). This concept has been 

gradually superseded by the advent of new theoretical and methodological frameworks via 

processual and post-processual archaeological approaches. However, the application of Celtic 

ethnicity is still largely dependent on material evidence described and classified on the basis 

of a culture history epistemology (See page 54) (Clark, 2014; Jones, 1996, 1997; Johnson, 

2011). Furthermore, the relationship between Celtic ethnicity, ancestry, and any subsequent 



  

 

2 

 

diachronic changes to these social identities are also primarily derived from and dependent on 

the above evidence.   

Ancestry and ethnicity are interrelated social and cultural phenomena. In the 

literature, these terms have been used interchangeably referring to the social or cultural 

descent and history of a population or group. Consequently, the concepts of ancestry and 

ethnicity have become conflated and are ubiquitous in modern society, as explored in the 

2015 ‘Celts: Art an Identity’ exhibition at the British Museum and National Museum of 

Scotland (National Museums Scotland, 2020). Furthermore, this may have also resulted in the 

diminished notion of ethnic, or ancestral, plurality (the notion of diverse cultures and customs 

co-existing in one society or population), within some regions (Blanton, 2015; Hill, 1994; 

Larsson, 1994; Ningsheng, 1994). Therefore, in this work, it is necessary to provide a 

working definition of both ancestry and ethnicity. Ancestry can be defined as a line of decent 

either familial, ethnic or genetic. Ethnicity can be loosely defined as a set of social and 

psychological phenomena that create a group, or groups, which are distinct from other 

neighbouring groups (See page 54) (Barth, 1969; Bálint, 1994; De Vos and Romanucci-Ross, 

1975; Jones, 1997; Renfrew, 1994a, b; Trigger, 2006). Archaeologically, these phenomena 

will be evident in several ways, including differences in burial practices and material culture. 

Ethnic groups are fluid self-defining systems that are not regionally bounded. Although 

ancestral homelands may represent specific bounded regions, ancestry may also be influenced 

by and related to diachronic changes in ethnic identity. However, modern notions of ancestry 

often refer specifically to biological or genetic descent (Blanton, 2015; Bonacchi et al., 2016, 

2018; Hingley, 2018; Hingley et al., 2018; Hofmann, 2015; Reich, 2018; Rothman, 2015). 

Consequently, the complex relationship between ancestry, ethnicity, and the social aspects of 

both among past populations has been minimized. Ethnicity and ancestry must also be 

distinguished from spatial continuity and discontinuity, as they often refer to self-conscious 

identification with a particular group of people (De Vos and Romanucci-Ross, 1975; Jones, 

1997; Shennan, 1989). 

  Furthermore, modern perceptions of ethnic and ancestral identities may be derived 

from cultural contact and interaction (Barth, 1998, 2010; Bonacchi et al., 2016, 2018; Derks 

and Roymans, 2009; Eriksen, 1993; Hingley et al., 2018; Jones, 1997; Knapp, 2001; 

Shennan, 1989). Thus, the production of material culture may vary qualitatively and 

quantitatively in different contexts. Ethnic and perceived ancestral identity may vary in 

different social contexts, opposed to the discrete cultural entities that are visible 

archaeologically (See page 54) (Barth, 1969, 1998, 2010; Jones, 1997; Patterson, 1975; 
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Renfrew, 1993, 1994a, b; Shennan, 1989; Trigger, 2006). Therefore, it is necessary to 

interpret the role of these identities in forming distinct cultural traditions, artefacts, defining 

group interactions and the impact these contacts, and exchanges, have on the local customs 

and material culture (Bourdieu, 1977; Comaroff and Comaroff, 1992; Jones, 1997; Renfrew, 

1993, 1994a, b; Manzanilla, 2015; Rothman, 2015). Moreover, it is necessary to take into 

consideration the dynamics of change in multiethnic societies, where diverse ethnic groups, 

or identities, and ancestral lineages are present within one population or community and 

maintain distinction over time (Bálint, 1994; Bonacchi et al., 2016, 2018; Lightfoot, 2015; 

Manzanilla, 2015). The cohabitation of diverse ethnic identities may have subsequently 

created new forms of social relationships, cultural practices and in-situ diachronic changes 

through time (Bonacchi et al., 2016, 2018; Hingley, 2018; Hingley et al., 2018; Lightfoot, 

2015; Manzanilla, 2015). These changes may not be viable archaeologically, e.g., changes in 

clothing or customs. Thus, the social and cultural diversity within multiethnic societies may 

be minimized (See page 54) (Bálint, 1994; Larsson, 1994; Lightfoot, 2015; Rothman, 2015). 

However, changes in material culture may also represent diachronic changes from external 

influence, e.g., migrants, cultural contact and interaction (Dolukhanov, 1994; Lightfoot, 

2015; Ningsheng, 1994; Rothman, 2015). Therefore, the co-occurrence of different types of 

artefacts or designs, i.e., Celtic fibulae or diverse art styles, within one population may 

indicate trade, in-situ change, the presence of out of group slaves or captives, external 

influence or migration (Larsson, 1994; Osborn, 1994; Rothman, 2015). However, the 

presence of multiethnic societies and diverse ethnic and ancestral groups living within the 

same population cannot be ruled out. In this instance, artefact diversity may represent a 

symbolic identity utilized by diverse groups to retain and keep their ethnicities or identities 

visible (Dolukhanov, 1994; Lightfoot, 2015; Rothman, 2015). The presence of regional 

diversity may imply a degree of self-awareness and suggest the presence of multiethnic 

societies (Frangipane, 2015; Larsson, 1994; Manzanilla, 2015; Ningsheng, 1994).  

The creation of new ethnicities and multiethnic societies may derive from several 

processes, including transculturation (the subsequent creation of new cultural phenomena 

after the merging and converging of different cultures), hybridity (the maintenance of diverse 

practices, values and customs among two or more cultures), and ethnogenesis (the formation 

and development of ethnic groups or identities that are distinctive from other indigenous 

ethnicities) (Acheraїou, 2011; Anderson, 1999; Dolukhanov, 1994; Hermann, 2007; Hill, 

1996). However, in areas shared by multiple diasporic communities, those populations or 

groups with diverse regional origins such as trading centres, multiethnicity may involve the 
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maintenance and/or accentuation of several ethnic identities that coexist in close proximity 

(See page 54) (Frangipane, 2015; Hill, 1994; Lightfoot, 2015; Manzanilla, 2015; Rothman, 

2015). Ethnic pluralism and immigration may also have resulted in the creation of new social 

relationships, cultural practices and sociopolitical organizations over time (Frangipane, 2015; 

Hill, 1994; Lightfoot, 2015; Manzanilla, 2015; Rothman, 2015). Initially, migrants may have 

represented a distinct and ethnically identifiable group within local populations. However, 

over time they may have begun to assimilate into the local culture and subsequently adopted 

new cultural practices. Alternatively, migrant communities may have integrated their cultural 

practices with those of the local population. Immigrant groups may also have maintained or 

had continuous contact with their ancestral homelands, e.g., through trade, resulting in 

transculturation and ethnogenesis within both regions (Bonacchi et al., 2016, 2018; Blanton, 

2015; Frangipane, 2015; Hingley, 2018; Hingley et al., 2018; Lightfoot, 2015; Ningsheng, 

1994).  

Consequently, the above interactions facilitated the creation of new cultural 

phenomena, and new and distinct ethnic identities within one community. Furthermore, the 

compositions of the above groups were likely dynamic and changed over time due to inter-

ethnic cohabitation, marriage and immigration from diverse regions (Lightfoot, 2015; 

Manzanilla, 2015; Osborn, 1994; Rothman, 2015). Migrants from diverse cultural 

backgrounds likely overcame heterogeneity to build coalescent social formations through the 

creation of new modes of social integration (Blanton, 2015; Bonacchi et al., 2016, 2018; 

Frangipane, 2015; Larsson, 1994; Ningsheng, 1994). Thus, the concept of ethnic and 

ancestral identity are not immutable; rather, they are historically and culturally contingent, 

and are defined more by social solidarity than either genealogy or geography (See page 54) 

(Dietler, 1994; Goldstein, 2015; Hill, 1994; Osborn, 1994; Rothman, 2015). However, 

constructed and perceived identities have also played a role in discourses of ethnicity and 

ancestral heritage (Blanton, 2015; Bonacchi et al., 2016, 2018; Frangipane, 2015; Goldstein, 

2015; Grufludd et al., 1999; Hingley, 2018; Hingley et al., 2018; Lightfoot, 2015; 

Manzanilla, 2015; Rothman, 2015). The complex and interrelated nature of ethnic and 

ancestral identity, the processes through which they are created and influenced in multiethnic 

societies, make their application to archaeologically derived groups, such as the Celts, 

difficult. Moreover, the notion of highly mobile populations and/or large-scale migrations 

associated with the Celts further complicate the application of a specific ethnic or ancestral 

identity to these groups (See page 54). 
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After a period of migrations and population expansion during the 4th and 3rd centuries 

BC, Hallstatt and La Tène artefacts were spread throughout continental and non-continental 

Europe and incorporated into the cultures of various regional populations (Collis, 2003; 

Cunliffe, 1997, 2009, 2018; Giles, 2012; James, 1999; Koch, 2006, 2007; Scheeres, 2014a; 

Scheeres et al., 2013b, 2014b). These populations subsequently lost their cultural autonomy 

and were subsumed into a greater Celtic identity. However, the exact nature of this movement 

and the extent of interactions with neighbouring populations is unknown. All the primary 

written sources are consistent in that the migrations involved large populations leaving their 

Central European homelands and spreading throughout Europe (See page 61) (Collis, 2003; 

Cunliffe, 1979, 1997, 2018; Tomaschitz, 2002). The underlying biological diversity among 

presumed Celtic populations and the processes driving the observed variation in artefacts, art 

styles and burial practices throughout the core and expansion regions (i.e., where Hallstatt 

and La Tène material cultures initially developed versus those into which they subsequently 

spread during the 4th and 3rd centuries BC) are not well understood (Anctil, 2016).  

The centre and periphery, or core and expansion, model is a spatial association that 

describes and attempts to explain the relationship between advanced metropolitan, or urban, 

centres and less developed periphery regions within either a particular country or geographic 

area. However, this model is more commonly applied to the relationship between capitalist 

and developing societies (Champion, 1989; Frankenstein and Rowlands 1978; Hall et al., 

2011; Harding, 2013b; Renfrew, 1986; Rowlands et al., 1987; Wallerstein, 1974). The centre 

and periphery are not likely to have represented a single urban location (e.g., town, urban 

centres, city or state), and may likely have encompassed those within a larger geographic area 

(e.g., multiple towns or urban centres within on country) (Champion, 1989; Frankenstein and 

Rowlands et al., 1987; Gotimann, 1980; Hall et al., 2011; Harding, 2013b; Paynter, 1982). 

Thus, the contrast between these regions is both spatial and cultural. The application of this 

model to past societies (from any period) and temporal periods (e.g., Iron Age Europe), 

attempts to explain spatially how economic, political and cultural authority is dispersed in the 

centre and surrounding peripheral or semi-peripheral, areas that can be described as, and are 

interpreted to have been either core or peripheral regions (See page 19) (Champion, 1989; 

Frankenstein and Rowlands et al., 1987; Hall et al., 2011; Harding, 2013b; Paynter, 1982). 

The processes of long-term social change, the social consequences of long-distance 

interaction and the complex relationships that exist among social, cultural, ethnic identity and 

development between the above regions are also a central focus of this model (Champion, 
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1989; Cherry, 1987; Frankenstein and Rowlands et al., 1987; Hall et al., 2011; Harding, 

2013b; Paynter, 1982; Strassoldo, 1980).  

The centre is described and interpreted as a group of urban locations, typically with 

technological advancements, wealth or in control of a viable commodity (i.e., salt), and of 

trade routes, or access to diverse and multiple exchange networks with other wealthy areas 

(Champion, 1989; Frankenstein and Rowlands et al., 1987; Hall et al., 2011; Hedeager, 1987; 

Hirth, 1978). These regions are also perceived to have been in a position to extract surplus 

and goods from the periphery. Conversely, the periphery regions are interpreted to have been 

correspondingly weak, with little economic influence and were used and regarded as a source 

of raw materials (Champion, 1989; Frankenstein and Rowlands et al., 1987; Gotimann,  

1980; Hall et al., 2011; Harding, 2013b; Hirth, 1978; Paynter, 1982; Strassoldo, 1980; Wells, 

1980). The semi-periphery areas are believed to have formed a link between the centre and 

periphery, whilst also acting as a buffer between these regions. The semi-periphery also 

facilitated the integration of the above regions both economically and geographically. 

However, it is difficult to identify the centre, semi-periphery and periphery in past societies 

and archaeological cultures, a recurring assemblage of artefacts from a specific time and 

place that may constitute the material culture of a particular culture and/or society 

(Champion, 1989; Frankenstein and Rowlands et al., 1987; Hall et al., 2011; Jones, 1997; 

Paynter, 1982; Renfrew, 1993, 1994a, b). Their description is often based on a presumption 

of economic and/or cultural influence and standing, due in part to the presence and amount of 

trad and prestige goods. The presumed relationships among populations inhabiting these 

areas and their interactions also influence the designation of these regions (See page 32) 

(Champion, 1989; Cherry, 1987; Frankenstein and Rowlands et al., 1987; Hirth, 1978; Hall et 

al., 2011; Harding, 2013b; Strassoldo, 1980; Wells, 1980).  

Further, the presence of regional copies of trade items is not commonly taken into 

consideration when designating the centre and periphery regions. Spatial, temporal, and 

economic shifts in power within either region, and/or the semi-periphery, are not likely to 

have been static. In all likelihood, these regions did not remain stable with respect to one 

another, but may have exchanged roles, i.e., peripheries may become centres and vice versa, 

over diverse historical development trajectories (Champion, 1989; Frankenstein and 

Rowlands et al., 1987; Hall et al., 2011; Hedeager, 1987; Hirth, 1978; Paynter, 1982; Wells, 

1980). Therefore, the nature and scale of the cultural interaction among these areas are 

dynamic and fluid. Consequently, the designation of a region as a centre, periphery or semi-

periphery is also likely to have changed through time, due to economic hardship or the 
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breakdown and restructuring of trade routes. While the centre regions are interpreted to affect 

the semi-periphery and periphery the influence of the latter regions on the former cannot be 

ruled out. Further, it is unknown if the periphery or semi-periphery may have superseded the 

centre. Thus, the diverse and fluid relationships among these regions may have subsequently 

altered the extent, nature and directionality of the cultural interaction and influence among 

these regions (Champion, 1989; Frankenstein and Rowlands et al., 1987; Hall et al., 2011; 

Harding, 2013b; Hall et al., 2011).  

The nature of any centre and periphery, and semi-periphery relationship is also likely 

to have been based on intangible elements and social interaction, such as perceived trade or 

prestige goods and cultural assimilation, or on exclusively economic factors (Appadurai, 

1986; Champion, 1989; Frankenstein and Rowlands et al., 1987; Hall et al., 2011; Harding, 

2013b; Hirth, 1978; Hall et al., 2011; Paynter, 1982; Wells, 1980). Although the movement 

of trade and prestige items can be identified and described throughout the centre and 

periphery regions, it is unknown whether these items represent the extent of exchange 

between these areas, as descriptions and identification of these items are only based on those 

preserved, identified and described in the archaeological record. Quantifying the volume of 

trade and prestige goods may also be difficult due to the above issues (See page 32) 

(Appadurai, 1986; Champion, 1989; Frankenstein and Rowlands et al., 1987; Hall et al., 

2011; Harding, 2013b; Wells, 1980). Comparisons and identification of the extent of 

inequalities in the exchange among centre and periphery regions may be difficult as well. 

Moreover, the presence of regional reproductions of trade items is not often taken into 

consideration when determining or establishing the presence and influence of a centre or 

periphery. Social change, a key element of the centre-periphery model, can also be influenced 

and created through external relationships (Champion, 1989; Frankenstein and Rowlands et 

al., 1987; Hall et al., 2011; Harding, 2013b; Hirth, 1978; Paynter, 1982; Wells, 1980).  

Thus, the presence of trade and/or prestige items may not necessarily designate a 

region as either a centre or periphery. Rather, the presence of these items may indicate long-

distance relationships between areas in either region, which may or may not influence social 

change. The presence of a trade item does not necessarily indicate extensive outside influence 

leading to social change (Appadurai, 1986; Champion, 1989; Frankenstein and Rowlands et 

al., 1987; Hall et al., 2011; Harding, 2013b; Wells, 1980). Instead, the presence of these items 

may indicate access to long-distance trade networks or the movement of people (Nash, 1984). 

Further, these external relationships were likely involved in initiating and/or maintaining 

internal processes of social and cultural development through a shared set of political or 
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ideological values, cultural assimilation, breakdown and creation of new alliances among and 

within regions (Champion, 1989; Frankenstein and Rowlands et al., 1987; Harding, 2013b; 

Wells, 1980). These factors may have resulted in similar socio-economic development among 

and within populations that shared certain social practices, which would have been 

differentially incorporated into diverse regional cultures. Consequently, the extent of the 

interaction between the above regions is unknown. Thus, the application of this model to past 

societies and periods should be interpreted with a degree of caution. 

Furthermore, the nature of a centre and periphery relationship in Iron Age Europe, or 

any past or modern-day societies and/or regions, is not likely to have been static regarding 

membership of its constituent groups, those regions that make up either the centre or 

periphery. Rather the relationship between these areas is more likely to have been dynamic 

and multidirectional concerning the exchange of goods and migrants from a presumed centre 

to a presumed periphery and vice versa. The nature of the peripheries, and the items and 

people being exchanged and moving were variable, and the composition of these regions was 

likely heterogeneous (See pages 19 and 32) (Champion, 1989; Frankenstein and Rowlands et 

al., 1987; Hall et al., 2011; Harding, 2013b; Wells, 1980). Therefore, the patterns of trade and 

influence between these areas and other peripheries, semi-peripheries and centre regions will 

be too. Thus, this model operates within a framework of social organization that can generate 

its own internal patterns of social, cultural and/or ethnic change, for example, through 

cultural assimilation (Champion, 1989; Frankenstein and Rowlands et al., 1987; Hall et al., 

2011; Harding, 2013b; Wells, 1980). Consequently, there is no simple distinction between a 

centre and a periphery. These limitations make the application of this model to past societies 

and temporal periods (i.e., Iron Age Europe) difficult at best.  

Celtic studies still use the centre and periphery model, but refer to it as the core and 

expansion model (Collis, 2003; Cunliffe, 1997, 2018; Scheeres, 2014a; Scheeres et al., 

2014b). This difference reflects the use and application of this model as a geographic 

designation for populations possessing Celtic artefacts, languages and/or culture. The nature 

and scale of the interactions among and within the above regions are unknown, and has not 

been the focus of much research (See pages 19 and 32) (Anctil, 2016; Scheeres, 2014a; 

Scheeres et al., 2013b, 2014b). This model as applied to Celtic populations is also specifically 

related to discussions and debates about the spread of the Hallstatt and La Tène material 

cultures during the 4th and 3rd centuries BC. Consequently, these broad geographic 

designations may encompass numerous populations and/or cultures. Further, the presence of 

the Hallstatt and La Tène material cultures are interpreted to represent the actual movement 
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of people rather than trade, exchange or in-situ regional development. Although stable 

isotope analyses do not appear to support this notion, it is still central to and utilized in the 

field of Celtic studies (See page 61) (Collis, 2003; Koch, 2006).  

Regional differences in Celtic artefacts, the complex social and cultural interactions 

among and within populations possessing Hallstatt and La Tène material culture are not a 

focus of this model as applied within the field of Celtic studies research (Anctil, 2016; 

Scheeres, 2014a; Scheeres et al., 2013b, 2014b). Neither is the complex nature and 

interactions among the core and expansion regions, trade or exchange within these areas, and 

the difficulties with the application of this model and the term Celtic to past societies are not 

taken in to consideration. Further, the exact geographic distribution of populations possessing 

Celtic artefacts and languages is unknown. Few studies have attempted to determine the 

biological and cultural variation among populations within the core and expansion regions 

(Anctil, 2016; Scheeres, 2014a; Scheeres et al., 2013b, 2014b). Consequently, the extent of 

the interactions, cultural, social and/or biological, among these regions is still largely 

unknown. Previous archaeological research indicates that the proposed migrations were more 

complex than simple one-way movement into the expansion regions (Anctil, 2016; Collis, 

1996, 2003; Maxová et al., 2011; Scheeres, 2014a). Maintenance of trade networks may have 

been the catalyst for changes in burial practices and the abundant presence of Hallstatt and La 

Tène artefacts throughout the expansion regions (See page 61) (Collis 1996, 2003; Cunliffe, 

1997, 2018; Koch, 2006, 2007; Tomaschitz, 2002). In such contexts, the debate about the 

biological diversity among populations possessing Hallstatt and La Tène artefacts has 

increased (Anctil, 2016; Maxová et al., 2011; Scheeres, 2014a). 

In the Celtic core and expansion regions, the focus of this thesis, few limited 

biological and dental anthropological analyses have been employed (Anctil, 2016; Maxová et 

al., 2011). However, modern scholarship has recently begun to focus on Celtic population 

history through these frameworks (Anctil, 2016; Maxová et al., 2011; Scheeres, 2014a; 

Scheeres et al., 2013b, 2014b). Previous work by the author (2016) examined the variation in 

dental nonmetric traits among proto-Celtic and Celtic groups possessing Hallstatt and La 

Tène artefacts in Iron Age Britain and continental Europe. This analysis was conducted to 

determine whether there was any evidence of biological affinity between these groups, an 

indication of population continuity among the samples analysed (Anctil, 2016). These results 

suggest that migration, cultural diffusion and/or assimilation throughout regions possessing 

Hallstatt and La Tène material culture are far more complex than assumed by archaeological 

and linguistic theoretical and methodological frameworks (Collis, 2003; Cunliffe, 1979, 
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1997, 2018; Demoule, 1999; Gleirscher, 1996; Karl, 2010; Koch, 2006; Macaulay, 1992; 

Stead, 1991a, b, d). This research also suggested that Celtic ethnic identity associated with 

these populations may not adequately reflect biological affinity, interpopulation relationships 

and population history throughout Iron Age Europe (Anctil, 2016). Indeed, the findings of the 

author support those of others, which show greater levels of biological diversity within 

regions than previously indicated, and that the intrinsic link between Celtic ethnicity and 

artefacts may be a nominal association, i.e., in name only (Anctil, 2016; Giles, 2012; 

Scheeres, 2014a; Scheeres et al., 2013b, Scheeres et al., 2014b). Scholars have begun to 

debate whether the association between the presence of Hallstatt and La Tène artefacts and 

Celtic identity adequately reflect the ethnic identities of these diverse populations (Anctil, 

2016; Anthoons, 2011; Maxová et al., 2011; Scheeres, 2014a; Scheeres et al., 2013b, 2014b).  

The relationship among the spread of Hallstatt and La Tène material culture, the 

application of Celtic ethnicity, and movements among these diverse populations have long 

been questioned by researchers (Anctil, 2016; Anthoons, 2011; Collis, 2003; Cunliffe, 1979, 

1997, 2018; Demoule, 1999; Gleirscher, 1996; Karl, 2010; Koch, 2006; Macaulay, 1992; 

Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Stead, 1991a). However, earlier research 

primarily focused on chronological and typological descriptions and documentation of 

diachronic change (See pages 19 and 32) (Anthoons, 2011; Collis, 2003; Cunliffe, 1979, 

1997, 2018; Koch, 2006; Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Stead, 1991a). The 

underlying biological, linguistic and cultural relationships within and among populations 

possessing the above cultures remain uncertain. Very few dental anthropology studies have 

examined the distribution of these traits among the diverse populations associated with the 

Celts, as most have focused on regional patterns rather than broader questions of ethnicity 

(Anctil, 2016; Coppa et al., 2007; Coppa et al., 1998; Cucina et al., 1999; Maxová et al., 

2011; Scott et al., 2013b). Although previous work by the author examined the distribution of 

nonmetric dental and cranial traits among some of these populations, biological affinity 

among the groups has been largely ignored by Celtic scholars (Anctil, 2016).   

Biological affinity between and within human populations can be determined through 

biological distance analysis, which reflects both genetic and environmental differences (See 

pages 113, 118 and 119) (e.g., Bunimovitz, 1990; Buikstra, 1977; Buikstra et al., 1990; 

Coppa et al., 2007; Godde, 2009; Irish, 1993, 2006, 2016; Irish et al., 2018; Mizoguchi, 

2013). Biological distance, or biodistance, is an analytical method for measuring the relative 

divergence within and between populations. Data generally include morphological (e.g., 

dental and cranial morphological markers) and metric (e.g., geometric morphometric, 
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odontometric and craniometric analysis) features in bones or teeth that can be used as proxies 

for genetic data (Anctil, 2016; Bunimovitz, 1990; Buikstra et al., 1990; Hanihara, 2010; 

Hillson, 1996; Irish, 1993, 2016; Irish et al., 2014, 2018; Irish and Scott, 2017; Larsen, 2015; 

Turner, 1983a, b, 1984, 1985a, b, 1987; Turner et al., 1991). Biological distances based on 

genetic data and those obtained from dental morphology have been shown to have a strong 

relationship, indicated by an r-value of >0.5, positive correlation (r=0.500, p=.021) (See page 

135) (Cohen, 1988; Hubbard, 2012; Hubbard et al., 2015) and higher, i.e., r=0.700 to 0.800 

(p=.000) (Irish et al., 2020). As detailed in Hubbard’s research, both morphometric and 

metric distance matrices indicate that diverse populations who are commonly believed to 

represent one ethnic group (i.e., Bantu, sub-Saharan Africa, farmers) are actually genetically 

closer, whilst populations believed to represent different ethnic groups are more genetically 

divergent. Thus, comparisons of genetic and dental morphological data suggest that both 

analyses are equally capable of identifying ethnic and biological differences among 

populations (See pages 119, 118 and 131) (Anctil, 2016; Black, 2014; Godde, 2009; 

Hubbard, 2012; Hubbard et al., 2015; Irish, 2010, 2016; Irish et al., 2018, 2020). Conversely, 

dental metric data does not have a strong correlation with genetic data and are therefore, not 

as viable for identifying the above differences (Anctil, 2016; Black, 2014; Godde, 2009; 

Hubbard, 2012; Hubbard et al., 2015; Irish, 1997, 1998a, b, c, 2005, 2006, 2008, 2013, 2010, 

2016; Irish et al., 2018, 2020).  

Dental morphological (or nonmetric) traits are suitable for biological distance 

analyses as they are largely independent of age, sex, and one another. Further, these traits 

have a high genetic component in expression (40-80%) and a high degree of intergroup 

variation in trait frequencies (See pages 119 and 125) (Hughes and Townsend, 2013; Irish, 

1993, 2005, 2010, 2016; Irish et al., 2014, 2018; Larsen, 2015; Scott, 1973; Scott and Turner, 

1997). Affinity studies are an effective tool for establishing close biological relationships, or 

the lack thereof, between and within populations in numerous studies (e.g., Black, 2014; 

Coppa et al., 1998, 1999, 2007; Cucina et al., 1999; Hubbard, 2012; Irish, 1993, 1997, 1998a, 

b, c, 2005, 2006, 2008, 2013, 2016, Irish et al., 2014, 2018, 2020; Irish and Turner, 

1989,1990; Matsumura et al., 2009; Vargiu et al., 2009).  

Data were collected using the Arizona State University Dental Anthropological 

System (ASUDAS). The standardized ASUDAS system consists of >100 nonmetric crown 

and root traits, for permanent teeth, scored with the assistance of 24 reference plaques. A 

subset of 36 traits based on the work of Irish (1993), has also been used in this study (See 

page 181, Figures 51-53 and Appendix I). Nonmetric dental traits (including mandibular and 
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maxillary torus and rocker jaw) were scored following the ASUDAS procedures outlined in 

Turner et al (1991). Dental traits were recorded in 586 individuals, adults and sub-adults, 

aged 17 and older, with permanent dentitions from 11 regional samples. The samples 

represent the core and expansion regions, along with a comparative European Iron Age 

sample. Frequencies of occurrence for all dental and osseous nonmetric traits were recorded 

for each sample. The suite of traits was compared using principal components analysis (PCA) 

and the mean measure of divergence (MMD) distance statistic. Multidimensional scaling 

(MDS) was employed on the symmetric MMD distance matrix to graphically illustrate 

relationships among samples. Cluster analysis based upon this same matrix was used to 

further illustrate the distances among the samples. Phenetic patterns of overall biological 

similarity and dissimilarity among individuals and populations based on morphological traits 

are based on distances from the MMD, which were then compared to geographic distances 

among samples, under the assumption that genetic affinity is inverse to spatial distance (Cox 

and Cox, 1994; Harris and Sjøvold, 2004; Irish, 1993, 1997, 2005, 2006, 2007, 2010, 2016; 

Irish et al., 2014, 2018; Kruskal and Wish, 1978; Sjøvold, 1973, 1977; Relethford, 2004; 

Smouse et al., 1986; Wright, 1943). 

The samples representing the core regions are: Nebringen (Stuttgart, Germany), 

Pottenbrunn (Austria), Münsingen-Rain (Switzerland), Hallstatt D (Austria), Dürrnberg 

(Austria) and a German pooled sample (Stuttgart, Germany). Samples representing the 

expansion regions are comprised of: Radovesice (Czech Republic), Kutná-Hora-Karlov 

(Czech Republic), Wetwang Slack (east Yorkshire, Britain) and Rudston Makeshift (east 

Yorkshire, Britain). A temporally contemporaneous sample from outside the known range of 

Celtic expansion, Pontecagnano (southern Italy), was also analysed for comparative purposes 

(Figure 1). The cemetery populations listed above have been subject to numerous 

osteological and dental analyses, as well as funerary and stable isotope studies, since their 

excavation and recovery, however, these analyses have primarily focused only on 

chronological and typological descriptions and documentation of diachronic change (See 

pages 138, 141, 143, 145, 149, 152, 155, 164, 168, 172, 177 and 179) (Anthoons, 2007, 2011; 

Collis, 1973, 2003; Cunliffe, 1984, 1991, 1994, 1997, 2009; Dent, 1982, 1985, 1995; Giles, 

2012; Hodson, 1964, 1968, 1990; Scheeres, 2014a; Scheeres et al., 2013b, Scheeres et al., 

2014b; Stead, 1991a). Biological affinity analyses have yet to be conducted on the skeletal 

material recovered from the majority of these cemeteries (Anctil, 2016; Maxová et al., 2011). 
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Figure 1. Map of Europe indicating the approximate geographic spread of Celtic material 

culture, not including isolated finds within the core and expansion regions, circled in red and 

green respectively (figure modified from generic mapping tools). 

  

 
 

 

Research questions 

 

The following research questions will be addressed in this thesis. 

 

1. Do Celtic populations within the expansion regions exhibit more phenetic diversity than 

those within the core?   

2. Were populations in the expansion regions acculturated, genetically influenced by the 

arriving Celts, and/or replaced?  
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3. Are the observed morphological differences among the samples within the core and 

expansion regions explained by an isolation by distance model? 

 

Hypotheses 

 

To address the preceding questions, the following hypotheses were tested using PCA, 

MMD, and isolation by distance analyses to determine whether there are significant 

differences in 36 dental nonmetric traits among the samples (See page 181). 

 

1.  H0: There is no difference in nonmetric trait frequencies among Celtic populations in the 

expansion compared to the core regions.  

Ha: There is a greater difference in nonmetric trait frequencies among Celtic populations in 

the expansion compared to the core regions, which would suggest less diversity in the 

expansion regions.  

2. H0: There is no significant difference in nonmetric trait frequencies among Celtic 

populations within the core and expansion regions. 

Ha: There is a significant difference in nonmetric trait frequencies among Celtic populations 

within the core and expansion regions, which would suggest population discontinuity among 

these regions. 

3. H0: There is no significant relationship between nonmetric traits and geographic distances 

among Celtic populations throughout the core and expansion regions; which suggests that 

isolation by distance was not likely to be the primary process driving the observed variation. 

Ha: There is a significant relationship between nonmetric traits and geographic distances 

among Celtic populations throughout the core and expansion regions.  

  

Significance  

 

This thesis will provide a greater understanding of the diverse biological and 

intercultural interactions among Celtic populations within the core and expansion regions. 

The research will also contribute to broader discussions and debates about intercultural 

interactions within these regions, and discourse on the contextualization of Hallstatt and La 

Tène artefacts and their integration into other cultures. In addition to discussions and debates 

about biological diversity among Celtic populations, Celtic population history, and the 
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application of Celtic ethnicity to diverse populations (Cunliffe 1997, 20009; Koch 2006). The 

thesis also contributes to broad debates about the application and associations of 

archaeologically derived ethnicity, and how these associations can impact our understanding 

of population history and intercultural interaction. Through a multi-regional comparison of 

samples within the core and expansion regions, the biological affinity and movements of 

presumed Celtic populations can be improved. Although few archaeological studies have 

begun to dispute their presumed biological relationship, no biological affinity study has yet 

been conducted on populations from these regions (Collis, 2003; Cunliffe, 1997, 2009; Giles, 

2012; Koch, 2006; Kruta, 2004). This thesis will move beyond the La Tène=Celtic paradigm 

regarding population history within the core and expansion regions. 

The thesis will also help fill a void in the current knowledge and understanding of 

regional variation in nonmetric traits within Iron Age Europe. Despite research establishing 

which traits are commonly observed during this period, little is known about their regional 

distribution. Research into this distribution within Europe has been largely reported through 

population-specific analyses (Coppa et al., 1998, 2000, 2007; Hsu et al., 1999; Hallgrímsson 

et al., 2004; Khudaverdyan, 2013; Maxová et al., 2011; Pacelli and Márquez-Grant, 2010; 

Scott et al., 2013b; Vargiu et al., 2009; Weets, 2004; Zubova, 2014). Few previous studies 

have documented this variation; as a result, the nature of the variation in dental nonmetric 

traits and their regional patterning is relatively unknown (Adler, 2005; Anctil, 2016; Coppa et 

al., 1998, 1999, 2000, 2007; Cucini et al., 1999; Hallgrímsson et al., 2004; Henneberg, 1998; 

Hsu et al., 1999; Khudaverdyan, 2013; Maxová et al., 2011; Mcilvaine et al., 2014; Pacelli 

and Márquez-Grant, 2010; Rathmann et al., 2016, 2019; Scott et al., 2013b; Thorson, 2018; 

Vargiu et al., 2009; Zubova, 2014). However, the author’s first study (2016) indicated the 

presence of a greater degree of variation in dental nonmetric traits in European Iron Age 

populations, associated with and without the Celts, than previously presumed.  

The samples used in this thesis represent groups that have thus far not been the focus 

of many dental analyses. The collected data can help serve as a building block for further 

research into geographically neglected regions within Europe during the Iron Age. 

Furthermore, the results of this study will serve as a foundation for future research into the 

biological affinity, and Celtic population history throughout Europe (See Armit et al., 2020, 

for information about the social and biological relationships between Iron Age Britons and 

populations in continental Europe). This thesis will provide the first evidence as to the 

presence of the biological affinity and diversity among Celtic populations within and 
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throughout the core and expansion regions; and whether the application of the term Celt to 

these diverse populations and regions is nominal. 

 

Organization of the thesis 

 

Chapter 2 presents the historical and archaeological background of Celtic populations 

within and throughout the core and expansions regions. The association between 

archaeological culture and ethnicity is described. Evidence supporting the contention that the 

application of Celtic ethnicity to diverse populations within these regions may be nominal is 

provided. A chronology of the archaeological cultures associated with the Celts in the above 

regions is described. The archaeological background and dispersal of the proto-Celtic 

Hallstatt and fully Celtic La Tène culture is presented, followed by evidence supporting their 

associations with the Celts. Finally, evidence of cultural continuity between the Hallstatt and 

La Tène cultures is presented. This chapter provides a baseline for the archaeological, 

chronological, and cultural continuity concerning the Celts, while also providing a baseline 

for their specific cultural associations to contextualize the population-specific information in 

the next chapter to a greater extent. 

  

Chapter 3 provides evidence for Celtic migration from and within the core and 

expansion regions, and whether the presence of Hallstatt and La Tène artefacts there within 

suggests demic diffusion, migration, trade and/or cultural assimilation. The linguistic and 

modern European genetic evidence about the presence and movements of the Celts and proto-

Celts is provided. Intra-and-extra-regional genetic variation among populations within these 

regions is also presented. This chapter describes Celtic population history within each region. 

 

Chapter 4 provides the methodological background regarding dental nonmetric trait 

affinity analyses using model-free and model-bound approaches, biodistance, population 

history and structure, the heritability of traits, and the Arizona State University Dental 

Anthropological System (ASUDAS). The assumption underlying biodistance and population 

structure analysis is provided.  

 

Chapter 5 describes the statistical methods and the rationale for their use. The 

background information for all samples and dental traits used in this study are presented.  
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Chapter 6 includes a series of tables and graphs that display results of the biodistance 

analysis, results from a Wilcoxon signed-rank test for inter-observer repeatability, the results 

from PCA, MMD, MDS, cluster analyses and isolation by distance as, determined via a 

pairwise comparison of the symmetric MMD and geographic distance matrices using linear 

regression. A brief explanation of the results is given.  

  

Chapter 7 provides an in-depth discussion of the results and subsequent 

interpretations. Each research question is discussed in turn, and is followed by conclusions of 

the study. Possible future work concerning the data and additional analyses are also 

considered. 

 

Appendix I. Includes the ASUDAS scoring procedures for nonmetric traits as outlined 

in Turner et al (1991). The trait scoring sheets are also provided.  

  

Appendix II. Presents the inter-trait correlations as determined by the Kendall’s tau-b 

correlation coefficient.  

 

Appendix III. Describes the Disadvantages and advantages of using teeth as a 

research tool.  

 

Appendix IV. Presents the remaining two-dimensional sample scatterplots.  

 

Appendix V. Provides the Varimax rotation of the PCA data or the first 2 

components.  

 

Appendix VI. Provides the PCA component loadings, eigenvalues and variance for 

the first 3 components explained for the samples. Varimax rotation of the first 3 components 

and a Three-dimensional scatterplot of the PCA data among the samples are also provided. 

 

Appendix VII. Presents the Three-dimensional MDS graphs of the MMD distances 

among the samples.  

 

Appendix VIII. Summarises information about the individuals excavated and the 

methods used by the recording osteologist to determine age-at-death and estimate sex. The 
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number of individuals included or excluded from this analysis, and sample demography is 

also provided.  
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Chapter 2: Hallstatt archaeological background, location, and spread 

 

The Hallstatt culture is named after its type site, Hallstatt in Stiermarken, Austria 

which is typologically dated from 1,200-475 BC. Excavations began in 1846 by Johann 

Georg Ramsauer, who eventually uncovered 1,045 burials (Hodson, 1990; Karl, 2006b). The 

cemetery is one of the richest known sites of its kind; a wide range of weapons, brooches, 

pins, and pottery have been recovered as well as imported Italian bronze vessels, that have 

been used to establish chronology (Hodson, 1990). The cemetery, and subsequently the 

culture, are divided into four periods; Hallstatt A (HaA) 1,200-1,000 BC; Hallstatt B (HaB) 

1,000-800 BC; Hallstatt C (HaC) 800-650 BC and Hallstatt D (HaD) 650-475 BC based on 

chronological differences in artefact types (Collis, 2004; Hodson, 1990; Koch, 2006; 

Kristinsson, 2010). However, these chronological divisions did not consider the extent of 

regional variation and distribution of artefacts. Further, the distribution of Hallstatt material 

culture may have been region-specific and may not have been present in all the regions it is 

found at a similar date (Collis, 2003; Koch, 2006). Therefore, the above periods represent the 

earliest possible divisions chronological divisions for this culture (Collis, 2003; Hodson, 

1990; Koch, 2006; Kristinsson, 2010).  

This culture has been found throughout much of Central Europe including the core 

and expansion regions. The former is defined as the regions in which Celtic material culture 

initially developed and include Austria, Switzerland and southern Germany (Collis, 2003; 

Koch, 2006; Kruta, 1991). The latter are defined as those into which it subsequently spread 

during the 4th and 3rd centuries BC. It includes Britain, France, Slovakia, Slovenia, Croatia, 

Hungary, Serbia, Romania, Belgium, the Iberian Peninsula and the Czech Republic 

(Almagro-Gorbea, 1991; Almássy, 2009; Cunliffe, 1979, 1988, 1995b; Fitzpatrick, 1993; 

Scheeres, 2014a; Scheeres et al., 2013b, Scheeres et al., 2014b) (Figure 1). Although some 

previous studies include the Czech Republic and northern Italy in the core, they are based on 

descriptions from Greek and Roman authors using second-hand information derived from 

political propaganda (Collis, 2003; Cunliffe 1997; Scheeres, 2014a). Hallstatt artefacts are 

also less frequent in these regions and often represent the HaD period specifically (Clive, 

2010; Cunliffe, 1979, 1988; Fitzpatrick, 1993; Hauschild, 2010b, 2015; Kruta, 1991; 

Scheeres, 2014a; Scheeres et al., 2013b). Consequently, these areas were included in the 

expansion regions in this analysis.   

This large area has been further divided into eastern and western sub-zones, based on 

differences in burial practices and artefacts. Daggers are specific to the eastern zone while 
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axes are to the western; however, these differences often represent isolated finds (Collis, 

2003; Cunliffe, 1997; Koch, 2006; Kruta, 1991). The eastern zone encompasses northern 

Croatia, eastern Slovenia, western Hungary, southwestern Slovakia, eastern Austria, the 

eastern Czech Republic, and northern Serbia (Collis, 2003; Cunliffe, 1997; Hodson, 1990; 

Koch, 2006; Kossack, 1959; Ljuština, 2009). The western zone includes Britain, northeastern 

France, northern Switzerland, southern Germany, western Austria, northern Italy and the 

western Czech Republic (Koch, 2006; Kossack, 1959; Warneke, 1999).  

Little is known about the early periods, as it is not until the HaC period that there is 

evidence of significant building activities and fortifications (Cunliffe, 1997; Koch, 2006). 

However, diachronic changes in burial practice are evident. Cremation burials in urns with 

few grave goods, such as bowls, weapons, and jewellery are common during the early 

periods. Tumulus, or barrow, and inhumation burials become standard from the latter half of 

the HaB to HaD periods (Clive, 2010; Collis, 1984, 1986, 2003, 2004; Cunliffe, 1997; 

Hodson, 1990; Koch, 2006). During these periods, the quantity of grave goods increased. 

Burials of females were accompanied by a rich assortment of bronze ornaments, including 

anklets, bracelets, and brooches. Males were often buried with various weapons, such as 

daggers, swords, and spearheads or, in some regions, axes (Collis, 2004; Cowen, 1968, 1970; 

Gleirscher, 1996; Hodson, 1990; Pare, 1991; Rapin, 1991). 

The later phases of this culture are presumed to be proto-Celtic, specifically the HaC 

and HaD periods, as those artefacts frequently associated with Celtic material culture, e.g. 

fibulae and torcs, are common (Collis, 2003; Cunliffe, 1997; James, 2005; Koch, 2007). 

However, these elements have also been associated with the Bronze Age Golasecca and 

Cagnate archaeological cultures in northern Italy (9th- 4th centuries BC and 1,200-450 BC, 

respectively) (Clive, 2010; Collis, 2003; Cunliffe, 1997; De Marinis, 1991; Gimbutas, 2011; 

James, 2005; Koch, 2006; Kristinsson, 2010; Mallory, 1992; Mallory and Adams, 1997; 

Stech, 2013; Weissenbacher, 2009). Burial practices similar to those during the HaA and HaB 

periods are also evident in the Urnfield culture, which dates from 1,300-750 BC (Collis, 

2004; Gimbutas, 2011; Koch, 2006). Consequently, the initial phases of the Hallstatt culture 

(HaA and HaB) are often grouped under the Unrfield or Bronze Age cultural headings 

(Cunliffe, 1979, 1997; Gimbutas, 2011; Hodson, 1990; Meid, 2008; Sorensen et al., 2006).  

Wealth began to increase during the HaC period in all regions in which this culture 

spread to, as indicated by imported prestige items that coincided with the presence of 

inhumation and barrow burials (Berresford-Ellis, 1990; Bofinger, 2006; Collis, 2003; 

Cunliffe, 1997; Hodson, 1990; Koch, 2006; Maier, 2003). The latter are accompanied by 
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swords; richly decorated pottery; personal ornaments made of bronze; some possess a built-in 

wooden chamber (Cowen, 1968, 1970; Gleirscher, 1996; Hodson, 1990; Hopkins, 1957; 

Krausse, 2006; Pare, 1991). The accumulation of wealth facilitated social stratification. The 

differences between wealthy and poor became more pronounced, and an elite class emerged 

(Collis, 1986, 2003; Cunliffe, 1997; Hodson, 1990; Koch, 2006). Evidence of this 

stratification is suggested by grave goods. Elaborately designed objects of gold and silver as 

well as imported ivory, glass, and amber while rare, are only found in elite burials (Collis, 

1986, 2003; Cunliffe, 1997; Hodson, 1990; Koch, 2006). Conversely, the majority of burials 

during this period contain objects with simple designs made of bronze or iron. The artefacts 

associated with the HaC period are markedly more complex than those of the preceding 

period (Collis, 1984, 2003; Cunliffe, 1984; Davies, 2000; Hodson, 1990). Some items, 

specifically jewellery and weapons, were procured from the surrounding regions, e.g., 

southern France and northern Italy, suggesting the aristocracy may have derived their wealth 

from trade (Buchsenschutz, 1995; Collis, 2003; Frey, 1995). Alternatively, the aristocracy 

may have been migrants from these regions. 

The change in artefact quality and burial practices between the HaB and HaC periods 

may suggest migration. However, cultural diffusion and/or assimilation cannot be ruled out, 

as these periods have not been the focus of much research other than typological and 

chronological material inventories (Anctil, 2016; Collis, 2003; Cunliffe, 1997; Koch, 2006; 

Kruta, 1991). Nevertheless, it is evident that the groups possessing Hallstatt material culture 

during the above transition experienced a dramatic change in social stratification (Collis, 

2003; Cunliffe, 1997; Hodson, 1990; Koch, 2006). A subsequent increase in prestige items 

such as Mediterranean imports including Attic pottery (pottery produced in the Attic 

Peninsula, encompassing the city of Athens, Greece), wine flagons and amphorae is evident 

during the HaD period (Collis, 1984; Heemstra, 2012; Gifford, 1960; Kossack, 1959; Nash, 

1985; Wells, 1977; 1980). The aristocracy during this period was further distinguished by the 

presence of cart burials (Collis, 1986, 2003; Hodson, 1990; Poppi, 1991).  

During this period, elite graves, those with carts and prestige items, are more 

concentrated in the western sub-zone of the Hallstatt culture than in previous periods (Collis, 

2003; Gifford, 1960; Hodson, 1990; James, 2005; Poppi, 1991). This westward shift appears 

to be correlated with the establishment of a new Greek trading colony at Massalia (present-

day Marseilles in southern France) located near the mouth of the Rhone River. The new 

chiefdoms lay in close proximity to major trade routes believed to have connected the 

Mediterranean, Rhine, Seine, Loire, and Upper Danube Rivers with the Rhone River corridor 
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(Buchsenschutz, 1995; Cunliffe, 1997; Collis, 1991, 2003; Diepeveen-Jansen, 2001; Gáti, 

2014; Kruta, 1991; Wells, 1977). The distribution of artefacts and burial practices are diverse 

throughout the core regions associated with the HaD culture. Specifically, those regions, 

which have substantial published grave inventories, include Austria (Hallstatt, Dürrnberg, 

Pottenbrunn, and Franzhausen) and Germany (Hochdorf, southern Germany, Heuneburg, 

southern Germany, Hunsrück-Eifel, western Germany, and Baden-Württemberg, southwest 

Germany). These inventories suggest differential and interrelated patterns of intra-and-extra-

regional contact (Collis, 2003; Cunliffe, 1997; Haffner, 1976; Hodson, 1964; 1990; Joachim, 

1968; Koch, 2006; Knipper et al., 2017; Neugebauer, 1991; Schneifer, 2012; Wells, 1995a, b, 

c). Those in the expansion regions include France (Saint-Sulpice, Bobigny and the Marne 

region, northeastern France), Italy (Monte Bibele and Monte Vecchio, Bologna), Slovakia, 

(Bucany), the Czech Republic (Manětín-Hrádek) and Hungary (Herzogenburg and 

Pilismarot-Basaharc) (Almássy, 2009; Bondini et al., 2004; Brasili and Belcastro, 2003; 

Bujna, 1991; Bujna and Romsauer, 1983; Collis, 1991, 2003; Della et al., 2003; Horváth et 

al., 1990; Koch, 2006; Soudska, 1991, 1994; Schonfelder, 2010; Vitali and Lejars, 2010). 

Typical artefacts associated with this period include fibulae; rings; bracelets; torcs; silver and 

gold items; pottery and/or bronze vessels; gifts of meat (i.e., sheep); daggers; spears; and 

lances (Figures 2-4) (Bondini et al., 2004; Bujna and Romsauer, 1983; Collis, 1991, 2003; 

Koch, 2006; Rapin, 1991; Soudska, 1991, 1994; Vitali and Lejars, 2010). Gundlingen and 

Mindelheim swords (the dominant sword types during the HaC, HaD and subsequent periods) 

are also common (Figures 5 and 6) (Bretz-Mahler, 1971; Collis, 1991, 2003; Cowen, 1967, 

1968, 1970; Cunliffe, 1997; De Navarro, 1972; Hodson, 1964, 1990; James, 2005; Koch, 

2007; Kruta, 1991; Ramsl, 2002; Rapin, 1991; Thorsten et al., 2017; Tiefengraber and 

Wiltschke-Schrotta, 2015; Valentová and Sankot, 2012; Wendling and Wiltschke-Schrotta, 

2015; Wendling et al., 2015). However, the above artefacts do not represent a comprehensive 

list of those recovered from the above sites and regions. Rather, they represent those 

described as characteristic of the HaD period that are commonly described in these regions. 

Although these regions have been more extensively documented comparatively, most of the 

artefact descriptions are still vague. The majority of artefacts are described as belonging to 

the Hallstatt period overall.  

The numerous intra-and-extra-regional connections suggested by the distribution of 

the above artefacts are indicated in Table 1 (Bretz-Mahler, 1971; Bujna, 1991; Charpy, 1991; 

Cowen, 1968, 1970; Delabesse and Troadec, 1991; Haffner, 1976; Hellebrandt, 1999; 

Hellebrandt and Hellebrandt, 1990; Joachim, 1968; Koch, 2006; Kruta, 1991; Lejarst et al., 
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2004; Mandi et al., 2018; Marion et al., 2005a, b; Marion, 2008; Novinskzi-Groma, 2017;  

Rabsiler et al., 2017; Ramsl, 2002, 2012a, b, 2014a, b; Soudska, 1991; Thorsten et al., 2017; 

Tiefengraber and Wiltschke-Schrotta, 2015; Valentová and Sankot, 2012; Vitali, 1987, 1988, 

1991; Vitali et al., 2002; Wendling et al., 2015; Wendling and Wiltschke-Schrotta, 2015). 

 

Figure 2. Fibulae common in Hungary and Austria from the Hallstatt B-D periods (Modified 

from Alexander, 1965, Figure 3. Original scale not provided) 

 

 

 

Figure 3. Bracelet type and design common in Switzerland and Austria during the Hallstatt 

D-La Tène periods (modified from Hodson, 1964, Figure 53. Original scale not provided). 
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Figure 4. Torc type and design common in Switzerland, Austria and southern Germany 

during the Hallstatt D-La Tène periods (modified from Hodson, 1964, Figure 1. Original 

scale not provided). 

 

 

 

 

Figure 5. Gundlingen swords (Cowen, 1967, Figure 2. Original scale not provided). 
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Figure 6. Mindelheim swords from Hallstatt grave 607 (Cowen, 1967, Figure 3. Original 

scale not provided). 

 

 

 

Although similar artefacts are common within several regions, there are subtle 

variations in art style and manufacturing technique (Collis, 2003; Kruta, 1991; Koch, 2006; 

Megaw, 1972). The artefacts in Table 1 represent those specific to the HaD period and 

represent those most commonly described and documented among and within the regions 

listed. As such their distributions facilitate broad regional comparisons and they have been 

used in several previous studies to link diverse regions (Bunja, 1991; Hellebrandt, 1999; 

Hellebrandt and Hellebrandt, 1990; Joachim, 1968; Koch, 2006; Kruta, 1991; Mandi et al., 

2018; Neugebauer, 1991; Rabsiler et al., 2017; Ramsl, 2002, 2012a, b, 2014a, b; Soudska, 

1991, 1994; Vitali et al., 2002; Wendling et al., 2015). However, these comparisons are often 

only based on a limited number, or one type of artefact and are site specific (Hellebrandt, 

1999; Hellebrandt and Hellebrandt, 1990; Joachim, 1968; Koch, 2006; Kruta, 1991; Mandi et 

al., 2018; Rabsiler et al., 2017). Therefore, their distributions may not adequately or 

comprehensively represent the cultural connections during this period. The following 

abbreviations in Table 1 designate those regions, with substantial grave inventories within the 

core: Hallstatt (Ha), Dürrnberg (Dür), Pottenbrunn (Pott), Franzhausen (Fran), Heuneburg 
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(Heu), Hünsruck-Eifel (HünE) and Baden-Württemberg (BadW). Those for the expansion 

regions include: Saint-Sulpice (Saint-S), Bobigny (Bob), Marne (Mar), Monte Bibele (Bib), 

Monte Vecchio (Vec), Bucany (Buc), Manětín-Hrádek (Man), Herzogenburg (Herz) and 

Pilismarot-Basaharc (Pil). 

In spite of the above limitations, the associations indicated by Table 1 suggest that 

populations possessing Hallstatt material culture had developed far-reaching contacts, either 

biological or cultural (Collis, 2003; James, 2005; Kruta, 1991). However, regional differences 

have not been the focus of much research (Bretz-Mahler, 1971; Harding, 2007; Laing and 

Laing, 1992; Laing, 2006; Megaw and Megaw, 2001). Locally produced artefacts copied the 

function, shape and decorative elements of imports but adapted and transformed them into an 

entirely new object or design (Bretz-Mahler, 1971; Duncan, 2008; Green, 1996; Harding, 

2007). The art styles characteristic of the HaD period include geometric and curvilinear 

designs as well as a less common naturalistic style portraying humans and animals (Figure 7) 

(Harding, 2007; Laing and Laing, 1992; Megaw, 1972; Megaw and Megaw, 2001). As their 

distribution is comparable with the artefacts, the same abbreviations are used in Table 2.    

Additional connections are suggested by similarities in burial practices throughout 

those regions with published cemetery descriptions (Collis, 2003; Gimbutas, 2011; Koch, 

2006; Kristinsson, 2010). Extended and supine inhumations under a tumulus are common, 

however, variations in burial position, and orientation (e.g., north-south versus south-north) 

are evident and may suggest individual identity expression. Additionally, they may represent 

differences based on status, ascribed or earned, non-local individuals or age and sex (Collis, 

2003; Jones, 1996; Koch 2006; Kruta, 1991; Wells, 1990, 1993, 2014). Although these 

differences are not often elaborated or comprehensively documented. However, the vehicle 

burials during this period have been described in more detail (Collis, 2003; Cunliffe, 1997, 

2009; Halkon, 2013). Four-wheeled carts are common during the HaC period and continue in 

some regions into the HaD period where two-wheeled chariots predominate (Collis, 2003; 

Harbison, 1969; Koch, 2006; Kruta, 1991). These vehicles have been commonly described as 

carts or chariots, however, note that scholars use the terms interchangeably (Collis, 2003; 

Cunliffe, 1991, 1997; Furger-Gunti, 1991; Koch, 2006). Those regions which have notable 

documented variations in vehicle burial practices include Austria (Dürrnberg and Saltzwelten 

Hallein), Germany (Hochdorf), France (Saint Germain-en-Laye, Attichy and Vix) (Biel, 

1981, 1982, 1991, 2012; Berthelier-Ajot, 1991; Claude, 2003; Collis, 2003; Cunliffe, 1997; 

James, 2005; Joffroy, 1954, 1960, 1962; Kruta, 1991; Tiefengraber and Wiltschke-Schrotta, 

2014, 2015; Wendling et al., 2015).  
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Table 1. Intra-and-extra-regional distribution of artefact types during the HaD period. 

Artefact type  Intra-regional (core) 

                      Ha, Dür, Pot, Fran, Heu,  HünE,   BadW 

Intra- regional (expansion) 

Saint-S, Bob,   Bour,   Mar,   Bib,   Vec,  Buc,  Man,  Herz, Pil 

 Fibulae    

 

               

 Rings     

 

     

 

        

 Bracelets   

 

           

 

    

 Torcs                  

Silver and gold 

items 

    

 

          

 

 

 

 

 

 

 

Pottery and/or 

bronze vessels  

            

 

     

Daggers     

 

             

Spears                  

The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is 

represented by 1 shape. The black circles indicate possible extra-regional connections. Core regions: Hallstatt (Ha), Dürrnberg (Dür), 

Pottenbrunn (Pott), Franzhausen (Fran), Heuneburg (Heu), Hünsruck-Eifel (HünE) and Baden-Württemberg (BadW). Expansion regions: Saint-

Sulpice (Saint-S), Bobigny (Bob), Marne (Mar), Monte Bibele (Bib), Monte Vecchio (Vec), Bucany (Buc), Manětín-Hrádek (Man), 

Herzogenburg (Herz) and Pilismarot-Basaharc (Pil). 
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Table 1 continued. Intra-and-extra-regional distribution of artefact types during the HaD period. 

Artefact type  Intra-regional (core) 

                      Ha, Dür, Pot, Fran, Heu,  HünE,   BadW 

Intra- regional (expansion) 

Saint-S, Bob,  Bour,   Mar,     Bib,  Vec,  Buc,  Man,  Herz, Pil 

Lances               

 

 

 

 

 

 

 

 

 

Gundlingen 

and 

Mindelheim 

swords 

                 

Mediterranean 

imports 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material type                  

The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is 

represented by 1 shape. The black circles indicate possible extra-regional connections. Core regions: Hallstatt (Ha), Dürrnberg (Dür), 

Pottenbrunn (Pott), Franzhausen (Fran), Heuneburg (Heu), Hünsruck-Eifel (HünE) and Baden-Württemberg (BadW). Expansion regions: Saint-

Sulpice (Saint-S), Bobigny (Bob), Marne (Mar), Monte Bibele (Bib), Monte Vecchio (Vec), Bucany (Buc), Manětín-Hrádek (Man), 

Herzogenburg (Herz) and Pilismarot-Basaharc (Pil). 
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Table 2. Intra-and-extra-regional distribution of art styles during the HaD period. 

Art styles  Intra-regional (core) 

Ha, Dür, Pot, Fran, Heu,  HünE, BadW 

Intra- regional (expansion) 

Saint-S, Bob,  Bour,  Mar,    Bib,  Vec,  Buc,  Man,  Herz, Pil 

Geometric    

 

               

Curvilinear 

elements 

    

 

     

 

        

 Animal 

representations 

  

 

           

 

    

Naturalistic 

representations 

                 

The different coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is 

represented by 1 shape. The black circles indicate possible extra-regional connections. Core regions: Hallstatt (Ha), Dürrnberg (Dür), 

Pottenbrunn (Pott), Franzhausen (Fran), Heuneburg (Heu), Hünsruck-Eifel (HünE) and Baden-Württemberg (BadW). Expansion regions: Saint-

Sulpice (Saint-S), Bobigny (Bob), Marne (Mar), Monte Bibele (Bib), Monte Vecchio (Vec), Bucany (Buc), Manětín-Hrádek (Man), 

Herzogenburg (Herz) and Pilismarot-Basaharc (Pil). 
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Regional variations suggested by the chariot and/or cart burial practices in the HaD 

period are designated in Table 3. The following abbreviations in Table 3 designate the above 

regions in the core: Dürrnberg (Dürr), Saltzwelten Hallein (Sal Hal), Hochdorf (Hoch). Those 

in the expansion regions include Saint Germain-en-Laye (St GerLay), Attichy (Atti) and Vix 

(Vix).  

 

Figure 7. Geometric designs (Dechlete, 1914, Figure 4. Original scale not provided). 

 

 

 

The documented differences in vehicle burials have been interpreted as indications of 

status and/or expressions of individual identity among the burial community, rather than 

representative of population or cultural differences (Collis, 2003; Cunliffe, 1997; James, 

2005; Kruta, 1991; Wells, 1998). However, they may also reflect temporal differences, as 

they are commonly dated by the type of associated artefacts, e.g., fibulae and torcs (Collis, 

2003; Cunliffe, 1997; James, 2005; Kruta, 1991; Wells, 1998). Thus, the observed differences 

in vehicle burials may indicate diachronic rather than social and/or cultural differences. 

However, these burials have been used to link diverse regions and populations (Collis, 2003; 

Cunliffe, 1997; James, 2005; Maier, 2003). The archaeological evidence suggests that the 

populations possessing Hallstatt material culture were not isolated within the core regions. 

Instead, they had far-reaching contacts with different communities in the expansion regions 

(Collis, 2003; James, 2005; Kruta, 1991). 

 



 

31 

Table 3. Intra-and-extra-regional distribution of chariot and/or cart burials during the HaD period. 

Chariot burial 

type 

Intra-regional (core) 

                      Dürr                  Sal Hal                     Hoch 

 

Intra- regional (expansion) 

St GerLay                        Atti                     Vix 

Two-wheeled 

chariot 

   

 

    

Four-wheeled 

cart 

   

 

  

 

 

Wheels 

removed and 

placed against 

the grave wall 

  

 

    

 

Wheels placed 

into inset holes 

in grave floor 

      

Vehicle buried 

whole 

   

 

   

 

 

Vehicle used as 

a makeshift 

coffin 

      

 

Vehicle placed 

in grave (not 

used as a 

makeshift 

coffin) 

   

 

   

            The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is 

represented by 1 shape. The black circles indicate possible extra-regional connections. Core regions: Dürrnberg (Dürr), Saltzwelten Hallein (Sal 

Hal), Hochdorf (Hoch). Expansion regions: Saint Germain-en-Laye (St GerLay), Attichy (Atti) and Vix (Vix).
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La Tène archaeological background, location, and spread 

 

The La Tène culture is also named after its type site, La Tène, on the northern side of 

Lake Neuchâtel in Switzerland which is dated to 450-50/15 BC (Collis, 2003; Cunliffe, 1997; 

James, 2005; Karl, 2006a; Koch, 2007). Excavations began in 1857 by Hansli Kopp after a 

prolonged drought lowered the lake level by approximately 2 metres. Eventually, 2,500 

objects, mostly weapons, were uncovered (Collis, 2003; Cunliffe, 1997; James, 2005; Koch, 

2007). Overall, 166 swords, most without traces of wear, 2,700 lance heads, 22 shield bosses, 

385 brooches and chariot parts were found; some animal and human bones were found as 

well (Cunliffe, 1997; De Navarro, 1972). Interpretations of the site vary. Previous studies 

have suggested it was destroyed by high water or was a ritual deposition site (Collis, 2003; 

Cunliffe, 1997; De Navarro, 1972; Frey, 1991; James, 2005; Koch, 2007). This culture has a 

similar geographic distribution to the preceding Hallstatt, sometimes without a definitive 

break such that elements specific to each culture appear contemporaneously (Caulfield, 1981; 

Collis, 2003; Davies, 2000; James, 2005; Poppi, 1991). Consequently, the development of 

this culture has been interpreted as a consequence of the actual physical movement of 

Hallstatt populations subsequent to an avalanche that destroyed the salt mine located at the 

type site during the HaD period (Barth, 1991; Collis, 2003; Frey, 1991; Koch, 2007). This 

culture has also been intrinsically linked with the Celts based on the La Tène=Celtic 

paradigm.  

The initial division of the Iron Age into the Hallstatt and later La Tène periods by 

Desor (1873) was purely chronological; no ethnic interpretations concerning the populations 

associated with the archaeological material were made. However, from the mid 19th century, 

ethnic definitions were applied to characteristic cultural elements such as art styles, weapons 

and personal ornaments (Collis, 1997; James, 2005). The early chronological divisions of the 

La Tène period into early, middle and late were based primarily on differences in artefact 

style and shape, such as brooch and scabbard shapes (Collis, 2003; Cunliffe, 1997; James, 

2005; Koch, 2007). The later chronology of Reinecke (1965), in which the Iron Age was 

divided into Hallstatt A-D and La Tène A-D, is still used. However, this chronology is 

problematic because it was devised exclusively from material from southern Germany 

(Collis, 2003; Evans, 1981). In contrast, Dechelette assigned objects decorated in the Celtic 

style to the La Tène period, following the prevalent paradigm (Collis, 2003; Cunliffe, 1997; 

Dechelette, 1910; James, 2005; Koch, 2007). The known distribution of these objects was 
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concentrated in an east-west zone encompassing southern Bohemia, Bavaria, Baden-

Württemberg, southwest Germany, and northeastern France; which largely corresponded to 

the area he assigned to the Celts (Dechelette, 1910). Another system, developed by Müller 

(1999), that is widely used includes the following subdivisions: La Tène A (LTA, 450-

400BC); La Tène B (LTB, 400/390-260/250 BC); La Tène C (LTC, 260/250-150 BC), and 

La Tène D (LTD, 100-50/15BC) (Collis, 2003; Cunliffe, 1997; Müller et al., 1999). This 

chronological system is based on temporal differences in artefact types, such as fibulae 

(Müller et al., 1999).  

The above system will be used in this thesis as it is the most common and Celtic 

populations are predominantly dated following this chronology. However, as in the Hallstatt 

period, these systems did not account for all the regional variation and distribution of 

artefacts. Moreover, the distribution of La Tène culture may also have been region-specific, 

and may not have arrived in all the areas in which it is found at a similar date (Müller et al., 

1999). Consequently, the above periods represent the earliest possible chronological divisions 

for this culture (Müller et al., 1999). As chronological systems based on artefact distribution 

and diachronic differences are used to categorise Hallstatt and La Tène artefacts, it is difficult 

to determine whether they represent cultures in their own right with specific origins followed 

by diffusion and/or assimilation. It is also problematic to assess whether they are overarching 

terms like “western-Neolithic”, within which separate cultures can be identified (Koch, 2006; 

Kruta, 1991). Although the former is generally more accepted, the specific origins of these 

cultures are neither easily defined, nor reflective of a general evolution of archaeological 

cultures, as Reinecke’s (1965) terminology implies. 

  At the beginning of the 5th century BC, the rich chiefdoms of the HaD period, such as 

Mont Lassois and Heuneburg (eastern France and southern Germany, respectively), were 

abandoned and the associated rich burials ceased (Caulfield, 1981; Collis, 2003; Cunliffe, 

1994; 1997; James, 2005; Koch, 2006; Müller-Scheeßel, 2007). Around the same time, 

wealthy warrior societies began to appear to the north of these settlement centres 

(Buchsenschutz, 1995; Burmeister and Müller-Scheeßel, 2007; Caulfield, 1981; Collis, 2003; 

Cunliffe, 1994; 1997; James, 2005; Koch, 2007). However, not all settlements were 

abandoned (e.g., Dürrnberg, Austria) and there is no evidence that regions became 

significantly deserted. This suggests that some populations were able to weather the collapse 

of the salt mine during the HaD period, e.g., Pottenbrunn, Austria (Collis, 2003; Cunliffe, 

1997; James, 2005; Koch, 2007; Maier, 2003; Smith, 2012). Coincident with shifts in 
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settlement location, was an alteration in trading patterns. During the HaD/LTA transition 

archaeological evidence suggests that trade with Massalia via the Rhone halted, and was 

reoriented over the Alps to the new Greek towns of Spina and Adria, located near the Italian 

Adriatic coast, and to Etruscan settlements in the Po Valley (Cunliffe, 1991, 2018; Kruta, 

1991; Maier, 2003; Meid, 2008; Stöllner, 2014; Verger, 1987; Wolf, 1993). However, the La 

Tène culture is not present in all phases throughout the areas to which it spread. During the 

LTA/LTB transition in some parts of eastern Belgium, Luxembourg, the Hunsrück-Eifel 

(western Germany) and Baden-Württemberg (southwest Germany) regions the former phase 

is absent (Barford, 1991; Barrett, 1994; Harding, 2004, 2007; Haffner, 1976; Joachim, 1968, 

1991; James, 1993; Koch, 2006). It is unknown whether cultural change was coeval during 

these transitions or whether they represent different regional manifestations of contemporary 

cultures (Frey, 1972; Harding, 2007; Pauli, 1978). By the 1900s, the division between the 

Hallstatt and La Tène periods was defined largely by the presence of specific artefacts. These 

include fibulae, Gundlingen and Mindelheim swords, Pottery and/or bronze vessels, 

Mediterranean imports (e.g., Attic pottery, wine flagons, and amphorae) and material type 

(Harding, 2004, 2007; Haffner, 1976; Heemstra, 2012; Joachim, 1968, 1991; James, 1993; 

Rapin, 1991; Rigby, 2004).  

Those regions for which cultural continuity is evident include Dürrnberg (Austria); 

Pottenbrunn (Austria); Heuneburg (southern Germany); eastern Belgium, Luxembourg, the 

Hunsrück-Eifel (western Germany), and Baden-Württemberg (southwest Germany) regions; 

Bobigny (France); the Marne region (northeastern France); Bucany (Slovakia); Manětín-

Hrádek (Czech Republic); Herzogenburg (Hungary), and Pilismarot-Basaharc (Hungary) 

(Figure 1) (Bujna, 1991; Cowen, 1968, 1970; Haffner, 1976; Joachim, 1968, 1991; James, 

1993; Koch, 2006; Kruta, 1991; Neugebauer, 1991; Rabsiler et al., 2017; Ramsl, 2002; 

Soudska, 1991, 1994; Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; 

Wendling and Wiltschke-Schrotta, 2015). Distributions in artefact type within the above 

regions are indicated in Table 4. As in the Hallstatt period, while similar artefacts are 

commonly found within several regions, there are subtle variations in art style and 

manufacturing technique (Bujna, 1991; Collis, 2003; Koch, 2006; Kruta, 1991; Ramsl, 2002; 

Soudska, 1991, 1994; Tiefengraber and Wiltschke-Schrotta, 2014, 2015). The following 

abbreviations are used to designate the above regions in Table 4: Dürrnberg (Dür); 

Pottenbrunn (Pott); Heuneburg (Heu); Hünsruck-Eifel (HünE); Baden-Württemberg (BadW); 

Saint-Sulpice (Saint-S); Bobigny (Bob); Marne (Marne); Monte Bibele (Bib); Monte Vecchio 



  

 

 

 35 

 

 

(Vec); Bucany (Buc); Manětín-Hrádek (Man); Herzogenburg (Herz) and Pilismarot-Basaharc 

(Pil). 

These regions may also be linked based on similarities in burial practices. Flat 

inhumations are common although burials under a tumulus occur contemporaneously (Koch, 

2006; Kruta, 1991). Extended supine inhumations, oriented north-south were also common 

although subtle differences in orientation are evident (Collis, 2003; Cunliffe, 1997; Haffner, 

1976; Joachim, 1968; Koch, 2006; Kruta, 1991). Although this transition has been the focus 

of previous research, the descriptions of artefacts and burial practices are limited and often 

reported as a site specific chronology. The extent of the documented variation within and 

between regions is not elaborated on (Collis, 2003; Cunliffe, 1997; Haffner, 1976; Joachim, 

1968; Koch, 2006; Kruta, 1991). Therefore, it is difficult to determine the arrival and the 

incorporation of the La Tène culture into the above regions. It may have developed in-situ 

within some regions, however, there is also evidence of migration being a mechanism for its 

dispersal. In some regions such as Dürrnberg (Austria), Pottenbrunn (Austria), and the 

Champagne region (northeast France), the majority of HaD graves were cut into by those 

from the La Tène period (Charpy, 1996, 2009; Collis, 2003; Koch, 2006; Kruta, 1991; 

Neugebauer, 1991; Tiefengraber and Wiltschke-Schrotta, 2014, 2015).  

 Though the La Tène period overall has been the focus of several previous studies, 

their focus has been primarily on the geographic distribution of artefacts that are often 

reported on a case-by-case basis (Cunliffe, 1994, 1997; Jerem 1995; Joachim, 1991; Kaenel, 

1991; Koch, 2006; Kruta, 1991; Sankot, 1991). This distribution has been documented 

primarily in a typological and/or descriptive manner (Cunliffe, 1997; Koch, 2006; Kruta, 

1991). Bioarchaeological research and population history within the diverse regions 

possessing La Tène material culture has not been the focus of much research (Cunliffe, 1997; 

Koch, 2006; Kruta, 1991). Although some regions have been comparatively more extensively 

documented, most of the descriptions are still vague.      

These regions include Austria (Dürrnberg, Pottenbrunn, Mannersdorf and Oberndorf); 

Switzerland (Münsingen-Rain and Basel-Gasfabrik); Germany (Hunsrück-Eifel, western 

Germany and Baden-Württemberg, southwest Germany); Czech Republic (Radovesice I and 

II, Kutná-Hora-Karlov and Manětín-Hrádek); east Yorkshire (Britain) (Rudston Makeshift 

and Wetwang Slack); France (Bobigny, the Champagne and Marne regions, northeastern 

France); Spain (the Alpanseque region, Soria, Spain); Romania (Ciumesti and Pişcolt); Italy 

(Monte Bibele and Monte Vecchio, Bologna); Slovakia (Bucany) and Hungary (Pilismarot-
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Basaharc) (Biel, 1991; Bretz-Mahler, 1971; Bondini et al., 2004; Brasili and Belcastro, 2003; 

Bujna, 1991; Bujna and Romsauer, 1983; Della et al., 2003; Dent, 1982, 1984, 1995; Haffner, 

1976; Hellebrandt, 1999; Jerem, 1981; Joachim, 1968; Krämer, 1964; Kruta, 1991; Marion, 

2008, 2009; Németi, 1991; Neugebauer, 1991; Ramsl, 2002, 2003, 2011a, 2015; Ramsl et al., 

2011b; Raftery, 1991; Soudska, 1991, 1994; Thorsten et al., 2017; Tiefengraber and 

Wiltschke-Schrotta, 2015; Valentová, 1991; Venclová  et al., 2013a, b; Vitali and Lejars, 

2010; Waldhauser, 1978, 1993; Wendling and Wiltschke-Schrotta, 2015; Wilde, 1995).  

Typical artefacts associated with this period include some forms common to the 

preceding period, although with more embellishments and elaborate designs (Collis, 2003; 

De Marinis, 1977; Koch, 2006; Kruta, 1991). Gold and silver objects (e.g., beads, torcs, 

jewellery, brooches, and belt buckles) are more abundant. Fibulae; rings; bracelets (e.g., 

glass); torcs; wheel turned pottery; bronze vessels and gifts of meat such as sheep or pig, are 

common (Figures 8-11). Gundlingen and Mindelheim swords while common decrease in 

frequency (Bouzek, 2009; Champion, 1995; De Navarro, 1972; Gibson, 1995; Hellebrandt, 

1999; Kaenel and Müller, 1989; Maini and Curci, 2013; Piggott, 1950; Pleiner, 1993; 

Potrebica et al., 2014). Antenna daggers and/or swords (with a characteristic set of paired 

curled projections at the hilt or top) are more prevalent (Figure 12). Mediterranean imports 

(e.g., Attic pottery, wine flagons, and amphorae) also increase in frequency. False filigree 

(ornamental openwork of delicate and intricate design) decorated brooches become common 

(Marion, 2008, 2009; Rapin, 1991; Soudska, 1994; Thorsten et al., 2017; Tiefengraber and 

Wiltschke-Schrotta, 2015; Vitali, 2003; Vitali, 2008; Wells, 2008; Wendling and Wiltschke-

Schrotta, 2015). Distributions of the above artefacts are indicated in Table 5. Since the 

majority of previous studies have not consistently dated these artefacts to a specific period, 

i.e., LTA, those included in Table 5 represent those specific to the La Tène overall.  

The above artefacts represent, as in the Hallstatt period, those which have been 

constantly and comprehensively documented. Consequently, they have been used in 

numerous previous studies to link diverse regions (Bretz-Mahler, 1971; Bondini et al., 2004; 

Brasili and Belcastro, 2003; Bujna and Romsauer, 1983; Della et al., 2003; Dent, 1982, 1984, 

1995; Haffner, 1976; Hellebrandt, 1999; Marion, 2008, 2009; Soudska, 1994; Thorsten et al., 

2017; Vitali, 2003; Vitali, 2008; Vitali and Lejars, 2010). These comparisons, as in the 

Hallstatt period, are often only based on a limited number of artefacts, are site specific and 

may therefore not sufficiently document the cultural connections during this period. 
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Table 4. Intra-and-extra-regional distribution of artefact types during the HaD/LTA transition 

Artefact type Intra-regional (core) 

 Dür,     Pott       Heu,     HünE,   BadW,  

  

Intra- regional (expansion) 

Bob,       Mar,      Bib,  Buc,  Man,  Herz, Pil 

 Pottery and/or 

bronze vessels 

   

 

          

Fibulae     

 

   

 

     

Mediterranean 

imports 

 

 

 

 

         

 

 

Gundlingen 

and 

Mindelheim 

swords 

            

Material type     

 

        

 

The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is 

represented by 1 shape. The black circles indicate possible extra-regional connections. Core regions: Dürrnberg (Dür); Pottenbrunn (Pott); 

Heuneburg (Heu); Hünsruck-Eifel (HünE); Baden-Württemberg (BadW). Expansion region: Saint-Sulpice (Saint-S); Bobigny (Bob); Marne 

(Marne); Monte Bibele (Bib); Monte Vecchio (Vec); Bucany (Buc); Manětín-Hrádek (Man); Herzogenburg (Herz) and Pilismarot-Basaharc 

(Pil). 
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Additionally, as in the Hallstatt period, these artefacts represent those characteristic of 

the La Tène period in the above regions, as opposed to a comprehensive list (See page 19). 

Although the above artefacts have been used to characterize this period, they are not specific 

to this culture. Fibulae are also commonly associated with other cultures, including the Italic 

groups (Collis, 2003; D’Agostino, 1974, 1988; D'Agostino and Gastaldi, 1988; De Natale, 

1992; Fredericksen, 1974; Koch, 2006; Serritella, 1995).  

The intrinsic link between these objects and Celtic groups is related to the application 

of the La Tène=Celtic paradigm to diverse populations possessing specific artefacts. This 

association is accepted but not elaborated on in the field of Celtic studies (Collis, 2003; 

Cunliffe, 1997, 2009; Giles, 2012; Koch, 2006). The artefacts themselves may not be linked 

to one specific population, but their design and manufacture may be. Therefore, their 

association with Celtic groups is tenuous. However, in spite of this limitation, various 

connections are indicated by the distributions of artefacts, burial practices and art styles 

during this period (Biel, 1991, 2012; Bondini et al., 2004; Bujna, 1991; Budinský and 

Waldhauser, 2001, 2004; Charpy, 1991; Good, 2005; Haffner, 1976; Hellebrandt and 

Hellebrandt, 1999; Horváth, 1987; Joachim, 1968; Koch, 2006; Megaw, 1972; Németi, 1991; 

Marion et al., 2005a, b; Ramsl, 2002, 2011a, 2015; Ramsl et al., 2011b; Roulet, 1991; 

Rustoiu, 2008, 2011a, b, 2012, 2014; Rustoiu and Egri, 2014; Salac, 2011; Soudska, 1991, 

1994; Stead, 1979, 1991; Tiefengraber and Wiltschke-Schrotta, 2012, 2014, 2015; Tanko, 

2015; Vitali, 2003, 2008; Vitali and Lejars, 2010; Vitali, 2008; Valentová, 1991, 1993; 

Valentová and Sankot, 2012; Waldhauser, 1993).  

The following abbreviations are used to designate the above regions in Table 5: 

Dürrnberg (Dür); Pottenbrunn (Pott); Mannersdorf (Mann); Oberndorf (Obe); Münsingen-

Rain (MR); Basel-Gasfabrik (BG); Hunsrück-Eifel (HünE); Baden-Württemberg (BadW); 

Radovesice (Rad); Kutná-Hora-Karlov (KHK); Manětín-Hrádek (Man); Rudston Makeshift 

(Rud); Wetwang Slack (WWS); Bobigny (Bob); Champagne (Ch); Marne (Mar); Alpanseque 

(Alp); Pişcolt (Pi); Monte Bibele (Bib); Monte Vecchio (Vec); Bucany (Buc) and Pilismarot-

Basaharc (Pil). 
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Figure 8. Diverse La Tène fibulae from Münsingen-Rain, Switzerland. The designs are also 

common in Austria (Hodson, 1964, Figure 22. Original scale not provided). 

  

 

 

In spite of the above issues, the dispersals suggested by Table 5 indicate that the intra-

and-extra-regional contacts developed during the La Tène period (1,200-475 BC) may have 

expanded and diversified compared to those during the Hallstatt period (450-50/15 BC) 

(Table 8) (Collis, 2003; De Marinis, 1977; James, 2005; Kruta, 1991; Wells, 2008). However, 

the nature of this dispersal has not been the focus of much research. The artefact distributions 

indicated by Table 5 suggest that it was more complex than previously assumed (Collis, 

2003; Cunliffe, 1997; Koch, 2006).  
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Figure 9. Bracelet type and design common in Switzerland and Austria during the Hallstatt 

D-La Tène periods (modified from Hodson, 1964, Figure 58. Original scale not provided). 

 

 

 

 

Figure 10. La Tène glass bracelet, design common in Switzerland and Austria (Hodson, 

1964, Figure 73. Original scale not provided). 
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Figure 11. Torc Münsingen-Rain, Switzerland. The design is also common in Germany 

(Hodson, 1964, Figure 4. Original scale not provided). 

 

 

Figure 12. Antennae sword from La Tène, Switzerland (Child, 1930, Figure 2. Original scale 

not provided). 
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Regional variations in artefact manufacture and design are also common during this 

period. Local versions of La Tène artefacts (e.g., fibulae, torcs, and glass bracelets) copied 

the shape, design, and materials of the imports, creating new objects with varied local designs 

(Bouzek, 2009; Collis, 2003; Cunliffe, 1995b, 1997; Harding, 2007). Trans-Alpine contacts 

with Mediterranean regions introduced a range of classical plant motifs that influenced the 

subsequent development of La Tène art styles (Champion, 1976; Frey, 1972; Gosden et al., 

2014; Harding, 2007; Megaw and Megaw, 1989, 2001; Pauli, 1978).     

Two common motifs derived from imported natural designs are the palmette and the 

lotus (Figures 13 and 14) (Duval, 1991; Harding, 2007; Jope, 1995b; Laing and Laing, 1992; 

Laing, 2006). The incorporation of these elements was achieved in part by breaking up 

classical motifs into their component features, and subsequently re-assembling them in a new 

and unique composition (Harding, 2007; Laing and Laing, 1992; Harding, 2007; Szabó and 

Petres, 1992; Soudska, 1994; Waldhauser, 1978). This is evident in the composition of the 

palmette, which is commonly rendered as a simplified three-leaved motif in Mediterranean 

imports (Figure 14). In this period, the palmette is often split in half or further reduced to 

individual leaves (Harding, 2007; Laing and Laing, 1992; Megaw and Megaw, 1989, 2001). 

During subsequent periods La Tène art styles shifted towards movement-based forms, such as 

triskeles (a motif consisting of three interlocking spirals), S shapes and/or scroll motifs, 

animal and plant forms (Figure 16) (Duval, 1991; Harding, 2007; Laing and Laing, 1992; 

Megaw and Megaw, 2001; Verger, 1987). Metalwork in bronze, iron, and gold is 

characterized by inscribed and inlaid intricate spirals, enamelled designs and dragon pairs on 

scabbards (Figure 17) (Collis, 2003; Cunliffe, 1997; De Marinis, 1977; Eglof, 1991; Haseloff, 

1991; Harding, 2007; Laing and Laing, 1992; Laing, 2006; Manning, 1995; Northover, 1984, 

1995).  

Dragon pairs comprise what has sometimes been regarded as a zoomorphic lyre, or a 

pair of opposed S-shapes with zoomorphic dragon like heads facing inwards and is common 

throughout Central Europe. This style may indicate the presence of a far-reaching trade 

network(s) due to its broad distribution (Green, 1996; Harding, 2007; Laing and Laing, 1992; 

Stead, 1984a, b; Szabó, 1974; Szabó and Petres, 1992). Regional variations are also common, 

as evident in the enamelled designs common in east Yorkshire (Britain) (Harding, 2007; 

Laing and Laing, 1992; Laing, 2006). Most of the metal objects in this region are decorated 

with brightly coloured (usually red and blue) enamelled designs (Harding 2007; Laing and 

Laing, 1992; Laing, 2006).  
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Table 5. Intra-and-extra-regional distribution of artefact types during the La Tène period. 

Artefact type Intra-regional (core) 

                      Dür, Pot,Mann,Obe,MR,BG,HünE, BadW  

Intra- regional (expansion) 

Rad, KHK, Man, Rud,WWS,Bob, Ch,Mar, Alp, Pis, Bib, Vec, Buc, Pil  

Gold and 

silver objects 

   

 

                    

Fibulae     

 

      

 

            

Rings   

 

            

 

        

Bracelets                        

Torcs     

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wheel turned 

pottery  

             

 

         

Bronze vessels     

 

                  

Gundlingen, 

Mindelheim 

and Antenna 

swords 

                      

The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is 

represented by 1 shape. The black circles indicate possible extra-regional connections. Core region: Dürrnberg (Dür); Pottenbrunn (Pott); 

Mannersdorf (Mann); Oberndorf (Obe); Münsingen-Rain (MR); Basel-Gasfabrik (BG); Hunsrück-Eifel (HünE); Baden-Württemberg (BadW). 

Expansion region: Radovesice (Rad); Kutná-Hora-Karlov (KHK); Manětín-Hrádek (Man); Rudston Makeshift (Rud); Wetwang Slack (WWS); 

Bobigny (Bob); Champagne (Ch); Marne (Mar); Alpanseque (Alp); Pişcolt (Pi); Monte Bibele (Bib); Monte Vecchio (Vec); Bucany (Buc) and 

Pilismarot-Basaharc (Pil). 
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Table 5 continued. Intra-and-extra-regional distribution of artefact types during the La Tène period. 

Artefact type Intra-regional (core) 

                      Dür, Pot,Mann,Obe,MR, BG,HünE, BadW  

Intra- regional (expansion) 

Rad,KHK,Man, Rud,WWS, Bob, Ch, Mar,Alp, Pis, Bib,Vec, Buc, Pil  

Antennae 

daggers 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ornaments of 

false-filigree 

                      

Mediterranean 

imports 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material type                       

The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is 

represented by 1 shape. The black circles indicate possible extra-regional connections. Core region: Dürrnberg (Dür); Pottenbrunn (Pott); 

Mannersdorf (Mann); Oberndorf (Obe); Münsingen-Rain (MR); Basel-Gasfabrik (BG); Hunsrück-Eifel (HünE); Baden-Württemberg (BadW). 

Expansion region: Radovesice (Rad); Kutná-Hora-Karlov (KHK); Manětín-Hrádek (Man); Rudston Makeshift (Rud); Wetwang Slack (WWS); 

Bobigny (Bob); Champagne (Ch); Marne (Mar); Alpanseque (Alp); Pişcolt (Pi); Monte Bibele (Bib); Monte Vecchio (Vec); Bucany (Buc) and 

Pilismarot-Basaharc (Pil). 
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This technique involved carving designs into the surface of an object, filling them 

with powdered material, such as glass or coral, and firing until this material melted into a 

cohesive enamel structure (Champion, 1976; Giles, 2007; Harding, 2004, 2007; Laing and 

Laing, 1992; Stead, 1991a). The distributions of the above art styles throughout the La Tène 

period overall are indicated in Table 6. Although some variations and dispersals in style and 

technique have been typologically described, the majority have not been comprehensive. 

Those that have been described are common in several regions including Austria 

(Dürrnberg, Pottenbrunn, Mannersdorf, and Oberndorf); Switzerland (Münsingen-Rain and 

Basel-Gasfabrik); Germany (Hunsrück-Eifel, western Germany, and Baden-Württemberg, 

southwest Germany); the Czech Republic (Radovesice I and II, Kutná-Hora-Karlov and 

Manětín-Hrádek); east Yorkshire (Britain) (Rudston Makeshift and Wetwang Slack); France 

(Bobigny, the Champagne and Marne regions, northeastern France); Italy (Monte Bibele and 

Monte Vecchio, Bologna); Slovakia (Bucany) and Hungary (Pilismarot-Basaharc) (Bataille et 

al., 2014; Biel, 1991; Bergmann, 2015; Bujan, 1991; Bujna and Romsauer, 1983; Champion, 

1976; Charpy, 1991; Cunliffe, 1991, 2009; Duval, 1991; Harding, 2007; Hellebrandt and 

Hellebrandt, 1999; Kimmig, 1991; Laing and Laing 1992; Moosleitner et al., 1974; Németi, 

1988, 1992, 1993; Neugebauer, 1991; Pauli, 1978; Penninger, 1972; Ramsl, 2011a, 2015; 

Ramsl et al., 2011b; Soudska, 1991, 1994; Stead, 1965b, 1991a; Venclová  et al., 2013a, b). 

The following abbreviations are used to designate the above regions in Table 6: Dürrnberg 

(Dür); Pottenbrunn (Pott); Mannersdorf (Mann); Oberndorf (Obe); Münsingen-Rain (MR); 

Basel-Gasfabrik (BG); Hunsrück-Eifel (HünE); Baden-Württemberg (BadW); Radovesice 

(Rad); Kutná-Hora-Karlov (KHK); Manětín-Hrádek (Man); Rudston Makeshift (Rud); 

Wetwang Slack (WWS); Bobigny (Bob); Champagne (Ch); Marne (Mar); Monte Bibele 

(Bib); Bucany (Buc); Alpanseque (Alp); and Pilismarot-Basaharc (Pil).   

 

Figure 13. Lotus motif. Arrows indicate sequential changes of the design (Adapted from 

Walters, 1893, Figure 2. Original scale not provided). 

 

 

 

https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=de&sp=nmt4&u=https://zenon.dainst.org/Author/Home%3Fauthor%3DN%25C3%25A9meti%252C%2BIoan&xid=25657,15700022,15700186,15700190,15700256,15700259,15700262,15700265,15700271,15700280,15700283&usg=ALkJrhjz0SkldmpLuxKOYfohvvFIn_rktA
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Figure 14. Palmette (Adapted from Walters, 1893, Figure 4. Original scale not provided). 

 

 

 

 

Figure 15. Triskeles (Jacobsthal, 1944, Figure 5. Original scale not provided). 
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Figure 16. S shapes and/or scroll motifs (Jacobsthal, 1944, Figure 6. Original scale not 

provided). 

 

 

Figure 17. Dragon pairs on scabbards. Type A, Taliándörögd, Hungary; B, Type II, 

Münsingen, Switzerland; C, Type III, La Tène, Switzerland (Adapted from de Navarro, 1972; 

Stead 1984, Figure 5. Original scales not provided). 

 

 

 

Additional connections are indicated by the documented burial practices throughout 

the above regions. Diachronic changes are evident during some transition periods. During the 

LTB/LTC transition, wealthy burials with tumuli decrease in frequency and flat inhumation 
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graves increase (Cunliffe, 1997; Collis, 2003; Stead, 1979, 1991a; Thomas, 2003). In the 

LTC/LTD transition, cremation and flat inhumation burials occur contemporaneously 

(Cunliffe, 1991, 1997; Collis, 2003). During the La Tène period overall, burial practices are 

similar but subtle differences in position and orientation (e.g., north-south versus east-west 

and extended versus flexed) are observed (Cunliffe, 1984, 1991, 1997; Collis, 2003; Jones, 

1996; Koch, 2006; Stead, 1991a; Smith, 2012; Wells, 1998). However, a greater degree of 

variation, similar to those in the Hallstatt period, is evident in the vehicle burials (Hawkes, 

1960; Jay et al., 2012, 2013; Stead, 1965b, 1979, 1986; 1991; Stead and Rigby, 1999; 

Tiefengraber and Wiltschke-Schrotta, 2012; Van Endert, 1987; Wells, 1995a, b, c). The 

symbolic interpretation of these burials is still debated. Previous studies have suggested these 

burials are indications of status or represent a specific social class, e.g., warriors (Anthoons, 

2011; Jay et al., 2012, 2013; Jay and Montgomery, 2020; Tiefengraber and Wiltschke-

Schrotta, 2012). 

The distributions of vehicle burials during the La Tène period are indicated in Table 7 

(Biel, 1981; Berthelier-Ajot, 1991; Briggs, 2014; Claude, 2003; Diepeveen-Jansen, 2007; 

Furger-Gunti, 1991; Giles, 2012; Joffroy, 1954, 1961, 1962). Like in the Hallstatt period, 

these differences may also be temporal as the above burials are dated by the type and/or 

design of associated artefacts (Collis, 2003; Cunliffe, 1979, 1997; James, 2005; Kruta, 1991; 

Wells, 1998). Those regions which have notable documented variations in vehicle burials 

include Austria (Dürrnberg and Saltzwelten Hallein), Germany (Hochdorf, southern 

Germany), east Yorkshire (Britain) (Wetwang Slack, Kirkburn and Garton Station) and 

France (Somme-Bionne, Vix, Attichy, Saint Germain-en-Laye, and the Champagne and 

Marne regions) (Figures 18 and 19) (Biel, 1981; Berthelier-Ajot, 1991; Briggs, 2014; Claude, 

2003; Collis, 1975, 1991, 2003, 2004; Diepeveen-Jansen, 2007; Dupuis, 1940; Furger-Gunti, 

1991; Giles, 2012; Joffroy, 1954, 1961, 1962; Stead, 1991a; Stillingfleet, 1846). The 

following abbreviations will be used to designate those regions in Table 7. Dürrnberg (Dür); 

Saltzwelten Hallein (SH); Hochdorf (Hoch); Wetwang Slack (WWS); Kirkburn (Kir); Garton 

Station (GS); Somme-Bionne (SB); Champagne (Ch); Marne (Mar); Saint Germain-en-Laye 

(SGL); Attichy (At) and Vix (Vix). The vehicle burials from the HaD/LTA transition are also 

included in Table 7 as it is unknown which period they are dated (Bergmann, 2015; Brewster, 

1971, 1980; Biel, 1981; Briggs, 2014; Claude, 2003; Chadwick, 1970; Dent, 1984, 1985; 

Fitzpatrick, 1984, 2007; Stead, 1991a; Stead and Rigby, 1999; Thorsten et al., 2017; Van 

Endert, 1987; Wells, 1995a, b, c).   
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Although the differences and dispersals of artefacts, art style, and burial practices 

have been documented during the Hallstatt and La Tène periods, their descriptions are vague, 

distributions are not often elaborated upon and they are regularly described as belonging to 

the period overall (Collis, 2003; Koch, 2006; Kruta, 1991). Some studies have attempted to 

provide comprehensive descriptions and dates to a specific period, e.g., LTA, although they 

are not common (Bondini et al., 2004; Bujna and Romsauer, 1983; Haffner, 1976; 

Hellebrandt, 1999; Joachim, 1968). In numerous previous studies, the observed differences 

are often reported on a case-by-case basis with little attempt at regional comparison (Bondini 

et al., 2004; Bujna and Romsauer, 1983; Cunliffe, 2009; Haffner, 1976; Hellebrandt, 1999; 

Joachim, 1968). Those that have attempted regional comparisons often only describe overall 

similarities which have been used to link broad geographic regions (Almássy, 2009; Bretz-

Mahler, 1971; Bondini et al., 2004; Brasili and Belcastro, 2003; Bujna and Romsauer, 1983; 

Della et al., 2003; Dent, 1982, 1984, 1995; Haffner, 1976; Hellebrandt, 1999; Marion, 2008, 

2009; Soudska, 1994; Thorsten et al., 2017; Vitali, 2003; Vitali, 2008; Vitali and Lejars, 

2010). 

Therefore, it is difficult to determine whether the observed diversity represents 

regional copies of trade and/or prestige items, in-situ change through time or migration 

events. Further, as these comparisons are often based on one, or a limited number of artefacts, 

it is difficult to determine if these broad comparisons adequately represent actual regional 

similarities in material culture (Bondini et al., 2004; Brasili and Belcastro, 2003; Bujna and 

Romsauer, 1983; Cunliffe, 2018; Della et al., 2003; Dent, 1982, 1984; Haffner, 1976; 

Hellebrandt, 1999; Hellebrandt and Hellebrandt, 1990; Joachim, 1968; Marion, 2008, 2009; 

Möllers et al., 2007; Soudska, 1994; Thorsten et al., 2017; Vitali, 2003; Vitali, 2008; Vitali 

and Lejars, 2010). It is also difficult to assess whether they are the result of the vague artefact 

descriptions or are based on presumed cultural similarities. Although the archaeological 

evidence suggests diverse intra-and-extra-regional contact, the nature of the associated 

descriptions make comprehensive comparisons difficult based on this evidence alone. 

However, despite this limitation, the observed diversity in artefacts, burial practice, and art 

styles indicates that connections during this period were likely more complex than previously 

presumed. Therefore, trade, migration, cultural diffusion and/or assimilation cannot be ruled 

out as possible mechanisms for the spread of the Hallstatt and La Tène material cultures.  
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Table 6. Intra-and-extra-regional distribution of art styles during the La Tène period. 

Art styles  Intra-regional (core) 

                      Dür,Pot,Mann,Obe, MR, BG, HünE, BadW 

Intra- regional (expansion) 

Rad, KHK,Man, Rud,WWS,Bob, Ch, Mar, Bib, Buc, Alp, Pil   

Palmette    

 

                  

Lotus     

 

      

 

          

Triskeles   

 

            

 

      

S shapes/ scroll 

motifs 

                    

Animal and 

plant forms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inscribed and 

intricate 

spirals  

                    

Dragon pairs  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Naturalist 

representations 

                    

The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is 

represented by 1 shape. The black circles indicate possible extra-regional connections. Core regions: Dürrnberg (Dür); Pottenbrunn (Pott); 

Mannersdorf (Mann); Oberndorf (Obe); Münsingen-Rain (MR); Basel-Gasfabrik (BG); Hunsrück-Eifel (HünE); Baden-Württemberg (BadW). 

Expansion region: Radovesice (Rad); Kutná-Hora-Karlov (KHK); Manětín-Hrádek (Man); Rudston Makeshift (Rud); Wetwang Slack (WWS); 

Bobigny (Bob); Champagne (Ch); Marne (Mar); Monte Bibele (Bib); Bucany (Buc); Alpanseque (Alp); and Pilismarot-Basaharc (Pil). 
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Figure 18. Somme-Bionne chariot burial. (colloque d'archéologie, 1897. Original scale not 

provided). 

 

Figure 19. Saint Germain-en-Laye chariot burial (Gastebois & Fourdrignier, 1877. Original 

scale not provided). 
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Table 7. Intra-and-extra-regional distribution of chariot and/or cart burials during the La Tène period. 

Chariot burial 

type 

Intra-regional (core) 

                      Dür                         SH                         Hoch 

 

Intra- regional (expansion) 

WWS      Kir    GS     SB         Ch    Mar      SGL      At    Vix 

Two-wheeled 

chariot 

   

 

          

Four-wheeled 

Cart 

  

 

      

 

 

 

 

 

 

 

 

 

Wheels place on 

grave floor 

            

Wheels 

removed and 

placed against 

grave wall 

            

Wheels placed 

into inset holes 

in grave floor 

   

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vehicle buried 

whole and/or 

used as a 

makeshift coffin 

        

 

    

The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is represented 

by 1 shape. The black circles indicate possible extra-regional connections. Core regions: Dürrnberg (Dür); Saltzwelten Hallein (SH); Hochdorf 

(Hoch). Expansion regions: Wetwang Slack (WWS); Kirkburn (Kir); Garton Station (GS); Somme-Bionne (SB); Champagne (Ch); Marne 

(Mar); Saint Germain-en-Laye (SGL); Attichy (At) and Vix (Vix).
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Table 7 continued. Intra-and-extra-regional distribution of chariot and/or cart burials during the La Tène period. 

Chariot burial 

type 

Intra-regional (core) 

                      Dür                         SH                         Hoch 

 

Intra- regional (expansion) 

WWS       Kir    GS     SB         Ch    Mar    SGL      At    Vix 

Vehicle 

dismantled and 

used as a 

makeshift coffin  

            

Vehicle placed 

in grave (not 

used as a 

makeshift 

coffin) 

            

The differently coloured shapes indicate intra-regional connections within the core and expansion regions. Each geographic region is represented 

by 1shape. The black circles indicate possible extra-regional connections. Core regions: Dürrnberg (Dür); Saltzwelten Hallein (SH); Hochdorf 

(Hoch). Expansion regions: Wetwang Slack (WWS); Kirkburn (Kir); Garton Station (GS); Somme-Bionne (SB); Champagne (Ch); Marne 

(Mar); Saint Germain-en-Laye (SGL); Attichy (At) and Vix (Vix).
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However, trade has not been the focus of much research and is frequently only 

described in relation to Mediterranean imports. Consequently, the presence of diverse and 

inter-connected trade routes may have been more common and intricate than previously 

believed. Thus, trade and differential access to trade items as a mechanism for the spread of 

these cultures cannot be ruled out.  

Associations between archaeological culture and ethnicity 

 

The archaeological study of ethnicity became a focus of research with the advent of 

settlement archaeology, a theory of culture developed by Gustaf Kossinna (Bandović, 2012; 

Daniel, 1950, 1978; Knapp, 2001; Renfrew, 1993, 1994a, b; Trigger, 2006). The basis of 

settlement archaeology is that material culture could be grouped together by style and 

location in order to trace past cultures, ethnicities and population groups (Barth, 1969, 1998, 

2010; Jones, 1997; Renfrew, 1993, 1994a, b; Trigger, 2006). The resulting material culture 

groups could be used to distinguish one population from another and tell when and where 

they came from (Jones, 1997; Knapp, 2001; Renfrew, 1993, 1994a, b). Settlement 

archaeology has been used to create a link between current populations and those in the past 

(Knapp, 2001; Jones, 1997). With the advent of the culture history paradigm, popularized by 

V Gordon Childe, in the late 19th and early 20th centuries, a systematic framework for the 

classification of cultures in space and time was established (Jones, 1997; Trigger, 2006). This 

approach provided the dominant framework for archaeological analysis throughout most of 

the 20th century (Barth, 1969, 1998, 2010; Childe, 1956; Jones, 1997; Trigger, 2006). Childe 

adopted Kossinna’s notion that artefacts if analysed by spatial context within a temporal 

framework could enable the classification of past cultures and ethnicities; as well as 

facilitating the creation of archaeological cultures (Bandović, 2012; Childe, 1956; Jones, 

1997; Renfrew, 1993, 1994a, b; Trigger, 1980). These cultures have been interpreted to be 

related in some way to ethnicity and kinship ties (Barth, 1969, 1998, 2010; Fowler, 2004; 

Jones, 1997; Knapp, 2001; Renfrew, 1993, 1994a, b; Trigger, 2006). 

 One of the main assumptions underlying the culture history approach is that bounded 

cultural entities, derived from the archaeological record, correlate with specific populations 

or ethnic groups (Chapman, 1993; Derks and Roymans, 2009; Francis, 1947; Jones, 1997; 

Renfrew, 1994a, b). Thus, the existence of a group is, in turn, predicted based on the 

existence of a particular archaeological culture. Their presence and distribution subsequently 
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became the main criteria used to delineate and map past cultures, populations, and ethnic 

groups and, to create links between these groups to the modern era (Fowler, 2004; Jones, 

1997; Renfrew, 1994a, b). These typologies have been created by modern scholars and not by 

the people to which they are ascribed. Therefore, perceptions of relationships in the past may 

reflect our modern perceptions of ethnicity and may represent an ascribed modern construct 

(Fowler, 2004; Jones, 1997; Renfrew, 1994a, b). Under this approach, artefact style was 

interpreted as a marker for chronological stages however, this could also indicate cultural and 

ethnic changes within a region (Eriksen, 1992, 1993; Francis, 1947; Jones, 1997; Knapp, 

2001; Renfrew, 1993; Trigger, 2006). Thus, the study of material culture, when studied by 

artefact style was interpreted to create and define populations and is linked to ethnicities in 

the past (Barth, 1969; Fowler, 2004; Jones, 1997; Renfrew, 1993, 1994a, b; Trigger, 2006). 

With the advent of processual and post-processual archaeology, the interpretations of 

culture shifted and it came to be viewed as fluid (Jones, 1997; Renfrew, 1993, 1994a, b; 

Trigger, 2006). Under these schools of thought, it was viewed following the so-called aquatic 

view of culture. This approach was put forward by Binford (1962), under which culture was 

interpreted as undergoing minor changes and variations through time (Barth, 1969, 1998, 

2010; Jones, 1997; Trigger, 2006). Ethnicity was perceived as an active part of the social 

identity of a population, and cultural boundaries had to be constantly maintained in order to 

distinguish one group from another. Although these approaches rejected culture history 

interpretations of past populations as nothing more than an end-product in themselves, they 

are still largely dependent upon material evidence that has been described and classified on 

the basis of what is an essentially a culture-historical epistemology (Barth, 1998, 2010; Jones, 

1997; Knapp, 2001; Renfrew, 1993, 1994a, b; Trigger, 2006). An archaeological culture can 

have diverse origins and unifying features that give it apparent coherence, as archaeologically 

recognized and acknowledged, and may be the result of an array of broad processes, such as 

exchange networks, symbolic change, marriage practices (e.g., exogamy) or adoption of 

farming by hunter-gatherer groups (Cohen, 1978; Francis, 1947; Fowler, 2004; Renfrew, 

1993, 1994a, b; Trigger, 2006). All of the above combine to create interlocking patterns of 

variation subsequently resulting in gradual rather than discrete spatial patterns and 

distribution of artefacts. Thus, archaeological cultures are difficult to correlate with ethnic 

groups as the spatial variation in archaeological material often is produced through 

interactions among diverse social processes (Cohen, 1978; Francis, 1947; Fowler, 2004; 

Renfrew, 1993, 1994a, b; Trigger, 2006). Artefacts often produce overlapping rather than 
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discrete patterns of geographic distribution; ethnic and tribal entities may themselves be 

historical products of cultural contacts and interaction (Barth, 1998, 2010; Derks and 

Roymans, 2009; Eriksen, 1993; Jones, 1997; Knapp, 2001; Shennan, 1989).  

Widespread and simultaneous changes in artefacts are therefore often interpreted as 

evidence for the spread of new populations with specific cultural traditions (Hodder, 1982; 

Jones, 1997; Knapp, 2001; Renfrew, 1993, 1994a, b). A high degree of homogeneity in 

material culture is regarded as the product of regular contact and interaction, whereas 

discontinuities in its distribution are assumed to be the result of social and/or physical 

distance. Gradual change has been attributed to internal drift in the prescribed cultural norms 

of particular groups, whereas more rapid change may be related to external influences, such 

as diffusion resulting from cultural contact, or the succession of one cultural group by another 

as a result of migration and/or conquest (Barth, 1969, 1998, 2010; Jones, 1997; Trigger, 

2006; Wells, 2014). However, ethnic groups may also possess social and cultural 

commonalities across physical, genetic and/or linguistic boundaries and exhibit considerable 

variation within their respective populations (Eisenmann et al., 2018; Kossina et al., 2018; 

Jones, 1997; Renfrew, 1993; Riede et al., 2019). 

The extent of contact along these boundaries depends on the cultural transformations 

brought about through interaction and the nature of relations between groups (Bourdieu, 

1977; Comaroff and Comaroff, 1992; Jones, 1997; Renfrew, 1993, 1994a, b). Thus, 

manifestations of ethnicity are the product of an ongoing process involving multiple 

objectifications of cultural differences and the subsequent internalization of those differences 

within the shared dispositions of the habitus. This is defined as the way in which individuals 

perceive the social world around them and react to it, which is shared by people with similar 

backgrounds (i.e., ethnicity) (Jones, 1997; Renfrew, 1993, 1994a, b; Trigger, 2006). Such 

processes may lead to variations in associations between constructions of ethnic identity, in 

terms of broader idioms of cultural differences, objectified cultural difference, and the overall 

cultural practices and historical experiences generated in any given social context (Jones, 

1997; Renfrew, 1993, 1994a, b; Trigger, 2006). The extent to which ethnicity is embedded in 

pre-existing cultural entities represented by a shared habitus is highly variable. Consequently, 

the cultural content of ethnicity may vary fundamentally and qualitatively in different 

contexts (Barth, 1969, 2010; Eriksen, 1992, 1993; Jones, 1997; Renfrew, 1993, 1994a, b). 

Therefore, there is unlikely to be a one to one relationship between expressions of a particular 

ethnic identity and the language and cultural practices associated with a particular group. 
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However, as there is no working definition of ethnicity, it difficult to differentiate the cultural 

and ethnic variations within and among groups.  

Ethnicity can be loosely defined as a set of psychological and social phenomena 

which form under specific circumstances in order to create a group which is distinct from 

other surrounding groups (Barth, 1969; De Vos and Romanucci-Ross, 1975; Jones, 1997; 

Renfrew, 1994a, b; Trigger, 2006). These phenomena will manifest themselves in several 

ways, including burial practices and material culture. An ethnic group must internally 

recognize itself as distinct and must be externally recognized as a distinct group by others 

(Barth, 1969, 1998, 2010; Jones, 1997; Trigger, 2006). Thus, ethnic groups are fluid self-

defining systems which are not regionally bounded. Ethnicity must be distinguished from 

mere spatial continuity and discontinuity in that it refers to self-conscious identification with 

a particular group of people (De Vos and Romanucci-Ross, 1975; Jones, 1997; Shennan, 

1989). Yet in the process of social interaction, both real and assumed, cultural differences are 

articulated in the maintenance of ethnic boundaries (Barth 1998, 2010; Jones, 1997; Renfrew, 

1993, 1994a, b). The concept of ethnicity results in numerous transient realizations of social 

differences within diverse contexts and involves the repeated production of distinctive 

material culture(s) (Cohen, 1978; Jones, 1997; Renfrew, 1993, 1994a, b; Shennan, 1989). The 

artefacts involved in constructing ethnic identity may vary in different social contexts and in 

relation to different forms and scales of social interaction (Jones, 1997; Shennan, 1989). 

Further, patterns in the production of material culture associated with the same ethnic identity 

may vary qualitatively as well as quantitatively in different contexts. Thus, a complex pattern 

of overlapping distributions of artefacts resulting from the transformation of ethnicity in 

different social contexts, rather than discrete uniform cultural entities may be visible 

archaeologically (Barth, 1969, 1998, 2010; Jones, 1997; Patterson, 1975; Renfrew, 1993, 

1994a, b; Shennan, 1989; Trigger, 2006).  

Ethnic identity has been constructed based on socio-structural relations and shared 

cultural practices that exist independently of the perceptions of the populations concerned. 

This identity can also be created through the subjective processes of perception and derived 

social organization of individuals themselves (See page 1) (Bentley, 1987; Eriksen, 1992; 

Jones, 1997; Renfrew, 1993, 1994a, b; Shennan, 1989). Through the process of social 

interaction, both real and assumed cultural differences are articulated in the maintenance of 

cultural boundaries (Barth, 1998, 2010; Jones, 1997; Patterson 1975; Renfrew, 1993, 1994a, 

b). Although it is still presumed that there is a relationship between culture and ethnicity, it is 
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generally accepted that there is rarely a straightforward correlation (Blu, 1982; Jones, 1997; 

Renfrew, 1993, 1994a, b). The assumption that bounded cultural entities, and archaeological 

cultures, correlate with specific ethnic groups has been critiqued based on their correlation 

with archaeological cultures (Jones, 1997; Shennan, 1989; Trigger, 2006).   

  We cannot rely on artefacts as markers of identity, as they can pass from one culture 

to another. One group may copy those of another, but such copies are produced in terms of 

different conceptions of cultural relevance which express themselves as different technical 

approaches, or Chaîne opératoire (Barth, 1969, 1998, 2010; Clark, 1978; Fernández-Götz, 

2014a, b, 2015; Jones, 1997; Renfrew, 1993, 1994a, b; Van Esterick, 1985). What may 

appear on the surface to be a widespread cultural identity in relation to a ubiquitous artefact 

form may represent more complex tribal relationships if how the artefact is situated within 

the Chaîne opératoire of different groups or populations is considered (Barth, 1969, 1998; 

Fernández-Götz, 2014a; Jones, 1997; Renfrew, 1993, 1994a, b; Trigger, 2006). Moreover, an 

archaeological culture can be regionally diverse due to intra-and/or-extra-regional contact or 

differential expressions of individual identity within a larger ascribed ethnicity. As ethnicity 

has been used prolifically to refer to diverse socio-cultural phenomena, and has no 

universally accepted definition, its application to archaeologically derived ethnic groups, such 

as the Celts, is problematic. 

The modern concept of the Celts was constructed in the 18th and 19th centuries AD 

and is intrinsically linked with the externally imposed ethnonyms, ‘Kelto’, and ‘Galli’. The 

disputed origin and meaning of these terms calls into question their utility as ethnic identifiers 

(See page 1) (Collis, 2003; Cunliffe, 1997; Dietler, 1994; Fitzpatrick, 1996; James, 2005). 

Their origin, in Greek and Latin respectively, or whether they were Celtic terms is uncertain 

(Collis, 2003; Cunliffe, 1997; Dietler, 1994). Keltoi is believed to be either of Celtic or Greek 

origin, possibly meaning the “tall ones” (Koch, 2003, 2006; Mountain, 1998; Rankin, 1998; 

Sjögren, 1938). The etymology of the Roman term Galli is also ambiguous, possibly meaning 

“to be able to”, “to gain control of”, “stranger”, “enemy” or even “enemy of the state”, and 

has alternatively been described as an ethnic or tribal name (Koch, 2003, 2006, 2009a, b, 

2013; Helmut et al., 2001; Stempel, 2008). The pejorative and descriptive nature of these 

terms suggests that they were applied as exonyms (externally derived ethnic identities) rather 

than as self-identifying ethnic terms (Collis, 2003; Cunliffe, 1997; Dietler, 1994; Fernández-

Götz, 2014a, b, 2015). Further, they were used by the Greeks and Romans interchangeably 

for people who spoke Celtic languages and possessed similar material culture, as the terms 



  

 

 

 59  

 

 

are used today (Megaw and Megaw, 1995b, 1996; Moore, 2012). The inclusion of all groups 

possessing the Hallstatt and La Tène cultures under the term Celtic, without any knowledge 

of their underlying biological relationships, is derived from archaeological, linguistic, artistic 

and classical lines of evidence (Collis, 2003; Cunliffe, 1997; Dietler, 1994; James, 2005; 

Koch, 2006; Megaw and Megaw, 1995b, 1996). Therefore, their associations are superficial 

at best. The Celts are not believed to represent a cohesive population; rather, they are viewed 

as a loose association of tribes (Collis, 2003; Cunliffe, 1997; Dietler, 1994; Fernández-Götz, 

2014a, b, 2015; Koch, 2003, 2006; Megaw and Megaw, 1995b, 1996). However, these 

disparate tribes are still referred to as Celtic based on the above lines of evidence. This 

stereotype while simplified, still captures popular imagination.  

Modern Celtic scholarship regards the inhabitants of Central Europe as if they were, 

to some degree, representative of a single population and/or ethnicity. However, the 

archaeological evidence is at odds with this perspective (Cunliffe, 1997, 2018; Dietler, 1994; 

Fitzpatrick, 1996; Karl, 2002, 2004, 2010; Koch, 2003, 2006). Although similar artefacts are 

present throughout the areas that Celtic groups are believed to have inhabited, the presence of 

regional diversity renders their description as an ethnic group difficult. Further, previous 

studies have indicated the presence of biologically distinct populations within groups 

possessing Hallstatt and La Tène artefacts, e.g., specifically the Hallstatt D (Austria) and 

Münsingen-Rain (Switzerland) populations (Anctil, 2016; Scheeres, 2014a; Scheeres et al., 

2013b, 2014b). However, the presence of diverse ethnic groups within the regions possessing 

these artefacts has not been the focus of much research (Anctil, 2016; Scheeres, 2014a; 

Scheeres et al., 2013b, 2014b). Therefore, the Hallstatt and La Tène material cultures may not 

necessarily represent a historical Celtic ethnicity. What they do represent are physical 

phenomena that existed in time and space and have been interpreted to represent this 

ethnicity. Consequently, the groups inhabiting Central Europe cannot be reliably described as 

Celtic, as it cannot be determined whether they possessed all the cultural traits that originally 

defined the Celts, nor can these traits be defined.  

There could also be fluctuations in how this ethnicity was expressed throughout the 

diverse regions to which it spread (Dietler, 1994; Knapp, 2001; Megaw and Megaw, 1995b, 

1996). The groups living in different regions of Gaul, a region encompassing France, 

Belgium, Luxembourg, Switzerland, the Netherlands, some parts of northern Italy, and 

Germany on the west bank of the Rhine, may have called themselves Celtic, but this does not 

mean they expressed their ethnic identity exactly the same (Arnold, 2006; Arnold and 
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Murray, 2003; Collis, 2003; Cunliffe, 2018; Dietler, 1994; Haselgrove, 1982, 1987; Knapp, 

2001; Megaw and Megaw, 1995b, 1996; Roymans, 2009). Groups in different regions would 

likely have been influenced by differing internal and external stimuli, and small changes in 

how their ethnicities were expressed would likely be evident (Arnold, 1990, 1995, 2006; 

Arnold and Murray, 2003; Dietler, 1994; Drinkwater, 2014; Jones, 1997; Megaw and 

Megaw, 1995b, 1996). Further, ethnic identity is difficult to correlate with any specific 

artefact or material culture (Jones, 1997; Knapp, 2001; Renfrew, 1993, 1994a, b; Trigger, 

2006). Certain artefacts and burial practices are assumed to be Celtic (e.g., torcs, fibulae and 

square barrows) and their presence alone has been used to describe a population as Celtic, 

with no logical justification as to why one artefact type is ethnically significant and another is 

not (Arnold, 1990, 1995, 2006; Arnold and Murray, 2003; Collis, 2003; Cunliffe, 2018; 

Dietler, 1994; Hodson, 1964; Koch, 2003, 2006; Ruiz Zapatero 1990, 1993, 1996; Shennan, 

1989). For example, the presence of a La Tène fibulae in a burial does not necessarily 

designate the individual as a Celt. The design and manufacturing technique may represent a 

specific ethnicity or population, but it cannot be determined whether the object was in fact 

Celtic (Arnold, 1990, 1995, 2006; Arnold and Murray, 2003; Collis, 2003; Dietler, 1994; 

Megaw and Megaw, 1995b, 1996). It is evident, then, that the notion of a Celtic Iron Age 

Europe has developed in an almost ad hoc manner (Cunliffe, 1979, 1988; Dietler, 1994; 

Fitzpatrick, 1993; Megaw and Megaw, 1995b,1996; Wells, 1980, 1984; Woolf, 1993). The 

Celtic ethnic designation is geographical as much as it is cultural, and it does not necessarily 

indicate that these people spoke similar languages or called themselves Celtic. The theoretical 

basis of a Celtic Iron Age Europe is weak. However, the correlation between the Celts and 

the Iron Age is still prevalent within the field of Celtic studies. As is the La Tène=Celtic 

paradigm despite the regional diversity indicated by the archaeological evidence which does 

not support the application of this paradigm to diverse populations possessing Celtic artefacts 

or a presumed Celtic ethnicity.  
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Chapter 3: Celtic migration  

 

Migration and mobility among and within populations facilitate cultural change, 

which may be visible in the archaeological record (Anthony, 1990, 1992, 1997; Baker et al., 

2015). However, as these mechanisms represent different social processes, they will affect 

cultures differently. Consequently, it is necessary to distinguish between them. Migration is 

commonly defined as the dispersal of communities, groups or individuals that involves a 

change of geographic location over small or large distances with the intention of permanently 

relocating (Arnold, 2005; Arnold and Murray, 2003; Baker and Tsuda, 2015; Brumeister, 

2000; Härke, 1998). Conversely, mobility is defined as the movement of groups or 

individuals with the intent of returning to their place of departure (Arnold, 2005; Brumeister, 

2000; Ramsl, 2003). However, these processes are not mutually exclusive. Archaeological 

evidence of migration has been the focus of numerous studies and has been determined 

through examinations of artefacts and their temporal distributions (Anthony, 1990, 1997; 

Arnold, 2005; Arnold and Murray, 2003; Baker and Tsuda, 2015; Brumeister, 2000; 

Chapman, 1997; Fernández-Götz, 2020; Hakenbeck, 2008; Karl, 2005; Knipper et al., 2014, 

2017; Ramsl, 2003). Migration of groups or individuals may have an observable impact on 

the material culture of the population into which they move. However, the transfer of 

artefacts through trade, cultural diffusion and/or assimilation may also result in observable 

differences, which may be differentially expressed (Anthony, 1990; Arnold, 2005; Chapman, 

1997; Cunliffe, 1991; Fernández-Götz, 2020; Shennan, 1974). Some cultural elements, such 

as burial practices, may be more susceptible to change as they communicate specific 

symbolic meanings which may be more prone to internal and external influence (See pages 

19, 32 and 54) (Anthony, 1990; Anthoons, 2007; Arnold, 2005; Chapman, 1997; Fernández-

Götz, 2013, 2014a, b, 2015, 2020; Härke, 1998; Prien, 2005).  

Changes in art styles, artefact manufacture and burial practices may indicate the 

immigration of a different cultural group into an indigenous community. However, 

population movements have often been seen as a main driving force of cultural change. 

Consequently, simplistic models for diachronic changes in material culture were common 

during the late 19th and early 20th centuries (Anthony, 1990; Anthoons, 2007; Arnold, 2005; 

Fernández-Götz, 2020; Härke, 1998; Prien, 2005; Trigger, 2006). Criticisms of previous 

migrationist models have focused on the oversimplification of numerous traditional 

interpretations of cultural change. These critiques have indicated the need to include a 
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theoretical understanding of the complexity of the migratory process, its mechanisms and 

alternatives, such as trade, in-situ change, external influence, cultural assimilation, the 

presence of out of group slaves and/or captives, and how these factors contribute to the 

spread and diversification of material culture and the development of new designs or ways of 

thinking (Cameron, 2008, 2011, 2013, 2016; Larsson, 1994; Lenski, 2008, 2014; Osborn, 

1994; Rothman, 2015). Further, migrations may not have been unidirectional, rather they may 

have been accompanied by waves of return migration, or migrants to and from their 

respective homelands (Anthony, 1990; Burmeister, 2000). It is also necessary to consider the 

relationship between migrants and the inhabitants of a specific region; as well as whether 

there is evidence of cultural hybridisation, assimilation, interaction, or the formation of new 

separate communities and/or ethnicities (see pages 1 and 54).  

Current approaches to mobility and migration analyses are often accompanied by a 

theoretical understanding of the above processes and their interrelationships and complexity 

(e.g., Jay and Montgomery, 2020; Jay et al., 2012; Jay et al., 2013; Jay et al., 2019; 

Montgomery, 2002; Montgomery et al., 2007; Montgomery, 2017; Scheeres, 2014a; Scheeres 

et al., 2014b; Scheeres et al., 2013b; Moghaddam et al., 2014). These approaches have also 

attempted to move beyond the associations between ethnicity, ancestry, identity and material 

culture. Thus, representing a fundamental shift compared to the essentialist views that had 

characterized the earlier archaeological conceptualisations of culture and mobility studies 

(e.g., Fernández-Götz, 2020; Jay and Montgomery, 2020; Jay et al., 2012; Jay et al., 2013; 

Jay et al., 2019; Moghaddam et al., 2014; Montgomery, 2002; Montgomery et al., 2007; 

Montgomery, 2017; Scheeres, 2014a; Scheeres et al., 2014b; Scheeres et al., 2013b; Trigger, 

2006). While recent archaeological approaches to mobility have surpassed the 

oversimplification and essentialist views common to past studies (Jay and Montgomery, 

2020; Jay et al., 2012; Jay et al., 2013; Jay et al., 2019; Montgomery, 2002; Montgomery et 

al., 2007; Montgomery, 2017; Scheeres, 2014a; Scheeres et al., 2014b; Scheeres et al., 2013b; 

Moghaddam et al., 2014), ethnographic descriptions and written sources are still commonly 

used to reconstruct mobility among past populations and to provide additional evidence for 

the presence of migrants. Although Greek and Roman written sources may provide additional 

evidence for migration, mobility, and ethnic identity in Iron Age societies, some of these 

sources were written by outsiders that described the “foreign” populations of Iron Age 

Europe and Britain (Arnold, 2005; Dietler, 1994; Hanford, 1982; Hauschild, 2010b, 2015; 

Kruta, 1991; Schönfelder, 2002, 2010; Tomaschitz, 2002; Tütken et al., 2008; Wells, 2002). 
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The availability of these accounts are also unevenly distributed chronologically and 

geographically (Arnold, 2005; Dietler, 1994; Fernández-Götz, 2020; Hanford, 1982; 

Hauschild, 2010b, 2015; Kruta, 1991; Schönfelder, 2002, 2010; Tomaschitz, 2002; Tütken et 

al., 2008; Wells, 2002). Consequently, their descriptions are more likely to reflect political 

propaganda rather than accurate descriptions of diverse populations and their movements. 

Several classical authors (e.g., Pliny, Livy and Julius Caesar) describe several reasons for the 

migration of Celtic groups during the 4th and 3rd centuries BC (Arnold, 2005; Dietler, 1994; 

Hanford, 1982; Hauschild, 2010b, 2015; Kruta, 1991; Schönfelder, 2002, 2010; Tomaschitz, 

2002; Tütken et al., 2008; Wells, 2002). 

Though the classical sources are consistent in that these migrations involved large 

populations, the proposed explanations are diverse and ambiguous (Collis, 2010; Dietler, 

1994; Stöckli, 1991; Tomaschitz, 2002; Wells, 1998, 2002). The Greeks and Romans 

frequently described the Celts as wandering tribes and/or highly mobile mercenaries or 

warriors who participated in virtually all military conflicts during the above period (Collis, 

2003, 2010; Dobesch, 1996; Hauschild, 2015; Kruta, 1991; Pauli, 1991; Tomaschitz, 2002). 

However, whether the mercenaries were operating in their own interest or in that of other 

communities is not specified. Thus, migration during this period is associated with large-scale 

movement and/or invasion (See pages 19 and 32) (Burmeister et al., 2000; Collis, 2003; 

Prien, 2005; Schonfelder, 2010; Tomaschitz, 2002). Although it is unknown whether large-

scale migration or increased individual mobility facilitated the spread of La Tène culture 

throughout much of Central Europe, the old model that it was spread through mass migration 

of homogenous Celtic tribes is still prevalent in the field of Celtic studies (Anthoons, 2007; 

Charpy, 2009; Collis, 2003; Fernández-Götz, 2016; Kaenel, 2007; Tomaschitz, 2002).   

Although the migrations of several Celtic populations have been described by the 

Greeks and Romans, they are often incomplete, contradictory and predominantly influenced 

by political propaganda (Collis, 2003; Handford, 1982; Pauli, 1991; Polybius, 2012; Walbank 

and Scott-Kilvert, 1979). The earliest mentioned describe the invasions, approximately 390-

360 BC, of northern Italy, Rome, southern Germany, and a contemporaneous migration into 

Pannonia (modern-day Hungary) (Collis, 2003; Hanford, 1976; Kruta, 1991; Pauli, 1991; 

Walbank and Scott-Kilvert, 1979). Julius Caesar described movements of several presumed 

Celtic tribes including the Helvetii, Tulingi, Rauraci, and Latobringi who are believed to have 

inhabited Switzerland although their homelands are unknown (Collis, 2003; Hanford, 1976). 

The failed migration in 58 BC of these groups into southwestern Gaul was the catalyst for his 
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subsequent conquest of the region (Hanford, 1982). Caesar also described the migration of 

the Boii, who inhabited northern Italy, into this region. However, the intentions behind these 

proposed events are not described. 

Moreover, the archaeological evidence does not support Caesar's claim, as there is no 

evidence of significant settlement abandonment. Further, the reported population sizes are not 

consistent and are not in line with the proposed population density in continental Europe for 

the Iron Age (Collis, 2003; Hanford, 1982). A census of the total numbers associated with 

these groups adds up to a total of 263,000 Helvetii, 36,000 Tulingi, 14,000 Latobringi, 23,000 

Rauraci, and 32,000 Boii, in total 368,000 individuals of whom 92,000 were described as 

warriors (Collis, 2003; Hanford, 1982). It has been suggested that the actual numbers were 

around 40,000 warriors out of 160,000 total individuals or 100,000 individuals and 16,000 

warriors. However, these numbers are also high for the time period (Delbrück, 1900; Furger-

Gunti, 1984). The population density for this period has been estimated to be around 50 

individuals per hectare, or 100 acres, or 50-80 individuals per km2, urban and rural, 

respectively (Danielisova, 2014; Fernández-Götz, 2017; Fletcher, 2009; Zimmerman et al., 

2009). As Caesar’s account of the above migrations is heavily influenced by his political 

agenda, it is difficult to determine whether they occurred at all (Arnold, 2005; Knipper et al., 

2014, 2017; Tomaschitz, 2002; Welch et al., 1998). Further proposed migration or conquest 

events include the conquest of Delphi (279 BC) and the migration of the Belgae into 

southeastern England (a Celtic group inhabiting northern Gaul, on the west bank of the Rhine 

and north of the Seine River). The latter migration has been alternatively dated to the end of 

the 4th to beginning of the 3rd century BC or 150-100 BC, although the exact date for this 

migration is uncertain (Anthoons, 2007; Collis, 2003; Cunliffe, 1979, 1997; Szabó, 1991; 

Stead, 1991b). Migrations into other areas including, Turkey, Asia Minor, the Balkans, the 

Danube, and Carpathian regions, during the 4th and 3rd centuries BC have been reported 

(Arnold, 2005; Arnold and Murray, 2003; Collis, 2003; Cunliffe, 1997; Selinksy, 2015). 

Further, incursions into northern Italy and the Po Valley during the 3rd and 2nd centuries BC 

have also been described (Collis, 2003; Cunliffe, 1997; Szabó, 1991). The migration of Celtic 

groups from Gaul into the Iberian Peninsula has been recounted, though, no approximate date 

is provided (Almagro-Gorbea, 1991; Collis, 2003; Cunliffe, 1984, 1997). Numerous 

migrations have also been described through the lower Rhine region, southern Germany to 

the Netherlands (Almagro-Gorbea, 1991; Collis, 2003; Cunliffe, 1997; Fernández-Götz, 
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2020). However, evidence of these proposed events is fragmentary (Arnold, 2005; Arnold 

and Murray, 2003; Collis, 2003; Tomaschitz, 2002).  

Additional military raids throughout the Balkans and the territory of the Scythians, 

populations inhabiting modern-day northern Serbia and Steppe regions north of the Black 

sea, have also been mentioned; however, none are described in detail (e.g., Pliny and Livy).  

(Arnold, 2005; Collis, 2003; Popović, 1996; Szabó, 1991; Wells, 2001). However, the 

presence of Celtic artefacts in the above regions may be the result of a combination of various 

processes, such as small-scale migration, individual mobility, trade, intensification of 

interregional exchange and local production of material culture in the La Tène style (Collis, 

2003; Cunliffe, 1997; Fernández-Götz, 2020; Kock, 2006; Roymans, 2009). Further evidence 

of population movement and/or demographic decline is suggested by the decrease in the 

number of cemeteries that were in use during the LTB period in some areas. Their number 

decreases from approximately 162 to 36 within the Champagne region in northeast France 

(Collis, 2003; Demoule, 1999; Diepeveen-Jansen, 2001; Fernández-Götz, 2020; Kaenel, 

2007; Müller-Scheeßel, 2007; Szabó, 1991; Verger, 1994). However, it has been suggested 

that this decrease is related to the loss of cemeteries through natural taphonomic processes 

and/or later construction (Collis, 2003; Demoule, 1999; Diepeveen-Jansen, 2001). Further, as 

the above numbers are estimates, the significance of their decrease may be overstated. This 

decrease has also been linked with the migration of Trans-Alpine populations into the Italian 

Peninsula, based on similarities in material culture (Charpy, 2009; Dörfler et al., 2000; 

Fernández-Götz, 2014a, 2016; Krausse and Nakoinz, 2000). However, this region was never 

completely deserted and continuity is evident in some areas (i.e., Beine-Suippes, northeastern 

France) (Charpy, 2009; Dörfler et al., 2000; Fernández-Götz, 2014a, 2016). This decline has 

alternatively been suggested to represent a migration into east Yorkshire (Britain) 

subsequently resulting in the presence of the Arras culture, an archaeological culture from the 

middle Iron Age in this region which is presumed to represent the Celts (See page 32) 

(Anthoons, 2007, 2011; Halkon, 2013, 2017; Schonfelder, 2010; Stead, 1991a, c). 

Similar demographic decline is evident in the Hunsrück-Eifel region (western 

Germany), eastern Belgium and Luxembourg, where the number of settlements decreases 

during the LTB/LTC transition, although the numerical estimates are not provided. During 

the 6th and 5th centuries BC in the middle Rhine-Moselle region (western Germany and 

Luxembourg) there is evidence of increasing centralization and hierarchisation, represented 

in the archaeological record by the emergence of luxurious graves and hillforts (Collis, 2003, 
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2011; Fernández-Götz, 2014a; Hornung, 2008; Koch, 2006). However, this process came to 

an end during the 4th century BC, when the archaeological evidence indicates a period of 

discontinuity. Differences in the rich burials of the HaD period in Baden-Württemberg 

(southwest Germany) and those during the LTA period in the middle Rhine-Moselle region 

(western Germany and Luxembourg) have also been described; and have been argued to 

represent population movement due to demographic decline (see pages 19 and 32, Table 8) 

(Collis, 2003, 2011; Fernández-Götz, 2014a, 2020; Hornung, 2008; Koch, 2006). However, 

these differences are not specified, but rather brief descriptions of variations in burial 

practices and the quantity and type of prestige grave goods (Collis, 2003, 2011; Fernández-

Götz, 2014a, 2020; Hornung, 2008; Koch, 2006). A decrease in the number of settlements is 

described, but the precise number of settlements before and during this period are not 

provided (Collis, 2003; Fernández-Götz, 2014a; Hornung, 2008; Koch, 2006). Consequently, 

comparison between these periods is not possible. The distribution of fortified settlements, or 

hillforts, have also been suggested to indicate population movement due to demographic 

decline.   

The distribution of fortified settlements within the Scheldt River region (northern 

France, western Belgium, and southwestern Netherlands) have been compared to those in the 

middle Rhine-Moselle region (western Germany and Luxembourg). During the HaD period 

the majority of these settlements are found within the middle Rhine-Moselle region (western 

Germany and Luxembourg); whereas during the LTA period they are primarily found in the 

Aisne-Marne region (northern France). This shift has been argued to be linked to large-scale 

population movement during the HaD/LTA transition and, demographic decline (Collis, 

2003; Cunliffe, 1997; Fernández-Götz, 2020; Koch, 2006; Mata, 2019). However, these 

comparisons are vague, and only similarities and possible connections are described in the 

literature (Collis, 2003; Cunliffe, 1997; Fernández-Götz, 2020; Koch, 2006; Mata, 2019). 

This demographic decline is also believed to be supported by a similar change in the  

distribution of trade items, such as, Etruscan Bronze artefacts, and Italian wine amphorae 

(Collis, 2003; Cunliffe, 1997; Fernández-Götz, 2020; Koch, 2006; Mata, 2019). The presence 

and distribution of La Tène material culture may be the result of migration of Celtic groups 

into the above regions. Though, a combination of several processes including small-scale or 

individual migration, intensification of extra-regional trade, local production of artefacts in 

the La Tène style either by indigenous groups or out of group slaves and/or captives cannot 

be ruled out as mechanisms for the spread of Celtic artefacts into these regions (Fernández-
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Götz, 2020; Roymans, 2009). Changes in burial practices, including widespread adoption of 

cremation and the decline of the tumuli rite, are also evident within the above regions (See 

page 32) (Arnold, 2005; Arnold and Murray, 2003; Collis, 2003; Fernández-Götz, 2016; 

Hornung, 2008). 

However, population decline in Central Europe may be linked with environmental 

conditions. Pollen records indicate a decrease in farming intensity and an increase in arboreal 

pollen during the 4th and 3rd centuries BC (Dörfler et al., 2000; Maise, 1998; Sirocko, 2009). 

The above records from this period indicate a decrease in farming intensity through 

examination and comparison of arboreal and crop pollen (Dörfler et al., 2000; Maise, 1998; 

Sirocko, 2009). During the above period a decrease in farming intensity is indicated as the 

former is comparatively more abundant, suggesting a corresponding decrease in the latter 

(Dörfler et al., 2000; Maise, 1998; Sirocko, 2009). However, the nature of this decrease is not 

quantified, nor is the type of pollen, arboreal or crop, indicated (Dörfler et al., 2000; Maise, 

1998; Sirocko, 2009). Deteriorating climatic conditions also resulted in a colder and more 

humid environment during this period (Fischer et al., 2006; Grove, 1979; Kromer and 

Friedrich, 2007; Magny et al., 2009). An estimated drop in temperature of approximately 2°C 

and an increase in precipitation of ±10-20% compared to modern-day values occurred 

(Büntgen et al., 2011; Gutiérrez-Elorza and Peña-Monné, 1998; Lamb, 1977). Although the 

average temperature following this drop and the corresponding values for the preceding 

period are not provided (Büntgen et al., 2011; Gutiérrez-Elorza and Peña-Monné, 1998; 

Lamb, 1977). Consequently, comparisons between the 4th and 3rd centuries BC and other time 

periods are not possible. 

Additionally the archaeological evidence suggests that populations were able to adapt 

to lower substance levels, as not all large settlements were abandoned, e.g., Münsingen-Rain 

(Switzerland) and Dürrnberg (Austria), and there is evidence for settlement continuity 

throughout this region (Hald, 2009; Kromer and Friedrich, 2007; Maise, 1998; Nortmann and 

Schönfelder, 2009; Rageot et al., 2019; Tinner et al., 2003). Further, in some regions, such as 

Münsingen-Rain (Switzerland) there is evidence of a shift in agricultural practices during this 

period (See page 145). Stable isotope evidence suggests an increase in δ 13 carbon values, a 

stable isotopic measure that is commonly used to reconstruct the plant proportion of the diet, 

which suggests an increase in millet, a C4 plant, consumption (Hunt el at., 2008; Le Huray 

and Schutkowski, 2005; Moghaddam et al., 2014; Motuzaite-Matuzeviciute et al., 2013; 

Schmidl et al., 2007). The presence of millet and its consumption has been evident since the 
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3rd millennium BC and is found in other Celtic regions including Heuneburg (southern 

Germany), Radovesice (Czech Republic) and Kutná-Hora-Karlov (Czech Republic) (Hunt et 

al., 2008; Motuzaite-Matuzevicitue et al., 2013; Le Huray and Schutkowski, 2005; Rageot et 

al., 2019). However, an increase in the above values may also indicate an increase in the 

consumption of fruit, seeds, roots or subsistence on domesticated animal resources (Cernusak 

et al., 2009; Lightfoot et al., 2014). Several food items, e.g., millet or domesticated animal 

sources, are also high in δ 13 carbon. Consequently, an increase in their consumption will also 

result in an increase in the corresponding stable isotope values, i.e., δ 13 carbon, recovered 

from archaeological human skeletal material (Hunt et al., 2008; Le Huray and Schutkowski, 

2005; Moghaddam et al., 2014; Motuzaite-Matuzeviciute et al., 2013; Schmidl et al., 2007).  

 This dietary shift may have enabled the population at Münsingen-Rain (Switzerland), 

to weather the climate change. Although, other regions within the core and expansion areas, 

such as east Yorkshire (Britain), Basel-Gasfabrik (Switzerland), Magdalenenberg (southwest 

Germany), Heuneburg (southern Germany), Radovesice (Czech Republic) and Kutná-Hora-

Karlov (Czech Republic), were also able to adapt to the fluctuations in climate (See pages 

145, 164, 168, 172 and 177) (Jay and Richards, 2006, 2007; Jay et al., 2008; Knipper et al., 

2016; Le Huray et al., 2006; Le Huray and Schutkowski, 2005; Oelze et al., 2012; Rageot et 

al., 2019). However, there is no comparable evidence, e.g., pollen records, for variations in 

subsistence in these regions (Jay and Richards, 2006, 2007; Jay et al., 2008; Jay and 

Montgomery, 2020; Le Huray et al., 2006; Le Huray and Schutkowski, 2005; Oelze et al., 

2012). This may suggest that dietary changes were not necessary in order to adapt to the 

deteriorating climate conditions. Alternatively, corresponding evidence for this variation may 

not have been recovered from the above regions. 

Although a small part of the observed mobility may have been caused by climate 

change, it does not appear to have been the primary mechanism for diachronic cultural 

differences during this period (Evans, 2004; Fernández-Götz, 2016; Hauschild, 2010a; Müller 

et al., 2003; Müller, 2004; Pétrequin et al., 2010; Schönfelder, 2010; Tinner et al, 2003). 

Changes in burial practices are also evident during this period. Wealthy equipped tumuli 

decrease and flat inhumation graves increase (See page 32) (Collis, 2003, 2010; Dobesch, 

1996; Waldhauser, 1999; Wells, 2002). Although diachronic changes in material culture are 

evident in some regions, using artefacts to determine individual and/or group mobility is 

problematic as these objects are frequently distributed (Brather, 2004; Eggl, 2003; 

Krämer,1985; Pollex et al., 2005; Tomaschitz, 2002). Further, these differences may have 
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been facilitated by trade. However, trade networks and migration routes may not follow the 

same geographical pattern or distribution (Bofinger, 2006; Collis, 2003; Cunliffe, 1991, 1997, 

2018; Fowler, 2004; Hodson, 1990; James, 2005; Koch, 2007; Maier, 2003; Tomaschitz, 

2002). Thus, instead of one-way large-scale migration, movement during this period likely 

involved increased mobility of individuals and small groups (Collis, 2003, Cunliffe, 1997; 

Hodson, 1968; James, 2005; Koch, 2007; Stöckli, 1991).  

The numerous regional connections indicated by the archaeological evidence may 

suggest migration, increased individual mobility and/or the presence of trade routes (Berecki, 

2008; Collis, 2003; Cunliffe, 1997, 2018; Crişan 1978; Koch, 2007; Möllers et al., 2007; 

Zirra 1971, 1975, 1981). The Celts inhabited regions in close proximity to the Scythians, 

Dacians, Thracians, and Illyrians, populations in the Balkans, during the La Tène period. 

Trade networks are believed to have developed based on the presence of similar artefacts 

(e.g., bronze vessels, jewellery, and weapons) (See page 32) (Almássy, 2009; Collis, 2003; 

Cunliffe, 1997; Koch, 2006, 2007; Tomaschitz, 2002; Wells, 2001). Numerous previous 

studies have interpreted the presence of trade items only as indications of migration (Cunliffe, 

1997; Eckardt et al., 2014; Möllers et al., 2007; Müller, 1998; Németi, 1988, 1989, 1992, 

1993; Zirra, 1998). Yet, mobility and migration are difficult to verify based on archaeological 

evidence alone. It has been suggested that migrants are often buried according to the 

traditions of the culture into which they moved rather than retaining those of their homeland 

(See page 54) (Collis, 2003; Cunliffe, 1997; Eckardt et al., 2014; Giles, 2000; Kruta, 2004; 

Koch, 2003; Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Tomaschitz, 2002). However, 

the reverse has also been suggested (Collis, 2003; Cunliffe, 1997; Giles, 2012; Kruta, 2004; 

Koch, 2003; Tomaschitz, 2002).  

This evidence suggests that the old model of mass migration of homogenous Celtic 

groups based on archaeological evidence alone is questionable. Strontium and oxygen, 

87Sr/86Sr and δ 18O, stable isotope analyses have been used to reevaluate questions of 

residential changes and inter-and-extra-regional contacts among these groups (Arnold, 2005; 

Hauschild, 2010b, 2015; Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Schonfelder, 2010; 

Tutken et al., 2008). Stable isotope evidence of movement supports the archaeological 

evidence for extra-regional contact among the Radovesice I, II (Czech Republic) and Kutná-

Hora-Karlov (Czech Republic) populations (Scheeres, 2014a; Scheeres et al., 2013b, 2014b). 

A significant proportion of which were found to have migrated from surrounding areas in the 

Czech Republic, 74.3% (26 out of 35 individuals) and 76% (19 out of 25 individuals), 
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respectively (Scheeres et al., 2013b, 2014b). In both regions the majority of males analysed 

were found to have moved into the area later in life, 81.25% and 70%, 13 out of 16 and 7 out 

of 10 individuals, correspondingly. The same goes for all of the analysed weapon burials 

from Radovesice I and II (Czech Republic) (See pages 103, 107, 164 and 168) (Scheeres, 

2014a; Scheeres et al., 2013b, 2014b). However, male burials without weapons were also 

found to be non-local, 2 and 3 burials, respectively. At Radovesice I and II (Czech Republic) 

approximately 22.2%, 2 out of 9, of male burials with weapons, were local, while 77.7%, 7 

out of 9 individuals, were non-local (Scheeres et al., 2013b, 2014b). Correspondingly, at 

Kutná-Hora-Karlov (Czech Republic) 33.3% were local and 66.6%, 3 out of 9 and 6 out of 9 

individuals, respectively were non-local. This suggests that mobility among males was not 

restricted to warriors or mercenaries. Mobility in these regions was not restricted to males; 

females were found to have moved before adulthood was reached (Scheeres, 2014a; Scheeres 

et al., 2013b, 2014b). Patrilocality may explain migration among females into the region (See 

pages 103, 105 and 107) (Arnold, 2005; Karl, 2005; Knipper et al., 2014, 2017; Scheeres, 

2014a; Scheeres et al., 2014b).  

A similar pattern has been documented at Basel-Gasfabrik (Switzerland) where 37%, 

20 out of 54 individuals, of the analysed sample was found to have migrated from 

surrounding areas, including those in the majority of male burials with weapons (3 out of 5 

were of non-local individuals) (Knipper et al., 2017). However, the migrants were from 

farther away, such as the Black Forest, a region in southwestern Germany near the French 

border, and the Mediterranean area (Knipper et al., 2017). Migrants from further locations 

have also been documented at Magdalenenberg (southwest Germany) (See pages 103, 105 

and 107) (Oelze et al., 2012). In this region 17.1%, 13 out of 76 individuals, were found to be 

non-local, including some of the weapon burials, 2 out of the 5 weapon burials changed 

residency before adulthood was reached (Oelze et al., 2012). However, the proportion of 

these burials that were local was not quantified (Oelze et al., 2012). The migrants were from 

diverse locations including Austria, France, northern Italy, the Alps, the Swiss Plateau, the 

Iberian Peninsula, and Heuneburg (southern Germany) (Oelze et al., 2012). Some of the 

above connections were also supported by the archaeological evidence; as 1 female was 

found with a bronze pendant specific to the north Italian Golasecca culture (Oelze et al., 

2012). Trade between these regions may not adequately describe the presence of Gloaseccan 

material culture in Magdalenenberg (southwest Germany), as no other Gloaseccan artefacts 

were found (See pages 103, 105 and 107) (Oelze et al., 2012). Although patrilocality may 
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explain the movement patterns observed in other regions, it may not have been a primary 

factor for migration to Magdalenenberg (southwest Germany) as the majority of migrants 

were males, 8 males and 5 females, respectively (Oelze et al., 2012). Further, most of the 

individuals were found to have moved during adulthood rather than before adulthood was 

reached (Oelze et al., 2012). This suggests that individual mobility may have been a factor for 

migration into this region (See pages 103, 105, 107 and 149). However, other processes 

including, patrilocality and small-scale or family migration cannot be ruled out.  

Stable isotope evidence also supports limited extra-regional contact as evident in 

Nebringen (Stuttgart, Germany) where a significant proportion of the population, 88% (15 

out of 17 individuals), was local (See pages 103, 105, 107 and 149) (Scheeres, 2014a; 

Scheeres et al., 2013b). However, identification of non-local individuals may have been 

impacted by the heterogeneous geological conditions of the region (Scheeres, 2014a; 

Scheeres et al., 2013b). A significant proportion of local individuals are also evident in the 

chariot burials at Kirkburn, Garton Station and Wetwang Slack (east Yorkshire, Britain), 

where all but 1 individual, out of 7, were found to be local (Jay et al., 2013). The Kirkburn 

chariot burial and 2 individuals from Wetwang Slack (east Yorkshire, Britain) were found to 

have moved into the region from elsewhere in Britain before adulthood was reached (See 

page 172) (Jay et al., 2013). The theory that the Arras culture was brought into east Yorkshire 

(Britain) by high status migrants from the Paris Basin (northern France) who utilized this 

burial practice appears to not be supported by the stable isotope evidence, as the majority of 

the individuals analysed were found to be local. However, individual mobility, such as, to and 

from the Paris Basin (northern France), may have resulted in the presence of similar cultural 

elements, e.g., burial practices, between the above regions (Collis, 2003; Cunliffe, 1997; 

Halkon, 2013, 2017; Stead, 1991a, c). Further, as the geology of these regions is similar, the 

stable isotope ratios may not differ significantly enough for the regions to be clearly 

separated (Jay et al., 2013; Jay and Montgomery, 2020). Consequently, the identification of 

non-local individuals, or regional mobility during life, may be skewed within these 

environments. Recent analysis and re-consideration of previously published data of the 

human skeletal material from Wetwang Slack (east Yorkshire, Britain) and Kirkburn (east 

Yorkshire, Britain) by Jay and Montgomery (2020), has indicated that the above non-local 

individuals may have actually been local, but were mobile regionally within Britain during 

their life-time rather than originating elsewhere before migrating into east Yorkshire 

(Britain). Stable isotope values that are consistent with an individual’s burial location do not 
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necessarily indicate that they were local, or that they had not previously been mobile. They 

may have originated from a region where the bioavailable stable isotopes, strontium and 

oxygen, were very similar to those of the burial region (Jay and Montgomery, 2020). They 

might have moved away from the region before adulthood was reached, lived elsewhere for 

most of their lives and then returned to their homeland before death, or were brought back to 

be buried (Jay and Montgomery, 2020).  

However, comparison of stable isotope ratios in teeth that form in successive stages, 

such as the first and third molars, can also be used to evaluate whether an individual obtained 

their diet from a similar, or single, geographical location throughout life or if they migrated 

into a region before adulthood was reached (Katzenberg and Waters-Rist, 2019). The speed 

of growth of various tissues can have an effect on the obtained stable isotope values from 

human and animal skeletal remains and teeth (Burton and Katzenberg, 2019; Katzenberg and 

Waters-Rist, 2019). Intra-tooth stable isotope analysis, and analysis of multiple teeth from the 

same individual, also provides a means to test the temporal relationship between residential 

changes before skeletal maturity was reached (Antoine et al., 2019; Katzenberg and Waters-

Rist, 2019). First molars and third molars are commonly used for intra-tooth and intra-

individual stable isotope analysis as the first molars are the first permanent teeth to develop, 

they begin forming around birth and are believed to mineralize (the incorporation of minerals 

into the tissue matrices) between 9 and 10 years of age (Hillson, 1996). The third molars are 

the most variable, they are the last teeth to erupt and are believed to mineralize between 9 and 

13 years of age (Hillson, 1996). However, the exact timing of the mineralization process of 

individual teeth is debated (Hillson 1996; Montgomery 2002). Premolars are also used to 

construct intra-tooth stable isotope analyses, as they mineralize between 3 and 6 years of age, 

and can also be used to comparatively examine residential changes before maturity is reached 

(Evans and Chenery, 2006; Hillson, 1996). Thus, teeth that form at successive stages can 

provide a snapshot of the average intake of stable isotopes, such as 87Sr/86Sr and δ 18O, during 

the mineralization of each tooth (Burton and Katzenberg, 2019; Hillson 1996; Katzenberg 

and Waters-Rist, 2019; Montgomery 2002). Differences in the stable isotope values obtained 

from the first and third molars may appear to suggest a change in environment between the 

formation of these teeth. However, this variation may indicate intra-regional mobility, 

regular, or seasonal, movements throughout life (Evans and Chenery, 2006; Katzenberg and 

Waters-Rist, 2019). The relationship between the measured stable isotope value obtained 

from an individual and the value expected based on the region of recovery is not 
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straightforward. The obtained values recovered from a local population, or individual, may be 

more or less consistent with those predicted (Burton and Katzenberg, 2019; Katzenberg and 

Waters-Rist, 2019; Pellegrini et al., 2016). Some individuals may have higher stable isotope 

values than expected due to short-term climate conditions and changes, such as colder, 

warmer, wetter and drier periods, that occurred during the formation of the teeth analysed 

(Pellegrini et al., 2016). Further, the distribution of 87Sr/86Sr and δ 18O stable isotopes may 

vary within a single region, or show a marked difference between northern and southern 

locations (Pellegrini et al., 2016). Consequently, individuals that appear to be, or have been 

previously identified as non-local may actually have been intra-regionally mobile rather than 

migrants. Therefore, it is necessary to interpret the presence of non-local individuals within 

the wider context of their burial location and neighbouring regions. 

The majority of the analysed individuals from Wetwang Slack (east Yorkshire, 

Britain) fall within the stable isotope range expected for the Yorkshire chalk (Jay and 

Montgomery, 2020). Although the majority of these individuals were local (3 out of 7 

individuals), 4 were found to have high 87Sr/86Sr stable isotope values which are not 

consistent with the local chalk environment. However, these values are not unusual in the 

wider context of the Yorkshire Wolds (Jay and Montgomery, 2020). These individuals may 

have been conducting regular, or seasonal, movements between the chalk environment of the 

Wolds and other neighbouring locations, such as to and from water sources including, the 

east Yorkshire coast and the Humber estuary located on the east coast of northern England, 

and the freshwater spring sources local to the Wolds (See page 61) (Jay and Montgomery, 

2020). The adult male from the Kirkburn chariot burial was found to have a comparably 

higher 87Sr/86Sr stable isotope ratio; however, this value falls within the range obtainable 

from the local environment, specifically the coarse grained sandstone bedrock, to the west of 

the burial site (Jay and Montgomery, 2020). This suggests the individual may have been 

mobile regionally within a relatively short distance of where he was buried (Jay and 

Montgomery, 2020).  

Further indications of regional mobility are indicated by the nitrogen (δ 15 N) and 

sulphur (δ 34 S) stable isotope values from the remains of herbivorous animals (1 horse and 1 

sheep) from Wetwang Slack (east Yorkshire, Britain). Nitrogen (δ 15 N) and sulphur (δ 34 S) 

are stable isotopic measures that are commonly used to reconstruct the terrestrial animal 

proportion of the diet, and to determine whether the principal foods consumed were from 

terrestrial or freshwater ecosystems (Drucker et al., 2016; Gilbert et al., 2019; Makarewicz 
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and Sealy, 2015). At Wetwang Slack (east Yorkshire, Britain) these values were found to be 

similar to those obtained from the sampled human skeletal remains (Jay and Montgomery, 

2020). However, the high δ 15 N values were correlated with lower δ 34 S values in both the 

human and animal bones analysed. Most of the values obtained from archaeological human 

skeletal material from the chalk environments in east Yorkshire and southern Britain are high, 

although this value is not specifically defined, nor is that of the local environment, so a direct 

comparison is not possible (Gron et al., 2018; Jay et al., 2019; Jay and Montgomery, 2020). 

Consequently, the individuals from which high values are obtained are not identified as local 

when compared to the British Geological Survey domain mapping stable isotope values 

(NERC Isotope Geoscience Laboratories (NIGL), 2018). Rather these values appear to be 

consistent with coastal locations rather than marine-derived limestone chalk environments 

such as those in east Yorkshire (Britain) (Jay and Montgomery, 2020). That said, this 

biosphere mapping is based on values obtained from modern plants. Thus, it is unknown 

whether these plants have been affected by atmospheric pollution. The Rothamsted project 

conducted an analysis of the 19th and 20th centuries British herbage (Poulton, 2006). This 

analysis indicated that during the 1860’s the δ 34sulphur stable isotope values were higher 

than they are today, and were comparable to prehistoric values. Though the exact nature of 

the difference in the stable isotope values from modern, prehistoric and those obtained during 

the beginning of the project were not quantified. Thus, a direct comparison of the stable 

isotope values from these periods is not possible (Poulton, 2006). The plants used to create 

the biosphere maps may not reflect the δ 34sulphur stable isotope values in prehistory (Jay and 

Montgomery, 2020; Poulton, 2006). Further, the plants used to construct these maps are 

limited in dispersal, as there is only one site where they are found which is located in the 

Yorkshire Wolds (Jay and Montgomery, 2020). 

 It is evident that identification of non-local individuals through comparison with 

these biosphere maps should be used with caution. However, in spite of the above caveat, the 

Iron Age population at Wetwang Slack (east Yorkshire, Britain) appears to be a settled 

community with no long-distance mobility currently evident (See pages 61 and 172) (Jay and 

Montgomery, 2020). Those individuals (3 out of 7 individuals) that have been identified as 

having higher 87Sr/86Sr stable isotope values were likely to have been mobile to some degree. 

The recent stable isotope analysis indicates that these individuals were moving around the 

regional landscape rather than being long-distance migrants (See page 61) (Jay and 

Montgomery, 2020). Additional connections between east Yorkshire (Britain) and continental 
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Europe (i.e., the adoption and/or import of La Téne culture in to east Yorkshire, Britain) are 

suggested by portable material culture, burial practices, art styles, trade items, the presence of 

captives and/or slaves and house structure.  

Contact between Britain and continental Europe is believed to have been relatively 

limited until the end of the Iron Age (e.g., Carver, 2001; Cunliffe, 1988a, 1997; Daire, 2002; 

Fitzpatrick, 1989, 2001, 2003; Haselgrove, 1995; Macready and Thompson, 1984; Megaw, 

1963; Morris, 2010; Stead, 1996; Trott and Tomalin, 2003). The Iron Age was not a time of 

isolation for Britain, as has been speculated in previous studies, nor were contacts limited to 

elite levels of society, as trade items have been found in non-elite graves and other contexts 

(See pages 19 and 32) (Collis, 2003; Cunliffe, 1988a, 1997, 2005, 2009; Davis and Gwilt, 

2008; Fitzpatrick, 1989; James, 1999; Koch, 2006; Webley, 2015). However, the impression 

of limited cross-Channel contact throughout most of the Iron Age is derived, in part, from a 

narrow focus on the presence and distribution of portable material culture, (e.g., decorated 

metalwork and fibulae) and so-called high-status artefacts. This focus may have skewed the 

perspective of cross-Channel contact towards specific types of interactions, such as those 

between elite individuals at the expense of others (Collis, 2011; Fitzpatrick, 1993, 2001; 

Giles, 2012; Joy, 2015; Webley, 2015). The new genomic and stable isotope work on 

mobility and origin is also serving to further challenge these perceptions. Traditionally, 

invasions or migrations of people from continental Europe have been argued to have been the 

primary mechanism for indigenous cultural change and the appearance of continental La 

Tène artefacts (e.g., Collis, 2003, 2011; Cunliffe 1997, 2005; Fitzpatrick, 1993, 2001; Giles, 

2012; Hingley, 2011; James, 1999; Koch, 2006; Webley, 2015). Such movements were 

invoked to explain the spread of new artefacts, technologies, art styles, and burial practices, 

as well as the spread of the Celtic languages. The presence, or presumed presence, of Celtic 

languages have also been argued to indicate the migration of Celtic groups into diverse 

regions (see page 91). However, the presence of Celtic languages and/or material culture do 

not necessarily indicate the presence of an ethnically Celtic population (see pages 54 and 91). 

For example, there were populations in the Central-western Iberian Peninsula that are 

believed to have spoken a Celtic language but for which there is no evidence of La Tène 

material culture (Ruiz Zapatero 1990, 1993, 1996).  

Migration of continental groups has also been argued to have resulted in the 

appearance of the geographically restricted Arras culture in east Yorkshire (Britain) (e.g., 

Collis, 1997, 2011, 2018; Giles, 2012; Hill, 1995; Jope, 2000; Webley, 2015; Stead, 1991a, b, 



  

 

 

 76  

 

 

d). Identifying imports has been a focus of previous research, rather than locally made 

artefacts that mimic continental styles (e.g., Carver, 2001; Collis, 2003, 2005; Cunliffe, 

1988a, 1997, 2005; Daire, 2002; Fitzpatrick, 1989, 2001, 2003; Harding 2007; Haselgrove, 

1995; James, 1999; Koch, 2006; Laing and Laing, 1992; Laing, 2006; Macready and 

Thompson, 1984; Megaw, 1963; Morris, 2010; Stead, 1996; Trott and Tomalin, 2003; 

Webley, 2015). A small number of continental imports dating to the 6th and 5th centuries BC 

has been recovered particularly in and around the River Thames (a river that flows through 

lowland Britain) (e.g., Collis, 2003; Cunliffe, 1997, 2009; Harding 2007; James, 1999; Jope, 

2000; Koch, 2006; Laing and Laing, 1992; Laing, 2006; Macdonald, 2007; Meyers, 1985). 

These include possible imports (e.g., fibulae) from the Mediterranean and Central Europe. 

However, it is debated whether these objects were deposited in the River Thames during the 

Iron Age or if they were washed out of burial and settlement contexts (see 

https://finds.org.uk/database for information about Iron Age artefacts from Putney recovered 

from the Thames) (e.g., Collis, 2003; Cunliffe, 1997, 2009; Harding 2007; James, 1999; 

Koch, 2006; Laing and Laing, 1992; Laing, 2006; Macdonald, 2007; Meyers, 1985). Early 

examples of La Tène artefacts have been found in Britain dating from after 400 BC, however, 

these objects are rare (Collis, 2003; Cunliffe, 1997, 2009; Garrow and Gosden 2012; Harding 

2007; Jope 2000; Koch, 2006; Laing and Laing, 1992; Laing, 2006; Megaw and Megaw, 

2001; Meyers, 1985).  

Metalwork from Britain shows evidence for contact, specifically with the introduction 

of La Tène styles during the 5th and 4th century BC. Though these imported styles 

subsequently followed their own insular path of development in style and manufacture after 

300 BC (Harding 2007; Karl, 2011; Laing and Laing, 1992; Laing, 2006; Macdonald, 2007; 

Megaw and Megaw, 2001; Webley, 2015). Prestige items have often been explained as 

diplomatic gifts, exchange or emulation among elite individuals on either side of the Channel 

(Collis, 2011; Cunliffe, 2005; Harding 2007; Joy, 2015; Laing and Laing, 1992; Laing, 2006; 

Macdonald, 2007). Other mechanisms for the arrival of continental Celtic artefacts in Britain 

include personal objects, gifts or trophies (e.g., the Gallic helmet recovered from Kent, 

Britain) (see https://canterburymuseums.co.uk/romanmuseum/explore/iron-age-helmet/ for a 

3D reconstruction) (Farley et al., 2014). Although these diverse mechanisms imply the 

movement of individuals, ideas or beliefs; similarities in artefact design and manufacture may 

also be the result of parallel development among these diverse communities (Bradley and 

Smith, 2007; Collis, 2003, 2011; Cunliffe, 1997, 2009; Harding 2007; Hingley, 2011; Hunter, 

https://finds.org.uk/database
https://canterburymuseums.co.uk/romanmuseum/explore/iron-age-helmet/
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2006; Joy, 2015; Koch, 2006; Laing and Laing, 1992; Laing, 2006; Morris, 2010; Stead, 

1984). However, the observed similarities in artefact design and manufacture between Britain 

and continental Europe suggests some form of contact between communities within these 

regions; again, the genomic and isotope analysis of human remains from across Britain is 

supporting this hypothesis (Fernández-Götz, 2020; Millard, 2014; Madgwick et al., 2013; 

Montgomery et al., 2007; Schiffels et al., 2015; Webley, 2015).  

Several artefacts and materials found in Britain have been argued to show evidence of 

cross-Channel contact, including metalwork, pottery, coral and coins (Collis, 2003; 2011; 

Cunliffe, 1997, 2009; Harding 2007; Joy, 2015; Stead, 1984; Karl, 2011; Koch, 2006; Laing 

and Laing, 1992; Laing, 2006; Macdonald, 2007; Megaw and Megaw, 2001; Webley, 2015). 

Artefacts have also been described as ‘imports’ based solely on the material from which they 

were manufactured, such as, silver, which was rarely used to manufacture objects in Britain 

during this time (Collis, 2011; Cunliffe, 1997, 2009; Joy, 2015; Stead, 1984; Karl, 2011; 

Koch, 2006; Laing and Laing, 1992; Laing, 2006; Macdonald, 2007; Megaw and Megaw, 

2001; Webley, 2015). The coral inlays in metalwork (e.g., chariot equipment) are believed to 

derive from the Mediterranean (Harding 2007; Joy, 2015; Laing and Laing, 1992; Laing, 

2006; Megaw and Megaw, 2001; Webley, 2015). Similarities in pottery styles between 

southeast England and neighbouring areas of northern France during the 6th and 4th centuries 

BC have also been described (Harding 2007; Collis, 2003; Cunliffe, 1997, 2009; Koch, 

2006). The specific nature of these similarities are not often detailed, rather they are simply 

identified as complete import items. However, few actual metalwork imports, travelling in 

either direction, from Britain to continental Europe or the reverse, can be confidently 

identified (Collis, 2003; Cunliffe 2005; Harding 2007; James, 1999; Joy, 2015; Koch, 2006; 

Laing and Laing, 1992; Laing, 2006; Megaw and Megaw, 2001; Webley, 2015). Further, the 

number of imports found in Britain are modest (Fitzpatrick 2001; Harding 2007; Laing and 

Laing, 1992; Laing, 2006; Megaw and Megaw, 2001; Webley, 2015). Recognisable imports 

brought into southern Britain via western trade networks between northwest France, and 

southwest England, included Italian wine amphorae, Armorican pottery and coins (the region 

of Gaul located in northwestern France) (Collis, 2003; Cunliffe, 1990; Cunliffe and de Jersey, 

1997; Fitzpatrick 2001; Harding 2007; Megaw and Megaw, 2001; Webley, 2015). The 

evidence for movement of British artefacts such as, pottery, coinage and shale exported as 

jewellery blanks into continental Europe is much more limited (Collis, 2003; Cunliffe 2005; 
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Cunliffe and de Jersey 1997; Harding 2007; Joy, 2015; James, 1999; Koch, 2006; Laing and 

Laing, 1992; Laing, 2006; Megaw and Megaw, 2001).  

The presence of continental artefacts (e.g., from the Mediterranean) does not 

necessarily imply that direct contact existed between these regions, objects could have passed 

through several locations and contexts before reaching their final destination (Collis, 2003, 

2011; Cunliffe, 2009, 2018; Joy, 2015; Karl, 2011; Koch, 2006; Sharples, 2010; van Noort, 

2012; Webley, 2015). Consequently, the social significance of these items may have changed 

during the transmission process and/or when incorporated into a local indigenous culture 

(Collis, 2003, 2011; Hingley, 2011; Joy, 2015; Karl, 2011; Sharples, 2010). Celtic artefacts in 

Britain are debated to have initially followed the designs of those from continental Europe, 

such as the Palmette and dragon pairs, however, insular styles are more common from around 

300 BC (See page 42, Figures 14 and 17) (Harding 2007; Joy, 2015; Koch, 2006; Laing and 

Laing, 1992; Laing, 2006; Macdonald, 2007; Megaw and Megaw, 2001; Stead 1996). 

However, art styles are not fixed, as new styles are added to the decorative repertoire over 

time. Older styles or motifs may be drawn from and included or referenced in later works 

(Garrow and Gosden, 2012; Harding 2007; Hunter, 2006, Joy, 2015; Koch, 2006; Laing and 

Laing, 1992; Laing, 2006; Megaw and Megaw, 2001; Webley, 2015). Consequently, designs 

cannot be considered in isolation. The shift towards insular art styles and the decrease in 

continental imports may indicate a breakdown or rerouting of trade routes, or that contact 

and/or the relationship(s) with communities in continental Europe had declined around 300 

BC (e.g., changes in  social and/or political structures of these communities) (Collis, 2003, 

2011; Cunliffe, 1997, 2009, 2018; Hill and Hill, 2003; Joy, 2015; Koch, 2006; Stead, 1996). 

Further, very few discernible imports are described within Britain during this period (Collis, 

2003; Cunliffe, 1997, 2009, 2018; Fitzpatrick, 1993; Hill and Willis, 2013; Joy, 2015; Koch, 

2006).  

It has also been suggested that imports and exports during this period may have been 

archaeologically invisible items including, grain; cattle; gold; silver; iron; hunting dogs; 

slaves and/or captives (Cunliffe, 2005; Fitzpatrick, 1993; Hill and Willis, 2013; Joy, 2015; 

Larsson, 1994; Lenski, 2008, 2014; Mata, 2019; Nash Briggs, 2003). However, these changes 

may also indicate an in-situ diachronic change in individual or community preference, or a 

decrease in the number of individuals moving to and from continental Europe (Collis, 2003, 

2011; Cunliffe, 2009, 2018; Hunter, 2006; Joy, 2015; Webley, 2005; Stead, 1996). 

Additionally, the social reason for continuing stylistic links to continental Europe may have 
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become less important culturally (Collis, 2011; Fernández-Götz, 2020; Harding 2007; Joy, 

2015; Karl, 2011; Laing and Laing, 1992; Laing, 2006; Megaw and Megaw, 2001; Webley, 

2015). Objects from continental Europe serve to physically manifest connections among 

these communities and social relations, however, the nature and importance of these 

connections changes over time (Collis, 2003, 2011; Harding 2007; Joy, 2015; Megaw and 

Megaw, 2001; Webley, 2015). The development of insular styles from 300 BC may also 

suggest that there was no longer a social need to maintain links to continental Europe through 

Celtic art, or that these linkages became less important (Collis, 2003, 2011; Fernández-Götz, 

2020; Harding 2007; Joy, 2015; Megaw and Megaw, 2001; Webley, 2015). However, some 

artefacts can be stylistically linked with those from continental Europe, such as fibulae. This 

implies that some form of contact between Britain and continental Europe was still 

maintained, whether through artefact exchange and/or the movement of people to and from 

these regions (Collis, 2011; Fernández-Götz, 2020; Joy, 2015; Karl, 2011; Laing and Laing, 

1992; Laing, 2006; Megaw and Megaw, 2001; Webley, 2015). Overall, the presence of La 

Tène material culture including fine metalwork and other decorated artefacts such as sword 

handles and scabbards (a sheath for holding a sword), suggests that contacts did exist and 

were maintained between Britain and continental Europe throughout the Iron Age. However, 

it is debated whether these contacts were intensive and/or sustained (Collis, 2003, 2011; 

Fernández-Götz, 2020; Harding 2007; Hingley, 2011; Joy, 2015; Karl, 2011; Laing and 

Laing, 1992; Laing, 2006; Megaw and Megaw, 2001; Webley, 2015).  

It is often implied that only elite men would have been involved in cross-Channel 

relationships, even when female items, such as brooches or arm rings are imported. However, 

these items may have been imported for females as prestige items or were brought into 

Britain by females arriving in order to sustain or create alliances through marriage. Stable 

isotopic analyses have identified female migrants from continental Europe, supporting this 

notion (Colls, 2003; Cunliffe 1997, 2009, 2018; Harding 2007; Jay et al., 2012, 2013; Jay and 

Montgomery, 2020; Koch, 2006; Laing, 2006). Insular British artefacts found in continental 

Europe include, arm rings made from Kimmeridge shale from Dorset (southwest Britain) 

have been identified in graves dating from the 6th and 5th century BC in Switzerland, and at 

Manching (Bavaria) from the 3rd century BC, and in northwest France from the late 2nd to 

early 1st century BC (Colls, 2003; Cunliffe 1997, 2009; Koch, 2006; Teichmüller, 1992). Yet, 

the distributions of trade items may reflect regional differences in practices of their 

deposition, such as whether they were used as grave goods rather than their actual pattern of 
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circulation within a community (Collis, 2003, 2011; Cunliffe 1997, 2009; Fernández-Götz, 

2020; Hingley, 2011; Koch, 2006; Joy, 2015; Sharples, 2010; Webley, 2015). Control over 

trade items or prestige goods may have provided communities, or individuals, with the 

capacity to develop more social trade contacts with communities on either side of the 

Channel and North Sea (Collis, 2011; Hingley, 2011; Joy, 2015; Karl, 2011; Sharples, 2010). 

This social convergence may have facilitated the creation of multiethnic communities 

through the exchange of migrants and individual movement to and from neighbouring 

communities (see page 1) (Collis, 2011; Hingley, 2011; Joy, 2015; Karl, 2011; Sharples, 

2010; Webley, 2015). Subsequently, a restructuring of the existing social structure within 

these communities may have resulted in a change or shift in ethnicity among migrants and 

out of group captives and/or slaves. Consequently, membership in an ethnic group may not 

have been based exclusively on kinship ties and was also likely based on place of residence 

(Cameron, 2008, 2011, 2013, 2016; Collis, 2011; Hingley, 2011; Karl, 2011; Larsson, 1994; 

Lenski, 2008, 2014; Mata, 2019; Webley, 2015). Therefore, the complexities in material 

culture should be used to examine the social networks among diverse groups rather than 

relying on their ethnic or cultural affiliations (see page 54) (Hingley, 2011; Jones, 1997; 

Renfrew, 1994a, b; Karl, 2011; Trigger, 2006). Other elements such as, house structure and 

burial practices, provide further evidence of connections, e.g., trade routes, social and/or 

ethnic, between communities in Britain and continental Europe (Karl, 2011; Webley, 2015).  

Roundhouses have been identified at numerous sites in northern France and northwest 

Iberia dating from the end of the Iron Age (e.g. Albessard-Ball, 2011; Castro and Fernández, 

1995; Cunliffe, 1990, 2009; Dechezleprêtre and Ginoux 2005; Harding, 1973, 2009). 

Similarities in roundhouses in the above regions include entrances facing east or southeast 

(Albessard-Ball, 2011; Castro and Fernández, 1995; Cunliffe, 1990, 2009; Harding, 1973, 

2009; Joy, 2015; Karl, 2011; Pope, 2007, 2008; Webley, 2015). Although comparable trends 

in settlement dynamics on either side of the Channel and North Sea may represent parallel 

development within these communities; the possibility that they represent shared ideas that 

were exchanged among these groups cannot be ruled out (Collis, 2003, 2011; Cunliffe, 1990, 

2009; Joy, 2015; Karl, 2011; Koch, 2006; Webley, 2015). Cultural similarities may be 

evident within societies with diverse origins that have similar developmental trajectories, 

such as burial practices and settlement structure (Collis, 2003, 2011; Cunliffe, 1990, 1997; 

Hingley, 2011; Karl, 2011; Sharples, 2010; Webley, 2015). However, as societies are in a 
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continuous state of flux, these similarities should be interpreted in their respective cultural 

contexts.  

Burial traditions during the middle and late Iron Age within Britain have also been 

argued to indicate connections with communities from continental Europe. These include a 

group of inhumation burials within stone cists (a small stone like coffin box or ossuary used 

to hold the bodies of the dead) in south Devon (England), Cornwall (Wales), and Scilly 

(Italy), that are believed to be dated to between the 4th and 3rd centuries BC and 1st century 

AD (e.g., Collis, 2003; Cunliffe, 1997, 2009; Koch, 2006; Webley, 2015). These burials have 

also been compared to contemporary cist cemeteries from Guernsey (a UK island territory off 

the coast of Normandy) and Brittany (a cultural region in northwestern France), however, the 

latter are unreliably dated, as they have been primarily dated by associated artefacts (e.g., 

Burns et al., 1996; Collis, 2003; Cunliffe, 1997, 2009; Henderson 2007; Koch, 2006). Though 

the similarities among these burials beyond the use of stone lined graves are not apparent or 

discussed in depth (Burns et al., 1996; Collis, 2003; Cunliffe, 1997, 2009; Henderson 2007; 

Koch, 2006). The inhumation burials of the Arras cultures from east Yorkshire (Britain) 

dating to around the 4th and 2nd centuries BC have also been linked to similar burials in 

northeastern France (e.g., Collis, 2003; Cunliffe, 1997, 2009; Good, 2005; Joy, 2015; Stead, 

1991a, b, d; Webley, 2015). These burials share several similarities with those in northeastern 

France including, the use of barrows surrounded by square ditched enclosures and the 

presence of chariots within some of the graves. However, the use of chariots in these burials 

indicates an indigenous development rather than an exact replica of those from continental 

Europe, specifically those from the Champagne region (northern France) (See pages 19, 32, 

Table 7) (Anthoons, 2011; Hawkes, 1960; Jay et al., 2012, 2013; Stead, 1965b, 1979, 1986; 

1991a, b, d; Stead and Rigby, 1999; Tiefengraber and Wiltschke-Schrotta, 2012; Van Endert, 

1987; Wells, 1995a, b, c). Although the burial rite is similar though not identical to 

contemporary practices in the Champagne region (northern France) and the Belgian Ardennes 

(a region in southeast Belgium that extends into Luxembourg, northeastern France and 

northeastern Germany), the chariot itself was likely locally manufactured (Anthoons, 2011; 

Carter et al., 2010; Hawkes, 1960; Jay et al., 2012, 2013; Stead, 1965b, 1979, 1986; 1991a, b, 

d; Stead and Rigby, 1999; Tiefengraber and Wiltschke-Schrotta, 2012; Van Endert, 1987; 

Wells, 1995a, b, c).  

Differences in these burials include the placement of the wheels in the grave, and 

whether the chariot was buried whole or dismantled and used as a makeshift coffin (Table 7) 
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(Anthoons, 2011; Carter et al., 2010; Hawkes, 1960; Jay et al., 2012, 2013; Stead, 1965b, 

1979, 1986; 1991a, b, d; Stead and Rigby, 1999; Tiefengraber and Wiltschke-Schrotta, 2012; 

Van Endert, 1987; Wells, 1995a, b, c). However, in spite of these differences the presence of 

chariots in the above regions suggests some form of contact among populations in Britain and 

continental Europe. Large-scale migration from northern France has been invoked to explain 

the introduction and presence of this burial practice, but the consensus in recent studies is that 

if mobility occurred between regions it is likely to have been small-scale or individual 

movement (e.g., Collis, 2003, 2011; Cunliffe, 1997, 2009, 2018; Fernández-Götz, 2020; Jay 

and Montgomery, 2020; Joy, 2015; Knipper et al., 2014, 2016, 2017; Moghaddam et al., 

2014;  Oelze et al., 2012; Webley, 2015). Further, evidence for the incorporation of 

continental burial practices into the local culture in Britain is indicated by the difference in 

burial position and orientation, e.g., north-south verses south-north (See pages 19 and 32) 

(Anthoons 2007; Collis, 2003; Cunliffe, 1997, 2009, 2018; Giles, 2012; Koch, 2006; Stead, 

1991a, b, d). Additionally, radiocarbon (14C) dates from the Arras culture chariot burials 

suggests that this practice was in use during a short period around 200 BC (Jay et al., 2012), 

during which these burials were not common and were decreasing in frequency in continental 

Europe (Webley, 2015). The cremation rite of southeast England during the 1st century BC 

and 1st century AD, which shows close similarities to contemporary practices in northern 

France has also been argued to indicate connections among communities on either side of the 

Channel and North Sea (e.g., Collis, 2003; Cunliffe, 1997, 2009, 2018; Desenne et al., 2009a, 

b; Fitzpatrick 1997; Joy, 2015; Koch, 2006; Webley, 2015).  

In both regions small groups of flat burials were common, sometimes associated with 

square enclosures (Collis, 2003; Cunliffe, 1997, 2009; Desenne et al., 2009a; 2009b; 

Fitzpatrick 1997; Joy, 2015; Koch, 2006; Webley, 2015). The adoption of new cultural 

elements, such as burial practices, may also be the result of a deliberate emulation by 

migrants of the dominant group (See page 54) (e.g., Collis, 2003, 2011; Cunliffe, 1997, 2018; 

Joy 215; Karl, 2011; Hingley, 2011). Some of the above similarities, between communities in 

Britain and continental Europe may not have been part of the original cultural package 

carried by individuals moving during their lifetimes or migrants, but were introduced later, 

transmitted along already existing channels or trade routes (Collis, 2003, 2011; Cunliffe,  

2018; Joy, 2015; Koch, 2006). However, it is not possible to determine whether the above 

cultural phenomena represent primary elements, present within either communities in Britain 

and continental Europe, or secondary, diffused by migrants or individuals moving during 
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their lifetimes (Collis, 2003, 2011; Cunliffe, 1997, Joy, 2015; Karl, 2011; Koch, 2006). 

Consequently, it is necessary to examine these societies both synchronically and 

diachronically. Synchronic models provide an understanding about how a particular society 

functioned; while diachronic models provide information about how societies change over 

time (e.g., varying settlement patterns, burial practices, presence and diversity in trade items) 

(Collis, 2003; 2011; Cunliffe, 1997; Hingley, 2011; Joy, 2015; Webley, 2015). Overall, it is 

evident that communities either side of the Channel and North Sea shared artefacts, 

technologies, ideas and practices throughout the Iron Age, with innovations travelling in both 

directions (Joy, 2015; Webley, 2015). The imports from continental Europe into Britain, also 

indicate that the trade and emulation of non-local material culture, design and customs was 

both a creative and selective process (Hingley, 2011; Joy, 2015; Karl, 2011; Webley, 2015).  

Although the presence of continental imports in Britain indicates some form of 

contact between these communities, ethnographic and anthropological evidence suggests that 

slaves and/or captives could have influenced similarities in artefact design and manufacture 

(Cameron, 2008, 2011, 2013, 2016; Larsson, 1994; Lenski, 2008, 2014; Mata, 2019). 

However, these groups may not be identified archaeologically as they likely went through a 

transformative process, e.g., cultural assimilation or rejection/masking of their cultural 

autonomy, in response to a persistent external threat. Thus, these groups may have 

assimilated to the local indigenous culture of the region they moved into (Mata, 2012, 2019). 

The presence of slaves and/or captives is a multifaceted phenomenon with complex 

interconnected material, behavioural and ideological dimensions (Dal Lago and Katsari, 

2008; Gronenborn, 2001; Marshall, 2015; Mata, 2019). The development of insular styles 

around 300 BC combined with the decreasing evidence of continental imports, may suggest a 

shift to an exchange of predominantly archaeologically invisible items (Cameron, 2008, 

2011, 2013, 2016; Larsson, 1994; Lenski, 2008, 2014; Mata, 2019). Although it is likely that 

the skeletal remains of captives and/or slaves have already been encountered in the 

archaeological record but have not been recognised as such, as the specific cultural elements, 

such as restraints, that constitute material evidence of the presence of captives and/or slaves 

is not agreed on for prehistoric Europe (Arnold, 1988; Cameron, 2008, 2011, 2013, 2016; 

Larsson, 1994; Lenski, 2008, 2014; Mata, 2019; Thompson, 1993). The presence of these 

groups may also have a transformative impact on the developmental trajectory of a society. 

Thus, in-situ demographic and cultural changes may have resulted from the practice of taking 

captives and exchanging slaves. Consequently, the influence of these groups in relation to 
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changes in material culture and the presence of local reproductions of trade items cannot be 

ruled out (Cameron, 2008 page 133). Overall, diverse lines of evidence including, artefact 

distribution, Celtic languages, settlement structure and burial practices, suggest that the 

adoption and import of La Tène culture in east Yorkshire (Britain) was a complex process 

and was not exclusively linked to the migration of continental groups into the region. Further, 

the stable isotopic evidence for the limited presence of non-local individuals in east 

Yorkshire (Britain) supports the notion that diverse mechanisms such as, small-scale 

migration, individual mobility, breakdown and rerouting of trade routes, were all involved in 

the transmission of La Tène material culture within this region. 

A similar pattern is evident at Münsingen-Rain (Switzerland); only 14.7%, 5 out of 34 

individuals, migrated into the region from other areas in the Swiss Plateau (Moghaddam et 

al., 2014; Scheeres, 2014a). The 6 weapon burials in this area were all within the range of the 

heterogeneous geological environment, suggesting that they were locals (See pages 103, 105, 

107 and 145) (Moghaddam et al., 2014; Scheeres, 2014a). However, one individual buried 

with fibulae with characteristic northern Italian designs also had stable isotope values 

suggesting an origin somewhere warmer; but with similar geologic conditions as the Swiss 

Plateau, such as Italy or the Spanish coast (Bowen and Ravenaugh, 2003; Longinelli and 

Selmo, 2003; Scheeres, 2014a). A similar pattern is also evident in 2 other individuals with 

local grave goods who are also believed to have migrated from similar areas (Scheeres, 

2014a).  

Comparable levels of intra-regional homogeneity have been found in Monte Bibele 

(Bologna, Italy) and Manching (southern Germany) where 81%, 17 out of 21 individuals, and 

77%, 14 out of 18 individuals, respectively, of the analysed samples, were local (See pages 

103, 105 and 107) (Oelze et al., 2012; Scheeres et al., 2013b; Schweissing, 2013; Waneke, 

1999). However, the homogeneous geological conditions might have complicated the 

identification of non-local individuals at Monte Bibele (Bologna, Italy) (Scheeres et al., 

2013b). The weapon burials in the above regions were also predominantly local (Scheeres et 

al., 2013b; Schweissing, 2013; Waneke, 1999). At Monte Bibele (Bologna, Italy) 2 out of 6 

weapon burials changed residency before adulthood was reached, however, these individuals 

came from other intra-regional locations (Scheeres et al., 2013b). Based on the above stable 

isotope analyses mobility among the so-called warriors may vary by region (See pages 103, 

105 and 107). However, further samples are necessary to determine whether this pattern is 
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also observed in other areas. This suggests that the description of highly mobile Celtic 

warriors by the Greeks and Romans is only partially supported.  

Although the application of strontium stable isotopes, 87Sr/86Sr, to mobility studies has 

indicated diverse migration patterns among populations, recent research has indicated that the 

commonly used strontium, 87Sr/86Sr, reference maps may be incorrect (Thomsen and 

Andreasen, 2019). These maps are often based on modern-day surface water. Use of 

agricultural lime may substantially change the stable isotopic compositions of surface waters 

in low to non-calcareous soils (soil not containing lime or chalk and mostly composed of 

calcium carbonate). Recent research has suggested that the strontium stable isotope, 87Sr/86Sr, 

compositions in water from farmland unaffected by agriculture compared to that from 

previously established reference maps are diverse (Thomsen and Andreasen, 2019). The 

average stable isotope ratios decreased from 0.7131 to 0.7099, suggesting that stable isotope 

ratios obtained from similar environments may need to be re-evaluated (Thomsen and 

Andreasen, 2019). This decrease suggests that the number of non-local individuals identified, 

or sample distributions in archaeologically derived samples from regions with this specific 

soil composition may have been artificially inflated.  

That said, this analysis was conducted on surface water from western Denmark, so 

further samples are necessary to determine whether this pattern is evident in different regions 

(Thomsen and Andreasen, 2019). Further, the above decrease in stable isotope ratios is only 

evident in regions with a specific type of soil. Consequently, it is unknown whether the use of 

agricultural lime may affect the stable isotopic composition in those with other soil 

compositions. Stable isotope analysis in regions with low to non-calcareous soils, where 

strontium data are scarce, may not be affected by the use of agricultural lime. Additionally, a 

potential increase in 87Sr/86Sr stable isotope values in archaeological human skeletal material 

may have occurred due to the unintentional consumption of rock grit, from millstones, stones 

used to grind grain (Johnson et al., 2019). However, this unintentional consumption has not 

been found to result in a significant change, in spite of producing bioaccessible 87Sr/86Sr 

stable isotope values (Johnson et al., 2019). The unintentional ingestion of rock grit has been 

found to unlikely constitute more than 1% of the diet, by mass, consequently the potential 

increase in 87Sr/86Sr stable isotope values measured from British human archaeological 

skeletal material is not significant and is also unlikely to be greater than .001 (Johnson et al., 

2019). Therefore, the use of millstones, either locally derived or imported, and the potential 

regular consumption of rock grit produced from their use will likely have a negligible effect 
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on 87Sr/86Sr stable isotope values obtained from human archaeological skeletal material. 

Moreover, this ingestion is also unlikely to produce anomalously high 87Sr/86Sr stable isotope 

values or identify false migrants (Johnson et al., 2019). However, it is unknown whether this 

pattern is also evident in other areas, as the above correlation was conducted only using 

British archaeological material (Johnson et al., 2019). Furthermore, stable isotope analyses 

also often include evidence about the ratios of biologically available strontium from studies 

on other materials including, rocks, soils, archaeological human and animal samples from 

regions with similar geologic conditions (Knipper et al., 2017; Scheeres, 2014a; Scheeres et 

al., 2013b, 2014b). Therefore, as the strontium ratios, 87Sr/86Sr, are compared among these 

categories, the identification of local and non-local individuals may not be impacted 

significantly. However, due to sample size limitations and the potential for a discrepancy in 

ratios obtained from regions where agricultural lime was used, the results of stable isotope 

analyses should be interpreted with a degree of caution. 

Although some stable isotope ranges used to reconstruct mobility among past 

populations may be affected by agricultural processes, those associated with Celtic 

populations are also supported by the archaeological evidence (See pages 19, 32 and 54) (Jay 

et al., 2013; Knipper et al., 2014, 2016, 2017; Scheeres, 2014a; Scheeres et al., 2013b). This 

suggests that the identification of non-local individuals may not have been impacted by 

agricultural processes. However, further analyses of Celtic populations in regions affected by 

the above mechanisms are necessary in order to determine whether the identification of non-

local individuals has been affected. Some individuals buried with non-local artefacts have 

also been found to be migrants, as at Monte Bibele (Bologna, Italy), Münsingen-Rain 

(Switzerland) and Magdalenenberg (southwest Germany) (Oelze et al., 2012; Scheeres, 

2014a; Scheeres et al., 2013b). However, the correlations between archaeological and stable 

isotope evidence are not always straightforward. Many individuals buried with trade items, 

e.g., wine flagons, are local (See pages 19, 32, 54 and 145) (Knipper et al., 2017; Oelze et al., 

2012; Scheeres, 2014a; Scheeres et al., 2013b). Thus, the correlations between mobility and 

Celtic warriors may be tenuous.  

There is evidence for a high level of mobility among the so-called Celtic warrior 

burials, but this association is not found throughout all of the regions they presumably 

inhabited. Thus, the highly mobile mercenaries described by the Greeks and Romans may 

have been restricted to specific locations (i.e., regionally) (Hauschild, 2015; Scheeres et al., 

2014b; Tomaschitz, 2002). The spread of Celtic weaponry throughout Europe alternatively 
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supports the mobility of mercenaries or the presence of trade routes through which the 

weapons and other materials were exchanged (See pages 19, 32 and 54) (Arnold, 2005, 

2016a, b; Arnold and Hagmann, 2015; Georganas, 2018; Fernández-Götz and Arnold, 2017, 

2018; Hauschild, 2010a, b, 2015; Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Webster, 

1996). However, burial with a weapon does not always correlate with individual mobility 

(Scheeres et al., 2013b). This is evident at Nerbringen (Stuttgart, Germany), Monte Bibele 

(Bologna, Italy), and Magdalenenberg (southwest Germany), where the majority of burials 

with weapons were local individuals (Oelze et al., 2012; Scheeres et al., 2013b, 2014b; 

Schweissing, 2013; Waneke, 1999).  

Burials of adult males with peri-and ante-mortem weapon injuries accompanied by 

weapons have been interpreted as warriors in numerous previous studies, but this association 

is contested, as not all human remains buried with weaponry have injuries (Anderson et al., 

2018; Arnold, 2005, 2016a, b; Arnold and Hagmann, 2015; Bertaud, 2017; D'Onofrio, 2011; 

Fernández-Götz and Arnold, 2017, 2018; Georganas, 2018; Harrison, 2015; Härke,1990; 

Jordan, 2016; Kurila, 2007; Pitman, and Doonan, 2018; Rustoiu and Berecki, 2015; Rustoiu, 

2013; Thorpe, 2013; Ucko,1969; Webster, 1996; Whitley, 2002). Further, injuries presumed 

to be associated with combat have been found in burials without weapons (See page 229) 

(Anderson et al., 2018; Arnold, 2005, 2016a, b; Arnold and Hagmann, 2015; Bertaud, 2017; 

D'Onofrio, 2011; Fernández-Götz and Arnold, 2017, 2018; Georganas, 2018; Harrison, 2015; 

Härke,1990; Jordan, 2016; Kurila, 2007; Pitman, and Doonan, 2018; Rustoiu and Berecki, 

2015; Rustoiu, 2013; Thorpe, 2013; Ucko,1969; Webster, 1996; Whitley, 2002). Age 

estimates of the individual human remains and comprehensive weapon descriptions are also 

not often presented (Oelze et al., 2012; Scheeres et al., 2013b). Consequently, these burials 

are often only described as possessing a weapon as those in the above regions. Some of the 

weapons recovered from weapon burials have been interpreted to represent prestige items or 

family keepsakes, as some have been repaired repeatedly (Arnold, 2005, 2016a, b; Arnold 

and Hagmann, 2015; Bertaud, 2017; Fernández-Götz and Arnold, 2017, 2018; 

Harrison, 2015; Jordan, 2016; Oelze et al., 2012; Rustoiu, 2013; Scheeres et al., 2013b, 

2014b; Schweissing, 2013; Waneke, 1999; Whitley, 2002). However, evidence of repair is 

also not frequently described. Therefore, the presence of a weapon alone may not designate 

the individual as a warrior. Although some of these burials may represent warriors, their 

individual mobility as indicated isotopically does not support that described by the Greeks 

and Romans (Oelze et al., 2012; Scheeres et al., 2013b, 2014b; Schweissing, 2013; 

http://eprints.gla.ac.uk/view/author/33247.html
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Tomaschitz, 2002; Waneke, 1999). The stable isotope evidence does not support Scheeres’s 

et al (2013b, c) conclusions that the degree of mobility indicated among the burials with 

weapons, and thus mercenaries, is in line with that proposed by the Greeks and Romans. The 

stable isotope evidence suggests that movement among these groups was predominantly 

intra-regional. Opposed to the extra-regional movement throughout Central Europe and into 

Britain, Asia Minor and Turkey described by the Greeks and Romans (See pages 103, 105 

and 107) (Arnold, 2005, 2016a, b; Arnold and Hagmann, 2015; Fernández-Götz and Arnold, 

2017, 2018; Oelze et al., 2012; Scheeres, 2014a; Scheeres et al., 2013b, c, 2014b; 

Schweissing, 2013; Selinsky, 2015; Tomaschitz, 2002; Waneke, 1999). Further, the majority 

of these burials were of local individuals. Therefore, the presumed degree of mobility among 

the so-called Celtic warriors is tenuous. However, a significant degree of mobility before 

adulthood was reached is evident within these regions (Knipper et al., 2014; Scheeres, 2014a; 

Scheeres et al., 2014b).  

Evidence for mobility before adulthood was reached has been found at some Central 

European Iron Age sites associated with the Celts, including Basel-Gasfabrik (Switzerland), 

Glauberg (Hesse, Germany), Radovesice I and II (Czech Republic), and Kutná-Hora-Karlov 

(Czech Republic) (Knipper et al., 2014; Scheeres, 2014a; Scheeres et al., 2014b). At Basel-

Gasfabrik (Switzerland) a significant proportion of females, 85.7%, 6 out of 7 individuals, 

compared to 17.3%, 4 out of 23 males, had migrated into the region before adulthood was 

reached (See pages 103, 105 and 107) (Knipper et al., 2017). A similar pattern is evident at 

Glauberg (Hesse, Germany) and Radovesice I and II (Czech Republic), 66.7% and 66.6% of 

females, 4 out of 6 and 6 out of 9 individuals, respectively, compared to 33.3% and 81.2% of 

males, 2 out of 6 and 13 out of 16 individuals, respectively moved into the region before 

adulthood was reached (Knipper et al., 2014; Scheeres, 2014a; Scheeres et al., 2013b, 2014b). 

At Kutná-Hora-Karlov (Czech Republic), 61.5% of females, 8 out of 13 individuals, and 70% 

of males, 7 out of 10 individuals, migrated to the region before adulthood was reached (See 

pages 103, 105 and 107) (Knipper et al., 2013, 2014, 2017; Müller-Scheeßel et al., 2015; 

Scheeres, 2014a; Scheeres et al., 2013b, 2014b). This suggests that the females in these 

regions may have followed a patrilocal residence pattern (Knipper et al., 2017). However, it 

is not mentioned whether individuals from Radovesice (Czech Republic), moved before 

adulthood was reached. Consequently, a direct comparison of mobility during these periods 

between the sexes and to other regions is not possible. Furthermore, the social and biological 

differences in the definitions of the terms sub-adult, adolescence and adulthood are not 
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described in the original site reports. Consequently, at the time of writing, because none of 

the populations have been subject to life course analyses, and there are no indigenously 

authored primary sources for these communities, it is not known how these regions created 

their life courses, and the extent to which these changed over time. The application of the 

above terms reflects our modern understanding of these age-categories, rather than those of 

past cultures, as for the most part, these remain unknown. These categories are also not 

necessarily applicable to biological age, (the physical ageing of the body), or social age, (a 

culturally constructed category of age appropriate behaviour and attitudes), and we must 

always be mindful that a cemetery population is likely to contain different generational 

cohorts (Halcrow and Tayes, 2011; Inglis and Halcrow, 2018; Mays et al., 2017; Sofaer 

2006a, b, 2011).  

Moreover, it is difficult to correlate the applications of these terms in past and modern 

societies, as the specific cultural milieu in which individuals are situated is not static, and 

may not be correlated with biological age (Inglis and Halcrow, 2018; Mays et al., 2017; 

Sofaer 2006a, b, 2011). Funerary studies across Europe suggest that although Iron Age 

society was structured according to age and gender (e.g., Arnold, 2016) even within one 

country, there was considerable variation between communities, as seen in the life course 

analyses of Dorset and east Yorkshire, in England (Hamlin, 2007; Giles, 2012). The evidence 

for considerable regional heterogeneity across Iron Age Europe, suggests that there was no 

one single life course (Pope and Ralston, 2011). Since the above terms were likely to have 

varied intra-and-extra-regionally it is difficult to determine which age category or term is best 

suited to encompass the differences inherent in their application. Further, it is unknown 

whether modern application of the terms ‘infant’, ‘childhood’, ‘children’ or ‘adolescence’ are 

an adequate representation of those used in the past. Consequently, it is necessary to 

document the specific age-at-death categories used by osteologists to categorize infants, 

children (sub-adults) and adults, and to recognize that these categories were not static, are 

socially constructed, varied culturally and likely do not adequately represent an individuals 

social age (Halcrow and Tayles, 2011; Inglis and Halcrow, 2018; Mays et al., 2017).  

Additionally, as the entire sample in the above regions was not analysed, the 

identification of non-local individuals may have been impacted. Furthermore, similar 

geologic conditions in different regions might result in some population movements being 

invisible, and while stable isotope analysis can identify first generation immigrants their 

descendants may not be, as their 87Sr/86Sr and δ 18O stable isotope values will reflect those of 
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the regions they immigrated to rather than those of their homelands (Jay and Montgomery, 

2020; Jay et al., 2012; Müller-Scheeßel et al., 2015; Scheeres, 2014a; Scheeres et al., 2013b, 

2014b; Tomaschitz, 2002). However, in spite of the sample size limitations, individual and 

small-scale migration appears to have been common (Collis, 2003; Müller-Scheeßel et al., 

2015; Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Tomaschitz, 2002). Although 

individual and movement before adulthood was reached is indicated within the above 

regions, evidence of family mobility has been suggested at Radovesice II (Czech Republic) 

(Scheeres et al., 2013b, 2014a, b). A group of 3 associated adult burials believed to represent 

a family group, based on similar artefacts and burial location (i.e., clustered together), were 

found to have stable isotope ranges indicating migration from a similar extra-regional 

location, although this region could not be determined (See pages 103, 105 and 107) 

(Scheeres, 2014a; Scheeres et al., 2013b, 2014b). However, the presumption that these burials 

represent a family group is uncertain, as it is based only on archaeological evidence. A high 

rate of individual mobility has also been found at Glauberg (Hesse, Germany) where 31.6%, 

6 out of 19 individuals, from elite burials, migrated from surrounding regions during 

childhood or before adulthood was reached (See pages 103, 105 and 107) (Knipper et al., 

2014). 

 However, the number of males and females comprising this sample is not described 

(Knipper et al., 2014). Therefore, it is difficult to determine which sex was more frequently 

moving into this region. This finding suggests that entire families, as well as individuals, 

were mobile during the Iron Age (Arnold, 2005; Collis, 2003; Cunliffe, 1997; Karl, 2005; 

Müller-Scheeßel et al., 2015; Parkes, 2006; Scheeres, 2014a; Scheeres et al., 2013b, 2014b). 

However, the majority of individuals who migrated before adulthood was reached within 

Glauberg (Hesse, Germany) and Basel-Gasfabrik (Switzerland) were female, which indicates 

a patrilocal residence pattern among these regions (Knipper et al., 2014, 2017; Müller-

Scheeßel et al., 2015; Scheeres, 2014a; Scheeres et al., 2013b, 2014b). The relatively high 

mobility rates among sub-adults, as evident in the above regions, may be explained by the 

social structure of La Tène communities, in which hierarchy is presumed to have played a 

significant role (Collis, 2003; Knipper et al., 2013, 2014, 2017; Long, 2005; Müller-Scheeßel 

et al., 2015; Scheeres, 2014a; Scheeres et al., 2013b, 2014b). 

  The Greeks and Romans, as well as some medieval sources, describe a system of 

allegiance fosterage occurring during the Iron Age. This system consisted of a child being 

educated by one foster family or successive families that lasted from infancy or later 
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childhood until marriage (Arnold, 2005; Karl, 2005; Müller-Scheeßel et al., 2015; Parkes, 

2006). However, this system in Iron Age Europe has not yet been fully supported, as the main 

literary descriptions are derived from Irish, Welsh and Scottish texts which date to the 

Medieval Period (See page 91). Consequently, it should be applied to Iron Age populations 

with caution. However, this system could explain the observed stable isotope variation, which 

suggests that a significant proportion of sub-adults had grown up in different communities to 

those in which they were born (Arnold, 2005; Karl, 2005). Fosterage, in medieval literature, 

is more often described as involving boys, evidence for mobility before adulthood was 

reached among girls is more likely specifically related to patrilocal residence patterns or 

exogamy (Arnold, 2005; Karl, 2005; Knipper et al., 2014, 2017).   

Although the spread of the La Tène culture has been linked with the movement of 

populations and individuals, these events may not have occurred frequently. As evident by 

the significant proportion of local individuals in some regions (e.g., Nebringen, Stuttgart, 

Germany). The stable isotope data suggests varying levels of mobility and intra-and-extra-

regional contact. This is in-line with previous nonmetric dental analyses indicating the 

presence of regionally diverse populations in Central Europe during this period (See pages 

103, 105 and 107) (Anctil, 2016; Maxová et al., 2011). Individuals appear to have been 

moving irrespective of being in the core or expansion regions; thus, these geographic 

designations may be nominal.  

Linguistic evidence for the presence of the Celts  

 

The association between the Celts and the Hallstatt and La Tène cultures is also 

derived from the linguistic work of Edward Lhuyd (1707) and Paul-Yves Pezron (1703) 

(Campanile, 1976; Collis, 2003; Cunliffe, 1994, 1997). They described the languages spoken 

in the regions associated with these cultures as Celtic, based on Caesar’s description of a 

population in Gaul referring to themselves as Celts. Subsequently, when these cultures were 

encountered in the 19th century, they were described as Celtic following the convention that 

similarities in spoken languages and artefacts can be used to define a culture or population 

(Collis, 2003; Cunliffe, 1997; James, 2005; Koch, 2006; Trigger, 2006). Thus, if the 

populations inhabiting these regions were linguistically Celtic, they were culturally as well. 

Consequently, the modern concept of the Celts is also derived from a language association, 

although there is not much evidence for linguistic differences within the above groups. 
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Further, the continental Celtic languages, those spoken in continental Europe, are extinct and 

the majority of the inscriptions are fragmentary. Therefore, it is difficult to determine the 

degree of variation among these languages and their approximate boundaries. Consequently, 

these languages have been partially reconstructed from place names, inscriptions, words 

borrowed from Germanic or Italic languages, and references in Latin texts (Charles-Edwards, 

1995; Collis, 1999; Evans, 1983; Gohil, 2005, 2006; Joseph, 2010; Lane, 1933; Renfrew, 

1987). They likely had a range of dialects, although how many and their relationships are not 

known (Evans, 1979; Fleuriot, 1988; Prokić and Nerbonne, 2013; Rickford and Rickford, 

1995; Salmons, 1992; Schmidt, 1986c). Continental Celtic languages appear to have died out 

around 500 AD. By contrast, in the British Isles the Celtic languages have survived (Charles-

Edwards, 1995; Evans, 1983, 1986; Schmidt, 1986; Renfrew, 1987).  

The Celtic languages are classified as a branch of the Indo-European (IE), family of 

languages (Campanile, 1976; Collis, 2003; Evans, 1983; Fortson, 2004; Mallory, 1992; 

Renfrew, 1987). The IE language family has around 445 languages and dialects and includes 

most of the major extant languages of Europe as well as parts of western, Central, and south 

Asia (Kortlandt, 1989; Forster and Toth, 2003; Fortson, 2004; Mallory, 1989, 1992; Mallory 

and Adams, 1997). Although Celtic is accepted as an IE language, its place within this 

language family is still debated (Britain and Trudgill 1999; Charles-Edwards, 1995; Dyen et 

al., 1992; Evans, 1983; Fortson, 2004; Kortlandt, 1990, 2007, 2018; Mallory, 1992; Mallory 

and Adams, 1997). The earliest records of Celtic language(s) are the Leptonic inscriptions of 

northern Italy a region presumedly inhabited by the Celts. The oldest are associated with the 

Golasecca, Canegrate and Hallstatt cultures (Ball and Fife, 1993; Ball and Muller, 2012; 

Eska, 1998; Evans, 1995; Isaac, 2010; Joseph, 2010; Renfrew, 2013). However, it is difficult 

to determine with which culture they are associated with as there is a lack of absolute 

chronology associated with the inscriptions in these regions (Charles-Edwards, 1995; 

Cowgill, 1975; Ellis, 1995, Korolec, 1995; Prosdocimi, 1991). The Celtic languages 

represented by these inscriptions are distinguished by the difference in the expression of the 

kw and p sounds.   

The division between these languages has been established based on two primary 

criteria. The first division is based on the development of an IE kw sound (a k +u sound), 

which is expressed differently in the P and Q Celtic languages (Cowgill, 1975; Campanile, 

1976; De Hoz, 1992; Forester and Toth, 2003). P Celtic languages include Gaulish, spoken in 

Gaul, and Brittonic (the ancestor of modern Welsh, Cornish, and Breton) (Collis, 2003; 
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Cowgill, 1975; Schmidt, 1988; Koch, 1992, 2006; Renfrew, 2013). Q Celtic languages 

include Goidelic (the ancestor of Manx, modern Irish and Scottish Gaelic) (Ball and Fife, 

1993; Collis, 2003; Cowgill, 1975; Koch, 1992, 2006; Nicholson, 1904; Renfrew, 2013; 

Schmidt, 1988). These languages were subsequently adopted into the continental Celtiberian 

languages (a combination of Iberian and Celtic languages) by the inhabitants of the Iberian 

Peninsula (Ball and Fife, 1993; Collis, 2003; Cowgill, 1975; De Hoz, 1992; Fleuriot, 1988; 

McCone, 1991; Nicholson, 1904; Oppenheimer 2007; Wodtko, 2010, 2013). The kw sound 

appears as either a ku or K sound in Celtiberian and arguably in some Gaelic dialects such as 

Scottish Gaelic and Manx (Cowgill, 1975; De Hoz, 1992; Fleuriot, 1988; McCone, 1991, 

1996; Nicholson, 1904). However, the above pronunciations have been transliterated as a q 

sound as these languages were initially translated through Latin, hence the term Q Celtic for 

these languages (Ball and Fife, 1993; Renfrew, 2013; Wodtko, 2010, 2013). The IE kw sound 

appears as a P sound in the Gaulish and Brittonic languages (Collis, 1999; Collis, 2003; 

Delamarre, 2003; Sims-Williams, 1998a; Oppenheimer, 2007, Waddell, 1969; Wodtko, 2010, 

2013).  

It is believed that these changes occurred after the split between the P and Q 

languages (Eska, 1998; Fleuriot, 1988; Nicholson, 1904; Renfrew, 1987; Schmidt, 1986). The 

second division, is based on geographic location and includes the insular and continental 

languages, spoken in the British Isles continental Europe, respectively. The insular languages 

include Goidelic and Brittonic (Cowgill, 1975; De Hoz, 1992; Fleuriot, 1988; Isaac, 2010; 

Mallory, 2016; McCone, 1991; Nicholson, 1904). The continental languages include 

Leptonic, Gaulish, and the Celtiberian languages (Collis, 2003; Cowgill, 1975; Eska and 

Evans, 1993; Eska, 1998; Koch, 1992, 2006; Renfrew, 2013; Schmidt, 1988). Other 

languages that have been argued to be part of this language family include, Galatian, spoken 

in the Galatian area of Turkey, and Noric, spoken in Central and eastern Europe (Delamarre, 

2003; Falileyev, 2007; Freeman, 2001). However, as these languages are only known from 

exceedingly limited and highly fragmentary inscriptions, so their place within the above 

language family is uncertain (Cowgill, 1975; Eska and Evans, 1993; Eska, 1998; Schmidt, 

1988; Koch, 1992, 2006; Renfrew, 2013). Further, several languages are presumed to have 

been Celtic based on where they were spoken, or believed to have been spoken (Collis, 2003; 

Cowgill, 1975; Eska and Evans, 1993; Eska, 1998; Schmidt, 1988; Koch, 1992, 2006; 

Renfrew, 2013). These include Camunic, Ligurian, Lusitanian, and Raetian. These languages 

were spoken in the Alps, southeastern France, northern Italy, the Iberian Peninsula, 
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Switzerland, and northern Italy respectively (Collis, 2003; Cowgill, 1975; Eska and Evans, 

1993; Eska, 1998; Schmidt, 1988; Koch, 1992, 2006; Renfrew, 2013). However, these 

languages have not been the focus of much research as they are also known from extremely 

limited and highly fragmentary short inscriptions. Consequently, the relationships among 

Celtic languages have been predominantly established based on the Gaulish, Brittonic 

Goidelic, Celtiberian and Leptonic languages.  

Although the P and Q division is still used, the insular and continental division is 

more common; as it is unknown whether the above sound changes were present in all insular 

and continental languages (Collis, 2003; Cowgill, 1975; Eska and Evans, 1993; Eska, 1998; 

McCone, 1991, 1996; Schmidt, 1988; Schrijver, 1995; Koch, 1992, 2006; Renfrew, 2013). 

Consequently, the sound changes may not adequately reflect the range of variation between 

these languages. Therefore, the presence of shared cognates, words having a common 

linguistic origin (e.g., English: father, German: Vater), are frequently used to reconstruct 

relationships among the insular and continental languages (Ball and Fife, 1993; Carroll, 1992; 

Cowgill, 1975; Falileyev, 2007; Gohil, 2005, 2006; McCone, 1996; Renfrew, 2013). 

Specifically, cognates are used, as they are believed to represent root words that can be traced 

back to a shared ancestral language, i.e. the IE languages (Carroll, 1992; Kondrak, 2001; 

Krishnamurti et al., 1983; Pagel, 2016; Rama et al., 2018). Lower percentages of shared 

cognates may suggest a longer temporal separation and subsequent differentiation (Carroll, 

1992; Kondrak, 2001; Krishnamurti et al., 1983; Pagel, 2016; Rama et al., 2018). 

The insular languages are believed to be more similar to one another than to the 

continental (Cowgill, 1975; Falileyev, 2007; Gohil, 2005, 2006; McCone, 1996). Since these 

languages share less than 20% of cognates with other IE languages, this suggests an early 

separation between these languages (Novotna and Blazek, 2006; Oppenheimer, 2007; Parsons 

and Williams, 2000; Parsons, 2012). Brythonic, Goidelic, and Gaelic share 30% of cognates, 

indicating a later split. However, as Goidelic shares more cognates with the insular languages 

its classification as a continental language is questionable (McCone, 1996; Oppenheimer, 

2006). Based on the differences in shared cognates, the split between insular and continental 

Celtic may have happened as early as 3,200-2,500 BC. Therefore, this split may have 

occurred after the IE languages spread throughout continental Europe, approximately 4,000-

3,000 BC (Atkinson and Gray, 2017; Forester et al., 2004; Forester and Toth 2003; Gray and 

Atkinson, 2003). Alternatively, it has been suggested that Gaulish may have been separated 

from the other insular languages by 5,200 kya. Goidelic and Brittonic may have split around 
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1,100 BC (Atkinson and Gray, 2017; Forester et al., 2004; Forester and Toth 2003; Gray and 

Atkinson, 2003; Novotna and Blazek, 2006). The above dates are constant with a Neolithic 

and/or Bronze Age migration suggesting that the insular Celtic languages may have arrived in 

the British Isles earlier than presumed. Though, the date of 5,200 kya represents the oldest 

possible movement into the region (Byrne et al., 2018; Forester et al., 2004; Forester and 

Toth 2003; Gray and Atkinson, 2003; Novotna and Blazek, 2006). A date of 3,200 ± 1,500 

kya, has been proposed for the split between Gaulish, Goidelic, and Brythonic. However, this 

date should be regarded as tentative, as it is based on only three descendant branches 

(Forester and Toth 2003; Gray and Atkinson, 2003; Nicholson, 1904; Novotna and Blazek, 

2006).  

 Though the linguistic dates suggest an early introduction of the insular languages in 

this region, the archaeological evidence is at odds with this perspective (Cunliffe, 2009; 

Charles-Edwards, 1995; Evans, 1986, 1995; Forester et al., 2004; Green and Piggott, 1983; 

Green, 1998; Greenwell, 1906; Halkon, 2013; Hodson, 1964; James, 1999; Jackson, 1948). If 

these languages moved into the British Isles during the Neolithic/Bronze Age, then their 

movement is not likely connected to the movement of La Tène artefacts during the Iron Age. 

Further, there is some evidence of cultural continuity from the Bronze Age into the Iron Age, 

i.e., settlement patterns and house structure (Collis, 2003; Cunliffe, 1997; Dent, 1982, 1984; 

James, 2005; Koch, 2006; Stead, 1991a). Given the lack of evidence for a large-scale 

migration into this region during the Iron Age and the estimated arrival of the insular 

languages, it has been suggested that these languages were already established in the British 

Isles prior to the arrival of people bearing the La Tène material culture (See pages 19, 32 and 

61) (Charles-Edwards, 1995; Collis, 2003; Cunliffe, 2009; Charles-Edwards, 1995; Evans, 

1986, 1995; Forester et al., 2004; Halkon, 2013; Hodson, 1964; James, 1999). Therefore, the 

association between the insular languages and this culture within the British Isles is 

questionable. If these languages were spoken prior to the arrival of the above culture, the 

application of the term Celt to this region may be nominal or strictly linguistic. However, the 

influence of small-scale migration and/or population movement along Atlantic trade routes 

cannot be ruled out.  

The distribution of Celtic place names including briga (hill), dunum (fort) and magnus 

(market), is in line with the above mechanisms (Cunliffe, 1997; Falileyev, 2007; Heine, 2008; 

Jackson, 1948). The distribution of these place names extends throughout most of Central 

Europe including northern Gaul, southern Germany, northern Italy, Hungary, and into Britain 
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and Ireland (Collis, 2003; Gohil, 2005, 2006; Parsons, 2012; Sims-Williams, 2006). Although 

there is a record of these inscriptions from Cornwall, Wales, Ireland, and Scotland before and 

after the Roman invasions, around 55-54 AD, their relative frequencies are low (Collis, 2003; 

Gohil, 2005, 2006; Parsons, 2012; Sims-Williams, 2006). Place names only represent 27% of 

the linguistic inscriptions found throughout England, indicating a limited presence or 

distribution of the insular languages (Fortson, 2004; Forester and Toth, 2003; Sims-Williams, 

2006). However, the total number of inscriptions is not quantified (Fortson, 2004; Forester 

and Toth, 2003; Sims-Williams, 2006). Their distribution throughout the above regions may 

indicate interactions among populations (i.e., trade or gene flow), or their application by the 

Romans to regions possessing similar material culture and/or languages. Since these 

similarities are not described in detail and are derived from Roman political propaganda, it is 

difficult to determine if they are representative of actual linguistic similarity. 

In spite of their low-frequencies in distribution, place name evidence has been used to 

link the insular languages to those in historic Gaul and the Iberian Peninsula (Collis, 2003; 

Forester and Toth, 2003; Sims-Williams, 2006). Place names have been interpreted to 

indicate the presence of Celtic languages and people; however, this may not be the case 

(Falileyev, 2007; Falileyev et al., 2010; Sims-Williams 1998, 2006; Joseph, 2010; Parsons, 

2012). In Albania and Kosovo, both Pannonian (a proto-Slavic language spoken in present-

day Hungary and the Slavic regions) and Celtic inscriptions have been found (Joseph, 2010; 

Sims-Williams 1998, 2006). Though, the majority of the tribal and place names are 

Pannonian in origin (Falileyev, 2007; Falileyev et al., 2010; Sims-Williams, 1998a). 

Therefore, the presence of these inscriptions does not necessarily designate an area as 

inhabited by Celtic people or languages. However, due to the nature of the continental 

language inscriptions (e.g., fragmentary), it is difficult to determine their geographic 

distribution. 

The majority of the continental inscriptions are found in the Iberian Peninsula and 

northern Italy; relatively few are from Central Europe. Therefore, their geographic 

distribution and diversity is unknown. Further, as the continental languages are based, in part, 

on the transliteration of the q sound through Latin, their resulting relationships with the 

insular languages are questionable (Ball and Fife, 1993; Charles-Edwards, 1995; Collis, 

2003; Eska, 1998; Evans, 1995; Koch, 2006). It is also difficult to determine the extent of this 

influence has had on the reconstruction of the continental languages, as it is unknown 

whether the resulting relationships are representative of differences between these languages 
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or between the continental languages and Latin (Borsley and Roberts, 1996; Collis, 2003; 

Cunliffe, 1997; Novotna and Blazek, 2006). Consequently, it is difficult to determine the 

extent of the diversity among these languages, i.e., whether they represent different dialects 

(a particular form of a language that is specific to a geographic region and/or ethnic group) or 

different languages (Ball and Fife, 1993; Prokić and Nerbonne, 2013; Salmons, 1992). 

Furthermore, the phylogenetic reconstruction of the continental languages is questionable as 

it is primarily based on the Celtiberian and Leptonic inscriptions (Forester and Toth 2003; 

Gray and Atkinson, 2003; Nicholson, 1904; Novotna and Blazek, 2006). Moreover, it is 

unknown whether the initial divisions between the insular and continental languages are valid 

distinctions, as they were based on the differential expression of the IE kw sounds and 

geographic location (Ball and Fife, 1993; Collis, 2003; Renfrew, 1992, 2013; Wodtko, 2010, 

2013).  

It is also uncertain whether these divisions are only a convenient way to describe 

these languages or are a valid way of dividing them (Heine, 2008; McCone, 1996, 

Oppenheimer, 2007; Trask, 1996). Further divisions have been postulated among the 

continental languages, including the establishment of the Italo-Celtic language branch. This 

proposed division is based on the presumption of shared features (i.e., cognates) and the 

presence of La Tène artefacts in northern Italy. However, the presence of these features does 

not necessarily facilitate the formation of a new language branch (Forester and Toth, 2003; 

Schmidt, 1991; Warnow, 1997; Watkins, 1966). Therefore, this division is not believed to 

represent a specific language or language family (Cowgill, 1970; Forester and Toth, 2003; 

Isaac, 2004, 2010; Kortlandt, 1981, 2007; Russell, 1995; Schmidt, 1991; Warnow, 1997; 

Watkins, 1966; Weiss, 2012; Winfred, 1997). Rather this branch is believed to represent a 

nominal division between the Italic and continental languages based on the suspected 

existence of an ancestral Italo-Celtic language (Forester and Toth, 2003; Schmidt, 1991; 

Warnow, 1997; Watkins, 1966). However, as the diversity among the continental languages, 

their relationships to one another and their subsequent diffusion throughout Europe are 

unknown; their relationships to other IE languages are hypothetical and may have resulted in 

the formation of new language branches and/or families (De Hoz, 1992; Forester and Toth, 

2003; Isaac, 2004, 2010; Kortlandt, 1981, 2007; Watkins, 1966; Winfred, 1997). Therefore, it 

is difficult to determine whether the presence of linguistic similarities, such as shared 

cognates, indicate similar languages or different processes including word borrowing; the 

exchange of words among population across linguistic boundaries with or without gene flow 
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Carroll, 992; De Hoz, 1992; Forester and Toth, 2003; Isaac, 2004, 2010; Kortlandt, 1981, 

2007; Schmidt, 1991; Warnow, 1997; Watkins, 1966; Winfred, 1997).  

Shared cognates between the Italic and Celtic languages may have derived from word 

borrowing across linguistic boundaries. Alternatively, the presumption of shared features may 

simply be that, a presumption (Carroll, 992; De Hoz, 1992; Forester and Toth, 2003; Isaac, 

2004, 2010; Kortlandt, 1981, 2007; Schmidt, 1991; Warnow, 1997; Watkins, 1966; Winfred, 

1997). This presumption is based on similarities between the Leptonic, Celtiberian and Italic 

branches. Although the Italic and Leptonic languages are believed to have been spoken in 

close proximity, there is no evidence that they were spoken farther south than present-day 

Milan, whereas the Celtiberian languages (i.e., Tartessian) were spoken predominantly in the 

Iberian Peninsula (Forester and Toth, 2003; Isaac, 2004, 2010; Kortlandt, 1981, 2007). 

Tartessian, a language spoken in southern Portugal and southwestern Spain prior to Roman 

invasion, has been classified as Celtiberian and/or Celtic (Koch, 2009b, 2010, 2012, 2013; 

Rodriguez, 2002a, b). However, it has also been classified as a language isolate, with no 

demonstratable relationship to other languages, as there are no significant connections with 

the other IE languages (Correa, 1989; de Hoz, 2010; Isaac, 2004, 2010; Kortlandt, 1981, 

2007). Tartessian has also been suggested to be related to the Iberian or Basque languages, 

thus the Celtic elements may represent word borrowing (Correa, 1989; de Hoz, 2010; Hunley 

and Long, 2005; Koch, 2009b, c, 2010, 2013; Rodriguez, 2002a, b; Untermann, 1997). The 

process of word borrowing make it difficult to estimate the formation of new languages or 

dialects and their subsequent splits. 

Estimating the time since the continental, insular, Italic and Leptonic languages split 

from a common proto-language is difficult as the duration of their period of common ancestry 

and underlying relationships are unknown (Forester and Toth, 2003; Isaac, 2004, 2010; 

Kortlandt, 1981, 2007). However, the length of time since one or more languages diverged 

from an earlier proto-language may be estimated through the application of lexicostatistics 

and glottochronology. Lexicostatistics, the quantitative comparison of cognates and 

glottochronology, the attempt to use these methods to estimate the length of time since one or 

more languages diverged from an earlier proto-language, have been used to estimate the 

approximate dates of this divergence and subsequent diffusion. However, there are several 

inherent problems with each method (Bergsland and Vogt, 1962; Campbell, 1988; Gray and 

Atkinson, 2003; Haarmann, 1990; Sankoff, 1970). Glottochronology examines the 

chronological relationships between languages, following two assumptions. First, that there is 
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a relatively stable basic vocabulary, cognates, shared by all languages. Second, that any 

linguistic replacements occur analogical to radioactive decay, by assuming a constant rate of 

cognate replacement which is summarized into percentage scores (Bergsland and Vogt, 1962; 

Campbell, 1988; Carroll, 1992; Gray and Atkinson, 2003; Haarmann, 1990; Holm, 2003; 

Kirk et al., 1985; Swadesh, 1952; Thomason and Kaufman, 1992).  

However, the assumption of strict cognate replacement rarely holds, making discrete 

estimates unreliable (Atkinson and Gray, 2017; Bergsland and Vogt, 1962; Campbell, 1988; 

Gray and Atkinson, 2003; Kirk et al., 1985). Glottochronology has been found to account for 

a significant proportion of the variance among IE languages, but the accuracy of the timing of 

language divergence using this method is inherently controversial (Bergsland and Vogt, 

1962; Campanile, 1976; Dyen, 1962b, 1963; Gray and Atkinson, 2003; Haarmann, 1990; 

Hoijer, 1956; Holm, 2003; Sjøberg and Sjøberg, 1956). Due to the inclusion of borrowed 

words among descendant language branches, the resulting divergence estimates can be 

distorted; as word borrowing across linguistic boundaries does not necessarily indicate a 

substantial change (Atkinson and Gray, 2017; Brainerd, 1970; Campbell, 1988; Dyen, 1962b, 

1963; Gray and Atkinson, 2003; Holm, 2003; Sankoff, 1970; Thomason and Kaufman, 

1992). Moreover, by summarizing cognate changes into percentage scores, much of the 

discrete character data, terms and/or elements specific to one language, is lost. Consequently, 

the ability of this method to reconstruct linguistic history accurately is reduced. A further 

problem involves the notion of a dialect continuum, which complicates language mapping 

and diffusion estimates (Bergsland and Vogt, 1962; Gray and Atkinson, 2003; Heeringa and 

Nerbonne, 2001; Holm, 2003; Kirk et al., 1985; Thomason and Kaufman, 1992). A dialect 

continuum refers to the process by which languages accumulate differences geographically. 

Languages can be spatially dispersed, due to migrations or incursions by other populations, 

and in the absence of integrative mechanisms (e.g., word borrowing) they will eventually 

diverge from one another to form dialects (Brainerd, 1970; Bickel, 2019; Campbell, 1988; 

Chambers and Trudgill, 1998; Dyen, 1962b, 1963). Subsequently, they can become 

unintelligible over time and appear to represent distinct languages (Gray and Atkinson, 2003; 

Haarmann, 1990; Herringa and Nerbonne, 2001; Holm, 2003; Prokić and Nerbonne, 2013; 

Salmons, 1992; Sankoff, 1970; Williamson, 2000). 

However, in spite of a linguistic gradient, there is no significant boundary between 

groups speaking different dialects, as the change is gradual (Campbell, 1988; Gray and 

Atkinson, 2003; Prokić and Nerbonne, 2013; Salmons, 1992; Sankoff, 1970). Grouping such 
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languages or dialects together as a single coherent family erroneously conveys the impression 

that the populations speaking them composed a single community (Campbell, 1988; Dyen, 

1962b, 1963; Gray and Atkinson, 2003; Haarmann, 1990; Holm, 2003; Kirk et al., 1985; 

Sankoff, 1970). However, as there is no universally accepted definition of what constitutes a 

dialect verses a separate language, it is difficult to determine whether dialect or language 

boundaries are more accurate in regards to population separation (Gray and Atkinson, 2003; 

Haarmann, 1990; Holm, 2003).  

A further issue with glottochronology and lexicostatistics is how new languages 

emerge (Campbell, 1988; Dyen, 1962b, 1963; Gray and Atkinson, 2003; Haarmann, 1990; 

Holm, 2003). New languages can emerge based on descent from a common proto-language, 

as well as from changes in language structure and word borrowing (Kirk et al., 1985; 

Sankoff, 1970; Starostin, 2013; Thomason and Kaufman, 1992). However, these processes  

do not necessarily indicate a change in language boundaries; rather, they may indicate 

interaction between individuals or populations with or without substantial gene flow 

(Campbell, 1988; Dyen, 1962b, 1963; Gray and Atkinson, 2003; Haarmann, 1990; Holm, 

2003; Kirk et al., 1985; Sankoff, 1970; Starostin, 2013). Further, substantial borrowing of 

words and/or phrases makes phylogenetic tree-based methods, such as lexicostatistics and 

glottochronology, inappropriate. Moreover, the clustering methods used tend to produce 

inaccurate trees when languages evolve slowly rather than among languages that share a 

recent common ancestor (Gray and Atkinson, 2003; Haarmann, 1990; Holm, 2003; Kirk et 

al., 1985; Sankoff, 1970; Starostin, 2013; Thomason and Kaufman, 1992).  

Additionally, the presumed rate of change used in these analyses is based on modern 

languages, which undergo more rapid change (Campbell, 1988; Dyen, 1962b, 1963; Gray and 

Atkinson, 2003; Haarmann, 1990). This is at odds with the underlying assumption of a 

uniform rate of change these methods rely on (Campbell, 1988; Dyen, 1962b, 1963; Gray and 

Atkinson, 2003; Haarmann, 1990; Ono, 2019). Words do not disappear from a language, 

instead new lexical forms, words or phrases, constantly compete with old forms, rendering 

them obsolete and eliminating them from a languages lexical repertoire, the spoken language 

(Campbell, 1988; Dyen, 1962b, 1963; Gray and Atkinson, 2003; Haarmann, 1990; Holm, 

2003; Kirk et al., 1985; Sankoff, 1970; Thomason and Kaufman, 1992). Languages have been 

found to differ appreciably in regards to the rate of lexical change as the rate of word 

replacement is likely to be different for each word or phrase in a given language (Campbell, 
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1988; Dyen, 1962b, 1963; Gray and Atkinson, 2003; Haarmann, 1990; Holm, 2003; Kirk et 

al., 1985; Sankoff, 1970; Thomason and Kaufman, 1992). 

These changes are likely to have derived from events that are unpredictable and, 

therefore, cannot be computed uniformly. The results of linguistic dating and divergence are 

sometimes at odds with known and archaeologically derived data, and difficulties in 

determining equivalent terms across languages (Bergsland and Vogt, 1962; Dyen, 1962b, 

1963; Gray and Atkinson, 2003; Haarmann, 1990; Holm, 2003; Starostin, 2013; Thomason 

and Kaufman, 1992). Moreover, brief periods of common ancestry among language families 

may not be evident through lexicostatistical dating (Forester and Toth, 2003; Isaac, 2004, 

2010; Kortlandt, 1981, 2007; Schmidt, 1991; Winfred, 1997). Since the timing of linguistic 

diffusion derived from lexicostatistics and glottochronology are often at odds with known 

archaeological data, the application of these methods to unknown language systems, such as 

the Celtic languages, is highly suspect (Fortson, 2004; Forester and Toth, 2003; Gray and 

Atkinson, 2003; Sims-Williams, 2006). However, in spite of the issues outlined above 

lexicostatistics and glottochronology are still utilized in order to determine the relationships 

among languages, although their application has decreased in favor of new methods 

(Atkinson et al., 2005; Dellert and Buch, 2016; Gapur et al., 2018; Kaplan, 2017; Novotna 

and Blazek, 2006; Ono, 2019; Starostin, 2013; Zhang and Gong, 2016). 

Recent methods including character state and Bayesian phylogenetic methods are 

more widely used. These methods facilitate cognate evolution analyses in single or multiple 

dimensions and produce phylogenetic trees from standard wordlists of basic vocabulary with 

branch lengths that reflect differential degrees of independent evolution (Currie et al., 2013; 

Huff and Lonsdale 2011; Levinson and Gray, 2012). The above methods can be mapped onto 

geographical space in order to assess the likely pathway of expansion and facilitate testing of 

dispersal scenarios (Currie et al., 2013; Huff and Lonsdale 2011; Levinson and Gray, 2012; 

Pompei et al., 2011; Robbeets and Bouckaert, 2018; Wichmann et al., 2010). These analyses 

have indicated the split between the Celtic and IE languages likely occurred sometime after 

their spread into continental Europe, during the Neolithic/Bronze Age. The split between the 

insular and continental languages likely happened around 1,000-500 BC (Bouckaert et al., 

2012; Forester et al., 2004). The above date for the split between IE and Celtic languages is 

the same as that estimated form the percentage of shared cognates (Forester and Toth 2003; 

Gray and Atkinson, 2003; Kortlandt, 2018). However, the date for the split between the 

insular and continental languages is vastly different, 1,000-500 BC versus 3,200-2,500 BC. 
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This difference is likely related to the fact that estimating a split between languages or 

families, through shared cognates represents the earliest possible date (Bouckaert et al., 2012; 

Forester et al., 2004; Forester and Toth 2003; Gray and Atkinson, 2003; Kortlandt, 2018). 

The Celtic languages have been used to link diverse populations together without 

knowledge of their underlying biological relationships (See pages 19 and 32) (Cunliffe, 1997; 

Evans, 1979; Forester and Toth, 2003). Although the presence of a common or related 

language may indicate a common biological origin, the genetic and linguistic assimilation of 

diverse migrants within a larger population may increase their genetic heterogeneity (Bickel, 

2019; Creanza et al., 2015; Longobardi et al., 2015; Sokal, 1988; Sokal et al., 1988). The 

immigrant groups may have been initially homogeneous, but they subsequently become 

genetically incorporated into the local population. The resulting mixed population may adopt 

the languages of either the immigrants or the local population, or a mixture of both (Bickel, 

2019; Creanza, et al., 2015; Longobardi, et al., 2015). Previous studies have indicated a 

connection between linguistic and genetic differentiation among populations (Bickel, 2019; 

Cavelli-Sforza et al., 1988; Cavelli-Sforza et al., 1992; Chen et al., 1995; Creanza et al., 

2015; Excoffier et al., 1991, 1987; Greenberg et al., 1986; Greenhill et al., 2017; Longobardi, 

et al., 2015; Sokal, 1988; Sokal et al., 1988, 1989, 1990). These studies have also shown that 

the rate of change in the frequency of some alleles, pairs or series of genes that determine 

hereditary characteristics, across boundaries between language families in Europe is higher 

than across comparable lines drawn at random (Excoffier et al., 1987; Greenberg et al., 1986; 

Longobardi et al., 2015; Sokal, 1988; Sokal et al., 1988, 1989, 1990). Regions of genetic 

change have been found to correlate with genetic, linguistic and physical boundaries as well 

as geographic distance (See pages 103, 105 and 107) (Barbujani et al., 1990; Bickel, 2019; 

Chen et al., 1995; Creanza et al., 2015; Greenhill et al., 2017; Longobardi et al., 2015; Sokal, 

1988; Sokal et al., 1988, 1989, 1990).   

These findings suggest that the processes leading to linguistic diversity may also have 

brought about genetic variation. Linguistic boundaries may also act as reproductive barriers, 

resulting in a difference in gene frequencies among spatially close populations (Coia et al., 

2013; Greenberg et al., 1986; Greenhill et al., 2017; Longobardi, et al., 2015; Sokal, 1988; 

Sokal et al., 1988, 1989, 1990). The allocation of these boundaries with increased genetic 

differentiation may be the result of their active attribution in preventing gene flow between 

groups. Alternatively, the geographical differentiation of linguistic groups that came into 

contact created a zone of cultural and linguistic variation (See pages 103, 105 and 107) 
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(Bickel, 2019; Chen et al., 1995; Creanza et al., 2015; Greenhill et al., 2017; Longobardi, et 

al., 2015). Overall, populations have been found to differ more among language families than 

within, with regard to their respective rates of gene flow (Bickel, 2019; Chen et al., 1995; 

Creanza et al., 2015; Georgi et al., 2010; Greenhill et al., 2017; Longobardi et al., 2015; 

Sokal, 1988; Sokal et al., 1989). Among the major linguistic families within Europe 

including, Albanian; Baltic; Basque; Balto-Slavic; Celtic; Finnic; Germanic; Greek; 

Romance; Semitic; Slavic; Turkic and Ugric, the majority of the observed genetic variation 

was found to correlate with the observed linguistic boundaries (Bickel, 2019; Creanza et al., 

2015; Georgi et al., 2010; Greenhill et al., 2017; Longobardi et al., 2015; Sokal, 1988; Sokal 

et al., 1989). However, some variation has been observed within language families in relation 

to geographic distance (i.e., north and south Germanic). This variation may suggest that 

relatively homogenous populations associated with the above language families moved into 

Europe and expanded and differentiated geographically (See pages 103, 105 and 107) 

(Bickel, 2019; Creanza et al., 2015; Greenhill et al., 2017; Longobardi et al., 2015; Sokal, 

1988; Sokal et al., 1989, 1990).  

The genetic diversity observed among populations located on different sides of a 

linguistic boundary could be attributed to reduced gene flow across the boundary (Greenhill, 

et al., 2017; Longobardi, et al., 2015; Sokal, 1988; Sokal et al., 1989, 1990). Although some 

linguistic boundaries have been found to correlate with physical boundaries, several are not 

associated with any known physical barriers (Barbujani and Sokal, 1990; Creanza et al., 

2015; Greenhill et al., 2017; Longobardi, et al., 2015). Therefore, languages themselves may 

act as barriers to gene flow and enhance the genetic variation observed among populations 

(Barbujani and Sokal, 1990; Creanza et al., 2015; Greenhill et al., 2017). Thus, the presence 

of genetic boundaries among populations within the core and expansion regions may also 

indicate linguistic boundaries. 

Intra-and-extra-regional genetic variation among Celtic populations  

 

Genome-wide SNP (Single Nucleotide Polymorphisms) data indicate that modern 

Europeans, in varying proportions, descended from 3 ancestral populations: northern 

Palaeolithic Eurasians, western European hunter-gatherers and early near eastern Neolithic 

farmers (Bramanti et al., 2009; Haak et al., 2015; Lazaridis et al., 2014; Skoglund et al., 

2012). However, while the distribution of Y-chromosome, a genealogical test used to 



  

 

 

 104  

 

 

examine the patrilineal ancestry of an individual, and mtDNA, a similar test to determine the 

maternal lineage, throughout continental Europe have been the focus of numerous previous 

studies; few have linked specific haplogroups, a combination of specific genes that are 

closely linked and are inherited together, or sub-clades, a sub-group of a particular 

haplogroup e.g., R1b-S28/U152, to the Celts (Bramanti et al., 2009; Haak et al., 2015; 

Lazaridis et al., 2014; Skoglund et al., 2012). The majority of these studies depend on DNA, 

a molecule that contains an individuals genetic code, from the modern Celtic fringe (i.e., the 

six Celtic “nations”, Scotland, Ireland, the Isle of Man, Cornwall, Brittany, and Wales) and 

Central Europe to constitute a baseline for Celtic DNA (Allentoft et al., 2015; Busby et al., 

2012; Capelli et al., 2003; Cassidy et al., 2015; Haak et al., 2015; Richards, et al., 2002; 

Rosser et al., 2000; Semino et al., 2004; Sykes, 2006; Torroni et al., 1998, 2001; Wilson et 

al., 2001; Winney  and Walter, 2016). However, most previous studies use the term Celtic in 

a purely nominal way, relying on a combination of associations from linguistics and 

archaeology (See pages 19, 32 and 91) (Hill et al., 2000; Lell and Wallace, 2000; McEvoy et 

al., 2004; Oppenheimer, 2012). It is unknown how much movement occurred within each 

sample or population analysed; as a result, the actual population history may not be 

adequately represented. The observed variation is presumed to represent the HaD or La Tène 

period overall, as such these samples are also not often temporally specific (Busby et al., 

2012; Cassidy et al., 2015; De Beule, 2009, 2010). Further, the majority of previous studies 

have focused on Y-chromosome variation, specifically the R1b haplogroup, the most 

common paternal Y-chromosome lineage in Western Europe, while limited previous 

research, comparatively, has focused on mtDNA variation (Haak et al., 2015; Lucotte, 2015; 

McEvoy et al., 2004; Myres et al., 2007; Myres et al., 2011; Oppenheimer, 2007, 2012; 

Sjodin and Francois, 2011; Sykes 2006).  

The Y-chromosome haplogroup R1b and various sub-clades, those that have been the 

focus of research, have been intrinsically linked with the Celts as they occur in high 

frequencies where Celtic languages were spoken and the Hallstatt and La Tène material 

cultures were present (See pages 19, 32 and 91) (Busby et al., 2012; Cassidy et al., 2015; De 

Beule, 2009, 2010; Haak et al., 2015; Lucotte, 2015; McEvoy et al., 2004; Oppenheimer, 

2007, 2012; Rootsi et al., 2011; Sjodin and Francois, 2011; Sykes 2006). However, as R1b is 

the most commonly occurring paternal lineage in Central Europe, its distribution may not be 

intrinsically linked with Celtic groups. High frequencies of Y-chromosome haplogroup and 

sub-clades are observed within the core including R1b-S28/U152, R1b-S28/Z36 R1b-
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S21/U106, and I-L38/S154 and I-L38/M223, whereas those in the expansion regions include 

R1b-L21/S145, R1b-M153/M167, R1a/L260, R1a-M458, R1a-Z280 (Cassidy et al., 2015; De 

Beule, 2009, 2010; Lucotte, 2015; Oppenheimer, 2007, 2012; Sykes 2006; Underhill et al., 

2015). However, the relative percentages of the above Y-chromosome haplogroups and sub-

clades, as identified in modern populations, discussed in the following sections have not been 

quantified (e.g. they are not described based on the number of individuals found to have the 

above haplogroups and/or sub-clades. Rather they are documented as generalized regional 

percentages such as, 15-20%). 

 

Evidence for genetic diversity within the core regions 

 

 The R1b-S28 haplogroup, specifically the U152 sub-clade, has been dubbed the 

southern European R1b haplogroup or the Alpine haplotype (Busby et al., 2012; Cruciani et 

al., 2011; McEvoy et al., 2004). It is found in high frequencies, 25-40%, in northern Italy and 

southwestern France, whereas low frequencies occur in Switzerland, the Czech Republic, 

Belgium, Slovakia, Austria, Luxembourg, the Netherlands and southern Germany (Busby et 

al., 2012; Cruciani et al., 2011) (See Figure 1 in Myres et al., 2010 for a map showing the 

R1b haplogroup distributions listed in this and the following section). This subclade has been 

associated with the Gauls, the Belgae and the Celts (Busby et al., 2012; Cruciani et al., 2011; 

McEvoy et al., 2004). The Z36 sub-clade has also been associated with Celtic populations; as 

it occurs in moderately high frequencies, approximately 30-40%, in Italy including, Liguria 

and Lombardy, France, southwestern Germany (specifically Baden-Württemberg), and 

western Switzerland (See page 61) (De Beule, 2009; Klyosov, 2012b, Klyosov and 

Tomezzoli, 2013; Lucotte, 2015; Myres et al., 2010) (See Figure 1 in Myres et al., 2010 for a 

map showing the R1b haplogroup distributions listed in this and the following section). 

Lower frequencies, 20-30%, are found in southern Germany, Switzerland, the Czech 

Republic, and Slovakia (Klyosov, 2012b, Klyosov and Tomezzoli, 2013; Lucotte, 2015; 

Myres et al., 2010; Oppenheimer, 2007; Simoni et al., 2000). However, this sub-clade has 

been argued to be a marker of Italic ancestry, as it is common in Italy (Busby et al., 2012; 

Cruciani et al., 2011; De Beule, 2009). Alternatively, it may reflect migrations of Celtic 

groups into northern Italy, which subsequently diversified or integrated into the local 
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populations (Cruciani et al., 2011; Lucotte, 2015; Manco, 2015; Myres et al., 2010; Richards 

et al., 2002; Rosser et al., 2000; Torroni et al., 1998, 2001).  

The R1b-S21 haplogroup, specifically the U106 sub-clade is common around the 

western core of the Urnfield and Hallstatt areas, along the Rhine to the Netherlands and along 

the Danube to Bulgaria (De Beule, 2009, 2010; McEvoy et al., 2004; Roosti et al., 2011). 

Subsequently, this haplogroup has been dubbed the northwestern R1b haplogroup or the 

Germanic haplogroup (Cruciani et al., 2011; De Beule, 2009, 2010; Lucotte, 2015; McEvoy 

et al., 2004; Roosti et al., 2011). The spread of this sub-clade has been linked to both 

Germanic and Celtic migrations throughout the regions associated with Hallstatt culture (See 

pages 19 and 61) (Cruciani et al., 2011; De Beule, 2009, 2010; Lucotte, 2015; McEvoy et al., 

2004). The highest frequencies, 18-37%, occur in Austria, Germany, Denmark, England, and 

the Netherlands (Busby et al., 2012; Cruciani et al., 2011; Myres et al., 2010) (See Figure 1 in 

Myres et al., 2010 for a map showing the R1b haplogroup distributions listed in this and the 

following section). The modern distributions of the U152 and U106 sub-clades correlate with 

mtDNA lineages including H5, J and K (Arnason et al., 2000; Cruciani et al., 2007; Di 

Giacomo et al., 2004; Helgason et al., 2001; Hill et al., 2000; Lell and Wallace, 2000; 

Richards et al., 2002; Torroni et al., 2000). MtDNA haplogroup H5 occurs in similar 

frequencies, 5-8%, in Slovenia, Belgium, Romania, Germany, Slovakia, and Switzerland 

(Finnila et al., 2001; Richards et al., 2002; Torroni, 2000). Haplogroup K is common in 

slightly higher frequencies, 10-15%, in Belgium, France, Austria, and the Netherlands. It is 

also found in low frequencies in Britain, 8%, which has been suggested to represent 

migrations into Britain from continental Europe (See page 61) (Simoni et al., 2000; Torroni et 

al., 2000) (See Figure 1 in Myres et al., 2010 for a map showing the R1b haplogroup 

distributions listed in this and the following section). However, the relative percentages of the 

mtDNA haplogroups and sub-clades, as documented in modern populations believed to be 

associated with the Celts, have also not been quantified and are described simply as 

generalized regional percentages.  

The I-L38 haplogroup, including the S154 and M223 sub-clades, have also been 

associated with the spread of the La Tène culture as their distributions are similar to that of 

the R1b-U152 haplogroup north of the Alps (De Beule, 2009, 2010). The S145 sub-clade 

occurs in high frequencies, 10-25%, in Switzerland, Belgium, Luxembourg, northern and 

Central Germany, the Harz mountains, northeastern France, the Iberian Peninsula, and the 

British Isles (where the insular languages were spoken) (See pages 61 and 91) (Capelli et al., 
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2003; De Beule, 2009, 2010) (See Figure 1 in Myres et al., 2010 for a map showing the R1b 

haplogroup distributions listed in this and the following section). This sub-clade is believed to 

have spread from Germany into England through Belgium in tandem with the La Tène 

culture (De Beule, 2009, 2010). Alternatively, it has been suggested that it was 

autochthonous to the region between the Alps, Central Germany, and Belgium and was 

subsequently assimilated into the Celtic gene pool during the Hallstatt or La Tène periods 

(See page 61) (Capelli et al., 2003; De Beule, 2010; Lucotte, 2015). The m223 sub-clade has 

been specifically associated with historic Gaul as it occurs in high frequencies, 10-20%, in 

France and Luxemburg (Capelli et al., 2003; De Beule, 2010; Lucotte, 2015) (See Figure 1 in 

Myres et al., 2010 for a map showing the R1b haplogroup distributions listed in this and the 

following section).  

Evidence for genetic diversity within the expansion regions 

 

The Y-chromosome haplogroup R1b-L21, specifically the S145 sub-clade has been 

dubbed the insular, or Atlantic, Celtic haplotype (Busby et al., 2012; Capelli, 2003; Cassidy 

et al., 2015; Lucotte, 2015; Weale et al., 2002; Wilson et al., 2001). High frequencies, 20-

40%, occur in southern Britain, northern Portugal and along the Atlantic façade (the Atlantic 

coastline of continental Europe) (Busby et al., 2012; Capelli, 2003; Cassidy et al., 2015; 

Lucotte, 2015; Weale et al., 2002; Wilson et al., 2001) (See Figure 1 in Myres et al., 2010 for 

a map showing the R1b haplogroup distributions listed in this section). However, the highest 

frequencies, in modern populations, of the above sub-clade occur in the historical region of 

Brittany, France is 62%. However, this frequency may be related to the immigration of 

insular Britons during the 5th century AD due to expansion of the Anglo-Saxons within this 

region (See page 61) (Cassidy et al., 2015; Lucotte, 2015). The high frequency in Britain may 

be related to populations moving along the Atlantic trade routes (Cruciani et al., 2011; 

Lucotte, 2015; Manco, 2015). Subsequently, it has been associated with the insular La Tène 

culture, as it is found in regions where insular Celtic languages are still spoken today (Busby 

et al., 2012; Cassidy et al., 2015; Lucotte, 2015; Weale et al., 2002; Wilson et al., 2001). The 

R1b-M153 haplogroup, particularly the M167 sub-clade has been associated with Celtic 

groups in the Iberian Peninsula (See page 61) (Cruciani et al., 2011; Lucotte, 2015). This sub-

clade is common, 15-25%, in regions of Spain and Portugal which have a Celtic-Basque-

Iberian heritage, such as Minho, Galicia, Asturias, Cantiberia, Euskara, and Catalonia 
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(Cassidy et al., 2015; Cruciani et al., 2011; Lucotte, 2015; Manco, 2015) (See Figure 1 in 

Myres et al., 2010 for a map showing the R1b haplogroup distributions listed in this section). 

The R1a haplogroup including the M458, L260, and Z280 sub-clades have been 

associated with populations within the expansion regions. These sub-clades have been 

alternatively associated with Slavic, Baltic and Celtic populations as high frequencies, 30-

57%, are common in Slovakia, Slovenia, Hungary, Romania, Poland, and the Czech Republic 

(See page 61) (Kushniarevich et al., 2013; Pamjav et al., 2012; Pliss et al., 2015; Rozhanskii 

and Klyosov 2012; Underhill et al., 2015; Woźniak et al., 2010). Intra-regional diversity 

within the expansion regions is suggested by the distributions of the R1b-Z280 and M458 

sub-clades. The R1b-Z280 sub-clade is common, 20-35%, in Slovakia, Slovenia, and 

Hungary and is not found in the Czech Republic, whereas the reverse is evident in the 

distribution of the M458 sub-clade (See page 61) (Rozhanskii and Klyosov 2012; Underhill 

et al., 2015) (See Figure 1 in Myres et al., 2010 for a map showing the R1b haplogroup 

distributions listed in this section). 

Several maternal lineages correlate with these sub-clades including H1; H5; H6; H7; 

H11; K; U4; U5; I; J and V (Malyarchuk et al., 2003, 2006; Manco, 2015; Richards et al., 

2002; Torroni et al., 2000). MtDNA haplogroup H1is common in the Iberian Peninsula, 

northwestern Serbia, and southern France at similarly low frequencies, 5-10% (See page 61) 

(Achille et al., 2004; Loogvali et al., 2004; Malyarchuk et al., 2003; Richards et al., 2002; 

Torroni et al., 2000). However, as haplogroup H5 is associated with both the core and 

expansion regions, it is difficult to determine which areas it was originally associated and 

those into which it subsequently moved. Haplogroups H6 and H7 are common at similar 

frequencies, 10-15%, in Slovakia and the Iberian Peninsula respectively (Alvarez-Iglesias et 

al., 2009; Malyarchuk et al., 2003) (See Figure 1 in Myres et al., 2010 for a map showing the 

R1b haplogroup distributions listed in this section). H11 is common throughout Central 

Europe at similarly low frequencies 10-15%, whereas Haplogroup K, is common in northwest 

Europe at similar frequencies 5-15% (See page 61) (Malyarchuk et al., 2003, 2006; Richards 

et al., 2002; Simoni et al., 2000; Torroni et al., 2000).  

U4 occurs at low frequencies across Europe, 2-8.5%, although slightly higher 

frequencies are observed in the Baltic and Slavic regions, 8-10% (Malyarchuk et al., 2003; 

Richards et al., 2002; Torroni et al., 2000). Thought mtDNA haplogroup U5 is common 

throughout northeastern Europe, 5-12%, it occurs at higher frequencies, 10-20%, in northern 

Spain, Slovakia, Croatia, the Czech Republic, southern Germany and southern France (See 



  

 

 

 109  

 

 

page 61) (Knipper et al., 2014; Malyarchuk et al., 2003, 2006; Olade et al., 2014; Richards et 

al., 2002; Torroni et al., 2000; Vidrová et al., 2008) (See Figure 1 in Myres et al., 2010 for a 

map showing the R1b haplogroup distributions listed in this section). MtDNA haplogroups I, 

J and V are relatively evenly distributed in low frequencies across Europe, 8-10.4%, and 

occur at slightly high frequencies, 10-14%, in southwestern France, Gaul and the Iberian 

Peninsula (See page 61) (Maca-Meyre et al., 2003; Soarea et al., 2009; Richards et al., 2002; 

Sykes, 2001; Torroni et al., 2000) (See Figure 1 in Myres et al., 2010 for a map showing the 

R1b haplogroup distributions listed in this section).  

Further evidence for genetic diversity within the expansion regions is suggested by 

the modern European genetic composition of the British Isles. Sykes (2006) and 

Oppenheimer (2007, 2012) examined the distribution of the Y-chromosome R1b and mtDNA 

haplogroups among the modern populations in the British Isles compared to those in 

continental Europe. However, the underlying microsatellite markers and sub-clads were not 

described (Oppenheimer, 2007, 2012; Sykes, 2006). The frequency of the R1b haplogroup 

varies throughout Britain, 73- 98%, whereas in Scotland it accounts for 60% of the Y-

chromosome DNA (Oppenheimer, 2007, 2012; Sykes, 2006). The remaining 40%, in this 

region, belongs to the I, R1a, and J haplogroups (See page 61) (Oppenheimer, 2007, 2012; 

Sykes, 2006). Throughout these regions, the highest proportion of the R1b haplogroup is 

associated with men with Gaelic surnames. The mtDNA distribution throughout Britain 

predominantly involves haplogroups U5, H, T, V, and J (Oppenheimer, 2007, 2012; Sykes, 

2006). Although haplogroup U5 is found in higher frequencies in western and northern 

Europe, it only occurs in low frequencies, 8-10% in the British Isles (Oppenheimer, 2007; 

Sykes, 2006; Torroni et al., 2000; Winney and Walter, 2016). Consequently, it has been 

argued that this haplogroup moved into Britain from continental Europe (Oppenheimer, 2007; 

Sykes, 2006). Although mtDNA haplogroup H is common throughout continental Europe, it 

also occurs at high frequencies in Britain, 50-60%. Haplogroup T is also found in both 

regions, however, at lower frequencies, 3-12%, and 3-8% respectively. A similar pattern is 

evident in the distribution of haplogroup V, 3-8% and 3-5% correspondingly (See page 61) 

(Oppenheimer, 2007; Roostalu et al., 2007; Sykes, 2006; Winney and Walter, 2016). 

MtDNA haplogroup J contains two sub-clades, J-16192 and J-16193, that have been 

argued to have some linguistic associations, particularly in the British Isles (Arnason et al., 

2000; Forester et al., 2004; Hill et al., 2000; Simoni et al., 2000; Wilson et al., 2001). The J-

16192 sub-clade has only been found high concentrations in areas speaking Celtic languages 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Vidrov%C3%A1%20V%5BAuthor%5D&cauthor=true&cauthor_uid=19728543
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including Cornwall, Wales, Scotland, and Northern Ireland (Arnason et al., 2000; Cruciani et 

al., 2007; Di Giacomo et al., 2004; Forester et al., 2004; Helgason et al., 2001; Hill et al., 

2000; Lell and Wallace, 2000). The J-16193 sub-clade is present in high frequencies in the 

Goidelic speaking areas of Britain and Ireland (Arnason et al., 2000; Cruciani et al., 2007; Di 

Giacomo et al., 2004; Forester et al., 2004; Helgason et al., 2001; Hill et al., 2000; Lell and 

Wallace, 2000). Consequently, the above sub-clades are believed to represent British Celtic 

mtDNA (See pages 61 and 91) (Arnason et al., 2000; Cruciani et al., 2007; Di Giacomo et al., 

2004; Forester et al., 2004; Helgason et al., 2001; Hill et al., 2000; Lell and Wallace, 2000).   

The Y-chromosome haplogroups I, R1a, and J are likely intrusive to the British Isles 

and are believed to have arrived during the Neolithic, as their distributions are limited and 

similar to those in continental Europe during this period. However, the nature of their 

similarity and subsequent distribution in Britain is not described in detail or quantified 

(Cruciani et al., 2004, 2007; Di Giacomo et al., 2004; Hill et al., 2000; McEvoy et al., 2004; 

Richards et al., 2000; Richards et al., 2002; Rosser et al., 2000; Rootsi et al., 2004; Semino et 

al., 2004; Scozzari et al., 2001; Torroni, 1998, 2001b; Weal et al, 2002). Thus, while these 

haplogroups may be present in regions associated with Celtic material culture and/or 

language in the British Isles, their arrival during the Neolithic is not consistent with the 

arrival of the Hallstatt and La Tène cultures during the Iron Age (See pages 61 and 91) 

(Collis, 2003; Cunliffe, 1997; Oppenheimer, 2007; 2012; Richards et al., 2002; Semino et al., 

2004; Sykes, 2006).  

Modern European genetic diversity within the Y-chromosome and mtDNA 

haplogroups within England has also been suggested to be clinal. Leslie et al (2015) 

examined the modern European genetic differentiation within England to determine whether 

there was evidence for a cohesive Celtic population in the non-Saxon regions. However, in 

this analysis, the term Celt was applied to modern populations in a strictly nominal way. The 

modern European genetic profiles of 2,039 individuals from the “People of the British Isles” 

collection were analysed (Leslie et al., 2015). Specifically, it included individuals for whom 

all 4 grandparents were born within 80 km of each other and for whom the average birth year 

was 1885 (Leslie et al., 2015). While the sample distribution attempted to control for 

geographic region, the potential for migration into the British Isles in preceding generations 

was not addressed. The potential for movement within the region prior to the generation 

analysed was also not assessed. Genetic differentiation throughout this region was found to 

correspond to natural geographical boundaries, i.e., Orkney, Cornwall and Devon. Most of 



  

 

 

 111  

 

 

the modern European genetic clusters observed were highly localized with many occurring in 

non-overlapping regions (See page 61) (Leslie et al., 2015). Distinctive clusters have also 

been documented throughout England, Scotland and Wales, specifically, north and south 

Wales, northern England, Scotland, Northern Ireland, and Central and southern England 

(Leslie et al., 2015).  

The above clusters suggest relative genetic isolation within the regions. Some modern 

European genetic lineages that are believed to have substantially contributed to the observed 

genetic differentiation, include Belgium, western Germany and northwestern France (Leslie 

et al., 2015). The distributions of these lineages most likely represent older migrations as the 

haplogroups had time to spread and become differentiated from those in continental Europe. 

Those lineages that contributed minimally include Denmark, northern Germany, northern 

France, and northern Spain. The dispersal of the above lineages most likely represent recent 

migration events, as the haplogroups are more similar to those in continental Europe. 

Additionally, they have not diversified as much as would be expected for an early migration 

event (See page 61) (Leslie et al., 2015). However, no absolute or approximate dates are 

provided for the above migrations. Nor is the estimated similarity, or dissimilarity, to the 

corresponding haplogroups in continental Europe quantified. Further, the underlying 

microsatellite markers were not described, so a direct comparison with other European 

populations is not possible. As the contribution of the above lineages were not quantified, 

beyond substantial or minimal and they were not described as either Y-chromosome or 

mtDNA it is difficult to determine the extent of movement between regions (See page 61). 

Although in spite of these shortcomings, the presence of clinal modern European genetic 

variation and differential regional admixture from continental European populations within 

Britain suggests differential rates of intra-and extra-regional gene flow. The haplogroups and 

sub-clades associated with the Celts throughout the core and expansion regions are diverse 

and varied; which suggests that they were predominately differentiated through sub-clades of 

the major European Y-chromosome and mtDNA haplogroups (Arnason et al., 2000; Cruciani 

et al., 2007; Di Giacomo et al., 2004; Helgason et al., 2001; Hill et al., 2000; Lell and 

Wallace, 2000). There is some evidence of overlapping haplogroup distributions within these 

regions, suggesting differential rates of small-scale migration, gene flow, captivity and/or 

enslavement, and movement along trade routes (See page 61) (Aldhouse-Green, 2002; 

Arnold, 1988; Lenski, 2008, 2014). 
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This all indicates that there is more regional genetic variation among populations 

associated with the Celts than previously assumed. However, as previous studies have relied 

on the Y-chromosome and mtDNA haplogroup distributions of modern populations, they 

might not adequately reflect the amount of diversity in the Iron Age. Further, these studies 

have attempted to document this distribution in broad geographic regions where linguistic 

and archaeological evidence indicates the presence of Celtic populations; rather than 

documenting regional variation in haplogroup distribution among these diverse groups. 

However, the genetic evidence indicating the presence of distinct Y-chromosome and 

mtDNA haplogroups throughout the regions associated with the Celts is in line with the 

archaeological and linguistic evidence suggesting small-scale migration, demic diffusion 

and/or assimilation. 
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Chapter 4: Methodological background 

Dental anthropology 

 

Dental anthropology, a subfield of biological anthropology, is defined as the study of 

humans and their closest relatives through analyses of their teeth. It is associated with 

bioarchaeological analysis and incorporates techniques from the fields of genetics, anatomy, 

paleontology, and dentistry. The anthropological study of teeth focuses on the subtleties and 

variation in morphology and tooth size. Dental morphology is an effective method for 

assessing interpopulation variation and relationships. This method also provides insight into 

the degree of variation at the microevolutionary, within and among populations, and macro-

evolutionary, between and among species, levels (Bernal et al., 2010; Bunimovitz, 1990; 

Buikstra et al., 1990; Campbell, 1925; Dahlberg, 1956, 1963, 1971; Edgar, 2004; Hillson, 

1996; Irish, 2005, 2010; Scott and Irish, 2017; Scott and Turner, 1997; Turner, 1969). The 

bioarchaeological analyses of microevolutionary patterns falls into two types of study: dental 

metric (size) and nonmetric (morphological). Nonmetric dental traits are discrete anatomical 

units that occur in varying degrees of expression within, between, and among populations, 

thus making them ideal for numerous analyses including, bioarchaeological, biodistance, 

population history and structure analyses (Campbell, 1925; Garn et al., 1966, 1979; Harris, 

1977, 2008; Nichol, 1990; Richards and Telfer, 1979; Scott and Turner, 1988; Townsend and 

Brown, 1978a, b). Dental morphological study involves the examination of specific 

nonmetric crown and root traits.   

Differences in dental morphology observed between populations, defined as 

communities of interbreeding individuals, can be explained as resulting from one or more 

evolutionary forces. Populations that share several attributes such as specific morphological 

traits or adapted to similar environments, are more closely related than populations in which 

differences are observed (Irish and Turner, 1989; Scott and Irish, 2017; Turner, 1989). Crown 

and root morphological traits show patterns of distinct geographic variation. Significant 

differences in these traits between populations suggests influence from genetic drift, 

mutation, gene flow, and consequently affinity among populations (Bedrick et al., 2000; 

Harris and Sjøvold, 2004; Hanihara, 2008, 2010; Hillson, 1996; Irish, 1993, 1998a, b, c, 

2000, 2005, 2010; Irish and Guatelli-Steinberg, 2003; Sjøvold, 1973). Through 

documentation of their frequency of occurrence and expression and subsequent statistical 



  

 

 

 114  

 

 

comparison, it is possible to infer degrees of biological relationships between, among and 

within populations (Berry, 1978; Campbell, 1925; Nichol, 1990; Shaw, 1931; Scott and 

Turner, 1988; Townsend and Brown, 1978a, b). Early studies investigating nonmetric traits 

revealed and documented this variation between populations (Hellman, 1928; Hrdlička, 1920; 

Kraus et al., 1959). Hrdlička, (1920) was the first to describe and classify the degree of 

shovel shaped incisors (which have marginal ridges causing the tooth to appear scooped or 

shovel shaped) among human and non-human populations. The distribution of this trait also 

indicated similarity between the dentition of Asians and Native Americans (Hrdlička, 1920). 

Observations and descriptions of cusp number, groove pattern, and variation in root structure 

were documented by TD Campbell (1925), M Hellman (1928), and JCM Shaw, (1931) who 

also urged physical anthropologists to place more emphasis on the study and analysis of 

dental variation. Several traits are characteristic of certain macroregional populations, such as 

incisor shovelling in Mongoloid populations and Carabelli's cusp (a small accessory cusp 

predominantly found on the upper first molars) in Caucasian populations (Hrdlička, 1920; 

Kraus et al., 1959).  

In 1956, Dahlberg created a series of reference plaques in an attempt to standardize 

the observations and descriptions of nonmetric traits. Hanihara (1963) also developed a series 

of reference plaques similar to Dahlberg’s for deciduous teeth, after which it became apparent 

that broad-scale standardization was essential to enhance comparability in the growing field 

of dental morphometrics (Dahlberg, 1956; Hanihara, 1963). Subsequently, a comprehensive 

series of dental plaques and scoring forms for permanent teeth were developed by Christy 

Turner II and colleagues (Turner et al., 1991). The series of plaques used to score variation in 

the expression of dental morphological traits, known as the Arizona State University Dental 

Anthropological System, ASUDAS, became the standard and most widely recommended 

method used to identify nonmetric dental traits (Hillson, 1996; Scott and Turner, 1988; 

Turner et al., 1991). The ASUDAS system consists of 24 rank-scale plaques, with detailed 

descriptions of each trait and the various forms of expression, for scoring crown and root 

traits of the adult permanent dentition.  

Although over 100 nonmetric traits have been observed and described, 36 of these, 

based on the work of Irish (1993), have been used in numerous studies and have proven 

particularly successful in characterizing and comparing the biological affinity among and 

within populations (See page 181) (Anctil, 2016; Coppa et al., 1998, 2000, 2007; Cucina et 

al., 1999; Hanihara, 2008, 2010; Irish, 1993, 1997, 1998b, c, 2000, 2005, 2006, 2008, 2010, 
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2016; Irish et al., 2014, 2018; Irish and Guatelli-Steinberg, 2003; Matsumura et al., 2009; 

Turner, 1967, 1969, 1971, 1976, 1984, 1985a, b, 1990). These include discrete crown traits, 

such as Carabelli's trait and incisor shovelling, as well as root variants such as lower molar 

root number (Figures 51-54, Appendix 1) (Irish, 1993; Turner et al., 1991). For a detailed 

description of the dental morphological variation among and between populations, see Scott 

and Turner (1997) and Scott and Irish (2017).  

There are several benefits associated with this system. First, the traits themselves are 

evolutionarily stable, e.g., dental morphological traits in the ASUDAS system are stable in 

form and are present in human populations, modern and extinct, regardless of the genetic 

correlations among these groups. Second, they can be observed through mild levels of dental 

wear if the antimere (a pair of opposite corresponding bilaterally symmetrical parts) is 

available in extreme cases, or are unaffected by wear in the case of root and osseous traits 

(Figure 35). Third, they are easy to locate and identify. Fourth, they have minimal rates of 

inter-and-intra observer error in recording. Fifth, they are independent of one another. Sixth, 

sexual dimorphism does not affect their expression. Seventh, they represent all dental 

morphological fields, or tooth type (e.g., incisor). Eighth, they are independent of tooth size. 

Ninth, there is a substantial amount of comparable data. Tenth, they have a high genetic 

component in expression, 40-80%. (Dempsey and Townsend, 2001; Hanihara, 2008, 2010; 

Hughes and Townsend, 2013; Irish, 1993, 2005, 2006, 2016; Irish and Nelson, 2008; Irish et 

al., 2018, 2020; Larsen, 2015; Martion-Torres et al., 2007; Rightmire, 1999; Scott, 1973, 

1980; Scott and Turner, 1997; Turner et al., 1991). However, as the exact modes of 

inheritance for dental morphological traits are unknown, discussed further in the following 

sections, the specific genetic component for each trait is also unestablished. Consequently, 

the genetic component in expression for these traits is reported as a range, i.e., 40-80% 

(Dempsey and Townsend, 2001; Hanihara, 2008, 2010; Hughes and Townsend, 2013; Irish, 

1993, 2005, 2006, 2016; Irish and Nelson, 2008; Irish et al., 2018; Larsen, 2015; Martion-

Torres et al., 2007; Rightmire, 1999; Scott, 1973, 1980; Scott and Turner, 1997; Turner et al., 

1991). 

The ASUDAS system has also facilitated the identification of specific dental 

complexes, a collection of nonmetric traits shared in specific macroregional populations at 

high, intermediate and low frequencies that differentiate them from other populations (See 

page 181). These complexes are predominantly based on nonmetric traits as observed on 

permanent teeth, although several have been conducted using deciduous teeth (Aguirre et al., 
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2006; Hillson and Antoine, 2003; Kieser, 1984). In addition to the standards for recording 

dental morphological data, specific types of statistical analyses are standard as well. Early 

analyses relied on analytical models such as the coefficient of racial likeness (CRL), a 

generalized distance measure which estimates the divergence between populations means 

(Pearson, 1926). However, this method came under criticism as clear standards for 

interpretation of the CRL value have not been identified, it does not work well with small 

samples, only a single standard deviation is used for all groups analysed, and correlation 

among variables is not considered (Fisher, 1936; Penrose, 1954; Seltzer, 1937). Although 

subsequently different distance statistics were developed, such as Penrose distance and 

Sanghvi’s measure of dissimilarity, these methods were also criticized as the differences 

among groups were difficult to interpret, correlation and covariance were not accounted for 

and were not representative of actual biological similarities among or within populations 

(Berry, 1978; Penrose, 1954; Rolf and Sokal, 1965; Sanchvi, 1953). These early statistical 

methods were subsequently supplanted by two prominent multivariate, univariate and/or 

descriptive statistical analyses, the MMD distance statistic and a modification of 

Mahalanobis’ generalized distance for metric traits (such as tooth size) often referred to as 

pseudo-D2 (Grewal, 1962; Harris, 2008; Hanihara and Ishida, 2005; Harris and Sjøvold, 

2004; Konigsberg, 1990; Irish, 2010; Mahalanobis, 1936; Mahalanobis et al., 1949; Manly, 

1986, 2005; Sjøvold, 1977). Other statistics commonly used for nonmetric trait analyses, in 

order to identify relationships between and among populations, include PCA, discriminant 

function analysis, and multidimensional scaling (Hillson, 1996; Hanihara 2008; Harris and 

Sjøvold, 2004; Irish, 1993, 1998a, b, c, 2000, 2005, 2006, 2010, 2016, Irish et al., 2014, 

2018; Sjøvold, 1973). 

Models for calculating these relationships and assessing population structure using 

phenotypic traits are also common (Harpending and Jenkin, 1973; Relethford and Blangero, 

1990). However, the model introduced by Relethford and Blangero (1990) for assessing 

biological affinity from genetic frequencies is the most frequently used. This model was 

adapted from previous models, those of Harpending and Jenkins (1973) and Harpending and 

Ward (1982), used for examining the distribution of allele frequencies for use with 

phenotypic (the observable characteristics of an individual resulting from the interaction 

between genetics and environment) qualitative data (Harpending and Jenkins, 1973; 

Harpending and Ward, 1982; Relethford and Blangero, 1990). This model predicts when the 

rate of extra-regional gene flow into populations is equal, a linear relationship between the 
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average within-group variation and approximate genetic distance to the regional centroid (i.e., 

mean) should be observed (Blangero 1990; Relethford and Blangero, 1990; Relethford and 

Harpending, 1994). Conversely, when rates of extra-regional gene flow are disproportionate, 

populations will not follow this model because those that have higher rates of extra-regional 

gene flow should be more heterogeneous (i.e., have higher within-group variation) than those 

that have little or no external gene flow (See page 135) (Blangero 1990; Relethford and 

Blangero, 1990; Relethford, 1994, 2004; Relethford et al., 1997). Further, estimates of 

heterozygosity, genetic diversity, among populations can be plotted against that which is 

observed, to indicate those that exhibit high levels of extra-regional gene flow in comparison 

to those in which it is limited (Blangero 1990; Relethford, 1994, 2001; Relethford et al., 

1997; Relethford and Harpending, 1994). This model assumes that the traits or genes being 

compared are selectively neutral (those that have neither negative nor positive effects) and 

that rates of mutation are potentially equal across populations (Blangero 1990; Relethford and 

Blangero, 1990; Relethford and Harpending, 1994; Relethford, 1994, 2004, 2007; Relethford 

et al., 1997).  

Variation in the phenotype of the dentition expressed as variation in trait frequencies 

can result from genetics, environment, diet, dental ontogeny, development or developmental 

history, and maternal health. Even though teeth can be influenced by and directly interact 

with the environment, the size, form, and morphology, excluding pathological conditions, are 

predominantly influenced by genetics and environmental adaptions and interactions (Berry, 

1976; Biggerstaff, 1975; Larsen, 2015; Scott, 1973; Scott and Turner, 1997; Turner, 1967). 

Although no studies have been conducted to determine whether any of these traits are under 

selection and/or are adaptations to different environments. Consequently, the effect of this 

evolutionary force on nonmetric traits and subsequent dental morphological analyses are 

unknown. Therefore, the results of these analyses should be interpreted in light of this caveat 

(Berry, 1976; Biggerstaff, 1975; Larsen, 2015; Scott, 1973; Scott and Turner, 1997; Turner, 

1967). Variations in trait frequencies and underlying phenetic relationships among and within 

populations can be determined through an analysis of population history, structure and 

biodistance. 
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Population history and structure 

 

A fundamental goal of bioarchaeological analyses is to reconstruct population history 

and structure with the intention of gaining an improved understanding of the social and 

biological connections among populations or groups (Relethford, 1996). Population history 

can be defined as a record of events experienced by a population that impact their biological 

histories, such as migration and demographic expansion or collapse (Relethford, 1996). 

Population structure can be defined as a method to explore and describe patterns in this 

variation and its distribution (Relethford, 1996). Biodistance analysis, a measurement of the 

similarity and diversity among and within populations or groups and, is often calculated using 

the mean difference in phenotypic expression, is a commonly employed method for 

examining variation within and between populations resulting from such events (Buikstra et 

al., 1990; Hefner et al., 2016; Pietrusewsky, 2014; Pilloud et al., 2016; Relethford and 

Blangero, 1990; Relethford, 1996). Therefore, population history, structure, and biodistance 

are inextricably linked concepts and are shaped by biological processes such as genetic drift 

and gene flow; which are themselves impacted by human behaviours like preferential mating 

and migration (Konigsberg, 2006; Relethford and Blangero, 1990; Relethford, 1996). 

Although population structure and biodistance analyses cannot directly test for particular 

human behaviours, they can be indirectly evaluated by examining biological variation in 

morphological and/or genetic data (Konigsberg, 2006; Long, 1966; Mielke, 2006; Relethford 

and Blangero, 1990; Relethford, 1996). 

Population structure measures forces such as gene flow and involves the identification 

of shared genetic variants among individuals and accordingly facilitates the categorizing of 

groups into sub-populations (Hubisz et al., 2009; Konigsberg, 2006; Konigsberg and 

Buikstra, 2006; Pritchard et al., 2000; Relethford and Blangero, 1990; Relethford, 1996; 

Relethford and Lees, 1982). This analysis can be conducted at the sub-population to 

population level or at the individual sub-population level (Crow and Aoki, 1984; Exoffier et 

al., 1992; Greenbaum et al., 2016; Pritchard et al., 2000; Pickrell and Pritchard, 2012; Saitou 

and Nei, 1987). Consequently, it is assumed that populations were able to interbreed and 

were thus contemporaneous in time and space. Comparing populations or groups that are 

vastly spatially or temporally disparate violates this assumption (Exoffier et al., 1992; 

Konigsberg, 200; Konigsberg and Buikstra, 2006; Pritchard et al., 2000; Relethford and 

Blangero, 1990; Relethford and Lees, 1982). As some archaeologically derived populations 
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are dated by associated artefacts, the resulting analysis should be interpreted in light of this 

caveat. A population is defined by three primary criteria in population genetics (Dow and 

Cheverud, 1985; Gillespie, 2004; Hartl, 2000; Hartl and Clark, 2006; John, 2004; Lowe et al., 

2017; Pritchard et al., 2000; Winsor et al., 2017). The first of these criteria is individuals 

occupying a defined area. The second is the potential for all individuals and populations to 

interbreed and have, presumed, equal access to partners. The third is that populations are 

from the same species (Gillespie, 2004; Hartl, 2000; Hartl and Clark, 2006; Hunley, 2002; 

John, 2004; Pritchard et al., 2000). Criterion one may be an issue in archaeological contexts, 

as archaeologists determine what constitutes a population’s defined area (Blangero, 1990; 

Relethford, 1996). Further, these definitions may vary. One population may be defined using 

geographic boundaries, while another may be defined based on presumed social boundaries 

based on differences in material culture. 

  Condition two is often complicated due to limited sample sizes and poor preservation, 

which necessitates the combination of samples from multiple sites and/or imprecise 

chronological dates (Blangero, 1990; Konigsberg, 2006; Relethford and Blangero, 1990; 

Relethford, 1996). Consequently, when possible, it is advised to restrict archaeological 

samples to specific individual populations, or to those within a realistic geographic distance 

of one another so that interaction and possibly mating can be reasonably assumed (Knudson 

and Stojanowski, 2008). Requirement three is easily met as only one species exists among 

modern human populations. 

 

Biodistance 

 

  Biodistance analyses use phenotypic data to estimate genetic similarity and to 

reconstruct patterns of population origins, gene flow and long-distance migration (Buikstra et 

al., 1990; Larsen, 2015; Stojanowski and Schillaci, 2006). The goals of these analyses are 

diverse and include broad geographic and regional investigations of population affinity; tracing 

biological relationships temporally and spatially; reconstructing past population history and 

structure; investigating microevolutionary processes (e.g., gene flow, genetic drift, and 

selection); assessing past exchange networks; mechanisms of population integration (i.e., 

colonisation and assimilation); patterns of mobility and kinship level analyses and investigating 

the influence of geography and other isolating mechanisms on the observed biological variation 
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(Alt and Vach, 1998; Bermudez de Castro et al., 2010; Buikstra et al., 1990; Konigsberg and 

Buikstra, 1995; Knudson and Stojanowski, 2008; Irish and Guatelli-Steinberg, 2003; Martinón-

Torres et al., 2007; Pilloud and Larsen, 2011; Stojanowski, 2003; Tishkoff and Gonder, 2007). 

Further, these analyses may provide an alternative to the establishment of archaeologically 

derived population boundaries than analyses of the material culture alone (See page 54) (Hefner 

et al., 2016; Konigsberg and Buikstra, 1995; Pilloud, 2009). However, the majority focus on 

the assessment of biological affinity among and within populations and attempt to determine 

those traits driving the observed variation (Adams, 1968; Adams et al., 1978; Anthony, 1990; 

Burmeister et al., 2000; Cabana, 2002; Godde, 2009; Hubbard et al., 2015; Irish, 1993, 2005, 

2016; Irish et al., 2014; Konigsberg, 2006; Relethford and Blangero, 1990; Slatkin, 1995).  

Early studies during the late 1800s and early 1900s into dental and skeletal variation 

formed the basis for subsequent biodistance analyses. However, these studies were 

predominantly descriptive and typological. Further, these investigations were concerned with 

attempting to describe and identify racial types rather than assessing the underlying biological 

relationships among populations (Blumenbach, 1865; Hrdlička, 1920, 1921, 1927; Kitson, 

1931; Morton, 1839; Shaw, 1931). Although contemporary analyses are not concerned with 

racial classification, it has been argued that they have not moved beyond the descriptive and 

typological approaches characteristic of these early studies (Armelagos and van Gerven, 

2003). However, biodistance analysis is still commonly used for examination of past 

populations and their underlying social and biological relationships. 

The basic premise of these analyses is that biological similarities between populations 

are based on phenotypic and/or genetic similarities that reflect biological affinity, as indicated 

by either skeletal or genetic variation. These similarities can be an indication of shared 

ancestry, genetic drift, and/or gene flow (Buikstra et al., 1990; Irish, 2010; Konigsberg and 

Buikstra, 1995; Mackay, 2014). As such, the nature of contemporary analyses does not 

facilitate the assignment of populations into arbitrary categories. However, the complex 

relationship among human behaviour and these mechanisms does not often result in a 

parsimonious explanation (Leslie, 1985; Reed, 2006; Relethford, 1996, 2016; Relethford and 

Crawford, 1995). The significance of increasing or decreasing biological interaction from a 

social perspective in addition to how these relationships change through time is also taken 

into account (Knudson and Stojanowski, 2008). When the biological variants being 

investigated have similar rates of mutation or are evolving by genetic drift, so that they reflect 

interactions between populations rather than adaptions to specific environments, the 
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similarities between groups likely reflect the outcome of both long-term or short-term 

processes (e.g., multigenerational gene flow and recent migrations, respectively) (Konigsberg 

and Buikstra, 1985; Knudson and Stojanowski, 2008; Stojanowski and Schillaci, 2006). 

Correspondingly, through examination of genetic or phenotypic variants, the genetic or 

historical interactions between and among populations can be assessed. Subsequently, the use 

of phenotypic variants in place of genetic to reconstruct population structure and biological 

affinity among and within populations has become common (Brookfield, 2016; Buikstra et 

al., 1990; Konigsberg and Buikstra, 1985; Knudson and Stojanowski, 2008). 

However, several issues have been critiqued related to the underlying assumption that 

phenotypic and genetic reconstructions of biological affinity based on biodistance estimates 

will be comparable (Stojanowski and Schillaci, 2006). These critiques focus on several 

aspects of biodistance analyses including the type of traits used and the correlation between 

allele frequencies and phenotypes (Stojanowski and Schillaci, 2006). First, as only surface 

traits are the focus of analysis, their entire range is not considered. Second, this approach 

assumes changes in allele frequencies result in measurable changes in phenotypes, which can 

be determined analytically. Third, that biodistance measures reflect biological processes that 

can be used to interpret behaviours such as migration. Fourth, there is a relationship between 

phenotypic and genetic frequencies. Fifth, archaeological samples are representative of past 

populations which are temporally specific (Stojanowski and Schillaci, 2006). 

 Regarding the first issue, it has been suggested that contemporary methods for 

evaluating nonmetric trait variation only consider surface traits, those visible on the crown 

surface. Consequently, the entire range of trait expression may not be evaluated, which may 

result in erroneous biodistance estimates. Some traits have been argued to be expressed 

within the enamel (the tissue which covers the outer surface of the tooth) as opposed to on the 

outer surface (Skinner et al., 2008, 2009). These traits are only evident deep within the 

enamel-dentine junction, the boundary between the enamel and the underlying dentine (the 

calcified tissue underlying the enamel) (Skinner et al., 2008, 2009). However, the presence 

and effect of this variation among modern human populations is unknown, as these traits 

have only been documented within extinct hominin species (Skinner et al., 2008, 2009). 

Furthermore, it is unknown whether these traits are influenced by genetics or the 

environment. The biological variants being examined in a biodistance analysis must reflect 

genetic variation and not environmental influence; therefore, their inclusion in a biodistance 

analysis may not reflect phenotypic variation (Skinner et al., 2008, 2009). In relation to the 
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second issue, changes in allele frequency over time can be caused by microevolutionary 

processes including natural selection, mutation, gene flow, and genetic drift (Blangero and 

Konigsberg, 1991; Brookfield, 2016; Daubert et al., 2016; Irish, 1993, 2005, 2016; Irish et 

al., 2018; Konigsberg, 2006; Relethford and Blangero, 1990). Biodistance analyses based on 

variation in dental nonmetric traits has facilitated the assessment of these processes within 

and among populations in numerous previous studies. The results of these studies have been 

found to be in line with known genetic and/or phenotypic variation (Hubbard et al., 2015; 

Irish, 1993, 2005, 2016, Irish et al., 2014, 2018, 2020; Konigsberg, 2006; Relethford and 

Blangero, 1990). This suggests that biodistance analysis is an effective method for examining 

the above processes within and among populations.  

Concerning the third caveat, it has been suggested that previous studies have relied 

too much on a single type of data to calculate biodistance (Corruccini, 1974; Smith, 1972). 

The different types of data may provide different interpretations of behaviours, such as 

migration, within each population being analysed (Corruccini, 1974; Smith, 1972). 

Interpretations of biodistance and population structure commonly include analysis of these 

behaviours consequently, it should be taken into consideration that they cannot be directly 

tested through analytical approaches (Buikstra et al., 1990; Konigsberg and Buikstra, 1985; 

Knudson and Stojanowski, 2008). Instead, subsequent interpretations should also rely on 

additional data from ethnographic, historical and archaeological sources in order to establish 

reliable interpretations of the observed patterns (See pages 32 and 54) (Knudson and 

Stojanowski, 2008; Stojanowski and Schillaci, 2006).  

With respect to the fourth concern, the relationship between phenotypic and genetic 

variation is complex. Previous studies have attempted to assess the concordance between 

biodistance estimates using nonmetric cranial, post-cranial and genetic data. However, few 

studies have examined this relationship using nonmetric dental data (Bernardo et al., 2011; 

Brewer-Carias et al., 1976; Corruccini et al., 1982; Harris, 1977; Hubbard, 2012; Hubbard et 

al., 2015; Irish et al., 2020; Sofaer et al., 1972b; Wijsman and Neves, 1986). Additionally, 

they have relied on pooled and previously published data, as well as a limited number of 

nonmetric traits, consequently not enough traits, have been used for a viable comparison 

(Harris, 1977; Sanghvi, 1953; Sofaer et al., 1986). Further, it has been suggested that the 

results of these early studies were likely influenced by the polygenic, influenced by more 

than one gene, nature of dental traits. In other words, a potentially large number of genes are 

controlling dental traits. Discrepancies among the results of these studies may also have been 
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related to the time period in which they were conducted, i.e., the 1970-1980's, as they utilized 

genetic markers that were commonly used in this time period and are not in contemporary 

studies, such as blood group and serum protein variant frequencies (Brewer-Carias et al., 

1976; Corruccini et al., 1982; Harris, 1977; Sofaer et al., 1972b; Wijsman and Neves, 1986). 

Most recent studies involving variation in nuclear DNA utilize either SNP or Short Tandem 

Repeat (STR) Polymorphism frequencies due to their polymorphic nature (Alveres-Sandoval, 

et al., 2015; Busby et al., 2012; Cruciani et al., 2011; Hoffecker et al., 2016; Oppenheimer, 

2012; Rubicz et al., 2010). Microsatellite markers, a short segment of repeated DNA 

sequences which vary among individuals and populations, are also frequently used in studies 

of population differentiation (De Beule, 2011; Oppenheimer, 2007, 2012; Sykes, 2006). 

However, the above methods were not widely used at the time when these studies were 

published (Busby et al., 2012; Butler, 2006 and Schanfield, 2007; De Beule, 2011; Lucotte, 

2015; Oppenheimer, 2012). Furthermore, there was no established collection standards for 

dental nonmetric variation available at this time, as the ASUDAS system had not been 

established (Sofaer et al., 1972b). This lack of standardization contributed to issues with 

reliable scoring of nonmetric traits and higher potential intra-observer error (Sofaer et al., 

1972b; Stojanowski and Johnson, 2015).  

 Concerning the fifth issue, that selective preservation often influences 

archaeologically derived samples, as a result, it is necessary to presume that these samples 

accurately reflect the overall composition of past populations (Buikstra et al., 1990; 

Stojanowski and Schollaci, 2006). As burial practices and environmental conditions affect the 

preservation of skeletal material, it is often necessary to utilize selective sampling strategies 

to ensure adequate representation of the variation present in a given population is analysed 

(Buikstra et al., 1990; Stojanowski and Schollaci, 2006). Consequently, it is not possible to 

assess the total range of variation that was initially present in archaeologically derived 

samples. Subsequently, the conclusions as to population history and structure derived from 

biodistance estimates based on such samples may be limited. In order to address this issue, it 

is necessary to interpret archaeologically derived samples as a subset of the actual population 

(Buikstra et al., 1990; Stojanowski and Schollaci, 2006). However, as small samples often 

necessitate the pooling of multiple archaeological sites, or cemeteries, for a viable statistical 

analysis, it is necessary to interpret the results of analyses based on such samples with 

caution.  
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Model-free and model-bound approaches 

 

 Biodistance, population history, and structure analysis have significantly benefitted 

from innovations in multivariate statistics and the development of diverse methodological 

approaches. Due to these innovations and developments, biodistance studies are classified as 

either model-free or model bound. Model-free often precede model-bound analyses, as they 

explore the morphological affinities among and within populations, or the patterns observed 

in this variation (Irish, 2010; Relethford and Lees, 1982). However, the majority of 

biodistance analyses are model-free as they assess population differentiation without directly 

investigating its causes (Irish, 2010; Relethford and Lees, 1982). Further, this approach does 

not require the assessment of study parameters or rely on a priori assumptions.  

Rather, they analyse differences in the morphological affinity and phenotypic 

similarity among populations in order to summarize the observed diversity through 

calculation of a biodistance matrix (Irish, 2010; Relethford and Lees, 1982). The overall 

patterns are subsequently interpreted in light of population history and structure, and 

compared to data from archaeological, linguistic and cultural contexts to determine which 

samples, or sample pairs, are most phenetically similar (Irish, 1993, 1997; Knudson and 

Stojanowski, 2008). No inherent assumptions about populations must be made prior to 

model-free analyses. Such as, that the populations analysed are contemporaneous before 

population history, structure and biodistance can be calculated (See page 119) (Irish, 2010; 

Konigsberg, 1990; Relethford and Lees, 1982). Model-bound approaches incorporate 

population history and structure models to analyze phenotypic and quantitative data, with 

complex polygenic, developmental, and environmental influences that show continuous or 

semi-continuous variation in any given population (Irish, 2010; Relethford and Harpending, 

1994; Relethford and Lees, 1982). These approaches are used to determine the evolutionary 

forces, such as genetic drift, gene flow or natural selection, that contribute to the underlying 

biological relationships and morphological differentiation within or among populations (See 

page 119) (Konigsberg, 2006; Relethford and Blangero, 1990; Williams-Blangero et al., 

1990; Von Cramon-Taubadel and Weaver, 2009). These approaches also attempt to explain 

the causes for the observed relationships (Conner 1990; Irish, 2010; Konigsberg 1988; 

Konigsberg and Buikstra 1995; Powell and Neves 1999). As such, they require that certain 

assumptions are met and that samples are characterized through statistical examination of 

population parameters (Relethford and Blangero, 1990; Relethford and Harpending, 1994; 
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Relethford and Lees, 1982). Further model-bound approaches test hypotheses while model-

free approaches are descriptive (Knudson and Stojanowski, 2008; Stojanowski and Buikstra, 

2004).  

Although model-free approaches are still used, model-bound approaches for assessing 

population structure are becoming more common (Irish, 2010; Konigsberg, 2006; Relethford 

and Blangero, 1990). The application of these approaches enables contemporary biodistance 

analyses to surpass the previously mentioned criticism that they are still predominantly 

descriptive and typological (Armelagos and van Gerven, 2003). Previous distance statistics 

were based on the mean frequencies of morphological traits and genes. However, the 

application of multivariate statistical methods facilitates the evaluation of their diversity 

within and among populations (Kundson and Stojanowski, 2008; Relethford and Blangero, 

1990; Stojanowski and Buikstra, 2004). Further, contemporary biodistance analyses are not 

concerned with classifying or analyzing populations according to typological assessments of 

racial differences. Instead, populations are examined according to their underlying genetic 

relationships as indicated through diversity in morphological and genetic traits (See page 

119) (Coppa et al., 1998, 2000, 2007; Hanihara, 2008, 2010; Irish, 2010, 2015; Irish et al., 

2014, 2018; Pacelli and Márquez-Grant, 2010; Scott et al., 2013a, c). Therefore, modern 

biodistance analyses do not facilitate the documentation, or categorization, of populations 

based on the typological and descriptive frameworks of the 19th and early 20th centuries.  

 

Heritability of nonmetric traits 

 

Heritability is a statistical estimate of the probability that a trait will be passed from 

parent to offspring and is separated into two types, broad and narrow (Hartl, 2000; Mackay, 

2014). In a broad sense, heritability measures the extent to which phenotypic variation is 

determined by genotypic variation including dominant, additive and epistatic traits, multi-

gene interactions that affect phenotypes (Hartl, 2000; Mackay, 2014). In a narrow sense only 

the proportion of phenotypic variance that is determined by additive traits is measured (Hartl, 

2000; Mackay, 2014). Although both types of heritability analysis are commonly used, those 

examining nonmetric trait variation frequently rely on narrow sense. Biodistance analyses use 

selectively neutral traits, those with high heritabilities (Hartl, 2000; Mackay, 2014). However, 

it is necessary that such traits are not rare within or among populations, as these variants 
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typically indicate familial rather than population level relationships (Alt and Vach, 1998; 

Berry and Berry, 1967; Berry, 1978; Scott and Turner, 1997; Sjøvold, 1973).  

  Modern understanding of the modes of inheritance of nonmetric traits is based in part 

on the work of Hans Grüneburg (1952), that established a framework for modern 

understanding of quasi-continuous variation, phenotypes that vary continuously (Grüneburg, 

1952). It was discovered, through analyses of mice, that the inheritance of some 

morphological variants did not conform to the pattern expected based on Mendelian 

inheritance. Subsequent analysis into the absence of the third molar demonstrated that tooth 

germ size was the principal controlling factor in the absence of that tooth (Grüneburg, 1952). 

When a tooth germ did not reach its developmental threshold or its particular size, the dental 

hard tissues, e.g., enamel, did not form (Grüneburg, 1952). These analyses enabled the 

development of a quasi-continuous variation model, which presumes that there is an 

underlying continuous genetic variation that determines the threshold for presence or absence 

of a particular morphological trait (Grüneburg, 1952; Scott and Turner, 1997; Scott and Irish, 

2017). If the degree of trait expression exceeds the threshold, it will be present and the 

phenotype will vary based on how much it is surpassed; whereas if trait expression falls 

below the threshold, it will not be present (Grüneburg, 1952; Scott and Turner, 1997). 

Consequently, a quasi-continuous trait can be defined as a continuous variable whose 

expression has a visible and a nonvisible range (Sofaer, 1970). The visible range is the 

phenotypic variation that is observed if the threshold is exceeded, while the nonvisible range 

referrers to the underlying genetic variation (Grüneburg, 1952; Scott and Turner, 1997; 

Sofaer, 1970; Scott and Irish, 2017). Individuals have their own probability of meeting and/or 

exceeding the threshold of expression for each trait and it can vary depending on 

environmental influences (Tyrrell, 2006). 

Nichol (1989) conducted the first in-depth assessment of the inheritance of multiple 

nonmetric traits, 17 crown traits, based on observations from dental casts from 83 nuclear 

families were recorded. The data was subsequently submitted to a complex segregation 

analysis (CSA) (Nichol, 1989). CSA determines whether the observed patterns follow those 

expected based on Mendelian ratios for dominance, codominance, and recessive inheritance 

(Morton et al., 1971). Although two-allele, single locus models of inheritance were the focus 

of early CSA, mixed models accounting for polygenetic and random environmental 

components are currently common (Cheverud, 1984, 1988; Lalouel et al., 1983; Morton et 

al., 1971; Morton and MacLean, 1974). It was subsequently determined that the majority of 
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nonmetric traits have a polygenic model of inheritance through a CSA using both a single 

locus and an additive polygenic model (Lalouel et al., 1983; Morton et al., 1971; Morton and 

MacLean, 1974; Nichol, 1989; Nei, 1972; Nei and Roychoudhury,1974; Zhao et al., 2000). 

Therefore, trait development is regulated by the action of genes at many loci, each with a 

small and additive effect, in addition to environmental effects (Scott and Turner, 1997; Scott 

and Irish, 2017). Although this mode of inheritance is generally accepted, the contributions of 

various genes to this variation has not been determined (Berry and Berry, 1967; Berry, 1978; 

Harris, 1977; Hughes and Townsend, 2011, 2013; Irish, 2015, 2016; Nichol, 1989; Scott, 

1973; Scott and Irish, 2017). However, it is agreed that variation in the phenotype of the 

dentition, expressed as variation in trait frequencies, can result from genetics, environment, 

diet, dental ontogeny and maternal health (Hughes and Townsend, 2011, 2013; Scott and 

Irish, 2017; Scott and Turner, 1997).  

Assessing the heritability of tooth size and shape is complicated, as it varies within 

and among populations and through time (Harris and Rathbun, 1991; Scott and Irish, 2017; 

Scott and Turner, 1997). It has been hypothesized that at least 10 genetic loci are involved in 

the expression of each dental morphological trait. Overall, nonmetric traits are believed to 

represent roughly 100 genetic loci (Berry, 1979). However, it has also been suggested that 

different quantities of loci are associated with the different dental developmental stages 

(Nanci, 2017; Tooth and Craniofacial Development Group, 2005; Townsend et al., 2003). It 

has been estimated that approximately 20 different genes are associated with the cap stage, in 

which cells are arranged into a developing tooth, of dental development. It has also been 

estimated that 21 genes are associated with the bell stage, in which the differentiation of 

dental hard tissues including enamel and dentine takes place. A further 14 genes are 

associated with the differentiation stage (in which the developing teeth are differentiated into 

tooth classes such as incisors) and 11 genes are associated with the secretory phase in which 

enamel formation and secretion begins (Nanci, 2017; Tooth and Craniofacial Development 

Group, 2005). These stages represent the various developmental stages during which teeth 

begin to develop and subsequently determine the placement and spacing of dental cusps and 

initiate and control amelogenesis, the formation of enamel on teeth (Nanci, 2017). Additional 

genes, including several Homeobox variants (a large group of genes that direct the formation 

of several structures during human embryonic development, which are involved in 

morphogenesis, anatomic development) have also been documented (Mitchell et al., 2006; 

Suryadeva and Mohammadi, 2015). Recent studies have suggested that up to 100 genes may 
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be involved in the entire embryonic phase of tooth development (Abu-Hussein, et al., 2015; 

Doshi et al., 2016; Duboule, 1994; Han et al., 2018; Puthiyaveetil et al., 2016; Rinky et al., 

2013; Sharpe, 1995, 2000; Suryadeva and Mohammadi, 2015). However, the exact number of 

genes controlling for each dental trait has yet to be determined.  

 Previous studies have focused on the heritability of and underlying mechanisms 

controlling tooth size and shape (Alvesalo and Tigerstedt, 1974; Berry, 1978; Biggerstaff, 

1975; Hughes and Townsend, 2011, 2013; Irish, 2015, 2016; Menezes et al., 1974; Osborne, 

1963; Osborne et al., 1958; Portin and Alvesalo, 1974; Potter et al., 1976; Scott, 1973; Staley 

and Green, 1974; Sofaer et al., 1972a; Townsend and Brown 1978a, b). To estimate the 

heritability of tooth dimensions and nonmetric traits twin and familial studies have been 

conducted (Alvesalo and Tigerstedt, 1974; Berry, 1978; Biggerstaff, 1975; Hughes and 

Townsend, 2011, 2013; Irish, 2015; Menezes et al., 1974; Osborne, 1963; Osborne et a., 

1958; Portin and Alvesalo, 1974; Potter et al., 1976; Scott, 1973; Sofaer et al., 1972a; Staley 

and Green, 1974; Townsend and Brown 1978a, b). The degree to which variability in traits is 

controlled by heredity opposed to environmental influences is also a focus of these studies. 

The concordance between the two is often compared between identical and fraternal twins 

(Hughes and Townsend, 2011, 2013; Kaul et al., 1985; Kieser, 1990; Scott and Porter, 1984; 

Scott and Turner, 1997; Skrinjaric et al., 1985; Townsend et al., 1988; Townsend et al., 1992; 

Townsend et al., 2008). Identical twins share both a genotype and an environment, whereas 

fraternal twins share an environment and less similar genotypes. Consequently, the range of 

heritability for morphological traits, 40-80%, and size, 60-80% has been well established 

(See pages 113, 119 and 125 ). However, as with dental nonmetric traits the exact modes of 

inheritance and the specific degree of genetic influence on tooth size are unknown. Therefore, 

the influence is also reported as a range, i.e., 60-80% (Hughes and Townsend, 2013; Jordan 

and Abrams, 1992; Mizoguchi, 1978; Scott and Irish, 2013a, c; Scott and Irish, 2017; Scott 

and Turner, 1997; Townsend et al., 2008; Willermet et al., 2013). The exact proportion of 

genetic control for each trait is unknown, as no large-scale comprehensive study examining 

this control on multiple traits has been conducted. However, due to the moderate to the high 

genetic component, analysing variability in tooth size and morphology provides insight into 

the degree of variation at the macro-evolutionary and micro-evolutionary levels (See page 

113) (Dempsey and Townsend, 2001; Hawkey, 1998; Larsen, 2015; Mizoguchi, 1978; 

Nichol, 1990; Schnutenhaus and Rösing, 1998; Scott and Turner, 1997; Scott and Irish, 2017; 

Turner, 1969). 
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 Twin studies also demonstrate that dental crown traits exhibit a range of 

morphological variation both between and within individuals as well as populations 

(Biggerstaff, 1969; Bockmann et al., 2010; Hughes and Townsend, 2011, 2013; Irish, 2015, 

2016; Kaul et al., 1985; Kieser, 1990; Martinón-Torres et al., 2007; Mihailidis et al., 2013; 

Scott and Potter, 1984; Scott and Irish, 2017; Scott and Turner, 1997; Skrinjaric et al., 1985; 

Townsend et al., 1988; Townsend et al., 1992). This variation can involve the whole tooth or 

be limited to particular aspects of the crown (Hughes and Townsend, 2013; Hughes et al., 

2007; Larsen, 2015; Lundstrom, 1967; Rightmire, 1999; Scott, 1973; Scott and Irish, 2017; 

Townsend and Martin, 1992; Townsend et al., 2009; Woodroffe et al., 2010). Many traits 

show significant covariation, which is a likely result of their shared developmental trajectory 

(Hughes and Townsend, 2013). There is an allometric relationship, i.e., the study of size in 

relation to shape, among teeth. This relationship includes dimensional variables such as size, 

area, volume, and those that may be influenced by these thresholds, including tooth number 

and molar cusp number, which are likely to be highly correlated phenotypically (Hughes and 

Townsend, 2013; Scott and Irish, 2017; Scott and Turner, 1997). Numerous previous studies 

have focused on the heritability of nonmetric traits; however, little research has been 

undertaken to document the genes affecting them (Garn et al., 1959; Garn et al., 1963, 1966; 

Hershkovitz, 1971; Hunter et al., 2010; Jernvall, 2000; Jernvall and Jung, 2000; Potter et al., 

1976; Salazar- Hershkovitz Ciudad and Jervall, 2005, 2010; Sofaer et al., 1972a; Scott, 1973; 

Staley and Green, 1974; Townsend and Brown, 1978a, b).  

 The contributions of genotype and development to the size and distribution of molar 

cusps, determined through application of a patterning cascade model of cusp development, 

has been the focus of some research (Astorino et al., 2015; Duner, 2011; Jernvall, 2000; 

Jernvall and Jung, 2000; Moormann, 2011; Moormann et al., 2013; Salazar-Ciudad and 

Jernvall, 2005, 2010; Skinner at al., 2008, 2009; Thesleff et al., 2001; Tonge, 1971). This 

model provides an evolutionary developmental framework which facilitates analysing the 

diversity in tooth crown morphology and size; as influenced by the developmental limitations 

of the tooth and the genetic activation of particular genes (Duner, 2011; Jernvall and Jung, 

2000; Jernvall et al., 1994; Moormann, 2011; Moormann et al., 2013). The enamel knots (the 

growth site of a cusp) which dictate crown morphology (i.e., cusp number) and tooth germ 

size track the underlying developmental processes (Jernvall, 2000; Jernvall and Jung, 2000; 

Paul et al., 2017; Salazar-Ciudad and Jernvall, 2010). Enamel knots develop an inhibitory 

zone which controls the size and spacing of cusps within each molar, while the activation of 
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particular genes control their growth rates and initiation (Jernvall and Jung, 2000; Paul et al., 

2017). Based on the observed intercusp distances compared to overall tooth size, the width 

and height of cusps could be reliably predicted (Jernvall, 2000; Jernvall and Jung, 2000; Paul 

et al., 2017). Though this model was initially based on seal teeth, it has been adapted for 

analysis of human teeth (Hunter et al., 2010; Moormann, 2011; Paul et al., 2017). Previous 

research has shown this model to successfully predict variation in Carabelli's cusp expression, 

such as size, in relation to other cusps on the first molar (Duner, 2011; Morita et al., 2014; 

Paul et al., 2017). 

Several lines of evidence, including familial correlations, population variation, and 

twin studies, indicate that genetic variability is a major factor in crown and root trait 

development (Hunter et al., 2010; Hughes and Townsend, 2011, 2013; Irish, 2016; Jernvall, 

2000; Jernvall and Jung, 2000; Jernvall and Thesleff, 2000; Paul et al., 2017; Potter et al., 

1976; Scott and Turner, 1997; Salazar-Ciudad and Jernvall, 2010; Skinner at al., 2008; 

Tonge, 1971; Townsend et al., 1992). However, trait expression is also influenced to some 

degree by environmental factors, as observed in the differential expression of morphological 

traits on alternate sides of the dentition, also known as fluctuating asymmetry (Garn et al., 

1996; Scott and Irish, 2017; Scott and Potter, 1984; Scott and Turner, 1997). This is evident 

in studies of individuals and identical twins, where a trait may be expressed to a greater 

degree on a given tooth for one individual and less so on the antimere (Scott and Potter 

1984). Bilateral asymmetry has also been frequently observed in populations experiencing 

greater environmental stress (See page 113) (Bailit et al., 1970; Bollini et al., 2009; Riga et 

al., 2014; Townsend et al., 2016; Van Dongen et al., 1999). As bilateral trait development is 

controlled by the underlying genome, fluctuating asymmetry is believed to reflect the 

inability of development to occur against random perturbations, known as developmental 

instability. Therefore, it can be said to represent the level of stress to which individuals are 

exposed (Moller and Swaddle, 1997; Polak, 2003). Consequently, fluctuating asymmetry is 

believed to be related to environmental factors such as lack of nutrients, high viral loads, and 

other internal or external influences impacting development (Coster et al., 2013; DeLeon, 

2007; Klingenberg and Nijhout, 1999; Luís and Silva, 2016; Riga et al., 2014). Consequently, 

the effects of several diverse phenomena may represent environmental influences on the 

underlying genotype (Biggerstaff, 1973; Luís and Silva, 2016; Mayhall and Saunders, 1986; 

Nichol, 1990).  
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Differential trait expression has been the focus of several previous studies. Specific 

traits such as Carabelli’s cusp, an additional cusp on the tongue side of the upper first molars, 

have been examined in relation to asymmetrical expression in several of these studies 

(Alvesalo et al., 1975; Baume and Crawford, 1980; Biggerstaff, 1973; Garn et al., 1966; 

Graham and Ozener, 2016; Goose and Lee, 1971; Guatelli-Steinberg et al., 2013; Kieser et 

al., 1986; Marado, et al., 2017; Sciulli, 2002; Townsend and Martin, 1992). Symmetrical 

expression on this trait has been observed in few individuals, i.e., 12 out of 423 individuals, 

and when asymmetry was observed, it was random and there was no evidence of trait 

expression varying consistently (Biggerstaff, 1973; Nichol, 1990; Townsend and Martin, 

1992). Asymmetry in this trait is high and is observed up to 45% for the permanent first 

molars (Biggerstaff, 1973; Saunders and Mayhall, 1982; Townsend and Martin, 1992). This 

suggests that the high degree of asymmetry observed in Carabelli cusp expression may be the 

result of environmental influences on the formation of enamel knots and the subsequent 

folding of the enamel epithelium (tissue) (Biggerstaff, 1973; Hunter et al., 2010; Nichol, 

1990; Townsend and Martin, 1992). Different degrees of expression of this trait have also 

been documented between teeth of the same individual, and monozygotic and dizygotic 

twins. However, this difference in not often quantified in relation to trait grades, degree of 

trait expression (See Appendix I) (Biggerstaff, 1973; Marado et al., 2017; Nichol, 1990; 

Townsend and Martin, 1992). Further, it has been suggested that fluctuating asymmetry may 

also be related to sample size and dental wear affecting trait scoring in archaeological 

samples (Marado et al., 2017; Nichol, 1990; Townsend and Brown, 1980; Townsend and 

Martin, 1992). Though, the level of plasticity of nonmetric traits under different 

environmental contexts has not been the focus of much systematic research. However, the 

tendency towards bilateral expression is consistent with the notion that there is a strong 

genetic component involved in dental trait expression (Irish, 2010, 2016; Irish et al., 2018; 

Scott and Irish, 2013, 2017; Turner et al., 1991). 

 

Correlations between genetic and dental morphological data sets and reconstructions of 

biological affinity, population history and structure  

 

Numerous studies support the concept that nonmetric traits are determined by genetic 

factors acting during dental morphogenesis. Therefore, their analysis can be used as a proxy 
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for inferring biological affinity among populations and/or groups (See pages 113 and 119) 

(Bowcock et al., 1994; Hubbard et al., 2015; Hughes and Townsend, 2013; Irish, 2010, 2016; 

Irish et al., 2018, 2020; Scott and Irish, 2013, 2017; Scott and Turner, 2007; Stojanowski et 

al., 2013). These traits have been used in numerous studies to assess population genetic 

affinities and microevolutionary trends among populations (Cadien et al., 1974; Delgado-

Burbano et al., 2010; Hubbard et al., 2015; Hughes and Townsend, 2013; Irish, 2010, 2016; 

Irish et al., 2014, 2018, 2020; Scott and Irish, 2013, 2017; Scott and Turner, 2007; 

Stojanowski et al., 2013). It has been suggested that nonmetric traits can be used to determine 

population history, and structure, with greater accuracy than other skeletal structures (See 

pages 113, 118, 119 and 125) (Hubbard et al., 2015; Hughes and Townsend, 2013; Irish, 

2010, 2016; Irish et al., 2018, 2020; Scott and Irish, 2013, 2017; Scott and Turner, 1997). A 

significant correlation has been found between nonmetric and nuclear microsatellite data used 

to distinguish global and regional populations. This supports the assumption that 

morphological traits provide similar information about biological affinity and population 

structure and history as genetic data (Hubbard, 2012; Hubbard et al., 2015; Irish et al., 2020; 

Ricaut et al., 2010; Scott and Turner 1997).  

  Several studies have compared distance matrices calculated using nonmetric traits to 

those determined using genetic data (Brewer-Carias et al., 1976; Hubbard, 2012; Irish et al., 

2020; Ricaut et al., 2010; Sofaer et al., 1972b; Wijsman and Never, 1986). The results of 

these studies support a strong correlation in reconstructions of biological affinity based on 

these data (Cavalli-Sforza et al., 1994; Hubbard, 2012; Irish et al., 2020; Ricaut et al., 2010; 

Scott and Irish, 2017; Scott and Turner, 1997). Further analyses have supported the notion 

that the biodistance data obtained from dental traits will be concordant with that from genetic 

based studies (Hubbard 2012, et al., 2015; Irish et al., 2020; Rathmann et al., 2017; Ricaut et 

al., 2010). These studies have examined the efficiency of genetic versus nonmetric data for 

detecting familial groupings and whether biodistance data constitute an alternative to genetic 

markers. The dental data have been compared to genetic markers including mtDNA, nuclear 

microsatellites, a section of repeated DNA, SNPs and Y-chromosome microsatellites 

(Hubbard 2012; Hubbard et al., 2015; Irish et al., 2020; Rathman et al., 2017; Ricaut et al., 

2010). The notion that nonmetric traits represent an alternative to genetic markers has been 

supported when examining affinity at the individual and population level (Hubbard 2012; 

Hubbard et al., 2015; Irish et al., 2020; Rathmann et al., 2017; Ricaut et al., 2010). However, 

the genetic data has been found to be slightly more reliable when assessing close genetic 
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proximities between individuals, such as kinship. Since dental traits evolve slowly, they may 

provide a population history more in line with a deeper time scale than genetic data (Hubbard 

2012; Irish et al., 2020; Rathmann et al., 2017; Ricaut et al., 2010). Thus, while there is a 

significant concordance between genetic, dental and skeletal nonmetric data, the dental data 

specifically, may be better suited for population level rather than individual level analysis 

(See pages 113 and 119) (Rathmann et al., 2017; Ricaut et al., 2010). Therefore, nonmetric 

traits are most likely to accurately estimate kinship when the degree of relationship among 

individuals is close (i.e., parent and child and the traits used are specific to familial 

inheritance, or are rare familial variants) (Ricaut et al., 2010). 

Hubbard (2012) provided further support for a significant concordance between 

genetic and dental nonmetric data. Specifically, Hubbard (2012) examined whether the 

variants in dental morphology and nuclear DNA produced similar patterns of intergroup 

biological affinity among regional populations. Paired genetic and dental data were compared 

among four modern Kenyan (African) populations. A positive but not significant correlation 

(r=0.500, p=.021) was found between the two data sets. However, the sample size for dental 

traits was small (9 nonmetric traits) and may have impacted the results (Hubbard, 2012). 

Previous studies indicate that biodistance analyses should be based on as many traits as 

possible. Furthermore, the 4 populations analysed occupied the same region in Kenya 

(Africa) and it is believed that they originated from the same group of Bantu farmers that 

migrated out of Central Africa (Hubbard, 2012; Merritt, 1975; Nurse and Spear, 1985). Thus, 

it is possible that there might not have been enough variation to distinguish differences 

between the groups. However, both datasets provided a similar overall picture of the 

relationships among the populations (Hubbard, 2012). As the initial genetic dataset was larger 

than the dental, 2 additional analyses were conducted using 30 and 15 loci, respectively 

(Hubbard, 2012). The results of the 30 loci analysis indicated an overall increase in the 

distance values with no change in the relationships among the population pairs. However, in 

the 15 loci analysis, the distances were significantly reduced so that few distinctions were 

observed among the 4 samples (Hubbard, 2012). These preliminary analyses are in line with 

previous studies indicating that the number rather than the combination of traits may have 

more of an influence on biodistance estimates (See page 119) (Hanihara, 2008, 2010; Irish, 

2010, 2015; Irish, 1993, 1998a, b, c, 2000, 2005, 2010; Irish et al., 2014, 2018; Pacelli 

Márquez-Grant, 2010; Scott et al., 2013a, c).  
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A similar correlation has been documented between nonmetric dental and neutral 

genetic data (Rathmann et al., 2017). However, this correlation was based on composite trait 

and genetic distributions from broad geographic regions (e.g., Europe and Italy). The 

nonmetric traits used in this analysis represent those characteristic of broad geographic dental 

complexes rather than those which comprise specific regional European populations. SNP 

and dental data, 12 nonmetric traits, from previously published sources representing 13 

populations were matched and subsequently compared by region (Rathmann et al., 2017). 

Though a strong and positive correlation (r=0.574, p< 0.001) was found between the data 

sets, the range of variation may not be adequately represented (Rathmann et al., 2017). 

Further, the range of trait variation within these broad complexes is not completely 

documented (e.g., Europe) (Adler, 2005; Anctil, 2016; Coppa et al., 1998, 1999, 2000, 2007; 

Hallgrímsson et al., 2004; Henneberg, 1998; Hsu et al., 1999; Khudaverdyan, 2013; Maxová 

et al., 2011; Mcilvaine et al., 2014; Pacelli and Márquez-Grant, 2010; Rathmann et al., 2016, 

2019; Scott et al., 2013b; Vargiu et al., 2009; Zubova, 2014). Although in spite of this 

limitation, the above correlation supports the notion that dental data can be used in place of 

genetic and suggests that the variation in nonmetric traits in these broad groups is enough to 

distinguish between them. Comparing unpaired data at a global scale may be common 

practice, however, it may result in a sampling bias, as the genetic variation between modern 

populations may be low compared to within-group variation (Barbujani et al., 1997; Deka et 

al., 1995b; Edwards, 2003; Jorde et al., 2000; Li, 1991; Witherspoon et al., 2007). Therefore, 

the correlation between the neutral genetic and dental data above may represent minimum 

values rather than exact correlations. Paired data from individuals or populations may provide 

a more accurate estimate of these phenotype correlations (Rathmann et al., 2017). However, 

the strong concordance indicates that both these datasets provided a similar overall picture of 

the biological affinity among populations. These findings further emphasize the notion that 

genetic data are not always better than dental for evaluating biological affinity, population 

history, and structure (See pages 113, 118 and 119) (Hubbard, 2012; Hubbard et al., 2015; 

Irish et al., 2020; Rathmann et al., 2017).    

Differential levels of aDNA, ancient DNA, preservation often limit the sample size as 

well as which regions of the DNA that can be analyzed in order to understand variation 

among and within populations (Brown and Brown, 2011; Burger et al., 1999; Eisenmann et 

al., 2018; Mulligan, 2006). Conversely, the use of nonmetric data, though also inexorably 

limited in some cases, can often provide larger datasets than aDNA in cases of poor 
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preservation. Although genetic data can provide information about the biological affinity 

among and within populations, it should not be considered a standard by which other 

estimates of biodistance are measured. Specifically, if genetic and dental datasets do not 

produce comparable biodistance estimates, this does not mean that genetic data are better 

suited to such analyses. Instead, the different types of phenotypic and genetic data that 

contribute to reconstructions of past behaviours and relationships among and within 

populations and why these differences exist should be evaluated (Hubbard, 2012; Irish et al., 

2020; Rathmann et al., 2017). Although more research is necessary to fully understand the 

modes of nonmetric trait heritability; a complete understanding of these processes is not 

essential to perform affinity analyses. Numerous previous studies have indicated a significant 

concordance between dental, genetic, archaeological, linguistic and historical data among and 

within populations with known and unknown history and affinity (e.g., Berry and Berry 1967; 

Berry, 1978, 1979; Biggerstaff, 1973; Coppa et al., 2007; Dahlberg, 1951, 1971; Hillson, 

1996; Hughes et al., 2007; Irish, 1993; 2005, 2010; Kimura et al., 2009; Sadier et al., 2014; 

Scott and Turner, 1997; Scott and Irish, 2017; Turner, 1967; Willermet et al., 2013). 

 

Assessing interpopulation variation and relationships: correlations between genetic and 

geographic isolation by distance (IBD) 

 

Isolation by distance (IBD) is a situation in which biological difference increases with 

geographic distance and will occur when populations are relatively non-mobile and inter-

population gene flow is restricted (Kimura and Weiss, 1964; Konigsberg, 1990; Relethford, 

2004; Slatkin, 1993; Wright, 1943). IBD is commonly used to examine inter-population 

variation and genetic relationships among geographically dispersed populations, through 

comparison of dental nonmetric traits (Cucina, 2015; Dicke-Toupin, 2012; Edgar, 2004; 

Horwath, 2012; Hubbard, 2012, Hubbard et al., 2015; Huffman, 2014; Irish et al., 2018. 

2020; Marando and Silva, 2016; Relethford, 2004; Scherer, 2004, 2007). Patterns of genetic 

variation among geographically disperse populations can be characterized in two ways. Either 

increasing genetic differentiation and inter-population geographic separation, or up to a 

distance beyond which no biological correlation is detectable (Kimura and Weiss, 1964; 

Konigsberg, 1990; Relethford, 2004; Slatkin, 1993; Wright, 1943). Therefore, in situations 
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where populations are relatively isolated from one another, genetic drift, as opposed to gene 

flow, will dominate the population structure (Konigsberg, 1990; Relethford, 2004; Slatkin, 

1993). Regions with high levels of gene flow among groups will exhibit low levels of genetic 

variation. In contrast, regions with low levels of gene flow will be more genetically diverse 

(See page 113) (Konigsberg, 1990; Relethford, 2004; Slatkin, 1993). Limited dispersal results 

in genetic differences between populations proportional to the geographic distance which 

separates them (Kimura and Weiss, 1964; Konigsberg, 1990; Relethford, 2004; Slatkin, 1993; 

Wright, 1943). Thus, isolation by distance is used to help corroborate the genetic and ethnic 

affiliations among populations (Konigsberg, 1990; Relethford, 2004; Wright, 1943). 

Wright (1943) introduced two different models of IBD; the first does not account for 

short-distance dispersal while in the second this dispersal is incorporated (Corre and Kremer, 

1998; Kimura and Weiss, 1964; Konigsberg, 1990; Relethford, 2004; Wright, 1943). The 

former model is somewhat artificial and proposes that a meta-population (a group of spatially 

separated populations that interact through gene flow) is divided into two geographically, 

unique sub-populations between which gene flow occurs at random. Except for a proportion 

of migrants drawn at random from the meta-population (Kimura and Weiss, 1964; 

Konigsberg, 1990; Lalouel, 1977; Relethford, 2004; Wright, 1922, 1943, 1951). As this 

situation is most likely to occur within a group of islands, it is referred to as the island model.  

Though, this model is not likely to be exactly observed among other groups as gene flow 

from other neighbouring populations is not accounted for (Kimura and Weiss, 1964; 

Konigsberg, 1990; Relethford, 2004; Wright, 1943, 968, 1969). However, the dispersal of 

individuals is limited and short distance movements are usually predominant (Corre and 

Kremer, 1998; Kimura and Weiss, 1964; Konigsberg, 1990; Wright, 1943). Further, migrants 

entering populations are more likely to come from some neighbouring regions, or groups, 

than to be drawn at random from the entire meta-population, as is assumed in the island 

model (Kimura and Weiss, 1964; Konigsberg, 1990; Slatkin, 1993; Wright, 1943, 1978).  

The latter model is more accurate, as a population is composed of continuously 

distributed individuals (Corre and Kremer, 1998; Konigsberg, 1990; Relethford, 2004). In 

absence of selection, genetic differentiation among sub-populations results from an 

equilibrium between genetic drift and gene flow (Boileau et al., 1992; Konigsberg, 1990; 

Malécot, 1973; Morton, 1973, 1977; Relethford, 2004; Slatkin and Maddison, 1990; Slatkin, 

1993). Therefore, the degree of biological variation among these populations is related to 

gene flow, as it decreases the number of migrants per generation also decreases (Boileau et 



  

 

 

 137  

 

 

al., 1992; Konigsberg, 1990; Relethford, 2004; Slatkin and Maddison, 1990; Slatkin, 1993). 

Under this model, populations in remote locations may become genetically distinct simply 

due to geographic isolation, thus restricting the probability of genetic exchange with one 

another (Kimura and Weiss, 1964; Konigsberg, 1990; Morton, 1973). More distant 

populations will remain phenetically distinct for a longer period of time, and thus exhibit a 

weaker relationship between gene flow and distance (Kimura and Weiss, 1964; Konigsberg, 

1990; Mantel, 1967; Schillaci et al., 2009). Local sub-populations are small in comparison to 

the meta-population and gene flow occurs exclusively within them (Kimura and Weiss, 1964; 

Konigsberg, 1990; Relethford, 2004). These groups subsequently experience differential rates 

of gene flow and inbreeding (See page 113) (Kimura and Weiss, 1964; Konigsberg, 1990; 

Malécot, 1973; Morton, 1973, 1977; Relethford, 2004; Slatkin and Maddison, 1990; Slatkin, 

1993).    
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Chapter 5: Materials and methods 

 

The core region is represented by the proto-Celtic Hallstatt D skeletal collection from 

Hallstatt (Austria) which comprises 44 recorded individuals (sample locations are presented 

in Figure 20). A group of isolated burials from the Stuttgart region in Germany that 

represents 43 documented individuals. The skeletal material was pooled to obtain an adequate 

sample size for statistical analysis. The burials represented by this collection are all 

temporally contemporaneous with the others and have similar burial features and customs. 

The cemetery population from Münsingen-Rain (Switzerland), which comprises a total of 77 

individuals. The skeletal material from Nebringen (Stuttgart, Germany), that consists of 26 

recorded and collected burials. The cemetery population from Pottenbrunn (Traisen valley, 

Austria), and includes 46 documented individuals and the skeletal collection from Dürrnberg 

(Austria), and comprises 128 individuals total (n=48 and 80 for the Hallstatt and La Tène 

phases, respectively). The expansion regions are represented by the skeletal collection from 

Radovesice I and II (Teplice, Czech Republic), which combined includes 57 recorded 

individuals. These collections were pooled to obtain an adequate sample size for statistical 

analysis. The cemetery population from Kutná-Hora-Karlov (Prague, Czech Republic), which 

consists of 48 documented individuals. The skeletal material from Wetwang Slack (east 

Yorkshire, Britain), which consists of a total of 180 individuals. The skeletal material from 

Rudston Makeshift (east Yorkshire, Britain), which comprises a total of 175 individuals, of 

which a sub-sample of 45 randomly chosen individuals were selected for analysis.  

The comparative skeletal material is represented by the Pontecagnano collection from 

Campania (southern Italy). The entire skeletal collection from this site comprises 700 

individuals, of which a sub-sample of 45 randomly chosen individuals dating to 650-260 BC 

were selected for analysis. The above cemetery populations will be discussed in detail in the 

following sections. The total number of individuals used in this analysis, adults and sub-

adults, with permanent dentitions, for which dental nonmetric traits could be scored are 

presented in Table 8 (See page 181 for more information about the inclusion of adults and 

sub-adults in dental nonmetric trait analysis). Further only those individuals without severely 

worn dentitions were included in this analysis (the choice of dentitions that were used in this 

analysis is further discussed in the subsequent data collection section, page 181). 

For all the samples, the previously established age-at-death-determinations and sex 

estimations published in the individual site reports were used. The specific age-at-death 
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categories and sex estimations published in the individual site reports for the samples are 

provided in Appendix VIII (See page 181, Appendix VIII). These estimates were determined 

through analyses of tooth eruption, dental wear, epiphyseal and cranial suture closure, and 

examination of secondary sex characteristics of the skull as well as examination of the pelvis 

(Budinský and Waldhauser, 2004; Dent, 1983, 1984; D’Agostino, 1974; Fredericksen, 1974; 

Hodson, 1968, 1990; Krämer, 1964; Rabsiler et al., 2017; Stead, 1991a; Thorsten et al., 2017; 

Tiefengraber and Wiltschke-Schrotta, 2015; Valentová, 1991; Valentová and Sankot, 2012; 

Waldhauser, 1993, 1999; Wendling and Wiltschke-Schrotta, 2015; Wendling et al., 2015). 

 

Table 8. The 12 samples used in this thesis and the number of individuals scored. 

Samples Region Date Number of 

individuals 

scored 

Total number 

of individuals 

recovered 

 

German 

(GER)a     

Stuttgart, 

Germany 

400-260 BC 

LTA-B/C 

35 43 

Nebringen 

(NEB)a     

Stuttgart, 

Germany 

400-250 BC 

LTA-B/C 

22 26 

Pottenbrunn 

(POTT)a     

Traisen valley 

Austria 

400-200 BC 

LTA-B/C 

41 46 

Hallstatt D 

(HalD)a     

Hallstatt, 

Austria                          

650-350 BC  

HaD  

42 44 

Münsingen-

Rain 

(MunRain)a         

Münsingen 

Switzerland             

420-240 BC 

LTA-C                

42 77 

Dürrnberg 

Hallstatt 

(DURH)a     

Hallein, Austria 650/620-

450 BC 

HaD 

35 48 

a Sample abbreviations used in subsequent Tables and Figures. German (GER); Nebringen 

(NEB); Pottenbrunn (POTT); Hallstatt D (HalD); Münsingen-Rain (MunRain); Dürrnberg 

Hallstatt (DURH); Dürrnberg La Tène (DURL); Kutná-Hora-Karlov (KHK); Rudston 

Makeshift (RUD); Wetwang Slack (WWS); Pontecagnano (PON). 
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Table 8 continued. The 12 samples used in this thesis and the number of individuals scored. 

Samples Region Date Number of 

individuals 

scored 

Total number 

of individuals 

recovered 

 

Dürrnberg La 

Tène (DURL)a     

Hallein, Austria 450-150 BC 

LTA-C 

67 80 

Radovesice 

(RAD)a     

Teplice, Czech 

Republic 

380-250 BC 

LTB-C 

40 57 

Kutná-Hora-

Karlov  

(KHK)a     

Prague, Czech 

Republic  

380-250 BC 

LTB-C 

37 48 

Rudston 

Makeshift 

(RUD)a     

east Yorkshire, 

Britain                  

400-100 BC  

LTB-D                

40 45 

Wetwang 

Slack 

(WWS)a     

east Yorkshire, 

Britain                 

400-100 BC 

 LTB-D                 

150 180 

Pontecagnano  

(PON)a           

Campania, Italy                              650-260 BC 

HaD-LT 

B/C                 

35 700 

a Sample abbreviations used in subsequent Tables and Figures. German (GER); Nebringen 

(NEB); Pottenbrunn (POTT); Hallstatt D (HalD); Münsingen-Rain (MunRain); Dürrnberg 

Hallstatt (DURH); Dürrnberg La Tène (DURL); Kutná-Hora-Karlov (KHK); Rudston 

Makeshift (RUD); Wetwang Slack (WWS); Pontecagnano (PON).  
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Figure 20. Map of Europe with sample locations designated (Figure modified from generic 

mapping tools). 

 
 

Core region samples 

Hallstatt D, Austria 

 

The Hallstatt cemetery is located in the Salzkammergut region of Austria, where the 

majority of the material evidence associated with the Hallstatt culture was first identified 

(Figures 1, 20 and 21) (Hodson, 1990). Initial excavations from 1846-1863, led by Johann 

Georg Ramsauer, revealed 980 graves. Subsequent excavations continued off and on until 

1899, and again from 1937-1939 yielding a total of 1,045 burials (Hodson, 1990). The 

majority of the recovered skeletal material from this cemetery is fragmentary, therefore it is 

difficult to adequately determine the age-at-death and estimate sex of the recovered 
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individuals (See Table 8 and Appendix VIII for the age-at-death estimates, the methods used 

by the recording archaeologist to estimate sex and the number of individuals included in this 

analysis). Further, the majority of the burials dating to the earlier periods, specifically the 

HaA-C periods, were cremations (Hodson, 1990). Thus, it is not possible to determine the 

above categories for the majority of the recovered skeletal material (Hodson, 1990). 

However, age-at-death could be determined for most of the individuals recovered from the 

HaD section of this cemetery, as inhumations are common during this period (Appendix VIII) 

(Hodson, 1990).  

 Those analysed in this thesis represent a group of 44 burials excavated by Frederick 

Morton in 1937-1939 and date to 650-350 BC, representing the HaD period specifically 

(Table 8, page 19) (Hodson, 1990). The majority of the burials were supine and extended, 

aligned north-south and facing north. However, flexed burials facing east or west have also 

been found (Hodson, 1990). Artefacts are comparatively numerous and include fibulae; rings; 

bracelets; torcs; gold and silver items; pottery; bronze vessels; swords; daggers; spears; and 

Mediterranean imports, including wine flagons and jugs (See page 19) (Hodson, 1990). 

Although the above artefacts have been documented, they have not been described in detail 

and have only been described as being characteristic of the Hallstatt period (Hodson, 1990). 

Regional comparisons to those from other Hallstatt and La Tène period cemeteries have not 

been conducted (Hodson, 1990). The cemetery population has been the subject of limited 

previous research (Anctil, 2016; Collis, 1986; Hodson, 1990; Hopkins, 1957). However, the 

majority of these studies have focused on general descriptions of the artefacts and cemetery 

(Collis, 1986; Hodson, 1990; Hopkins, 1957).  

The cemetery population has been the subject of a previous biodistance analysis, as 

previously mentioned (Anctil, 2016). However, this analysis utilized a randomly selected 

sub-sample from the HaD period, n=30 (>17 years old), due to time constraints. Since the 

author’s first study the remaining 12 individuals, with dentitions (>17 years old) were 

included in this analysis (Table 8). Enabling all the available dentitions from the site to be 

included in this research (See page 138). It has been suggested that the population was of 

high status, and therefore wealthy, due to the presence of prestige items and the nearby salt 

mine that enabled the population to have control of a viable commodity (Adshead, 1992; 

Barth, 1991; Cavruc and Harding, 2012; Hodson, 1990; Nenquin, 1961).  
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Figure 21. Drawing commissioned by Johann Ramsauer documenting the cemetery at 

Hallstatt, Austria, watercolour painting done by a local artist (Johann Georg Ramsauer, 1874. 

Original scale not provided, original figure number unknown). 

   

 

 

   

German pooled sample, Stuttgart, Germany 

 

This sample dates from the LTA-B/C period, based on associated artefacts, and 

consists of 43 geographically isolated burials that are dispersed throughout Stuttgart, southern 

Germany (Figures 1 and 20) (Table 8, Appendix VIII). These burials were excavated during 

the early to mid to late 1900s (Balkwill, 1976; Burmeister et al., 2000; Dehn, 2013; Ebrecht 

et al., 2014; Gleirscher, 2006; Miron, 2012; Müller-Scheeßel, 2007; Paret, 1924, 1938; Stuck, 

1985). However, the initial excavation reports for these burials have been lost. Therefore, the 
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exact excavation dates, the specific burial locations, age-at death determinations and methods 

used to estimate the sex of these individuals are not available (Appendix VIII) (Burmeister, 

2000; Gleirscher, 2006; Müller-Scheeßel, 2007). Consequently, these burials are described as 

being located within a broad geographic region, i.e., Stuttgart, Germany, rather than 

according to specific individual locations (Burmeister, 2000; Gleirscher, 2006; Müller-

Scheeßel, 2007). Further, the age-at-death categories and sex estimations for these individuals 

are described on a case-by-case, or individual, basis e.g., adult male (Appendix VIII) 

(Burmeister, 2000; Dehn, 2013; Ebrecht et al., 2014; Gleirscher, 2006; Miron, 2012; Müller-

Scheeßel, 2007; Stuck, 1985). It is unknown whether they initially formed part of a larger 

cemetery that was lost through taphonomic processes, such as erosion, construction, 

agricultural processes or; whether they represent isolated burials relating to deaths that 

occurred during the course of migration through the region (Balkwill, 1976; Burmeister et al., 

2000; Dehn, 2013; Ebrecht et al., 2014; Gleirscher, 2006; Miron, 2012; Müller-Scheeßel, 

2007; Paret, 1924, 1938; Stuck, 1985).  

The burials comprising this sample include; Inringen (n=6); Gundlingen (n=6); 

Mullheim-Dattingen (n=3); Stuttgart Zuffenhausen (n=3); Birkenfeld (n=5); Tubingen 

Drendingen (n=3); Stuttgart Zuf Rotwegsiedlu (n=3); Korntal Leonb (n=3); Kircheim (n=3); 

Waiblingen Flur Wasserst (n=3); Korntal Seewaldberg (n=4) and Cannstatt (n=1) (See page 

138) (Table 8, Appendix VIII) (Ebrecht, 2014; Müller-Scheeßel, 2007; Paret, 1924; Struck, 

1985; Werner, 1938). Some of the above burials, e.g., Inringen, Gundlingen and Birkenfeld 

have been suggested to represent the remnants of larger cemeteries (Burmeister, 2000; 

Ebrecht et al., 2014; Miron, 2012; Stuck, 1985). However, these burials are dispersed and 

construction within these regions did not uncover any further burials (Burmeister, 2000; 

Dehn, 2013; Ebrecht et al., 2014; Miron, 2012; Stuck, 1985). Consequently, these burials 

were regarded as isolated burials in this analysis.  

The majority of the above burials are oriented north-south, either flexed or extended 

and facing east (Balkwill, 1976; Burmeister et al., 2000; Dehn, 2013; Ebrecht et al., 2014; 

Gleirscher, 2006; Miron, 2012; Müller-Scheeßel, 2007; Paret, 1924, 1938; Stuck, 1985). 

These burials have not been the focus of much research since their initial discovery, other 

than general grave and artefact descriptions (Balkwill, 1976; Burmeister et al., 2000; Dehn, 

2013; Ebrecht et al., 2014; Gleirscher, 2006; Miron, 2012; Müller-Scheeßel, 2007; Paret, 

1924, 1938; Stuck, 1985). This sample was included in subsequent analyses in order to 

explore the population history in the region. 
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Münsingen-Rain, Switzerland 

 

Münsingen-Rain is one of the largest La Tène period cemeteries in Switzerland and is 

located south-east of the small town of Münsingen, which is situated in the Aar Valley 

between the regions of Thun and Bern and dates to 420-240/150 BC (Figures 1, 20 and 22) 

(Hodson, 1968, 1998; Hung, 1962; Jud, 1998; Müller et al., 2008; Stockli, 1975; Wiedmer-

Stern, 1908). The cemetery was discovered in 1906 on a small plateau of a river terrace 

during gravel quarrying (Hodson, 1968; Hung, 1962; Jud, 1998; Müller et al., 2008; 

Wiedmer-Stern, 1908). Subsequent excavations in 1906 led by Jakob Wiedmer-Stern 

uncovered 220 graves, of which skulls of 77 individuals total, those that were determined to 

have “superior” preservation, were recovered and collected (Figure 22, Table 8, Appendix 

VIII) (Hodson, 1968; Hung, 1962; Jud, 1998). However, the remaining skeletal material was 

documented but not removed and was subsequently reburied (Hodson, 1968; Jud, 1998; 

Wiedmer-Stern, 1908).  

The majority of the burials were supine and extended, aligned north-south facing 

north. However, there are instances of flexed burial positions facing east or west sometimes 

with evidence of a wooden or makeshift stone coffin (Hinton, 1986; Hodson, 1968; Müller, 

1998; Müller et al., 2008; Wiedmer-Stern, 1908). There does not appear to be any segregation 

based on sex or age (Hodson, 1968). The northern part of the cemetery dates to the LTA 

period, while the burials at the southern end of the cemetery date to the LTC period (Table 8). 

An abundance of artefacts have been recovered from this cemetery; such as fibulae; bracelets; 

torcs, bronze vessels; wheel-turned pottery; glass beads; gold and silver items (See page 32) 

(Figures 8-11) (Hodson, 1968; Kaenel, 1990). Some of the sub-adult burials (e.g., >17 years 

of age) were accompanied by artefacts typically found with adult females, such as jewellery, 

while some burials contained no artefacts at all (Hodson, 1964; Hung, 1962; Jud, 1998). 

Weapons and lances also have been recovered from male graves. The abundance of prestige 

grave goods, such as Mediterranean imports, gold and silver items, have been argued to 

indicate the cemetery was used by the inhabitants of a small settlement community composed 

of high-status individuals (Alt et al., 2005; Hinton, 1986; Martin-Kilcher, 1973).  

The artefacts also suggest a degree of mobility within the burial community 

(Moghaddam et al., 2014, 2016; Scheeres, 2014a). Some of the fibulae, bracelets, and 

materials, such as amber, have connections to eastern Belgium, Luxembourg, the Hunsrück-

Eifel (western Germany), and Baden-Württemberg (southwest Germany) regions (See page 
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32) (Hodson, 1964; Müller, 1998; Müller et al., 2008). However, these items are 

predominately associated with the LTA and LTC period graves, suggesting differential access 

to trade items through time (Table 8) (Hodson, 1964; Müller et al., 2008). Although the 

skeletal material recovered from Münsingen-Rain (Switzerland) has been the focus of a wide 

range of previous research; these analyses have been limited due to the condition of the 

collection, i.e., only skulls are available (Hinton, 1986; Hodson, 1968; Kutterer and Alt, 

2008; Martin-Kilcher, 1973; Moghaddam et al., 2014, 2016; Müller, 1998; Müller et al., 

2008). Previous research includes skeletal inventories, morphological kinship analyses based 

on epigenetic characteristics of the skull, stable isotope analysis, craniometric, and aDNA 

analyses (See page 61) (Hinton, 1986; Hodson, 1968; Kutterer and Alt, 2008; Martin-Kilcher, 

1973; Moghaddam et al., 2014, 2016; Müller, 1998; Müller et al., 2008; Uerpmann, 2005). 

Typological and chronological artefact inventories have also been conducted. However, they 

have not been compared to those from other regions across continental Europe (Hinton, 1986; 

Hodson, 1968). A biodistance analysis has also been performed, to determine whether the 

population shared any biological affinity to those from the previous proto-Celtic period, 

specifically Hallstatt D (Austria) (Anctil, 2016). 

The subsequent statistical analysis supported phenetic divergence among the proto-

Celtic Hallstatt D (Austria) and La Tène Münsingen-Rain (Switzerland) samples (Anctil, 

2016). Although these initial results indicated phenetic heterogeneity, biological diversity, 

between the above samples, the extent of this variation throughout the regions associated with 

Celtic material culture is still unknown. Therefore, the skeletal material from this cemetery 

was included in the present analysis. The previous analysis was conducted on a sub-sample of 

the available skeletal material, n=33, (>17 years old). However, since the author’s first study, 

additional skeletal material was available, n=9 (>17 years old), and was subsequently 

incorporated into this analysis. Enabling all the available dentitions from the site to be 

included in this research (See page 138). 
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Figure 22.  Distribution of graves within the La Tène cemetery of Münsingen-Rain 

(Switzerland) (Modified from Hodson, 1968, Figure 2. Original scale not provided).  

 

 

 

Morphological kinship analyses have been argued to indicate a high degree of 

homogeneity among the burial community, based on retention of the metopic suture (a cranial 

suture between the two halves of the frontal bone) (Hauschild, 2010a, b; Kutterer and Alt, 

2008). Although the retention of this suture may appear to support the initial interpretation of 

a small closely related settlement community, it is only present in 4 adults (aged 20-50) who 

are not spatially restricted within the cemetery (Appendix VIII) (Alt et al., 2005; Barnes, 

1994, 2012; Hauschild, 2010a, b; Kutterer and Alt, 2008). This interpretation is also 
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supported by the stable isotope evidence, as only 14.7%, 5 out of 34 individuals were found 

to be non-local (See page 61) (Moghaddam et al., 2014; Scheeres, 2014a). The third molars 

and human ribs, or rib fragments were predominantly used in the above stable isotopic 

analyses (Moghaddam et al., 2014; Scheeres, 2014a; Scheeres et al., 2014b). Although in 3 

cases the first or second molar was used in order to obtain the 87Sr/86Sr and O18 values, as the 

third molar was not available for analysis or due to severe dental wear (Moghaddam et al., 

2014; Scheeres, 2014a; Scheeres et al., 2014b). In these cases the level of wear on the teeth 

selected for analysis was severe and no nonmetric traits could be observed. Therefore, these 

teeth were also too worn for inclusion any subsequent dental nonmetric trait analysis 

(Moghaddam et al., 2014; Scheeres, 2014a; Scheeres et al., 2014b) (See page 181 for a 

discussion of dental wear and nonmetric traits, Figure 34 for an example of severe dental 

wear and Appendix III). However, the majority of the individuals identified as non-local were 

not specifically from the LTA period; only 18 out of 34 individuals were from this period 

(See page 61) (Moghaddam et al., 2014; Scheeres, 2014a). As such it is difficult to determine 

whether the above migration rate is consistent with this period or cemetery overall. The low 

frequency of non-local individuals also supports the notion that extra-regional contacts and 

migration into the region may have been limited to trade, small-scale migration or individual 

movement (Alt et al., 2005; Moghaddam et al., 2014; Scheeres, 2014a).  

Cranial deformations and possible deformations have also been identified within the 

burial community, 10 and 28 respectively, and are present in all chronological phases (Alt et 

al., 2005; Kutterer and Alt, 2008; Müller et al., 2008). These deformations were initially 

argued to have been intentional and to represent an elite group within the cemetery (Alt et al., 

2005; Müller et al., 2008). However, subsequent CT scans have indicated that some of the 

deformations, n=10, were the result of abnormal suture closure (Kutterer and Alt, 2008). 

Probable deformations, n=28, were determined to be the result of taphonomic processes 

during burial (Kutterer and Alt, 2008). Further, those individuals with either of the above 

deformations were not restricted to a specific area of the cemetery (Kutterer and Alt, 2008). 

Therefore, these deformations as an indicator for genetic relationships among the burial 

community remains questionable. Although aDNA analyses have been conducted, the 

samples contained insufficient traces of aDNA (Uerpmann, 2005). 
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Nebringen, Stuttgart, Germany 

 

The cemetery of Nebringen “Baumsacker” is located about 35 km southwest of 

Stuttgart and dates to 400-250 BC (Figures 1, 20 and 23) (Krämer, 1964). During road 

construction in 1959, 6 graves were discovered (Krämer, 1964). Subsequent rescue 

excavation in 1959 uncovered 26 burials, 21 inhumations, 4 cremations and a few isolated 

skeletal fragments from an additional unidentified grave (See page 138) (Table 8, Appendix 

VIII) (Krämer, 1964). Some burials are believed to have been lost due to construction, 

agricultural or taphonomic processes, such as erosion. Consequently, the number of burials is 

believed to have been as high as 35 (Krämer, 1964, 1966; Scholz et al., 1999). Further, in 

spite of rescue attempts, during the 1959 excavations, several burials and associated artefacts 

were destroyed, notably the so-called chief’s burial, grave number 11 (Krämer, 1964, 1966). 

Thus, limited skeletal and archaeological material remains for analysis (Krämer, 1964, 1966; 

Scheeres, 2014a; Scholz et al., 1999). Limited previous analyses have been conducted on the 

recovered skeletal material and artefacts (Krämer, 1964; Maraz, 1977; Scheeres, 2014a; 

Scholz et al., 1999).  

The majority of these analyses have focused on chronological descriptions (Krämer, 

1964; Maraz, 1977), although a stable isotopic analysis examining mobility among the burial 

community has been conducted (See page 61) (Scheeres, 2014a). The burials form 

approximately 6 groups the majority of which were extended and supine, oriented 

approximately northeast to southwest and facing west. However, flexed burials oriented east-

west facing east, sometimes with evidence of a coffin, and one prone burial have also been 

found (Krämer, 1964, 1966; Scheeres, 2014a). Though, the material from which the 

documented coffins were constructed is not reported. These included the so-called warrior 

burials and 1 sub-adult burial (Krämer, 1964, 1966; Scholz et al., 1999). As most burial 

groups contained the burials of both sexes as well as sub-adults and both high and low-

quality artefacts, the groupings may be arranged according to family association rather than 

social status (Appendix VIII) (Krämer, 1964, 1966; Scheeres, 2014a).   

No temporal variation in burial practices is evident during the use of the cemetery. 

The cremation burials, rather than representing a shift in burial practices, are believed to have 

occurred at or around the same time as the inhumations, since they are found within the same 

stratigraphic level (Scheeres, 2014a; Scholz et al., 1999). As the burials are shallow it has 

been suggested that others, inhumations and/or cremations, may have been lost (Krämer, 
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1964, 1966). However, the approximate grave depth is not provided (Krämer, 1964, 1966). 

The cemetery was used for approximately 150 years (Scheeres, 2014a). This relatively short 

duration may suggest that the cemetery was abandoned after a settlement collapse. This 

notion is also supported by the continuous cemetery use throughout the LTB and C periods in 

the southern Bavarian Alpine foothills (southern Germany) and the Danube Valley (Austria, 

Slovakia, Hungary, Croatia, Serbia, Romania, Bulgaria, Moldova, and Ukraine) (Krämer, 

1964; Maraz, 1977). The apparent settlement abandonment in the Württemberg region 

(southwest Germany bordering Switzerland and France), during this period also supports this 

presumption (Kimmig, 1983; Krämer, 1964; Scholz et al., 1999). This has been argued to 

provide further evidence of migration into the surrounding regions during this period 

(Scheeres, 2014a). Although, it has also been suggested that Nebringen (Stuttgart, Germany) 

was populated by a small community of farmers and was subsequently abandoned as a result 

of deteriorating climate conditions (See page 61) (Krämer, 1964, 1966). However, there is no 

evidence of these conditions affecting the population at Nebringen (Stuttgart, Germany) or 

those in the above regions (Kimmig, 1983; Krämer, 1964; Scholz et al., 1999). Therefore, 

abandonment during the LTB/LTC period may have been the result of a breakdown or 

rerouting of trade routes. However, as the cemetery was destroyed during construction and 

has not been the focus of much research, it is possible that this evidence was lost. 

Consequently, climate change cannot be ruled out as a cause for settlement abandonment. 

The notion of access to trade items, or routes, as an underlying cause for abandonment and 

subsequent migration is partly supported by the recovered artefacts. 

The majority of the artefacts include fibulae; bracelets; torcs; bronze items; swords 

and some prestige items, such as a gold torc (Krämer, 1964, 1966; Maraz, 1977). A helmet 

and gold torc have also been recovered from the so-called chief’s burial. The presence of 

these prestige items resulted in this designation; however, this individual may also have been 

a warrior (See pages 32 and 61) (Krämer, 1964; Maraz, 1977; Scholz et al., 1999). However, 

as this grave was almost entirely destroyed by construction, it is unknown whether other 

prestige items, or weapons were lost (Krämer, 1964, 1966; Scholz et al., 1999). Further, the 

presence of a gold torc in this burial distinguishes it from the other warrior burials, which 

only have swords, or remnants of, preserved (Krämer, 1964, 1966). Consequently, it is 

difficult to determine whether the above proposed designations are accurate. 
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Figure 23. The cemetery of Nebringen-Baumsäcker. The grave groups I to VI represent the 

assumed familial groups. Circles represent child burials while rectangles represent adult 

burials (Modified from Krämer, 1964, Figure 2). 

 

 

 

Although the above artefacts have not been the focus of much research, and have only 

been vaguely described, there is some evidence of extra-regional contact (Krämer, 1964, 

1966; Maraz, 1977; Scholz et al., 1999). A fibula similar in construction to those recovered 

from Hungary and Romania suggest some form of contact between these regions (Krämer, 

1964; Maraz, 1977; Scheeres, 2014a). However, as there is limited archaeological evidence 

of extra-regional contact, the population at Nebringen (Stuttgart, Germany) is believed to 

have had limited access to trade items and/or routes (Krämer, 1964, 1966; Maraz, 1977; 

Scheeres, 2014a). This notion is supported by stable isotope analyses as 88%, 15 out of 17 

individuals selected based on archaeological criteria, of the population was found to be local 

(See page 61) (Scheeres, 2014a). The same dental and human skeletal elements used at 

Münsingen-Rain (Switzerland) were primarily used for the above stable isotopic analyses 

(Scheeres, 2014a; Scheeres et al., 2014b). Consequently, the ability to observe and record 

dental nonmetric traits was not affected. However, in a few cases, 2 individuals, the first or 
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second molar was used in place of the third, because the third molar was not available for 

analysis or due to severe dental wear (Scheeres, 2014a; Scheeres et al., 2014b). The first or 

second molars that were selected for stable isotopic analysis were also severely worn, 

therefore they could not be included in any subsequent dental nonmetric trait analysis 

(Scheeres, 2014a; Scheeres et al., 2014b) (See page 181 for a discussion of dental wear and 

nonmetric traits, Figure 34, for an example of severe dental wear and Appendix III).  

  

Pottenbrunn, Austria 

 

Pottenbrunn is located in northeast Austria, on the southwestern edge of the district of 

St Pölten (northeast, Austria) and dates from the HaC/D-LTA-B/C periods (Figures 1, 20 and 

24) (Table 8) (Neugebauer, 1991; Ramsl, 2002). This cemetery was discovered in the 1930s 

during the rebuilding of the old federal road between Pottenbrunn and Ratzersdorf (Ramsl, 

2002). Subsequent excavations led by J Bayer uncovered 2 burials dating to the HaC/D 

period and 12 graves dating to the La Tène period 4 additional burials dating to the Bronze 

Age were also discovered nearby (Bayer, 1930; Neugebauer, 1991; Ramsl, 2002). However, 

the proximity of these burials to the Pottenbrunn (Austria) cemetery is not described. It is also 

unknown whether these burials were part of a larger nearby cemetery or were part of 

Pottenbrunn (Austria) (Neugebauer, 1991; Ramsl, 2002). Rescue excavations continued off 

and on until 1982 under JW Neugebauer and P Scherrer (Neugebauer, 1991, 1992; Ramsl, 

2002). In total, 46 inhumations, including several double burials, and 11 cremations were 

uncovered, most of which were surrounded by enclosure ditches (Figure 24, page 138 and 

Appendix VIII) (Ramsl, 2002). Numerous additional burials without preserved skeletal 

material were also uncovered throughout the course of the above excavations (Ramsl, 2002). 

However, the burials were not provided with a specific numerical sequence and are therefore 

not sequential (Ramsl, 2002). All of the site features, such as enclosure ditches and post 

holes, were catalogued using the same numerical scheme.  

Most of the individuals buried at Pottenbrunn (Austria) were buried in a supine and 

extended position aligned northeast-southeast and facing north often with evidence of a coffin 

(Ramsl, 2002). However, the material used to construct the coffins is not reported. Additional 

burial positions including, flexed burials, facing east or west have also been documented. The 

cemetery population from Pottenbrunn (Austria) has been the focus of some research over the 
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years (Ramsl, 2002, 2003, 2012a, b, 2018). However, these studies have focused on 

chronological descriptions of the artefacts and general descriptions of the cemetery (Ramsl, 

2002). Some attempts at regional comparisons have been conducted, however, in regard to 

specific artefacts or burials (Ramsl, 2002, 2012a, b). The majority of the single inhumations 

are rectangular or circular in shape, whereas both are evident in the cremation and double 

burials (Ramsl, 2002). There is no evidence for a diachronic change in burial practices, as 

both appear to have occurred simultaneously (Ramsl, 2002). The cremation burials are 

believed to have been interred in pottery vessels, as pottery sherds have been found 

associated with the majority of these burials (Ramsl, 2002). Several burials have post holes 

nearby or surrounding them, although the exact number is not quantified. The purpose of 

these post holes is debated (Ramsl, 2002). Although they are believed to represent mortuary 

houses, it has also been suggested that they were used to designate specific burials, e.g., elites 

(Ramsl, 2002, 2012a, b). Alternatively, it has been suggested that their presence represented 

some element of the burial practices in Pottenbrunn (Austria), such as temporarily 

distinguishing the burial (Ramsl, 2002, 2012a, b). However, the construction of mortuary 

houses is the more commonly accepted interpretation (Ramsl, 2002, 2012a, b). 

An abundance of artefacts have also been recovered, including fibulae; rings; 

bracelets; gold and silver items; pottery and/or bronze vessels; swords; daggers; knives; 

spears; lances; Mediterranean imports (including wine flagons and jugs); gifts of meat (e.g., 

sheep); and decorated iron rods (See page 32) (Ramsl, 2002, 2012a, b). These rods have been 

described as scepters although their exact purpose is unknown (Ramsl, 2002, 2012a, b). Other 

prestige items include a sword scabbard decorated with gold foil and a hollow bronze pendant 

that had been silver coated (Ramsl, 2002). Several intra-and-extra regional connections have 

been suggested based on the above artefacts (Charpy, 1991; Penninger, 1975; Ramsl, 2002, 

2012a, b). Similarities in fibulae to those from Dürrnberg (Austria) have been documented 

(Table 5) (Ramsl, 2002, 2012a, b). Extra-regional connections have also been described 

based on fibulae, bracelets and Ornaments of false-filigree, to northwestern Switzerland, the 

Rhineland (west Germany), and the Champagne region (northeast France), respectively (See 

page 32) (Charpy, 1996, 2009; Furger-Gunti, 1982; Penninger, 1975; Ramsl, 2002, 2012a, b). 
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Figure 24. The cemetery of Pottenbrunn (Austria) (Modified from Ramsl, 2002, Figure 3. 

Original scale not provided). 

 

 

Further connections have also been suggested based on an ornamental pin which is 

described as being similar to those from the Balkan regions (Southeast Europe) (Ramsl, 2002, 

2012a, b; Stoianovich, 2015). However, the exact nature of these connections has not been 

described in detail, only their possible presence has been mentioned (See page 32) (Charpy, 
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1991; Penninger, 1975; Ramsl, 2002). Therefore, it is not clear if the above connections are 

based on artefacts, art styles and/or mechanical construction. Evidence of both diverse and far 

reaching regional connections suggests that the burial community at Pottenbrunn (Austria) 

had access to a trade route(s) that enabled them to obtain prestige items (Charpy, 1991; 

Penninger, 1975; Ramsl, 2002).   

 

Dürrnberg, Austria 

 

This cemetery is located in the region of Dürrnberg and was excavated in an ad hoc 

manner. Various burial grounds, or grave fields, were discovered through the course of 

construction and subsequent excavation during the 19th century (Figures 1, 20 and 26) 

(Lavelle et al., 2019; Moosleitner, 1991; Rabsiler et al., 2017; Tiefengraber and Wiltschke-

Schrotta, 2012, 2014, 2015; Wendling et al., 2015). Consequently, the material excavated 

from the cemetery was published initially as a series of different connected grave fields, 

including Friedhof, Lettenbuhl, Romersteig and Eislfeld. Although Friedhof and Lettenbuhl 

were initially believed to be two separate grave fields, subsequent excavations revealed they 

were connected (Tiefengraber and Wiltschke-Schrotta, 2014). However, they are still 

described according to their initial separate designations. Further, these different grave fields, 

overall, are believed to represent one burial community, as they possess similar material 

culture, burial practices, are in close geographic proximity and were inhabited at the same 

time (Stöllner, 1998; Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; 

Wendling and Wiltschke-Schrotta, 2015). Subsequent publications have followed this initial 

format for the sake of continuity, therefore, the cemetery information presented in this thesis 

will also follow this format.     

Dürrnberg is located in the Hallein region of Salzburg, Austria. The cemetery, overall, 

was used from the HaD-LTC period (Table 8) (Moosleitner, 1991; Rabsiler et al., 2017; 

Stöllner, 1998; Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling 

and Wiltschke-Schrotta, 2015; Wendling et al., 2015). Excavations in the Eislfeld, Friedhof 

and Lettenbuhl areas began in 1928-1932 led by O Klose and E Penninger after construction 

uncovered 6 burials (Klose, 1932; Thorsten et al., 2017; Tiefengraber and Wiltschke-

Schrotta, 2015). There are some descriptions from these early excavations, but no drawings 

from this excavation phase exist. Subsequent excavations were conducted from 1979-1982 in 
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Romersteig, from 1983-1984, briefly in 1987, and from 1996-1997 in Friedhof and 

Lettenbuhl, led by F Moosleitner, JW Neugebauer and K Zeller, respectively (Neugebauer, 

1983, 1984; Tiefengraber and Wiltschke-Schrotta, 2015; Zeller, 1997, 2001). During the 

1983-1984 excavations, a settlement area near the Friedhof and Lettenbuhl grave fields was 

uncovered (Tiefengraber and Wiltschke-Schrotta, 2015). Although Friedhof, Lettenbuhl and 

Romersteig were excavated in response to construction, during the above periods, Eislfeld 

was excavated continuously from 1963-1997 (Thorsten et al., 2017; Tiefengraber and 

Wiltschke-Schrotta, 2015; Wendling and Wiltschke-Schrotta, 2015).  

The above excavations were accompanied by a significant improvement in 

documentation, which allowed for a re-assessment of the initial excavations (Thorsten et al., 

2017; Tiefengraber and Wiltschke-Schrotta, 2015). Consequently, it was determined that the 

1928-1932 excavations only recorded the richer graves (Thorsten et al., 2017; Tiefengraber 

and Wiltschke-Schrotta, 2015). Subsequently, throughout the course of the above 

excavations, these burials were re-examined on-site and the poorer burials were recorded 

(Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015). The recovered skeletal 

material has been the focus of a wide range of previous research, and is one of the most 

important reference sites for the chronology of the Hallstatt and the La Tène periods in the 

region (Lavelle and Stöllner, 2018; Neugebauer, 1983, 1984; Rabsiler et al., 2017; Thorsten 

et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and Wiltschke-Schrotta, 

2015; Zeller, 1997, 2001). These previous studies have focused on chronological descriptions 

of the artefacts, general descriptions of the cemetery, dental and skeletal inventories and 

pathological and trauma documentation. However, these analyses were largely site specific 

with little attempt at regional comparisons (Lavelle and Stöllner, 2018; Neugebauer, 1983, 

1984; Zeller, 1997, 2001).   

Although previous analyses have been conducted on the skeletal material, they have 

been limited due to the condition of the collection. The majority of the skeletal remains from 

Dürrnberg (Austria) are very poorly preserved and some are fragmented (Thorsten et al., 

2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and Wiltschke-Schrotta, 2015). 

Several graves, up to 36%, 40 burials, in most of the grave fields contained no skeletal 

remains, which is likely due to the unsystematic initial excavations (Thorsten et al., 2017; 

Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and Wiltschke-Schrotta, 2015). There 

are several instances of multiple burials and grave reuse, as 17 individuals have been 

recovered from one grave, e.g., Romersteig (Tiefengraber and Wiltschke-Schrotta, 2015; 
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Wendling and Wiltschke-Schrotta, 2015). Numerous burials also have evidence of secondary 

and/or reburial, grave robbery and evidence of later period graves cutting into those from the 

preceding period (Rabsiler et al., 2017; Thorsten et al., 2017; Tiefengraber and Wiltschke-

Schrotta, 2015; Wendling and Wiltschke-Schrotta, 2015; Wendling et al., 2015). Therefore, it 

is unknown whether the different temporal phases also correspond to a concomitant 

biological change. Consequently, for this analysis, the cemetery was divided into two phases, 

Dürrnberg Hallstatt and Dürrnberg La Tène, in order to determine whether a biological 

change was evident between these phases. The total number of individuals, adults and sub-

adults with permanent dentitions (>17 years old) assigned to either the Hallstatt D or La Tène 

periods were used to construct the above temporal periods used in this analysis (Appendix 

VIII). Overall, 307 individuals have been recovered from the Friedhof, Lettenbuhl, 

Romersteig and Eislfeld grave fields within the Dürrnberg (Austria) cemetery (See Table 8 

for the number of individuals included in this analysis, page 138 and Appendix VIII).   

 

Friedhof and Lettenbuhl grave fields 

 

To date, 22 inhumation burials have been recovered from Lettenbuhl, whereas 26 

have been uncovered from Friedhof (Tiefengraber and Wiltschke-Schrotta, 2015). 

Approximately 50% of burials in both regions contained more than one individual, 11 and 13 

burials, respectively (Tiefengraber and Wiltschke-Schrotta, 2015). Males, females, and sub-

adults are represented (Table 8, Appendix VIII). In both grave fields, approximately two-

thirds, 66.67%, of the burials were inhumations and one third, 33.3%, were cremations buried 

in urns (Tiefengraber and Wiltschke-Schrotta, 2015). This high proportion of cremations is 

significantly different from the other Dürrnberg (Austria) grave fields where these burials are 

less common (Tiefengraber and Wiltschke-Schrotta, 2015). Both the initial and the intensive 

phases of funeral activity at both cemeteries date to the beginning of the HaD period 

(Tiefengraber and Wiltschke-Schrotta, 2015). The majority of the burials from Friedhof, 

46.2%, predominantly date to the HaD period, while only 15.4% date to the LTA period 

(Table 8). A similar pattern is evident at Lettenbühel (Tiefengraber and Wiltschke-Schrotta, 

2015). During the early LTA period, burials decreased and considerable parts of both grave 

fields were converted into settlement areas (Tiefengraber and Wiltschke-Schrotta, 2015). At 

the end of the LTA period, the Friedhof settlement was abandoned and the entire area was 
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reused as a burial ground again during the LTB period (Table 8) (Tiefengraber and 

Wiltschke-Schrotta, 2015). The latest burials in both grave fields date to the LTC period 

(Table 8) (Tiefengraber and Wiltschke-Schrotta, 2015). Evidence of grave reuse is only 

evident in burials from this period (Tiefengraber and Wiltschke-Schrotta, 2015). 

The majority of individuals were buried in an extended and supine or flexed position, 

oriented north-south and facing north (Tiefengraber and Wiltschke-Schrotta, 2015). However, 

crouched burials oriented east-west and facing east, have been found (Tiefengraber and 

Wiltschke-Schrotta, 2015). The inhumations were predominantly placed in enclosed wooden 

grave-chambers, occasionally covered by stones and barrows (Tiefengraber and Wiltschke-

Schrotta, 2015). In some cases, latter period grave chambers were built directly above earlier 

ones, resulting in a vertical sequence (Tiefengraber and Wiltschke-Schrotta, 2015). The 

artefacts recovered are comparatively numerous and include, fibulae; rings; bracelets; torcs; 

pottery; bronze chain belts; swords; knives; antenna-hilt daggers; spears; gifts of meat (e.g., 

sheep); ornaments of false-filigree; Mediterranean imports; gold and silver items (wine 

flagons and jugs) (See page 32) (Tiefengraber and Wiltschke-Schrotta, 2015). Ceramic 

vessels containing liquid have also been recovered, although the type of liquid is not 

specified (Tiefengraber and Wiltschke-Schrotta, 2015). Most of the sub-adult burials were 

accompanied by items typically found with adult females, including jewellery and pottery 

(Appendix VIII) (Tiefengraber and Wiltschke-Schrotta, 2015). 

 

Romersteig grave field 

 

The Romersteig grave field is oriented north-west, and is located to the south of the 

region of Dürrnberg (Austria) and was in use from the HaD-LTC periods (Table 8) 

(Wendling and Wiltschke-Schrotta, 2015). The burials in this area are oriented in an irregular 

sequence and are topographically separated into a western and an eastern group (Wendling 

and Wiltschke-Schrotta, 2015). Multiple burials are common in this grave field, 98 burials 

comprising 66 inhumations from 27 grave chambers, 18 cremations and 14 graves with no 

preserved skeletal remains, the majority of which date to the LTA-C periods, have been 

recovered (Table 8, Appendix VIII) (Wendling and Wiltschke-Schrotta, 2015). In addition to 

single burials, a considerable number of multiple burials within one single chamber are 

common, including several burials containing between 7-17 individuals (Wendling and 
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Wiltschke-Schrotta, 2015). In spite of the frequency of multiple burials, their social and 

ideological implications are debated (Wendling and Wiltschke-Schrotta, 2015). It has been 

suggested that close social bonds, such as kinship, connected those individuals buried in the 

same chamber (Wendling and Wiltschke-Schrotta, 2015). However, it has also been 

suggested that these burials indicate reuse of the burial chambers (Wendling and Wiltschke-

Schrotta, 2015).    

Construction of the grave chambers is similar to those from Friedhof and Lettenbühel. 

Additionally, there is evidence of one probable cremation located near the site of a possible 

funeral pyre (Wendling and Wiltschke-Schrotta, 2015). This interpretation is based on the 

presence of significant burning activity in this area. Settlement structures have also been 

found which are believed to date to the HaD period, based on similarities to those from 

Friedhof and Lettenbühel which were occupied during this period (Wendling and Wiltschke-

Schrotta, 2015). Barrows have been found in both regions of Romersteig, although they are 

more common in the western area (Wendling and Wiltschke-Schrotta, 2015). During the LTB 

period, funeral activity declines in the eastern region and ceases overall for a short period. 

However, the duration of this period is not described (Wendling and Wiltschke-Schrotta, 

2015). Funeral activity increases again briefly during the beginning of the LTC period, after 

which the entire area was reconverted into a settlement area (Table 8) (Wendling and 

Wiltschke-Schrotta, 2015).  

The majority of the individuals were buried in a supine and extended position 

(Wendling and Wiltschke-Schrotta, 2015). However, burial orientation does not follow any 

particular pattern, north-south, east-west, and south-north orientations are common 

(Wendling and Wiltschke-Schrotta, 2015). These different orientations are believed to have 

been used simultaneously, as they are not specific to any temporal phase (Wendling and 

Wiltschke-Schrotta, 2015). Numerous artefacts similar to those from Friedhof and 

Lettenbühel have been recovered (See pages 32 and 157) (Wendling and Wiltschke-Schrotta, 

2015). However, amber and glass bead necklaces have also been found (Wendling and 

Wiltschke-Schrotta, 2015).  

Eislfeld grave field 

 

 Eislfeld dates to the HaD-LTB period and is the largest grave field in the region, both 

in terms of surface area and the number of burials (Figure 26, Table 8) (Thorsten et al., 
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2017). The majority of the burials date to the HaD period, 45% (88 individuals), and only 

32% (63 individuals) date to the LTA period (Thorsten et al., 2017). Overall, 11 individuals 

have been dated to the HaD/LTA transition, while 2 graves dating to the LTB period suggest 

a decline in funeral activity during this period (Thorsten et al., 2017). The remaining 29 

individuals could not be assigned to a specific phase (Table 8, Appendix VIII) (Thorsten et 

al., 2017). Inhumations in grave chambers similar to those in the other grave fields are 

common. However, some burials appear to have been dug directly into the ground surface 

(Thorsten et al., 2017). Their relative size varies throughout the grave field (Thorsten et al., 

2017). Barrows were also common in this region, although due to taphonomic processes and 

intensive agricultural activity few have been identified on the ground surface (Thorsten et al., 

2017). A vertical sequence in burial chamber construction is also common, which may 

suggest a biological or social relationship among these individuals (Thorsten et al., 2017). 

Secondary and cremation burials dug into existing barrows have also been recovered. Some 

possible cremation sites, 2, with significant evidence of burning, have been identified, 1 that 

is associated with a specific grave complex (K124) in the eastern part of the grave field, 

whereas the other is located at the centre of the burial area (Thorsten et al., 2017).   

The burials are concentrated in the eastern section and of the grave field and decrease 

in the west (Thorsten et al., 2017). The majority of burials, 121, are within a chamber, in an 

extended and supine position. However, secondary burial and grave reuse resulted in the 

dislocation of skeletal material and artefacts. Therefore, it is difficult to determine the extent 

of deviations from the above burial position (Thorsten et al., 2017). Of the total 194 

excavated graves, 1 in which no skeletal remains had survived to be excavated, 151 were 

inhumations (Thorsten et al., 2017) (Appendix VIII). The chambers were often used for 

multiple burials, and are believed to have been used by family groups (Thorsten et al., 2017). 

The number of individuals buried in collective graves varies between 5 and 7 individuals. 

Cremations and subsequent burial in grave chambers were also common (Thorsten et al., 

2017). Out of the 38 identified cremations, only 16 were buried in separate individual graves 

(Thorsten et al., 2017). One chariot burial has also been recovered, in which the wheels were 

placed in separate holes dug into the grave floor and the body of the chariot was used as a 

makeshift coffin (Table 7) (Thorsten et al., 2017). However, the material used to construct the 

documented coffins is not reported (Thorsten et al., 2017).  

The recovered artefacts are numerous and similar to those from the Romersteig, 

Friedhof, and Lettenbühel grave fields within the Dürrnberg (Austria), Pottenbrunn (Austria), 
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and Mannersdorf (Austria) cemeteries (See pages 152, 155 and 158) (Thorsten et al., 2017). 

Similarities to other extra-regional locations have also been described including, Münsingen-

Rain (Switzerland), Basel-Gasfabrik (Switzerland), eastern Belgium, Luxembourg, the 

Hunsrück-Eifel (western Germany), and Baden-Württemberg (southwest Germany) regions 

(See pages 61 and 145) (Thorsten et al., 2017). Although some differences are evident such 

as, lances; spears; earrings; full size and miniature axes; wine flagons and jugs; elaborately 

decorated pins; bronze belt plates; and a set of gold hollow circular beads believed to be hair 

clips or accessories (Figure 25). Decorated iron rods believed to be scepters and a range of 

gold objects, including fibulae decorated with gold foil have also been recovered (Thorsten et 

al., 2017). The abundance and range of artefacts suggests that the population had far-reaching 

trade connections and access to numerous prestige and high-status items (Thorsten et al., 

2017). Both extra-and-intra-regional connections have been indicated by the artefacts 

throughout the Dürrnberg (Austria) cemetery, which may suggest a degree of mobility within 

the burial community (See page 61, Table 5) (Thorsten et al., 2017). Similarities in several 

artefacts such as, bracelets; fibulae; sceptres; necklaces; and material type (amber and glass) 

to those from Pottenbrunn (Austria), Mannersdorf (southern Germany), Münsingen-Rain 

(Switzerland), Basel-Gasfabrik (Switzerland), eastern Belgium, Luxembourg, the Hunsrück-

Eifel (western Germany), and Baden-Württemberg (southwest Germany) regions have been 

described (See pages 32, 145, Table 5) (Neugebauer, 1991; Ramsl et al., 2011b; Thorsten et 

al., 2017). As at the Hallstatt type site, it has been suggested that the population was of high 

status, and therefore wealthy, based on the abundant presence of trade and high-quality 

artefacts. Additionally, the nearby salt mine would have provided the population with control 

of a viable commodity (See page 19) (Adshead, 1992; Banffy, 2013; Harding, 2013a, b; 

Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and Wiltschke-

Schrotta, 2015). Access to trade routes also supports the notion that the population was of 

comparably high status, and wealthy, due to the copious presence of the above artefacts 

combined with the active nearby salt mine. However, Dürrnberg (Austria) may also have 

been a trading centre (Lavelle et al., 2019; Rabsiler et al., 2017; Swidrak, 1999; Thorsten et 

al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and Wiltschke-Schrotta, 

2015). Population expansion and decline have been suggested during the overall use of the 

Dürrnberg (Austria) cemetery, as evident in the changes from settlement to funerary areas 

and the reverse (Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling 

and Wiltschke-Schrotta, 2015).  
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This may support the notion that Dürrnberg (Austria) was a trading centre, however, 

as no stable isotope analyses have been conducted the frequency of non-local individuals is 

unknown. Alternatively, the apparent population increase and decline may have been the 

result of salt mining activities or deteriorating climate conditions (Adshead, 1992; Banffy, 

2013; Swidrak, 1999; Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; 

Wendling and Wiltschke-Schrotta, 2015). However, there is no corresponding evidence for a 

change in subsistence to adapt to changes in climate (See page 61) (Thorsten et al., 2017; 

Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and Wiltschke-Schrotta, 2015). 

Therefore, the above mechanisms and the possibility that Dürrnberg (Austria) was a trading 

centre cannot be ruled out. 

 

Figure 25. Potential reconstruction of gold hair clips recovered from Eislfeld. (Modified 

from Thorsten et al., 2017, Figure 217. Original scale not provided). 
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Figure 26. Distribution of graves within the Eislfeld grave field of the Dürrnberg (Austria) 

cemetery (Modified from Rabsiler et al., 2017, Figure 3). 
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Expansion region samples  

Radovesice I and II, Czech Republic 

 

Figure 27. The cemetery of Radovesice I (Czech Republic) “Vápenka” (Modified from 

Waldhauser, 1987, Figure 1). 

 

 

The cemeteries of Radovesice I and II (La Tène B-C, 380-250 BC) are located in 

north-west Bohemia (Czech Republic) only 950 metres from each other, and 6 km south of 

Teplice in the foreland of the Ore Mountains (Figures 1, 20 and 27-28) (von Arburg, 2007). 

Although the cemeteries are close to one another, it is unclear whether they represent a single 

or two distinct populations (Waldhauser, 1999). In 1974 rescue excavations commenced after 

coal mining revealed a settlement northwest of the Radovesice I (Czech Republic) cemetery, 

Adult 
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which is believed to have been intensively occupied from the HaC-LTD periods (Table 8) 

(Budinský and Waldhauser, 2004; Waldhauser, 1987, 1993, 1999). 

 

Figure 28. The cemetery of Radovesice (Czech Republic) II “Na Vyhlidce”. The dotted and 

solid lines, black triangles and the JN1 designation are not defined. (Modified from Budinský 

and Waldhauser, 2004, Figure 2).  

 

 

The settlement associated with the Radovesice II (Czech Republic) cemetery has not 

been discovered and is believed to have been destroyed by subsequent building work since 

the Middle Ages (Budinský and Waldhauser, 2004). Subsequent excavations at Radovesice I 

(Czech Republic) in 1976 uncovered 34 inhumations and 3 cremation burials (Waldhauser, 

1987, 1993). Excavations at Radovesice II (Czech Republic), which is located to the 

northeast, began in 1981 and uncovered 23 inhumations (Budinský and Waldhauser, 2004) 

(Table 8, Appendix VIII). However, the recovered skeletal material is highly fragmented 

(Budinský and Waldhauser, 2004; Waldhauser, 1993). Although 21 adults, 2 sub-adults, 8 

mature individuals, and 2 infants have been described (Budinský and Waldhauser, 2004; 

Waldhauser, 1993; Herrmann et al., 1990; Scheeres, 2014a; Scheeres et al., 2014b) (Table 8, 

Appendix VIII). Burials dating to the LTD period have not been found, and are believed to 
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have been destroyed by construction, agricultural or taphonomic processes (Budinský and 

Waldhauser, 2004). The majority of the burials are extended and supine and oriented north-

south, facing north. Both cemeteries were in use at the same time (Budinský and Waldhauser, 

2004; Waldhauser, 1993). 

Beginning in the LTB period prestige items and La Tène artefacts become less 

common, while Bohemian style objects, with more naturalistic and curvilinear designs, 

including, fibulae and bracelets, become more common (Budinský and Waldhauser, 2004; 

Cižmář, 1995; Drda and Rybova, 1994; Waldhauser, 1999). However, La Tène artefacts 

including torcs; wheel turned pottery; swords; daggers; bronze vessels and ornaments of 

false-filigree are still common (See page 32) (Budinský and Waldhauser, 2004; Kuželka et 

al., 2004; Valentová and Sankot, 2012). Connections to the Danube, Moravia (eastern Czech 

Republic), a historical region in the Czech Republic, and southern Bavarian regions 

(southeastern Germany), a federal state, a union of partially self-governing provinces or states 

under a central federal government, of southeastern Germany, are evident in design and 

manufacture (Budinský and Waldhauser, 2004; Drda and Rybova, 1994; Grinin et al., 2004; 

Hanakpva, 2004; Macháček, 2012; Minahan, 2000; ; Rowley, 2011; Sheehan, 1993; Štefan, 

2011; Waldhauser, 1999). The above regions represent geographic areas that historically had 

either a cultural, ethnic, linguistic or political basis regardless of their modern-day borders 

(Grinin et al., 2004; Hasil, 2015; Macháček, 2012; Minahan, 2000; Rowley, 2011; Sheehan, 

1993; Štefan, 2011). Moravia and Bavaria remain in use as names of municipalities and 

geographic regions, the distinction between these areas is also evident culturally, ethnically 

and linguistically within the Czech Republic and Germany (Grinin et al., 2004; Hasil, 2015; 

Macháček, 2012; Minahan, 2000; Rowley, 2011; Sheehan, 1993; Štefan, 2011).  

However, the connections indicated by the above La Tène artefacts are not elaborated 

on by previous researchers (Budinský and Waldhauser, 2004; Drda and Rybova, 1994; 

Hanakpva, 2004; Waldhauser, 1999). Although the type and design of artefacts are similar 

between Radovesice I and II (Czech Republic), there are some subtle differences, such as 

jewellery type, as sapropelite (coal) bracelets are only common at Radovesice I (Czech 

Republic) (Waldhauser, 1999; Valentová and Sankot, 2012). Though, as this difference is not 

quantified, it is difficult to determine whether this represents an actual division between these 

sites (Valentová and Sankot, 2012). 

 During the end of the LTB, or beginning of the LTC, period the settlement at 

Radovesice I (Czech Republic) was abandoned and burials ceased in both cemeteries 
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(Budinský and Waldhauser, 2004; Valentová and Sankot, 2012). This has been linked with 

either population growth and/or decline and subsequent migration into other neighbouring 

intra-and-extra-regional locations (Dobesch, 1996; Stöllner, 1998; Valentová and Sankot, 

2012). Burial practices also changed during this period, as flat graves become more common 

and the use of tumuli decline (Budinský and Waldhauser, 2004; Valentová and Sankot, 

2012). The use of flat graves has also been linked to the presumed population decline during 

the LTB/LTC period (Table 8). The archaeological visibility, and recovery, of cemeteries and 

their associated settlements, may have been affected by subsequent agriculture and building 

activities (Budinský and Waldhauser, 2004; Dobesch, 1996; Stöllner, 1998; Valentová and 

Sankot, 2012; Waldhauser, 1999).  

The Radovesice (Czech Republic) cemeteries have been the focus of some previous 

research. Although, this research has primarily been chronological, typological and 

descriptive, a stable isotopic analysis has been conducted (See page 61) (Budinský and 

Waldhauser, 2004; Dobesch, 1996; Stöllner, 1998; Scheeres, 2014a; Scheeres et al., 2014b; 

Valentová and Sankot, 2012; Waldhauser, 1987, 1993, 1999). The stable isotopic analyses 

were primarily conducted on the third molars and human ribs, or rib fragments and therefore, 

did not affect the subsequent ability to observe and record dental nonmetric traits (Scheeres, 

2014a; Scheeres et al., 2014b). However, in the few cases, 2 individuals from Radovesice I 

and 1 from Radovesice II (Czech Republic), the first or second molars were used because the 

third molars were not available for analysis or due to severe dental wear. However, the level 

of wear on these teeth was severe, e.g., no nonmetric traits could be observed. Consequently, 

they were too worn for inclusion in dental nonmetric trait analysis (Scheeres, 2014a; Scheeres 

et al., 2014b) (See page 181 for a discussion of dental wear and nonmetric traits, Figure 34, 

for an example of severe dental wear and Appendix III). The extra-regional connections that 

have been indicated through artefact distribution are not fully supported by the stable isotope 

evidence (Scheeres, 2014a; Scheeres et al., 2014b) (See page 61, Tables 5 and 6). The 

majority of individuals 74.3% , 26 out of 35 individuals, from Radovesice I and II (Czech 

Republic) migrated into the region from the surrounding areas in the Czech Republic 

(Scheeres, 2014a; Scheeres et al., 2014b). The high mobility rate during this period may 

appear to support population growth and subsequent frequent migration from neighbouring 

areas (Scheeres et al., 2014b). However, other processes, such as exogamy, allegiance 

fosterage, climate change, enslavement and/or capture may have also resulted in the high 

frequency of non-local individuals (See page 61). Although allegiance fosterage may have 
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resulted in an increase in individual mobility during this period, it is unknown to what extent 

this practice was common in Iron Age Europe (Scheeres, 2014a; Scheeres et al., 2014b). 

Further, it is unknown whether individuals from Radovesice (Czech Republic) moved during 

childhood or before adulthood was reached (Scheeres, 2014a; Scheeres et al., 2014b). 

Therefore, allegiance fosterage may not have been a primary mechanism for migration into 

the region. Although there is evidence for deteriorating climate conditions during this period, 

not all settlements in the region were abandoned (Valentová and Sankot, 2012). Further, 

evidence of agricultural misfortune resulting from these conditions was not present at those 

settlements that were also abandoned (See page 61) (Budinský and Waldhauser, 2004; 

Dobesch, 1996; Valentová and Sankot, 2012; Waldhauser, 1999). Nor is this evident at 

Radovesice I and II (Czech Republic). 

Therefore, settlement abandonment during the LTB/LTC period may have been the 

result of social processes such as the breakdown or rerouting of trade routes (Fischer, 2006; 

Grove, 1979; Kromer and Friedrich, 2007; Magny et al., 2009). Further, the suggestion that 

Radovesice I and II (Czech Republic) were trading centres based on the presence of prestige 

items, including Mediterranean imports and gold and silver objects, and the high mobility 

rate supports the above processes as mechanisms for settlement abandonment (See pages 32 

and 61) (Budinský and Waldhauser, 2004; Valentová and Sankot, 2012; Waldhauser, 1999). 

However, as the underlying biological relationship between these groups is unknown; it is 

difficult to determine whether they represented a comprehensive trading centre, or if the 

similarity in material culture is the result of access to similar prestige items and trade routes. 

The differences in jewellery distribution between the sites may support the latter. Although 

this diversity may also be related to individual preference among the burial communities, 

designation of social status or artefact loss due to construction prior to excavation. Further, as 

the presence of sapropelite bracelets at Radovesice I (Czech Republic) is not quantified, this 

distinction may be arbitrary. 

Kutná-Hora-Karlov, Czech Republic 

 

The Kutná-Hora-Karlov cemetery is located on the south-eastern edge of the Elbe 

valley, approximately 65 km east of Prague and is dated to 380-250 BC (Figures 1, 20 and 

29). The cemetery dates to the LTB period and is believed to have been abandoned during the 

LTC period (Table 8) (Salac, 2011; Venclová, 2008; Valentová and Sankot, 2012). However, 
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there is evidence for continued settlement use in the nearby Elbe Valley into the late LTD 

period. Although these sites are not believed to be connected to the Kutná-Hora-Karlov 

(Czech Republic) cemetery, as there is no archaeological evidence for a large-scale migration 

into the region during this period (See page 61) (Valentová and Sankot, 2012; Valentová, 

2002, 2003). A total of 6 graves were significantly disturbed during construction of a farm 

and sewage system; subsequent rescue excavations were conducted from 1988-1989 

(Valentová, 1991, 1993; Valentová and Sankot, 2012). As a result, some of the recovered 

skeletal material is highly fragmented (Valentová and Sankot, 2012; Valentová, 2002, 2003). 

A total of 48 inhumation burials and 1 cremation were recovered (Valentová, 1991; 

Valentová and Sankot, 2012) (Table 8, Appendix VIII). Although it is believed that the total 

number of burials may have been as high as 55 or more, due to the shallow grave depth, some 

graves are believed to have either eroded away or to have been destroyed by construction 

(Valentová, 1991; Valentová and Sankot, 2012).  

The majority of the burials are concentrated within the northeastern part of the 

cemetery and are primarily extended and supine, oriented north-south and facing north 

(Valentová, 1991; Valentová and Sankot, 2012). Prior to excavation of the Kutná-Hora-

Karlov (Czech Republic) cemetery, only a minimal representation of La Tène burials and 

material culture had been recovered and documented in the region (Lorenz, 1978; 

Velemínský, 1999; Velemínský et al., 2004; Waldhauser, 2001). Consequently, the spread of 

this culture throughout this region was previously known only from older and poorly 

documented finds (Valentová and Sankot, 2012).  

Most individuals are adults, with both sexes represented, although some sub-adults 

have been recovered (Valentová and Sankot, 2012). However, sub-adults and infants are 

underrepresented, which may be the result of the shallow grave depth and subsequent loss of 

these burials (Table 8, Appendix VIII) (Valentová and Sankot, 2012). Settlement structures 

have been found within the region however, none have been associated with the Kutná-Hora-

Karlov (Czech Republic) cemetery due to its relative geographic isolation from these 

structures (Budinský and Waldhauser, 2004; Cižmář and Valentová, 1977; Valentová, 1996, 

2002, 2003). However, the degree of this isolation is not described in detail, nor is it 

measured. Artefacts are comparatively numerous, and include bracelets; belts; paired foot and 

finger rings; arm rings; necklaces; torcs; fibula; swords; daggers; shields; lances; wooden 

boxes; gold and silver items; ornaments of false-filigree; wheel turned pottery; and 

Mediterranean imports (See page 32) (Budinský and Waldhauser, 2004; Holodnák and 
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Waldhauser, 1984; Cižmář and Valentová, 1977; Valentová, 1996, 2002, 2003; Valentová 

and Sankot, 2012). The presence of both neck and arm rings in a single burial has been 

suggested to indicate population or individual movement from the Marne and Moselle 

regions (northern and eastern France), and/or the Upper Rhine Valley, Basel (Switzerland) 

and Nebringen (Stuttgart, Germany) where similar graves have been found (See pages 32 and 

61) (Lorenzo, 1980; Kruta, 1979). However, these associations are not elaborated on and are 

simply mentioned as possible (Kruta, 1979; Valentová, 2002, 2003; Valentová and Sankot, 

2012). 

 

Figure 29. The cemetery of Kutná Hora “Karlov”. The dotted lines and the shaded area are 

not defined. (Modified from Valentová, 1993, Figure 2). 

 

 

Fibula forms, identical in construction and design, have also been identified in the 

Jenišův Újezd cemetery (Czech Republic, LTB-D), suggesting an inter-regional connection 

(Table 5) (Cižmář, 1995; Kruta, 1979; Valentová and Sankot, 2012; Waldhauser, 1977). The 

burials with weapons form a homogenous concentration within the cemetery and occur more 

intensively during the LTB period (Valentová and Sankot, 2012). These burials and rich 

female graves are believed to indicate that the population was of high social status, as they 
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account for more than half the total number of graves (Sankot, 2010; Valentová and Sankot, 

2012). Alternatively, Kutná-Hora-Karlov (Czech Republic) may have been a trading centre, 

due to the high proportion of prestige items, such as gold and silver objects, fibulae, jewellery 

and Mediterranean imports (See pages 32 and 61) (Valentová and Sankot, 2012). The 

cemetery has been the focus of limited typological, chronological and descriptive research, 

although some stable isotope, bioarchaeological and dental analyses have been conducted.  

Stable isotopic analysis was conducted on 27 of the 48 inhumations from Kutná-Hora-

Karlov, these individuals were also selected according to archaeological criteria (See page 

61) (Scheeres, 2014a; Scheeres et al., 2014b). The same skeletal elements and teeth were 

used in the stable isotopic analysis of these individuals as at Radovesice I and II (Czech 

Republic), e.g., third molars and human ribs, or rib fragments (Scheeres, 2014a; Scheeres et 

al., 2014b). However, in some cases, 3 individuals from Kutná-Hora-Karlov (Czech 

Republic) the first or second molars were used in place of the third for similar reason as at 

Radovesice (Czech Republic). In these cases the tooth used, either the first or second molar, 

also had severe dental wear (Scheeres, 2014a; Scheeres et al., 2014b). Therefore, these teeth 

could not be included in any subsequent dental nonmetric trait analysis (Scheeres, 2014a; 

Scheeres et al., 2014b) (See page 181 for a discussion of dental wear and nonmetric traits, 

Figure 34, for an example of severe dental wear and Appendix III).  

Though extra-regional connections have been suggested based on artefact distribution, 

like at Radovesice I and II (Czech Republic), they are not fully supported by the stable 

isotope evidence (Scheeres, 2014a; Scheeres et al., 2014b) (Tables 5 and 6). The majority of 

individuals, 76%, 19 out of 25 individuals, were found to have migrated into the region from 

other areas in the Czech Republic (See page 61) (Scheeres, 2014a; Scheeres et al., 2014b). 

This high mobility rate is comparable to that at Radovesice I and II (Czech Republic) and 

also appears to represent population growth and subsequent large-scale migration from 

neighbouring areas (Scheeres, 2014a; Scheeres et al., 2014b). The high mobility rate and 

abundance of prestige items may support the notion that Kutná-Hora-Karlov (Czech 

Republic) was a trading centre. However, similar mechanisms as at Radovesice (Czech 

Republic) may have been responsible for the high degree of mobility (See pages 61, 164 and 

168) (Budinský and Waldhauser, 2004; Fischer, 2006; Grove, 1979; Kromer and Friedrich, 

2007; Magny et al., 2009; Sankot, 2010; Valentová, 1996, 2002, 2003; Valentová and Sankot, 

2012). Although, as the settlement associated with Kutná-Hora-Karlov (Czech Republic) has 

not been found, it is not possible to determine whether evidence of adaptions to deteriorating 
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climate conditions were present (Sankot, 2010; Valentová and Sankot, 2012). Therefore, the 

notion that climate change was not a primary reason for settlement abandonment at Kutná-

Hora-Karlov (Czech Republic) may be supported by the lack of corresponding evidence 

elsewhere in the Czech Republic (See pages 164 and 168). However, deteriorating climate 

conditions and similar social processes leading to abandonment as at Radovesice I and II 

(Czech Republic) cannot be ruled out.   

It has been suggested that the condition of the skeletal material from this cemetery 

does not facilitate bioarcheological analysis (Zvara, 1999). However, as only a proportion of 

the skeletal material is fragmented, the overall condition of the collection does not preclude 

this analysis. Consequently, Maxová and colleagues (2011) conducted a biodistance analysis 

to determine whether this population shared any biological affinity to temporally 

contemporaneous populations in Central and southern Italy (Maxová et al., 2011). However, 

it is not designated whether specific or composite Italian populations were examined and 

compared (Maxová et al., 2011). Further, previously published dental data was used and no 

corresponding description as to the compatibility of the data sets is provided. The MMD 

distance statistic is mentioned as well, although no corresponding results are listed (Maxová 

et al., 2011). However, results from Chi-square tests and the Yates correlation are provided 

(Maxová et al., 2011). Although this analysis did support phenetic divergence among the 

Kutná-Hora-Karlov (Czech Republic) and Italian samples, this divergence was based on the 

difference in expression in a limited number of morphological traits, e.g. Tuberculum Dentali 

and Groove Pattern (Appendix I) (Maxová et al., 2011). Moreover, it is not described whether 

only these traits were used in the statistical analyses or if these were the only traits that 

showed and difference among the samples. Further, it is not described whether the above 

divergence was between the Kutná-Hora-Karlov (Czech Republic) and the Central or 

southern Italian samples. Consequently, it is difficult to determine whether the results of this 

analysis adequately reflect the phenetic variation among these populations (Maxová et al., 

2011). 

Wetwang Slack, east Yorkshire, Britain 

 

Wetwang Slack, 300-100 BC, is the largest Iron Age inhumation cemetery excavated 

in Britain, and one of the largest known in western Europe (Dent, 1982, 1984; Jay et al., 

2012; Jay and Richards, 2007; Stead, 1991a). The cemetery lies on the south side of a chalk 
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dry valley, or Slack, near the modern village of Wetwang in the district of the east Riding of 

Yorkshire (Britain) (Figures 1, 20 and 31). The cemetery extends for 1.8 km along the valley 

floor (Figure 30) (Brewster, 1980; Dent, 1979, 1982, 1984). Several cemeteries sharing 

similar material culture, e.g., square barrows, chariot burials and the presence of La Tène 

artefacts, have been documented in east Yorkshire (Britain) and have been grouped together 

under the broad Arras Culture heading (Figure 31) (Brewster, 1980; Collis, 2003; Cunliffe, 

1997; Dent, 1982; Greenwell, 1906; Stead, 1979, 1991a). Although the underlying biological 

relationships among these groups are unknown, the documented similarities, such as square 

barrows, suggest significant biological or cultural interaction.  

  

Figure 30. Wetwang Slack (east Yorkshire, Britain) cemetery during the 1965 excavation 

(Modified from Dent, 1984, Figure 8). 

 

 

Square barrows with surrounding ditches are predominantly found in the Arras culture 

cemeteries and are considered characteristic of this culture (Collis, 2003; Cunliffe, 1997; 

Dent, 1982; Mizoguchi, 1992; Stead, 1979, 1991a, c). Those at Wetwang Slack (east 

Yorkshire, Britain) are arranged linearly along earlier barrow ditches for a distance of 

approximately 400 metres, an arrangement common to several of the Arras culture cemeteries 

(Stead, 1979, 1991a, c). The earliest graves are grouped in the south-western section of the 

cemetery and subsequently extended to the east and north (Dent, 1982, 1984). Although the 

cemetery has been the focus of numerous studies, very little has been published other than the 

chariot burials (See page 32) (Cunliffe, 2004, 2005; Dennison, 2001; Dent, 1982, 1984, 

1985a, b; Giles, 2012; Good, 2005; Hill, 2001, 2002; Selkirk, 1984; Stead, 1991a; Whimster, 

1981). Moreover, there has been a lack of absolute chronology, as the majority of the dating 
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has been ascertained through stratigraphy, artefact and time period associations (Dent, 1982, 

1984, 1995; Stead, 1979, 1991a). The cemetery is believed to have been in use for 

approximately 350-400 years and has been broadly dated to 400-100 BC (Dent, 1982, 1984). 

It has also been suggested that the majority of the burials occurred during the 3rd to 2nd 

centuries BC (Jay et al., 2012). These dates are in line with those from a chronological 

analysis of 43 La Tène fibulae types, which suggest that La Tène D period fibulae arrived in 

the region during the 2nd century BC (Jay et al., 2012).  

However, there are several issues with this chronology, few graves contain associated 

artefacts, regional diversity within east Yorkshire (Britain) was not accounted for as only 

brooches from Wetwang Slack (east Yorkshire, Britain) were used, and the dates represent 

the earliest possible and are thus broad approximations. Additionally, the majority are 

distinctly British without parallel in continental Europe, as such only some could be 

compared directly and are not quantified (Jay et al., 2012). Consequently, the broad dates 

ascribed to this cemetery, 400-100 BC, will be used in this thesis. In spite of these issues, this 

chronology has been applied to other Arras culture cemeteries in east Yorkshire (Britain), 

based on the presumption that they represent one biological population (Jay et al., 2012). 

Further, recent 14C dates from 14 of the burials indicate that the cemetery was in use from 

300-140 BC (Jay et al., 2012). However, these dates should be viewed with a degree of 

caution as they were derived from a subset of the total burials. In spite of the lack of absolute 

dates, the chariot burials have been dated more directly (Jay et al., 2012). Three chariot 

burials have been recovered, all of which date to a short time span around 200 BC (Jay et al., 

2012).  

The reopening of the W Clifford Watts gravel quarry in the nearby region of Garton 

Slack in 1963 led to the discovery of the Wetwang Slack (east Yorkshire, Britain) cemetery. 

Excavations led by JR and R Mortimer, began in 1965-1975 and again from 1975-1981, led 

by J Dent (Dent, 1982, 1984). Several Bronze Age barrows are associated with the cemetery, 

the largest of which is located on the east side of the cemetery (Dent, 1982, 1984). In total, 

448 burials were identified, 21 of which were graves in which no skeletal remains had 

survived to be excavated. A further 37 skeletal remains were recovered from disturbed 

contexts, such as trench burials. In total the skeletal collection comprises 427 recorded 

individuals (Table 8, Appendix VIII). A total of 238 barrows that spread along the southern 

edge of the cemetery have been documented, all but 18 of which contained a central grave 

(Dent, 1982, 1984, 1995b). Of these, 220 have the typical Arras culture square enclosure with 
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a central burial mound (Dent, 1979, 1982, 1984, 1995). The remaining barrows have been 

described as round; however, it is believed that the edges were eroded away due to 

taphonomic or agricultural processes (Dent, 1984, 1995). Although the majority of the 

recorded burials were within barrows, 170 were identified as satellite burials (Dent, 1982, 

1984, 1995).  

There are also several isolated burials away from the main cemetery, including a 

chariot burial (Dent, 1982, 1985). In total, 3 chariot burials have been uncovered, all of which 

were aligned along the north-south axis of the cemetery. One contained the remains of a 

young woman, which represents an unusual association in the Arras culture (Stead, 1991a, c). 

The young woman was interred on her right side, with her arms extended and legs bent, as 

were the other 2 male chariot burials (Dent, 1984, 1995; Stead, 1991a). Two types of graves 

have been described within the cemetery; primary graves, which are central to a ditched 

enclosure, and secondary graves which are cut into or around the burial platform or ditch. 

Secondary burials were commonly found interred in the top fill of either the gravel pit, under 

the barrow mound, or in the surrounding enclosure ditch (Dent, 1984, 1995; Giles, 2012). 

This type of burial rite is commonly associated with sub-adults or infants. In total, 127 graves 

were found along the enclosures, although not all contained skeletal remains  (Appendix 

VIII) (Giles, 2012; Stead, 1991a).   

Familial use of the barrows has been suggested as the majority of infant burials have 

been recovered from secondary burials located within burial mounds (Dent, 1984, 1995). The 

deposition of infants in this manner may be related to the low number of infants and sub-

adults recovered, as the burials may have been destroyed by agricultural or taphonomic 

processes (Appendix VIII) (Stead, 1979, 1991a; Tibbetts, 2006, 2008). Most of the 

individuals buried at Wetwang Slack (east Yorkshire, Britain) were buried laying on the left 

side in a crouched or flexed position, aligned north-south and facing north. However, some 

individuals are laid out on an east-west axis and facing east (Dent, 1982, 1984). There are 

also some extended and arched backwards burials, sometimes with evidence of a wooden 

coffin or timber lining (Dent, 1982, 1984; Stead, 1979, 1991a). Although diachronic changes 

in burial practices have been documented at other Arras culture cemeteries, no similar 

changes are apparent at Wetwang Slack (east Yorkshire, Britain), where the various burial 

practices appear to have been in use contemporaneously (Dent, 1984, 1995; Stead, 1979, 

1991a, c). However, there is evidence of a diachronic change in barrow construction through 

time, as the later period graves are smaller and deeper (Dent, 1984, 1995; Stead, 1991a). 
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Though, the nature of this change is not quantified, thus, a direct comparison of the grave and 

barrow construction is not possible (Dent, 1984, 1995; Stead, 1991a). Artefacts have only 

been recovered from a few graves, only 21.5% and include pottery; fibulae; animal bones; 

jewellery; brooches; metalwork and few weapons (See page 32) (Dent, 1984, Good, 2005). 

Prestige items are more commonly associated with the earlier graves and include fibulae, 

brooches and jewellery (Dent, 1984, 1985; Stead, 1991a, c). A diachronic change in artefact 

distribution has also been documented, as the later period graves have fewer associated grave 

goods (Dent, 1982, 1984, 1985; Stead, 1991a, c). 

Figure 31. East Yorkshire, showing the sites of excavated Iron Age burials; 1. Wetwang 

Slack (east Yorkshire, Britain); 2. Garton Slack; 3. Garton Station; 4. Kirkburn; 5. Eastburn; 

6. Cowlan; 7. Danes Graves; 8. Burton Fleming (BF1-22), 9. Rudston (R190-208); 10. 

Rudston Makeshift (east Yorkshire, Britain);  (R1-189); 11. Burton Fleming (Bell Slack, BF 

23-64); 12. Grindale (Huntow) (Modified from Stead, 1991a, Figure 3). Bold numbers 

indicate those samples used in this thesis. 
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Rudston Makeshift, east Yorkshire, Britain 

 

Figure 32. Rudston Makeshift Cemetery (east Yorkshire, Britain) and the relative positions 

of R1-189 (Modified from Stead, 1991a, Figure 5). 
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Similar Arras material culture such as fibulae, jewellery, and weapons are also 

associated with the Rudston Makeshift cemetery (east Yorkshire, Britain) which dates to 400-

100 BC (Figures 1, 20, and 31-32) (Collis, 2003; Cunliffe, 1997; Stead, 1979, 1991a). The 

cemetery extends for 600 metres east-to-west and 750 metres north-to-south. Burials R1-

R189 are arranged in a reverse L pattern with the southern branch and the eastern branch 

spreading alongside the Gypsey Race River Valley (Figures 31 and 32) (Giles, 2012; Stead, 

1991a). The cemetery is bounded on the southern side by a pair of ditches and regimented 

barrows that follow the alignment of the Valley (Giles, 2012; Stead, 1991a). Although 

Rudston Makeshift (east Yorkshire, Britain) has been the focus of some previous research it 

has been predominantly descriptive, the skeletal collection has not been the focus of much 

analysis (Anctil, 2016; Giles, 2012, Stead, 1991a). Excavations were conducted from 1967-

1971 and uncovered burials R68-114. Further excavations in 1973 and 1975 revealed burials 

R135-189, which were recovered from a ditch in the west section of the cemetery (Giles, 

2012; Stead, 1991a). Several secondary burials, as well as some pottery sherds, were also 

recovered from these ditches. However, none of these burials contained any associated 

artefacts (Stead, 1991a). Artefacts have only been recovered from some graves, are less 

common in later period burials, and are similar to those recovered from Wetwang Slack (east 

Yorkshire, Britain) (See pages 32 and 172) (Giles, 2012; Stead, 1991a). Similar prestige 

items are also commonly associated with the earlier period graves (Giles, 2012; Stead, 

1991a).  

A total of 154 barrows were excavated, 11 of which yielded no central grave and 16 

of which were not excavated completely (Stead, 1991a). In total, 189 burials and 180 

individuals were identified (Table 8, Appendix VIII). Most of the individuals were buried 

lying on their left side in a flexed or crouched position, aligned north-south with and facing 

east. Though, some were aligned east-west and facing west (Stead, 1991a). However, as at 

Wetwang Slack (east Yorkshire, Britain), there are some extended and contracted burials, 

sometimes with evidence of a wooden coffin (Stead, 1979, 1991a). As at Wetwang Slack 

(east Yorkshire, Britain), there is also no evidence for diachronic changes in burial practices 

(Stead, 1979, 1991a). Central graves were found in less than half of the barrows throughout 

the cemetery, particularly in those that are smaller than 7 metres across (Giles, 2012; Stead, 

1991a). The barrows have been described as square although most are not truly square, 

several have well rounded corners (Giles, 2012; Stead, 1991a). However, this difference has 

been attributed to erosion through either natural taphonomic processes or ploughing (Stead, 
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1991a). Further barrows are believed to have been lost completely, as some flat graves have 

only a slight trace of their surrounding ditches (Giles, 2012; Stead, 1991a). There is no 

evidence of an overall linear barrow arrangement, nor does there appear to be any 

significance to the burial groupings (Giles, 2012; Stead, 1991a). However, it has been 

suggested that the barrows in the northeastern section of the cemetery may have had a linear 

arrangement as they are roughly parallel with the Gypsey Race River (Giles, 2012; Stead, 

1991a). The western area is markedly different, the barrows are distributed at random, 

rectangular and oval barrows without central graves and secondary burials in the associated 

ditches are common (Giles, 2012; Stead, 1991a). In the south-east corner of the site, the 

remains of an earlier domestic settlement and traces of a roundhouse and 5 post holes have 

been located (Stead, 1991a). 

 

Comparative sample: Pontecagnano, Campania, Italy 

 

This cemetery is located in the town of Pontecagnano in Campania (southern Italy) 

and dates from the 9th-3rd centuries BC (Figures 1 and 20). Pontecagnano was first settled in 

the Late Bronze Age and subsequently became an independent city populated by a mix of 

native Italic people from the internal highlands known as, Samnites, Etruscan colonists, and 

Greek settlers (D'Agostino, 1974; D'Agostino and Gastaldi, 1988; Fredericksen, 1974). 

Excavations began in the 1960s as a result of highway construction which uncovered several 

graves (D'Agostino, 1974; Fredericksen, 1974). However, the initial excavations were 

unsystematic and the exact boundaries of the cemetery are unknown (D’Agostino, 1974; 

Fredericksen, 1974). It has been estimated that as many as 6,000 burials may have originally 

represented the cemetery (D’Agostino, 1974, 1988; Fredericksen, 1974). Though, only the 

skeletal remains of 700 individuals have been recovered, due to the unsystematic nature of 

the initial excavations and construction without prior archaeological analyses in the region 

(D’Agostino and Gastaldi, 1988; De Natale, 1992; Serritella, 1995) (Table 8, Appendix VIII). 

Although, subsequent excavations, from 1973-1990, during which the Iron Age material was 

recovered, were more systematic in nature. Consequently, more precise age and date 

categories were provided for the cemetery overall and the recovered individuals from this 

period (D’Agostino and Gastaldi, 1988; De Natale, 1992; Serritella, 1995) (Appendix VIII).  
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Most of the individuals during the early phases of the Iron Age were buried in a 

supine and extended or flexed position, aligned north-south and facing north (D’Agostino, 

1974; D’Agostino and Gastaldi, 1988; De Natale, 1992; Robb, 2019; Serritella, 1995). Burial 

positions and orientations changed throughout the use of the cemetery; however, these 

differences are not described in detail, only the presence of diversity is mentioned 

(D’Agostino, 1974, 1988; De Natale, 1992; Robb, 2019; Serritella, 1995). However, there are 

some flexed and crouched burials, aligned east-west and facing east or west (D’Agostino, 

1974; De Natale, 1992; Serritella, 1995). Numerous artefacts have been recovered including 

fibulae; rings; bracelets; gold and silver items; pottery; bronze vessels; wine flagons and jugs; 

swords; daggers and spears (See page 32) (Cencetti, 1989; D’Agostino and Gastaldi, 1988; 

De Natale, 1992; Robb, 2019; Serritella, 1995). Some sub-adult burials were accompanied by 

jewellery, pottery or bronze vessels, while several burials contained no grave goods at all 

(Cencetti, 1989; D’Agostino and Gastaldi, 1988; De Natale, 1992; Serritella, 1995). Although 

burial position and orientation changed markedly from the 9th- 3rd centuries BC, they do not 

appear to be sex or age specific (D’Agostino, 1974; D’Agostino and Gastaldi, 1988; 

Fredericksen, 1974). Consequently, these changes are believed to be the result of migrants 

into the region, designation of status or temporal changes in individual preferences 

(D’Agostino, 1974; D’Agostino and Gastaldi, 1988; Fredericksen, 1974). 

The skeletal material has been the subject of many anthropological studies (Becker, 

1993; Cencetti, 1989; D’Agostino, 1974; D’Agostino and Gastaldi, 1988; De Natale, 1992; 

Fredericksen, 1974; Fornaciari et al., 1984, 1986; Germana and Fornaciari, 1992; Lombardi 

et al., 1984, 1992; Mallegni et al., 1984; Pardini et al., 1983; Petrone, 1995; Robb, 1994, 

1997, 1998,  2019;  Robb et al., 2001; Scarsini and Bigazzi, 1995; Serritella, 1995; Sonego, 

1991). These previous studies have focused on chronological descriptions of the artefacts; 

dental and skeletal inventories; pathological analyses, general descriptions of the cemetery; 

and cultural comparisons to other Italian cemeteries dating to the same period (Becker, 1993; 

Cencetti, 1989; D’Agostino, 1974; D’Agostino and Gastaldi, 1988; De Natale, 1992; 

Fredericksen, 1974; Fornaciari et al., 1986; Germana and Fornaciari, 1992; Petrone, 1995; 

Robb, 1994, 1997, 1998; Scarsini and Bigazzi, 1995; Serritella, 1995). A previous 

biodistance analysis by the author (2016) has also been conducted on a sub-sample, n=31 

(>17 years old), due to time constraints, and also dating to 650-260 BC, from this cemetery 

(Anctil, 2016). This analysis was conducted to determine whether there was evidence for 

phenetic divergence among Pontecagnano (southern Italy) and other European Iron Age 
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cemetery populations associated with the Celts (Anctil, 2016). Subsequent statistical analysis 

indicated phenetic diversity among the analysed Iron Age groups (Anctil, 2016). However, 

regional variation among European Iron Age populations, including those associated with the 

Celts, is still unknown. 

 For the purposes of this thesis, it was considered appropriate to limit the analysed 

individuals, including adults and sub-adults with permanent dentitions (>17 years old), to 

burials from a discrete and roughly contemporaneous period, 650-260 BC. Since the author’s 

first study (2016) additional skeletal material was available and was subsequently 

incorporated into this analysis (Anctil, 2016). Consequently, a sub-sample of 14 randomly 

chosen individuals, due to time constraints, dating to the above period were included in this 

analysis (Table 8, Appendix VIII). Consequently, in total 45 randomly chosen individuals 

were analysed from the Pontecagnano (southern Italy) cemetery population (Table 8, 

Appendix VIII). Although several previous analyses have been conducted, this skeletal 

material was included for purely comparative purposes. Pontecagnano (southern Italy) was 

chosen as the location of the cemetery lies outside the known area of maximum Celtic 

expansion, the population has not been associated with Celtic material culture, languages or 

ethnicity, it is contemporaneous with the other samples and to help establish the range of 

phenetic diversity among European populations during the Iron Age irrespective of the La 

Tène=Celtic paradigm. 

Data collection 

 

Each sample listed above was examined for observable dental morphological crown 

and root traits (See Table 8 for the total individuals scored for dental nonmetric traits for each 

sample). Data were collected using the standardized ASUDAS system that is well established 

for determining inter-trait variations (See page 114 for more detail about the ASUDAS 

system) (Coppa et al., 2007; Cucina et al., 1998; Irish, 1993; 2010, 2016; Irish et al., 2014, 

2018; Scott and Irish, 2017). Although the ASUDAS system consists of >100 nonmetric 

traits, a subset of 36 traits, based on the work of Irish (1993), were used for this analysis 

(Figures 51-53) (See page 114, Table 9 for a list of the 36 traits used in this thesis and 

Appendix I descriptions of these specific dental traits). These traits have been used in 

numerous previous studies and have proven successful in characterizing and comparing 

biological affinity among and within populations (Coppa et al., 1998, 2000, 2007; Cucina et 
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al., 1999; Hanihara, 2008, 2010; Irish, 1993, 1997, 1998b, c, 2000, 2005, 2006, 2008, 2010, 

2016; Irish et al., 2014, 2018; Irish and Guatelli-Steinberg, 2003; Matsumura et al., 2009; 

Turner, 1969; 1984, 1985). Some traits such as, maxillary and mandibular tori (bony 

outgrowths on the interior surface of the maxilla or mandible) have multifactorial origins, and 

have a polygenic mode of inheritance in which several genes and environmental factors 

interact to produce these traits. Additionally, other traits are also influenced by skull 

dimensions and growth patterns. For example, rocker jaw, a mandible with a continuous 

convex curve along the inferior surface of the mandibular corpus which causes it to rock 

back-and-forth when placed on a flat surface (Irish, 1993, 2006, 2008; Scott and Irish, 2017). 

Nonmetric traits were scored following the ASUDAS scoring procedures, and corresponding 

trait breakpoints, outlined in Turner et al (1991) (Appendix I). Frequencies of occurrence for 

each dental crown and root nonmetric trait were recorded for each sample on ASUDAS 

scoring sheets (Appendix 1).  

The total sample sizes used in this analysis are presented in Table 8. Information 

about the individuals excavated, number of individuals included or excluded from this 

analysis, the methods used by the recording osteologist to determine age-at-death and 

estimate sex for adults are presented in Appendix VIII. As the traits used in this analysis have 

not been found to be sexually dimorphic the sexes were pooled following standard procedure 

(Irish, 1993, 2016; Irish et al., 2014, 2018; Scott and Irish, 2017; Turner et al., 1991). The 

ASUDAS system, and the corresponding trait breakpoints, outlined in Turner et al (1991) are 

based on permanent dentition; only adults and sub-adults with permanent dentitions (>17 

years old) were included in this analysis (See page 114, Appendix VIII). However, the 

samples were not composed entirely of individuals, within the above age categories, with 

complete dentition (e.g., 32 teeth). Consequently, those traits that could be scored, based on 

the available dentition per sample, were scored and recorded.  

Those few individuals with limited teeth available for analysis, e.g., <15, were 

included as the number of traits able to be observed and recorded were similar to those 

individuals with more teeth preserved, due to differential tooth preservation, wear and 

pathologies. In cases of bilateral expression, both antimeres were recorded. In order to allow 

for asymmetry, the side with the greatest degree of trait expression was counted in an effort 

to establish the maximum genetic potential for each trait (Figure 33) (Irish, 1993; Irish et al., 

2014, 2018; Turner, 1985; Turner et al., 1991; Scott and Irish, 2017). To maximize sample 

size in cases where only one side was present that side was scored and presumed to represent 
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the highest degree of expression (See pages 113 and 119) (Irish, 1993, 2016; Irish et al., 

2014, 2018; Scott and Turner, 1997; Turner, 1985; Turner et al., 1991; Scott and Irish, 2017). 

Traits were scored twice under the same conditions, e.g., lighting, on non-adjacent days, to 

assess intra-observer error (intra-observer error will be discussed further in chapter 6).  

 

 

Figure 33. Example of dentition with bilateral trait expression, superior occlusal view of the 

maxilla. Carabelli’s trait is visible on both sides of the dentition, however, the degree of trait 

expression is not equal. In these cases, the highest degree of trait expression was counted and 

presumed to represent the greatest genetic potential for the trait. Rudston Makeshift (east 

Yorkshire, Britain) burial 99, adult male.  

 

 

  

 

 

Major differences in wear among samples, when encountered, was documented and 

acknowledged to help account for the missing completely at random, MCAR, assumption 

(Scott and Irish, 2017). A sampling bias may occur when teeth that are subjectively 

considered too worn are not included in subsequent analyses. Consequently, the missing data 

are assumed to be missing completely at random (Burnett, 2016) (See Appendix III for a 

description of MCAR and its effect on dental nonmetric trait analysis). In some cases a tooth 

that exhibits heavy dental wear is excluded from any subsequent analyses, due to the 

Carabelli’s 

trait grade 2 Carabelli’s 

trait grade 3 
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assumption that any nonmetric traits were worn away. Dental nonmetric traits for heavily 

worn teeth are subsequently scored as no data. However, in some cases, some traits were, in 

fact, absent as should have been scored as a grade 0 (Appendix III) (Burnett, 2016). 

Documenting the differences in dental wear among the samples helps to account for the 

MCAR assumption by acknowledging the fact that a potential sampling bias has occurred in 

the scoring of nonmetric traits as no data instead of a grade 0 (Appendix III) (Burnett, 2016). 

Trait grades were not downgraded or upgraded, instead, the level of wear was 

recorded per tooth (Irish, 1993, 2006; Irish et al., 2014, 2018). Although the above methods 

enable moderately worn dentitions to be recorded and subsequently included in analyses and 

maximizes sample size, the majority of the samples in this thesis only had mild to moderate 

dental wear (Burnett, 1986, 2016; Burnett et al., 2013). When observed severe wear was 

predominantly encountered over the majority of the dentition, therefore, these individuals 

were removed from subsequent analysis (Figure 34). Thus, it was subsequently determined 

whether the level of dental wear facilitated trait scoring or whether the amount of wear was 

too great for any traits to be scored. Those few dentitions which had moderate to severe 

dental wear on specific teeth, such as the molars, the antimere, when available, was scored 

(Figure 35). However, when the antimere was not available and the level of wear was too 

great (i.e., the enamel was completely gone) the tooth was not scored for any trait. 

 

Quantitative analysis 

 

The 36 traits were subsequently entered into Statistical Package for Social Sciences, 

SPSS, version 25.0. Differences in the frequencies of these traits provide the basis for 

comparing and describing the samples (Tables 8 and 9). These traits were dichotomized into 

categories of present or absent based on each trait’s appraised morphological thresholds, 

according to standard protocol as described by Scott (1973), Nichol (1990), Turner et al 

(1991) and Irish (1993). Trait dichotomization is necessary to calculate inter-sample phenetic 

distances with the MMD distance statistic (See pages 188 and 206) (Haeussler et al., 1988; 

Sjøvold, 1977). Dichotomization facilitates tabulation of trait frequencies and is required 

before the data are compared using the MMD (Green and Suchey, 1976; Harris and Sjøvold, 

2004; Irish, 1993, 1997, 2010, 2016; Irish et al., 2014, 2018; Sjøvold, 1973, 1977). The 

number of individuals per sample expressing a particular trait will be determined, along with 
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the total number of individuals for whom the trait could be scored (Table 9). From these data, 

the percentage of each trait’s occurrence by sample will be calculated (Table 9). From an 

examination of the resulting data, a characterization of each sample based on the suite of 

traits and a rudimentary phenetic comparison among samples can be obtained. 

 

 

Figure 34. Example of severe dental wear excluded from data collection. Superior occlusal 

view of the mandible. Dürrnberg (Austria), La Tène Eislfeld burial 309 individual number 1, 

adult female.  
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Figure 35. Example of dentition for which the antimere had to be scored because of severe 

wear. Superior occlusal view of the mandible. Münsingen-Rain (Switzerland), burial 53, adult 

female.  

  

 

 

 

 

 

Principal components analysis (PCA) 

 

PCA is used to edit and remove problematic traits prior to MMD analysis (Green et 

al., 1979; Green and Suchey, 1976; Harris and Sjøvold, 2004; Irish, 2008, 2010, 2016; Irish et 

al., 2014, 2018). Fixed or largely invariant traits, those traits having minimal or no 

discriminatory value, were removed, including those that occurred at 0% and 100% across all 

samples; as these traits contribute no relevant information for identifying differences among 

samples. Further, their inclusion in any subsequent analysis can result in negative MMD 

values. These values can result in spurious results, or relationships, as they have no 

“biological meaning” (Harris and Sjøvold, 2004, p 91). Traits with observations of <10% 

Severe 

dental 

wear  

Antimeres 

scored in 

place of the 

left second 

molars  
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across all samples were also removed as the analysis is not intended to correct for trait 

observations of less than 10 (Green et al., 1979; Green and Suchey, 1976). The remaining 

traits were submitted to PCA to identify those that are most likely to drive inter-sample 

variation, those that are minimally discriminatory and additional non-contributory traits 

(Harris and Sjøvold, 2004; Irish, 2010). In this thesis, any variable not receiving a PCA 

loading of at least |0.500| on any component was eliminated from subsequent analysis (See 

page 202) (Irish, 2008, 2010, 2016; Irish et al., 2014, 2018).   

In PCA, the original correlated variables are linearly transformed into a smaller set of 

uncorrelated compound variables (Abdi and Williams, 2010; Irish, 2010; Jakson, 2005; 

Jolliffe, 2002; Jolliffe and Cadima, 2016; Lever et al., 2017; Pearson, 1901; Rasmus and 

Smilde, 2014). This reduction in dimensionality, or variance, produces fewer linearly 

uncorrelated variables, or principal components (Harris and Sjøvold, 2004; Irish, 2010; 

Jakson, 2005; Jolliffe, 2002; Jolliffe and Cadima, 2016; Lever et al., 2017; Rasmus and 

Smilde, 2014). The first component explains the greatest amount of variance, followed by the 

second and third, and so on (Harris and Sjøvold, 2004; Irish, 2010; Jakson, 2005; Jolliffe, 

2002; Jolliffe and Cadima, 2016; Lever et al., 2017; Rasmus and Smilde, 2014). These 

principal components retain most of the information from the original variables while 

remaining mutually uncorrelated and orthogonal (Harris and Sjøvold, 2004; Irish, 2010; 

Jakson, 2005; Jolliffe, 2002; Jolliffe and Cadima, 2016; Lever et al., 2017; Rasmus and 

Smilde, 2014). Correlations, or loadings, are computed between the original variables and the 

principal components (Irish, 2010; Jakson, 2005; Jolliffe, 2002; Jolliffe and Cadima, 2016; 

Lever et al., 2017; Rasmus and Smilde, 2014). Samples can then be plotted facilitating a 

visual comparison of the similarities and differences and to determine whether they can be 

grouped (Abdi and Williams, 2010; Irish, 2010; Jakson, 2005; Jolliffe, 2002; Jolliffe and 

Cadima, 2016; Lever et al., 2017; Rasmus and Smilde, 2014). PCA was chosen for this 

analysis as the specific dental traits that are accountable for the observed inter-sample 

variation are identified. Varimax rotation of the PCA coordinates was also chosen for this 

analysis because the difference between large and small component loadings can be 

maximized (Irish, 2010, 2016; Jakson, 2005; Jolliffe, 2002; Jolliffe and Cadima, 2016; Lever 

et al., 2017; Rasmus and Smilde, 2014).This method is used to support the identification of 

any additional non-contributory traits from PCA. Varimax rotation is a change of coordinates 

used in PCA which maximizes the sum of the variances of the squared component loadings 
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(Irish, 2010, 2016; Jakson, 2005; Jolliffe, 2002; Jolliffe and Cadima, 2016; Lever et al., 2017; 

Rasmus and Smilde, 2014).  

 It is recommended that the inter-sample distances be based on as many traits as 

possible; however, these traits should not be highly correlated with one another as this may 

lead to erroneous distances or spurious relationships (Irish, 2010, 2016; Jakson, 2005; 

Jolliffe, 2002; Jolliffe and Cadima, 2016; Lever et al., 2017; Rasmus and Smilde, 2014; 

Sjøvold, 1977). The undichotomized rank-scale ASUDAS data was submitted to the 

Kendall's tau-b correlation coefficient in order to evaluate the inter-trait correlation. This 

method was chosen over others, such as a chi-square test of proportions, as this approach is 

the most conservative (Irish, 2010). Further, rank grades are more likely to indicate inter-trait 

correlations and more traits may be removed from subsequent analysis (Irish, 2010). 

Consequently, those traits remaining are more likely to provide an accurate representation of 

the inter-sample phenetic distances (Irish, 2010). Those traits that were found to be 

correlated, with a Kendall's tau-b (tb) value of  ≥ 0.5, comparatively low PCA component 

loadings and low sample sizes were, removed from subsequent analysis (See page 202, 

Appendix II). Those traits excluded from subsequent analysis include, labial curve UI1 and 

cusp 5 UM1 (See page 196, Table 10). In total 20 traits were used in this analysis (See Table 

9 for a list of these traits). 

 

Mean measure of divergence (MMD) 

 

The MMD distance statistic has been used in numerous biological affinity studies 

(e.g., Berry and Berry, 1967, 1972; Berry, 1974; Hubbard, 2012; Irish, 1993, 1997, 1998a, b, 

c, 2005, 2006, 2008, 2010, 2016; Irish and Guatelli-Steinberg, 2003; Irish and Turner, 1990; 

Irish et al., 2014, 2018; Larsen, 2015; Sjøvold, 1973, 1977). It is a dissimilarity measure, high 

values are indicative of greater phenetic distance between samples while low values indicate 

greater affinity (Irish, 2010, 2016; Irish et al., 2018). MMD values have been shown to 

correlate strongly with geographic distances, making the statistic applicable to affinity studies 

(Hanihara, 1989; Hubbard, 2012; Huffman, 2014; Irish, 2010, 2016, Irish et al., 2018, 2020; 

Nikita, 2015; Vargiu et al., 2009). The MMD formula with the Freeman and Tukey (1950) 

angular transformation incorporated is as follows:  
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Equation 1. MMD formula with the Freeman and Tukey angular transformation incorporated 

(Freeman and Tukey, 1950, Figure 1). 

 

 

 

 

Where:  

r = number of uncorrelated traits 

θ = angular transformation, where the observed proportion, p, is an unbiased estimator of the 

population proportion, P, that here θ= [1/2] sin -1 (1-(2k)/ (n+1)) 1 [1/2] 

sin-1 (1-2 (k+1)/ (n+1))  

k = count of positive observations of trait “i" 

n = number of individuals examined for trait “i” 

 

 

Following the assumption that phenetic similarity approximates genetic affinity 

among samples, CAB Smith’s MMD distance statistic, paired with the Freeman and Tukey 

angular transformation, which corrects for low (<0.05) or high (>0.95) trait frequencies and 

small sample sizes (n>10), was used to test the hypotheses in this thesis (See pages 13 and 

14) (Freeman and Tukey, 1950; Green and Suchey, 1976; Irish, 2010; Sjøvold, 1973, 1977). 

This distance statistic provides a quantitative estimate of inter-sample biological distance and 

phenetic similarities based on the similarities among nonmetric traits (Green and Suchey, 

1976; Irish 2010, 2016; Irish et al., 2014, 2018; Sjøvold, 1973, 1977). The MMD distance 

statistic can also be used on summary data, such as occurrence proportions for each trait in 

compared data sets. Therefore, the MMD can be used on incomplete data sets, such as those 

derived from archaeological material (Irish, 2010). 

In order to determine whether the samples differ significantly, and therefore are 

phenetically distinct, each MMD value is compared to its standard deviation (SD) (See page 

206) (Green and Suchey, 1976; Irish, 2010; Sjøvold, 1973, 1977). If the MMD value is 
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greater than two times its SD then the null hypothesis that the samples represent the same 

biological population is rejected at the 0.025 alpha level (Irish, 2010, 2016; Irish et al., 2014, 

2018; Sjøvold, 1973, 1977). Conversely, an insignificant MMD value that is less than two 

times its SD, means it is impossible to distinguish between two samples because they are 

phenetically indistinguishable, or the size of one or both is small, which can result in an 

excessively large standard deviation (Sjøvold, 1977). This distance statistic was chosen 

because it has several advantages over other distance measures, including the way missing 

data is handled. Those traits that have substantial missing data, e.g., a value of 0, can be 

included without adversely affecting the statistical calculations as in other distance measures, 

such as Mahalanobis D2 (Schillaci et al., 2009). Further, traits that have little or non-

contributory information, those that do not drive variation between or among samples, can be 

removed from subsequent analysis without biasing the MMD distance values (Harris and 

Sjøvold, 2004, p 91).  

 

Multidimensional scaling (MDS) 

 

Multidimensional scaling (MDS) was chosen to graphically illustrate the relationships 

among the samples as identified by the MMD distance statistic. MDS was chosen because it 

is an effective and largely unbiased method to illustrate affinities between samples (Cox and 

Cox, 2001; Irish, 2010, 2016; Irish et al., 2014, 2018; Kruskal and Wish, 1978). This method 

produces two and three-dimensional representations of the proximity data, as a geometric 

configuration of points (Cox and Cox, 2001; Irish, 2010; Kruskal and Wish, 1978). Although 

MDS graphs can be produced in a number of dimensions, two-dimensional scaling was 

chosen for this analysis. Shorter distances among the samples indicate similarity while larger 

distances indicate dissimilarity (See page 211) (Irish, 2010, 2016; Irish et al., 2014, 2018). A 

spatial representation of the sample distribution was produced by SPSS version 25.0 

procedure Proxscal. 

Isolation by distance (IBD) 

 

Isolation by distance is commonly used to substantiate the genetic and ethnic 

relationships within and among populations (Kimura and Weiss, 1964; Konigsberg, 1990; 

Relethford, 2004; Slatkin, 1993; Wright, 1943). Limited dispersal, i.e., movement or 
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migration, will result in genetic differences among populations which is proportional to the 

geographic distance between them, under the assumption that genetic affinity is inverse to 

spatial distance (See page 135) (Kimura and Weiss, 1964; Konigsberg, 1990; Relethford, 

2004; Slatkin, 1993; Wright, 1943). In populations with relatively low effective rates of 

dispersal, most exchange will occur between neighbouring populations. The migration rate is 

also the highest between adjacent populations and declines linearly as a function of distance 

(Konigsberg, 1990; Morton, 1973; Relethford, 2004; Slatkin, 1993). This pattern is common 

for populations distributed in linear habitats (Relethford, 2004; Slatkin, 1993). The 

correlation in gene frequencies between populations decreases exponentially as a function of 

the number of geographic steps between them (Kimura and Weiss, 1964). Therefore, this 

model is referred to as the stepping-stone model (See page 135) (Kimura and Weiss, 1964; 

Malécot 1955; Wright 1943). The phenetic correlation between populations is therefore 

correlated with the rate of migration (Figure 36) (Kimura and Weiss, 1964; Relethford, 2004; 

Malécot 1955; Wright 1943).  

 

Figure 36. Linear stepping stone model as illustrated between neighbouring populations. The 

m/2 designates the proportion of individuals exchanged during each generation between 

adjacent populations (Modified from Kimura and Weiss, 1964, Figure 2). 

 

 

 

The stepping stone model can be modified to and apply to between one and three-

dimensions (Konigsberg, 1990; Malécot, 1969; Morton, 1977; Slatkin and Maddison, 1990; 

Slatkin, 1993). In the one-dimensional model gene flow changes systematically by linear 

processes such as mutation and migration. Under this model, in each generation an individual 

can migrate at most 1 step in either direction between neighbouring populations (Konigsberg, 

1990; Relethford, 2004; Slatkin and Maddison, 1990; Slatkin, 1993). In other words, 

migration is restricted to be between adjacent populations. Under the two-dimensional model, 

in each generation, a population exchanges migrants with four surrounding populations but 

the effective total population number in each remains the same (Hardy and Vekemans, 1999; 



  

 

 

 192  

 

 

Konigsberg, 1990; Malécot, 1969; Morton, 1977; Slatkin and Maddison, 1990; Slatkin, 

1993). However, the rate of migration may vary directionally. In the three-dimensional 

model, a cubic array of populations extends to infinity in all directions (Konigsberg, 1990; 

Malécot, 1969; Morton, 1977; Slatkin and Maddison, 1993; Slatkin, 1993). Each population 

has 6 adjacent sub-populations which exchange migrants during each generation. However, 

the rate of migration under the above models will be directionally dissimilar (Konigsberg, 

1990; Malécot, 1969). Genetic correlation falls off more quickly with increasing geographic 

distance in the three-dimensional model compared to the one and two-dimensional models 

(Konigsberg, 1990; Slatkin and Maddison, 1990; Slatkin, 1993).   

When gene flow occurs predominantly between immediately adjacent populations the 

number of migrants may be determined by the spatial distribution of the populations 

(Austerlitz et al., 1997; Baker and Moeed, 1987; Konigsberg, 1990; Relethford, 2004; Slatkin 

and Maddison, 1990; Slatkin, 1993). However, gene flow should not be viewed in relation to 

the actual number of migrants moving between populations or groups during each generation. 

Instead, it should be viewed as equivalent to the number of migrants required to account for 

the observed phenetic variation if they could move directly between populations (Konigsberg, 

1990; Slatkin and Maddison, 1990; Slatkin, 1993). A linear relationship between the average 

within-group phenetic variation and approximate geographic distance should be observed 

when the rate of extra-regional gene flow into populations is equal (Blangero, 1990; 

Konigsberg, 1990). However, when this rate is uneven populations which have higher 

migration rates will likely be more heterogeneous, compared to those that have limited 

external gene flow (See page 135) (Blangero 1990; Ibrahim et al., 1996; Kimura and Weiss, 

1964; Konigsberg, 1990).  

Under the uni-dimensional stepping stone model, a linear correlation between 

biological affinity and geographic distance is expected as populations move in linear 

directions along a continuum of neighbouring populations (Konigsberg, 1990; Relethford, 

2004; Slatkin, 1993). Therefore, coefficients of determination can be calculated via linear 

regression in order to determine the percent of phenetic variation that is explained by the 

geographic distances between populations (Konigsberg, 1990; Relethford, 2004; Slatkin, 

1993). Genetic variation can be plotted against geographic distance in order to determine 

which populations are more or less phenetically distinct from one another than expected 

based on geographic distance (Konigsberg, 1990; Relethford, 2004; Slatkin, 1993). Although 

as the migration and/or transportation routes between geographically diverse populations are 
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not generally known, inter-population straight-line distances are commonly used (Irish et al., 

2018; Konigsberg, 1990; Relethford, 2004). Consequently, these distances are 

approximations and do not reflect reality on the landscape, as would be any potential 

migrations routes throughout the core and expansion regions (Irish et al., 2018; Konigsberg, 

1990; Relethford, 2004). Thus, although potentially underestimates, linear distances between 

samples were used as they should be less biased for analytical purposes (Irish et al., 2018; 

Konigsberg, 1990; Relethford, 2004). As the spatial distances used in this analysis are 

approximations, the simplest, linear uni-dimensional stepping stone variant of the model was 

used (Konigsberg, 1990). The Geographic Distance Matrix Generator (vers, 1.2.3) was 

employed to calculate inter-sample straight-line distances (Ersts, 2014).                          

                                                                                                                                       

Mantel Test 

 

The significance of the relationship between phenetic, and by proxy genetic, and 

geographic distances can be determined with a Mantel's permutation test (Smouse et al., 

1986; Wright, 1943). A Mantel test was performed to contrast the symmetric MMD and 

geographic distance matrices, to test for correlations among samples and to determine 

whether the observed differences are the result of isolation by distance (Huffman, 2014; 

Smouse et al., 1986; Smouse and Long, 1992). This method calculates the correlation 

between matrices using the Pearson’s product-moment correlation coefficient (Pearson’s r) 

(Mantel, 1967; Mantel and Valand, 1970). Significance values are derived from random 

permutations of the data within these matrices, by row or column, to examine changes in the 

correlation coefficients. Correlation between the geographic and symmetric MMD matrices 

was performed using the R program and the Mantel test from the ade4 library package (Dray 

et al., 2018; R Core Team, 2017). The standard Mantel test formula is as follows:  
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Equation 2. Standard Mantel test (Diniz-Filno et al., 2013, Figure 3). 

 

 

 

 

Where:  

i: population 1 

j: population 2 

gij: genetic distances between populations 

dij: geographic distances between populations  

G: means of the genetic distances between populations 

D: mean of the geographic distances between populations 

var(G): variance of the genetic matrix 

var (D): variance of geographic matrix  

 

Because the Mantel test is derived from the sum products of distances its value 

depends on how many populations are studied, as well as the magnitude of their distances 

(Guillot and Rousset, 2013; Manly, 1985; Mantel, 1967; Smouse et al., 1986). Here, values 

close to 1 indicate that an increase in geographic distance between populations is related to an 

increase in their genetic distance. Values close to 0 indicate there is no relationship between 

the two matrices (Diniz-Filno et al., 2013).   

 

 

Hierarchical cluster analysis  

 

 Cluster analysis using between group linkage and Wards method was used to provide 

a further illustration of the among sample affinities based on the MMD distance values. 

Cluster analysis is a method for the identification of homogenous subgroups (Blei and 

Lafferty, 2009; Everitt et al., 2011; Hair et al., 2009; Yim and Ramdeen, 2015). This analysis 

1/2 
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combines samples into homogeneous clusters by merging them into a series of sequential 

steps (Blei and Lafferty, 2009; Everitt et al., 2011; Yim and Ramdeen, 2015). Therefore, 

increasing within group homogeneity and among group heterogeneity within and among the 

resulting clusters. Average linkage and Ward's method were chosen to provide an additional 

graphical representation of the variation among the samples. The average linkage procedure 

defines the distance between groups as the average distance between each of the members. 

This method provides a more accurate evaluation of the distances between clusters than those 

derived from single and complete linkage (Blei and Lafferty, 2009; Everitt et al., 2011; Yim 

and Ramdeen, 2015). In this method, the distance between two clusters is defined as the 

average distance between all cases in one cluster compared those in another cluster (See page 

215) (Blei and Lafferty, 2009; Everitt et al., 2011; Yim and Ramdeen, 2015). Rather than 

deriving clusters based on the minimum or furthest distances between pairs or cases, as 

outliers may have an impact on the resulting clusters derived from single and complete 

linkage (Blei and Lafferty, 2009; Everitt et al., 2011; Yim and Ramdeen, 2015).   

Ward’s method creates clusters that minimize the within and between group variance 

(Blei and Lafferty, 2009; Everitt et al., 2011; Murtagh 2014). As the joining of clusters 

increases variability, in this method clusters are created in a way that least increases the 

within group variance. Cluster linkage in Ward's method is based on the sum of squares (See 

page 215) (Everitt et al., 2011; Murtagh 2014; Szekely, 2005; Yim and Ramdeen, 2015). The 

clusters provided by these methods are presented as dendrograms, with each branch 

representing a separate cluster. Although dendrograms can be used for identifying similarities 

among populations, they are not direct reconstructions of population history.    

PCA, MMD, MDS, IBD and Cluster analysis were chosen as the best methods 

available for this analysis because of their respective abilities to determine the specific dental 

nonmetric traits that are accountable for the inter-sample variation; as well as providing an 

estimate of inter-sample phenetic affinity based on similarities and differences in these traits. 

Therefore, the combined results of these methods can be used to identify key traits driving 

inter-sample variation, to identify inter-sample dental phenetic affinities, graphically illustrate 

those affinities, and to determine whether phenetic differentiation increases with geographic 

distance among samples. Detailed examination of the results and interpretations are provided 

in Chapter 7. 
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  Chapter 6: Results 

 

The dental trait percentages and frequencies for each sample are presented in Table 9. 

As mentioned, 1 of the samples is geographically and descriptively associated with the proto-

Celts (Hallstatt D, Austria), 6 are associated with the core (Münsingen-Rain, Switzerland, 

Dürrnberg Hallstatt, Austria, Dürrnberg La Tène, Austria, Pottenbrunn, Austria, Nebringen, 

Stuttgart, Germany, and a pooled German sample, Stuttgart, Germany), and 4 are associated 

with the expansion regions (Wetwang Slack, east Yorkshire, Britain, Rudston Makeshift, east 

Yorkshire, Britain, Kutná-Hora-Karlov, Czech Republic, and Radovesice I and II, Czech 

Republic). The remaining sample is not associated with the Celts, Pontecagnano (southern 

Italy), and was included for comparative purposes. Although some differences in ASUDAS 

scores occurred, these differences never occurred across a trait breakpoint (e.g., on the order 

of a grade, the degree of trait expression, 1 versus a grade 2) (Appendix I). Intra-observer 

scoring error was calculated using a Wilcoxon signed-rank test, the results of which fell into 

the acceptable range. Since the p-value was greater than 0.05, 0.089, the null hypothesis that 

there is no difference between the first and second set of trait observations was not rejected. 

This test indicates that there is a high degree of intra-observer repeatability and concordance.  

The pooled German sample has high frequencies, relative to the other samples, of 

Lingual cusp LP2 (range of 32.30%- 75% across samples), Hypocone UM2 (1.66%-10.71%) 

and C7 LM1 (0%-5.71%) (Table 9). The latter are also observed in similar frequencies in the 

Nebringen (Stuttgart, Germany), Münsingen-Rain (Switzerland), Radovesice (Czech 

Republic), Kutná-Hora-Karlov (Czech Republic), Pontecagnano (southern Italy) and Hallstatt 

D (Austria) samples. High frequencies of Root Number UM2 (2.17%-11.11%) are observed 

in the Nebringen (Stuttgart, Germany) sample. Similar frequencies are also found in the 

Pottenbrunn (Austria), Münsingen-Rain (Switzerland), Hallstatt D (Austria), Dürrnberg 

Hallstatt (Austria), and Rudston Makeshift (east Yorkshire, Britain) samples. Those traits 

observed at high frequencies in the Pottenbrunn (Austria) sample include; Interruption 

Groove UI2 (8.57%- 21.87%) and Root number UP1 (0%-12.19%) (Table 9). These traits are 

also found at similar frequencies in the Nebringen (Stuttgart, Germany), Hallstatt D (Austria), 

Radovesice (Czech Republic), Dürrnberg Hallstatt (Austria), and Rudston Makeshift (east 

Yorkshire, Britain) samples. The Münsingen-Rain (Switzerland), sample has high frequencies 

of Tuberculum Dentale UI2 (0%-14.25%) and Groove Pattern LM2 (27.17%-38.23%) (Table 

9). The former is also found in high frequencies in the Nebringen (Stuttgart, Germany), 
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Pottenbrunn (Austria), Dürrnberg (Austria), Hallstatt D (Austria) and Dürrnberg La Tène 

(Austria). The latter is found in similar frequencies among all the samples. High frequencies 

of Anterior Fovea LM1 (33.33%-80.55%) are found in the Hallstatt D (Austria) sample, 

whereas the remaining traits occur at similar frequencies to the other samples (Table 9).  

A similar pattern is evident in the Dürrnberg Hallstatt (Austria) and Dürrnberg La 

Tène (Austria) samples. As only high frequencies of C1–C2 Crest LM1 (6.45%-16.66%), 

Cusp number LM1 (9.67%-23.88%), and Deflecting wrinkle LM (6.89%-16.66%) are 

observed in the above samples, respectively (Table 9). The former also occurs in similar 

frequencies in the Hallstatt D (Austria), Münsingen-Rain (Switzerland) and German 

(Stuttgart, Germany), samples. The latter is also found in the Nebringen (Stuttgart, Germany), 

Pontecagnano (southern Italy), Pottenbrunn (Austria). Wetwang Slack (east Yorkshire, 

Britain) and Hallstatt D (Austria) samples at similar frequencies. Carabelli’s Trait UM1 

(30%-75%) and Groove Pattern LM2 are found in high frequencies in the Radovesice (Czech 

Republic) sample (Table 9). Similar frequencies of the former are also observed in the 

Pontecagnano (southern Italy), Rudston Makeshift (east Yorkshire, Britain), Münsingen-Rain 

(Switzerland) and Hallstatt D (Austria) samples (Table 9). The Kutná-Hora-Karlov (Czech 

Republic) and Hallstatt D (Austria) samples have high frequencies of Anterior Fovea LM1 

(80%). The Rudston Makeshift (east Yorkshire, Britain) sample has high frequencies of 

Labial Curvature UI1 (0%-21.42%) and Distal Accessory Ridge UC (30.76%-75%) (Table 

9). These traits are also found in similar frequencies in the Hallstatt D (Austria), Radovesice 

(Czech Republic), Kutna-Hora-Karlov (Czech Republic), Pottenbrunn (Austria) and German 

(Stuttgart, Germany) samples, respectively. High frequencies of Cusp 5 UM1 (3.33%-

16.66%); Parastyle UM3 (3.57%-12.50%); Enamel Extension UM1 (5.40%-14.90%), Rocker 

Jaw (8.33%-33.33%); Tome’s Root LP1 (5.26%-26.1%); Root Number LM1 (5%-27.77%); 

Root Number LM2 (26.63%-32.50%); Protostylid LM1 (5.26%-32.14%); Torsomolar Angle 

LM3 (5.55%-31.42%) and Groove Pattern LM2 are found in the Pontecagnano (southern 

Italy) sample (Table 9). The Wetwang Slack (east Yorkshire, Britain) sample has high 

frequencies of Cusp number LM2 (5.71%-31.91%), and Root Number LC (4.76%-30%).   
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Table 9. Dental trait percentages (%) and number of individuals scored (n) for the core and expansion region samples. 

                  Core and expansion region samples 

Trait 1                                          GER       NEB    POTT MunRain HALD  DURH  DURL    RAD    KHK    RUD    PON     WWS 

Winging UI1 

(+ = ASU 1)                                            

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Labial Curvature UI1 

(+ = ASU 2-4)                                       

% 

n 

21.42 

28 

10.52 

19 

12.12 

33 

12.50 

32 

23.33 

30 

11.11 

27 

20.00 

65 

15.62 

32 

21.87 

32 

26.66 

30 

0.00 

28 

18.69  

107 

Palatine torus 

(+=ASU 2-3)                                          

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Shovelling UI1 

(+=ASU 2-6)                                      

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Double Shovelling UI1 

(+=ASU 2-6)                      

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Interruption Groove 

UI2(+=ASU+)                           

% 

n 

0.0 

32 

18.18 

22 

21.87 

32 

8.57 

35 

8.88 

34 

12.50 

32 

10.76 

65 

9.37 

32 

9.67 

31 

9.37 

32 

10.00 

30 

10.09 

109 

Tuberculum Dentale 

UI2  (+=ASU2-6)                        

% 

n 

6.25 

32 

13.63 

22 

12.50 

32 

14.28 

35 

5.88 

34 

12.50 

32 

12.30 

65 

9.37 

32 

3.22 

31 

12.50 

32 

0.0 

30 

9.17 

109 

Bushman canine UC 

(+=ASU1-3)                        

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Distal accessory ridge 

UC (+=ASU2-5)                        

% 

n 

75.00 

24 

65.00 

20 

75.00 

24 

69.23 

26 

75.00 

24 

69.23 

26 

60.00 

60 

72.00 

25 

79.16 

24 

80.00 

25 

60.00 

25 

59.85 

142 

Hypocone UM2                       

(+=ASU3-6)                       

% 

n 

10.71 

28 

5.88 

17 

3.57 

28 

3.03 

33 

3.12 

32 

3.57 

28 

1.66 

60 

6.66 

30 

6.45 

31 

3.12 

32 

6.89 

29 

5.63 

142 

Cusp 5 UM1                     

(+=ASU2-5)                      

% 

n 

6.66 

30 

5.88 

17 

3.33 

30 

3.33 

30 

3.87 

31 

6.89 

29 

4.68 

64 

3.87 

31 

10.00 

30 

10.00 

30 

16.66 

30 

3.42 

146 
1ASU rank-scale trait breakpoints from Irish (1993, 1997, 1998 a, b, 2005, 2006, 2014, 2016; Irish et al., 2018), Scott and Irish (2017) and Scott 

and Turner (1997). German (GER); NEB (Nebringen); Pottenbrunn (POTT); MunRain (Münsingen-Rain); HALD (Hallstatt D); Dürrnberg 

Hallstatt (DURH); Dürrnberg La Tène (DURL); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack).  
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Table 9 continued. Dental trait percentages (%) and number of individuals scored (n) for the core and expansion region samples. 

Core and expansion region samples 

 Trait1                                         GER      NEB    POTT  MunRain  HALD   DURH  DURL   RAD    KHK    RUD     PON     WWS 

Carabelli’s trait UM1       

(+=ASU2-7)                      

% 

n 

56.66 

30 

52.94 

17 

58.06 

31 

61.29 

31 

64.51 

31 

60.00 

30 

73.84 

65 

75.00 

32 

46.66 

30 

66.66 

30 

66.66 

30 

64.66 

150 

Parastyle UM3                 

(+=ASU1-5)                      

% 

n 

6.45 

31 

5.26 

19 

6.25 

32 

6.45 

31 

6.06 

33 

3.22 

31 

4.83 

62 

6.45 

31 

6.06 

33 

6.25 

32 

12.50 

30 

3.57 

140 

Enamel extension UM1    

(+=ASU1-3)                      

% 

n 

6.25 

32 

10.52 

19 

6.45 

31 

6.45 

31 

6.45 

31 

6.45 

31 

6.25 

64 

6.25 

32 

5.40 

33 

6.25 

32 

14.90 

30 

6.66 

150 

Root number UP1 

(+=ASU2+)                            

% 

n 

7.14 

15 

10.00 

20 

12.19 

41 

9.52 

42 

10.25 

39 

10.71 

28 

0.0 

26 

10.25 

39 

3.33 

30 

10.25 

39 

0.0 

35 

0.0 

48 

Root number UM2 

(+=ASU3+)                                        

% 

n 

7.14 

14 

11.11 

18 

10.52 

38 

10.00 

40 

10.25 

39 

10.00 

20 

2.63 

38 

7.50 

40 

5.40 

37 

10.52 

38 

0.00 

35 

2.17 

46 

Peg-reduced UI2 

(+=ASU P or R)                               

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Odontome P1–P2 

(+=ASU +)                                    

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Congenital absence 

UM3(+=ASU -)                             

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Midline diastema UI1 

(+≥0.5mm)                             

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Lingual cusp LP2 

(+=ASU 2-9)                          

% 

n 

75.00 

28 

68.42 

19 

61.53 

26 

71.42 

28 

70.37 

27 

67.85 

28 

60.00 

65 

70.37 

27 

67.78 

28 

66.66 

27 

60.71 

28 

63.84 

130 
1ASU rank-scale trait breakpoints from Irish (1993, 1997, 1998 a, b, 2005, 2006, 2014, 2016; Irish et al., 2018), Scott and Irish (2017) and Scott 

and Turner (1997). German (GER); NEB (Nebringen); Pottenbrunn (POTT); MunRain (Münsingen-Rain); HALD (Hallstatt D); Dürrnberg 

Hallstatt (DURH); Dürrnberg La Tène (DURL); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack).  
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Table 9 continued. Dental trait percentages (%) and number of individuals scored (n) for the core and expansion region samples. 

Core and expansion region samples 

 Trait1                                      GER     NEB    POTT    MunRain HALD  DURH   DURL    RAD        KHK      RUD        PON     WWS 

Anterior fovea LM1 

(+=ASU2-4)                           

% 

n 

76.66 

30 

80.0 

20 

68.57 

35 

79.41 

34 

80.0 

35 

64.51 

31 

60.00 

65 

78.12 

32 

80.0 

35 

79.41 

34 

78.57 

28 

62.18 

119 

Mandibular torus 

(+=ASU2-3)                          

% 

n 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

0.0 

0 

Groove pattern LM2             

(+=ASU Y)                                            

% 

n 

33.33 

30 

27.77 

18 

35.29 

34 

38.23 

34 

37.14 

35 

35.29 

34 

36.36 

66 

38.23 

34 

34.28 

35 

35.29 

34 

38.23 

34 

32.41 

145 

Rocker jaw                                        

(+=ASU 1-2)                                            

% 

n 

8.33 

12 

11.76 

17 

11.76 

17 

11.76 

17 

12.50 

16 

11.76 

17 

12.50 

16 

6.25 

16 

6.25 

16 

7.69 

13 

33.33 

15 

20.0 

130 

Cusp number LM1                        

(+=ASU6+)                                             

% 

n 

17.14 

33 

21.05 

19 

19.44 

36 

18.18 

34 

19.44 

36 

15.15 

33 

23.88 

67 

12.50 

33 

14.64 

36 

9.67 

36 

20.00 

30 

16.36 

135 

Cusp number LM2 

(+=ASU5+) 

% 

n 

5.71 

35 

22.22 

18 

20.00 

34 

21.21 

33 

18.75 

32 

18.75 

32 

29.68 

64 

18.75 

32 

17.64 

34 

16.66 

31 

16.66 

30 

16.31 

141 

Deflecting wrinkle 

LM(+=ASU 2-3) 

% 

n 

10.00 

30 

15.78 

19 

12.50 

30 

12.12 

33 

12.90 

31 

10.00 

30 

16.66 

60 

10.33 

30 

6.89 

29 

9.37 

32 

13.33 

30 

13.86 

137 

C1–C2 crest 

LM1(+=ASU+) 

% 

n 

16.66 

30 

10.52 

19 

13.33 

30 

15.15 

33 

16.12 

31 

16.66 

30 

8.19 

61 

13.33 

30 

10.00 

30 

9.67 

31 

6.45 

30 

7.85 

60  

Protostylid LM1 

(+=ASU1-6) 

% 

n 

10.71 

28 

5.26 

19 

10.0 

30 

10.00 

30 

10.34 

29 

9.37 

32 

48.33 

60 

9.09 

31 

10.0 

30 

8.82 

34 

32.14 

28 

9.33 

135 

Cusp 7 LM1 

(+=ASU2-4) 

% 

n 

5.71 

35 

5.55 

18 

0.0 

34 

0.00 

34 

2.77 

36 

0.0 

33 

0.0 

66 

0.00 

34 

0.00 

33 

0.0 

35 

0.0 

34 

0.0 

140 
1ASU rank-scale trait breakpoints from Irish (1993, 1997, 1998 a, b, 2005, 2006, 2014, 2016; Irish et al., 2018), Scott and Irish (2017) and Scott 

and Turner (1997). German (GER); NEB (Nebringen); Pottenbrunn (POTT); MunRain (Münsingen-Rain); HALD (Hallstatt D); Dürrnberg 

Hallstatt (DURH); Dürrnberg La Tène (DURL); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack).  
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Table 9 continued. Dental trait percentages (%) and number of individuals scored (n) for the core and expansion region samples. 

Core and expansion region samples 

 Trait1                                     GER      NEB    POTT    MunRain HALD   DURH   DURL   RAD       KHK       RUD        PON     WWS 

Tome’s root 

LP1(+=ASU3-5) 

% 

n 

10.00 

10 

11.76 

17 

10.52 

19 

9.09 

22 

11.1 

18 

5.55 

18 

12.00 

50 

16.66 

18 

9.52 

21 

5.26 

19 

26.31 

19 

11.11 

45 

Root number LC 

(+=ASU2+) 

% 

n 

10.00 

10 

5.00 

20 

8.33 

36 

8.33 

36 

11.41 

35 

5.71 

35 

22.38 

67 

5.55 

36 

4.76 

21 

5.71 

35 

6.06 

27 

30.00 

50 

Root number 

LM1(+=ASU3+) 

% 

n 

5.60 

19 

5.00 

20 

5.60 

18 

5.50 

18 

5.60 

20 

5.60 

18 

10.63 

47 

5.55 

18 

5.26 

19 

5.55 

18 

27.77 

18 

11.10 

50 

Root number 

LM2(+=ASU2+) 

% 

n 

10.00 

10 

10.00 

20 

15.00 

40 

15.38 

39 

11.90 

42 

7.69 

20 

2.63 

38 

10.25 

39 

10.00 

20 

12.50 

40 

32.50 

30 

4.34 

46 

Torsomolar 

angleLM3(+=ASU+) 

% 

n 

5.55 

18 

5.26 

19 

5.88 

34 

5.88 

34 

5.55 

36 

5.88 

34 

17.64 

49 

5.71 

35 

4.16 

24 

5.88 

35 

31.42 

33 

17.64 

58 
1ASU rank-scale trait breakpoints from Irish (1993, 1997, 1998 a, b, 2005, 2006, 2014, 2016; Irish et al., 2018), Scott and Irish (2017) and Scott 

and Turner (1997). German (GER); NEB (Nebringen); Pottenbrunn (POTT); MunRain (Münsingen-Rain); HALD (Hallstatt D); Dürrnberg 

Hallstatt (DURH); Dürrnberg La Tène (DURL); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack).  
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The dental nonmetric traits observed at high frequencies are characteristic of 

morphologically simple, fewer morphological traits, mass-reduced dentitions, low 

frequencies of traits that add size such as, additional cusps, often associated with European 

populations, in spite of high frequencies of a few mass-additive traits, those that add size, 

(such as Carabelli’s trait UM1) (See page 215, Appendix III) (Hanihara, 2008; Hillson, 1996; 

Mayhall et al., 1982; Scott and Irish, 2017).   

Principal components analysis (PCA) 

 

Several non-contributory traits, those that occur at 0% or 100% across all samples, 

were removed from further analysis (See page 186). These included Winging UI1, Palatine 

torus, Shovelling UI1, Double Shovelling UI1, Bushman Canine UC, Odontome P1-P2, 

Congenital Absence UM3, Midline Diastema UI1, Mandibular torus, and Peg-Reduced UI2. 

This initial round of trait editing reduced the number of traits to 26. After the remaining trait 

frequencies were calculated, the data were submitted to PCA to identify the specific traits 

most responsible for the observed inter-sample variation. As sample size must be larger than 

10 in any subgroup for the Freeman-Tukey transformation for unequal sample variances to 

work, Cusp 7 LM1 was removed from further analysis, reducing the number of traits to 25 

(See page 186). These percent data, the trait frequencies among the samples, were then 

submitted to PCA to identify additional largely non-contributory traits across all samples. 

Ten components with eigenvalues >2.0 were obtained that accounted for 100% of the total 

variance. However, examination of the accompanying scree plot suggests that the first two 

components, which account for 82.12% of the variance, are the most important (Figure 37). A 

Two-dimensional scatterplot of the component scores is presented in Figure 38. Separation 

among the samples is evident. Unrotated loadings for these components are listed in Table 

10. The PCA component loadings, eigenvalues and variance explained for the first 3 

components, the rotated component matrix and a three-dimensional scatterplot of the 

component scores are presented in appendix VI for comparison (Tables 17 and 18 and Figure 

63, respectively).  

Traits with strong positive and negative values (>|0.500|) are responsible for driving 

most of the inter-sample variation (Irish, 2010, 2016; Irish et al., 2014, 2018). Very strong 

(>0.7) positive loadings for component 1, x-axis, include Root number UP1, Root number 

UM2, Lingual cusp LP2, Anterior fovea LM1, Deflecting wrinkle LM and C1–C2 crest LM1, 

and are most responsible for pushing the samples with high percentages of these traits 



  

 

 

 203  

 

 

towards the positive end of the x-axis. Conversely, very strong negative loadings (< -0.7) 

include Carabelli’s UM1, Protostylid LM1, Tome’s root LP1, Root number LM1, Root 

number LM2, and Torsomolar angle LM3, and are responsible for pushing samples with high 

percentages of these traits towards the negative end of the x-axis. Very strong positive 

loadings for component 2, y-axis, include Groove pattern LM2, Cusp number LM1, and Root 

number LC. Similarly, very strong negative loadings for component 2, y-axis, include 

Tuberculum Dentale UI2, Distal accessory ridge UC, Cusp number LM2, and Parastyle UM3. 

Hypocone UM2, Interruption groove UI2, and Rocker jaw were dropped from further 

analysis as they are mostly non-contributory (loadings < |0.500| on all axes).  

 

Figure 37. Scree plot indicating that the first two components which account for 82.12% of 

the variance are the most important. 

 

 

 

14 
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Figure 38. Two-dimensional scatterplot of the first two components among the samples for 25 dental traits. The first two components account 

for 82.12% of the total variance (47.85% on the x-axis and 34.27% on the y-axis) (See Table 8 for sample abbreviations). Dürrnberg La Tène 

(DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-

Rain); RAD (Radovesice); KHK (Kutná -Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 
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Table 10. Component loadings, eigenvalues and variance explained for the samples. 

 

Trait*                                                                                                                

Component 

PCA 1 

 

PCA 2 

Eigenvalue 12.440 8.261 

Variance 47.855 34.277 

Total Variance 47.855 82.133 

Labial Curvature UI1            .362 -.556 

Interruption groove UI2    -.156 .416 

Tuberculum Dentale UI2*   .487 -.866 

Distal accessory ridge UC* .321 -.832 

Hypocone UM2 -.215 -.427 

Cusp 5 UM1                          -.511 .464 

Carabelli’s trait UM1*            -.851 .319 

Parastyle UM3* -.524 -.803 

Enamel extension UM1* .022 .669 

Root number UP1* .797 -.056 

Root number UM2* .790 .607 

Lingual cusp LP2* .994 .090 

Anterior fovea LM1* .895 .035 

Groove pattern LM2* .648 .754 

Rocker jaw                            -.432 .353 

Cusp number LM1* .406 .703 

Cusp number LM2* -.416 -.802 

Deflecting wrinkle LM* .864 .259 

C1–C2 crest LM1* .752 -.302 

Protostylid LM1* -.729 -.364 

Tome’s root LP1* -.882 .164 

Root number LC* -.202 .866 

Root number LM1* -.782 .162 

Root number LM2* -.735 -.130 

Torsomolar angle LM3* -.835 .342 

*Denotes the 20 final traits used for MMD analysis after editing (Table 9). Boldface 

numbers indicate “strong” loadings (i.e., > |0.500|). 
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Although it is recommended that inter-sample distances be based on as many traits as 

possible, these traits should not be highly correlated, as this may lead to erroneous distances 

or spurious relationships (See pages 113 and 119) (Irish et al., 2014; Irish, 2010, 2015, 2016; 

Irish and Guatelli-Steinberg, 2003; Sjøvold, 1977). Inter-trait correlation was assessed by 

submitting the rank-scale ASUDAS data to the Kendall's tau-b correlation coefficient. A 

further 2 further trait pairs were found to be highly correlated (i.e. tb ≥ 0.5), labial curve UI1 

and Tuberculum Dentale UI2 (tb=.751) and cusp 5 UM1 and Carabelli’s UM1 (tb=.518) 

(Appendix II). A Bonferroni correction was also performed on this percent data, the trait 

frequencies, however, no further trait pairs were found to be significantly correlated and no 

further traits were identified as non-contributory. In conjunction with their relatively low 

loadings and small sample sizes, labial curve UI1 and cusp 5 UM1 were removed from 

further analysis. In the end, 20 traits, denoted by asterisks in Table 10, were used for the final 

MMD comparison.  

Mean measure of divergence (MMD) 

 

This multivariate statistic provides a quantitative estimate of divergence between 

samples based on the degree of phenetic similarity for the suite of dental and osseous traits 

analysed (See page 188). All samples were compared using the initial 25 and final 20 traits. 

The resulting distance matrix for the 25-trait comparison among all 12 samples is presented 

in Table 11. Intra-and-extra-regional diversity among the samples is indicated by the 25-trait 

MMD analysis, as 46 of the 66 sample pairs are significantly different from one another at 

the .025 alpha level. Separation among the samples by the core and expansion regions is not 

evident, as the majority of the samples are biologically distinct from one another. Although 

some traits such as Groove Pattern LM2, occur at similar frequencies across several samples 

including, Münsingen-Rain (Switzerland), Radovesice (Czech Republic), and Pontecagnano 

(southern Italy) sample uniformity within these regions is not indicated by the distance 

matrix. However, the patterns indicated by the 25-trait distance matrix include invariant and 

other non-contributory traits indicated by PCA and the Kendall's tau-b correlation coefficient. 

Consequently, these patterns represent initial inter-sample affinities. A 20 trait comparison, 

with Hypocone UM2, Interruption groove UI2, Rocker jaw, Labial curve UI1, and Cusp 5 

UM1 removed, was conducted to determine the subsequent inter-sample affinities. The final 

20 traits included in MMD analyses include; Tuberculum Dentale UI2; Distal accessory ridge 
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UC; Carabelli’s trait UM1; Parastyle UM3; Enamel extension UM1; Root number UP1; Root 

number UM2; Lingual cusp LP2; Anterior fovea LM1; Groove pattern LM2; Cusp number 

LM1; Cusp number LM2; Deflecting wrinkle LM; C1–C2 crest LM1; Protostylid LM1; 

Tome’s root LP1; Root number LC; Root number LM1; Root number LM2; Torsomolar 

angle LM3 (Table 10). 

The resulting distance matrix for all 12 samples is presented in Table 12. Although 

phenetic diversity is indicated, there is a greater emphasis on among sample divergence, after 

removing the above traits, the number sample pairs that are significantly different increased 

from 46 to 64 out of 66. After removing highly correlated and other largely non-contributory 

traits the majority of the sample pairs are slightly more distinct from one another than in the 

preceding 25 trait comparison. All but 2 sample pairs, Dürrnberg Hallstatt (Austria), 

Dürrnberg La Tène (Austria), and Kutná-Hora-Karlov (Czech Republic) and Radovesice 

(Czech Republic), are significantly different from one another at the .025 alpha level. 

Although the Dürrnberg (Austria) sample is not significantly different temporally, the MMD 

distances decrease during the La Tène period.  

The 20 trait MMD analysis indicates that the Dürrnberg Hallstatt (Austria) and 

Dürrnberg La Tène (Austria) samples represent the same biological population. Therefore, a 

final 20 trait MMD analysis with these samples combined was conducted; in order to gain an 

impression of the inter-sample affinities and to determine whether the phenetic relationships 

indicated by the preceding 20 trait analysis are supported. The resulting distance matrix for 

all 11 samples is presented in Table 13. Overall heterogeneity is again indicated as 54 out of 

the 55 sample pairs are significantly different from one another at the .025 alpha level. The 

samples are not separated by geographic region as in the previous comparison. Similar 

frequencies are also observed in some traits including, Groove Pattern LM2 and Carabelli's 

Trait UM1, among some sample pairs such as Münsingen-Rain (Switzerland), and Hallstatt D 

(Austria). However, sample and region uniformity are not indicated by the distance matrix 

(Table 13). The MMD analyses also suggest that there is greater diversity among the Iron 

Age populations associated with Celtic material culture and/or language than previously 

established. Further, the comparative sample, Pontecagnano (southern Italy) is also 

significantly different from the remaining samples. This suggests that there is also more 

phenetic diversity among Iron Age European populations than previously documented.  
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Table 11. MMD distance matrix for 25 traits among all samples. The values above the diagonal are the standard deviations, and the values 

below are the MMD values. 

 

 

 

 

 

 

 

 

 

 

Underlined MMD distances indicate significant differences at the 0.025 level. Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); 

Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná -

Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 

Samples GER NEB POTT RAD KHK MunRain HALD RUD PON DURH DURL WWS 

GER 0 0.029 0.024 0.026 0.025 0.024 0.024 0.025 0.025 0.026 0.021 0.020 

NEB 0.035 0 0.024 0.025 0.026 0.025 0.025 0.025 0.024 0.026 0.021 0.018 

POTT 0.032 0.066 0 0.020 0.022 0.020 0.020 0.022 0.020 0.020 0.021 0.016 

RAD 0.051 0.049 0.044 0 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.016 

KHK 0.058 0.044 0.042 0.049 0 0.020 0.020 0.020 0.021 0.021 0.022 0.015 

MunRain 0.051 0.064 0.055 0.055 0.046 0 0.020 0.020 0.020 0.020 0.020 0.015 

HALD 0.058 0.047 0.050 0.056 0.053 0.058 0 0.020 0.020 0.020 0.021 0.016 

RUD 0.047 0.036 0.042 0.054 0.050 0.048 0.052 0 0.020 0.021 0.020 0.016 

PON 0.072 0.050 0.077 0.070 0.070 0.066 0.074 0.087 0 0.021 0.028 0.022 

DURH 0.047 0.068 0.061 0.053 0.049 0.059  0.052 0.050 0.077 0 0.021 0.016 

DURL 0.040 0.040 0.030 0.030 0.041 0.028 0.024 0.041 0.074 0.024 0 0.016 

WWS 0.048 0.056 0.048 0.050 0.051 0.043 0.040 0.062 0.079 0.041 0.021 0 
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Table 12. MMD distance matrix for 20 traits among all samples. The values above the diagonal are the standard deviations, and the values 

below are the MMD values. 

 

Underlined MMD distances indicate significant differences at the 0.025 level. Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); 

Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-

Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 

  

Samples GER NEB POTT RAD KHK MunRain HALD RUD PON DURH DURL WWS 

GER 0 0.033 0.027 0.027 0.028 0.026 0.027 0.027 0.026 0.028 0.016 0.021 

NEB 0.070 0 0.027 0.027 0.028 0.026 0.027 0.026 0.027 0.028 0.022 0.020 

POTT 0.061 0.071 0 0.021 0.022 0.021 0.021 0.021 0.022 0.022 0.022 0.017 

RAD 0.059 0.061 0.049 0 0.022 0.021 0.021 0.022 0.022 0.023 0.022 0.017 

KHK 0.063 0.058 0.045 0.040 0 0.021 0.022 0.021 0.021 0.022 0.021 0.017 

MunRain 0.062 0.073 0.057 0.053 0.045 0 0.021 0.021 0.022 0.022 0.022 0.017 

HALD 0.069 0.067 0.055 0.056 0.049 0.058 0 0.021 0.022 0.022 0.021 0.017 

RUD 0.058 0.060 0.052 0.053 0.047 0.053 0.051 0 0.022 0.022 0.022 0.017 

PON 0.066 0.058 0.065 0.055 0.050 0.062 0.057 0.079 0 0.023 0.022 0.017 

DURH 0.062 0.070 0.060 0.059 0.060 0.058 0.053 0.064 0.084 0 0.022 0.017 

DURL 0.046 0.046 0.045 0.048 0.045 0.047 0.045 0.054 0.057 0.041 0 0.012 

WWS 0.054 0.061 0.060 0.066 0.062 0.062 0.057 0.077 0.065 0.057 0.028 0 
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Table 13. MMD distance matrix for 20 traits among all samples, with the Dürrnberg (Austria) sample combined. The values above the diagonal 

are the standard deviations, and the values below are the MMD values. 

Samples GER NEB POTT RAD KHK MunRain HALD RUD PON DUR WWS 

GER 0 0.029 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.020 0.017 

NEB 0.082 0 0.029 0.029 0.028 0.029 0.029 0.029 0.029 0.023 0.020 

POTT 0.078 0.082 0 0.026 0.026 0.026 0.026 0.026 0.027 0.020 0.017 

RAD 0.078 0.083 0.078 0 0.027 0.026 0.027 0.026 0.027 0.019 0.017 

KHK 0.056 0.058 0.056 0.053 0 0.026 0.026 0.026 0.026 0.020 0.017 

MunRain 0.078 0.082 0.078 0.078 0.056 0 0.026 0.026 0.026 0.020 0.017 

HALD 0.078 0.082 0.079 0.078 0.056 0.078 0 0.026 0.027 0.020 0.017 

RUD 0.078 0.082 0.079 0.078 0.057 0.078 0.079 0 0.026 0.020 0.017 

PON 0.064 0.059 0.063 0.072 0.085 0.063 0.063 0.063 0 0.020 0.017 

DUR 0.043 0.045 0.042 0.041 0.057 0.043 0.043 0.043 0.065 0 0.012 

WWS 0.079 0.083 0.078 0.077 0.083 0.078 0.079 0.078 0.076 0.025 0 

Underlined MMD distances indicate significant differences at the 0.025 level. Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); 

Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-

Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 
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Both of the 20 trait MMD matrices support the notion of limited if any, gene flow 

between and within the regions analysed. However, small scale migration not influencing 

gene flow significantly cannot be ruled out. 

 

Multidimensional scaling (MDS) 

 

The MDS Proxscal procedure was used to produce a graphical representation of the 

MMD values. MDS treats each of the MMD values as Euclidean distances. Samples in close 

proximity in the MDS configuration have lower MMD scores than those that are farther apart 

(See page 190). Two-dimensional MDS Proxscal graphs based on the 25 and 20 trait MMD 

matrices are presented in Figures 39, 40, and 41. Three-dimensional MDS ALASCAL graphs 

based on the above matrices are presented in appendix VII for comparison (Figures 64-66). 

The MDS stress value is a measure of the goodness of fit, or representations, of the scaled 

compared to the unscaled data in reduced space. The lower the stress value the better the fit 

or correlation between the scaled and unscaled data (Kruskal and Wish, 1978). The stress 

value between the MMD and MDS datasets was determined through a Kruskal’s stress 

formula (Kruskal and Wish, 1978).  

Values less than 0.10 indicate low stress and a good fit between the data sets whereas, 

values greater than 0.15 represent the opposite (See page 190) (Borgatti, 1997). The 

Kruskal’s stress formula value is 0.056 in this analysis. This value indicates that the two data 

sets, MMD and MDS, have low stress, and the MDS graphs provide an excellent 

representation of the MMD derived relationships (Borgatti, 1997; Kruskal and Wish, 1978). 

The r2 value is a measure of the variance of the scaled values that is accounted for by their 

corresponding MMDs; in this analysis, r2 is 0.945. The correlation coefficient, r, between the 

MDS and MMD distances is produced by taking the square root of r2 (Kruskal and Wish, 

1978). Therefore, in this analysis, the two matrices are highly correlated, r =0.972. This 

indicates that 97.2% of the variance is explained by these distance values. In this case, the 

two-dimensional solution is an accurate representation of the MMD derived phenetic 

relationships.  
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Figure 39. Two-dimensional MDS graph of the 25 trait MMD distances among the samples. 

Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD 

(Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD 

(Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack). 

 

 

 
 

 

 

 

The configurations of the 25, and 20 trait MDS graphs share some patterning with the 

PCA graph including the relative positions of the Dürrnberg La Tène (Austria), Dürrnberg 

pooled (Austria), Pottenbrunn (Austria) and Rudston Makeshift (east Yorkshire, Britain) 

samples. However, the phenetic divergence among the samples is evident (Figures 38 and 39-

41, respectively). 
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Figure 40. Two-dimensional MDS graph of the 20 trait MMD distances among all the 

samples. Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); 

HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD 

(Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack). 

 

 
 

Inspection of Figures 39, 40 and 41 reveals a clear separation among the samples. 

Although the relative positions of some of the samples in the 25 and both 20 trait MDS 

graphs are switched, due to differential trait weighting, the distances between the samples 

remains comparatively the same. Greater separation among the samples is evident, through 

both the 20 trait comparisons, otherwise, the patterning between the MDS graphs is similar in 

the association of samples by geographic region. Although some traits occur at similar 

frequencies among the majority of the samples such as Groove pattern LM2, this uniformity 

is not reflected in the MDS or PCA graphs (Figures 38 and 39-41, respectively). 
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Figure 41. Two-dimensional MDS graph of the 20 trait MMD distances among the samples, 

with the Dürrnberg (Austria) sample combined. Dürrnberg La Tène (DURL); Dürrnberg 

Hallstatt (DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); NEB 

(Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-Hora-Karlov); 

RUD (Rudston Makeshift); WWS (Wetwang Slack). 

 

 
 

 

 

This suggests that the observed trait similarity may not be related to frequent gene 

flow among the samples. Rather, it may reflect similarities present in the parent population(s) 

and subsequent diversification. Consequently, the samples analysed may have become 

genetically distinct due to other processes such as isolation by distance, limited external gene 

flow from the regions analysed, and increased gene flow from other neighbouring regions not 

analysed. 
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Hierarchal cluster analysis 

 

Hierarchical cluster analysis with between group linkage and Wards method were 

used to provide a further illustration of among-sample affinities and sample distributions, 

based upon the symmetric MMD distance values for the 25 and both 20 trait comparisons, 

with the Dürrnberg (Austria) sample temporally separated and combined, and are presented 

in Figures 42-47, respectively (See page 194). Inspection of the 25 and both 20 trait 

dendrograms supports the clear separation among the samples as indicated by the MDS and 

PCA graphs (Figures 38 and 39-41, respectively). There is also no evidence for separation 

among the samples into the core and expansion regions.  

Further, as in the preceding MDS and PCA graphs, there is also no association by 

known linguistic or genetic relationships, with the exception of the Radovesice (Czech 

Republic) and Kutná-Hora-Karlov (Czech Republic) samples (Figures 38 and 39-41, 

respectively). These samples are clustered together in both the 20 trait dendrograms with the 

Dürrnberg sample pooled and temporally separated (Figures 44-47). Although the Dürrnberg 

(Austria) period samples also represent the same biological population they are not clustered 

together. The La Tène period sample is more distinct from the remaining samples in both the 

25 and 20 trait pooled dendrograms. This may be related to the decreasing MMD values 

during this period (Table 13). 

The configurations of the 25 and both 20 trait dendrograms indicate similar regional 

sample distributions and separation among the samples as in the PCA and MDS graphs 

(Figures 38 and 39-41, respectively). However, in the 20 trait pooled dendrograms the 

Dürrnberg La Tène (Austria) and Wetwang Slack (east Yorkshire, Britain) samples are 

comparatively more distinct (Figures 46 and 47). The Dürrnberg La Tène (Austria) and 

Dürrnberg Hallstatt (Austria) samples are also clustered together, although not closely.  
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Figure 42. Between Group Linkage 25 traits among all samples. Dürrnberg La Tène 

(DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German 

(GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-

Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 

 

   
 

 

 

This further supports the notion that while these samples may be phenetically 

indistinct the decreasing MMD distances indicate differential social processes, such as 

fluctuating migration rates and marriage practices during these periods. The difference in the 

separation among the samples indicated by comparison of the 25 and both 20 trait 

dendrograms may be related to the different methods used, average and minimal variance, 

respectively (Figures 42-47). 
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Figure 43. Wards Method 25 traits among all samples. Dürrnberg La Tène (DURL); 

Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); 

NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-Hora-

Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 
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Figure 44. Between Group Linkage 20 traits among all samples. Dürrnberg La Tène 

(DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German 

(GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-

Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 

 

 

 

 
 

 

Alternatively, the slight difference in the clusters may be related to differential gene 

flow, genetic drift, isolation, captives and/or enslavement among the samples. However, the 

composition of the German (Stuttgart, Germany), Rudston Makeshift (east Yorkshire, 

Britain) and Pontecagnano (southern Italy) samples may be related to the slight differences in 

clusters and the relative positions of these samples in the MDS and PCA graphs (Figures 38 

and 39-41, respectively). Due to the fact that these samples represent pooled or sub-samples, 
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they may not adequately represent the range of variation present within these samples during 

the Iron Age. In spite of this limitation, the sample distribution indicated by both 20 trait 

dendrograms supports those indicated by the MDS graphs (Figures 39-41 and 44-47). 

 

 

Figure 45. Wards Method 20 traits among all samples. Dürrnberg La Tène (DURL); 

Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); 

NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-Hora-

Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 

 

 
 

 

 The sample distribution indicated by the 20 trait dendrograms with the Dürrnberg 

(Austria) sample combined are similar to those from the preceding 20 trait comparison 

(Figures 46-47 and 44-45, respectively). The Dürrnberg (Austria) and Wetwang Slack (east 
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Yorkshire, Britain) samples are also comparatively distinct, and the remaining clusters are 

similar. As discussed throughout this chapter, there is significant intra-and-extra regional 

heterogeneity among the samples analysed. Although the remaining sample distributions may 

not indicate any known linguistic or genetic relationships, the inadequacy of the supporting 

evidence makes interpretations based on these lines of evidence alone difficult, and therefore 

tenuous. 

 

 

Figure 46. Between Groups Linkage 20 traits among all samples, with the Dürrnberg 

(Austria) sample combined. Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); 

Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain 

(Münsingen-Rain); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston 

Makeshift); WWS (Wetwang Slack). 
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Figure 47. Wards Method 20 traits among all samples, with the Dürrnberg (Austria) sample 

combined. Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); 

HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD 

(Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack). 

 

Isolation by distance (IBD) 

 

To quantify the apparent correspondence between phenetic distance and spatial 

proximity, the 20 trait MMD distances with the Dürrnberg (Austria) sample combined were 

compared with the geographic distances among sites or regions (Table 14). However, the 

geographic distances listed in Table 14 are straight-line distances, which can be problematic 

because the topographical landscape determines how people move and the resulting 

biocultural isolation among populations (See pages 190 and 193). The Mantel correlation 

between matrices, r=0.195 (p=.102), is positive though weak and is not significant (Cohen, 
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1988). However, after the Pontecagnano (southern Italy) sample was removed from analysis r 

increases to .276 (p=0.097), and when the German pooled (Stuttgart, Germany) and Rudston 

Makeshift (east Yorkshire, Britain) samples were also removed r further increases to .309 

(p=0.049) a moderate positive correlation (See pages 193 and 221) (Cohen, 1988; Irish, et al., 

2018). Here, an r value >0.3 indicates a moderate positive correlation, following previous 

research (Cohen, 1988; Irish et al., 2018). These samples were removed as they are either 

pooled, German (Stuttgart, Germany) or sub-samples, Pontecagnano (southern Italy) and 

Rudston Makeshift (east Yorkshire, Britain). Consequently, the inclusion of these samples 

may have resulted in a spurious correlation between the two matrices and/or among the 

samples. Lastly, each sample was plotted individually compared to the rest using the 

geographic and symmetric MMD distances, using the phenetic and geographic distances from 

Tables 13 and 14 as coordinates on the x-and-y-axes. One sample comparison per region, as 

well as the comparative sample scatterplots, are presented in Figures 48-50. The remaining 

sample scatterplots are presented in Appendix IV (Figures 55-62). In each scatterplot, a solid 

black linear equation reference line with a slope (b) of 1 and a y-intercept (a) of 0 is also 

provided (e.g., y=0+1x, where y=a+bx). This line illustrates the sample distribution if a 1:1 

correspondence between spatial and phenetic distances existed among the samples. The 

actual sample locations indicate those which are closer phenetically to the respective sample 

than anticipated, those below the reference line, and those that are more phenetically distinct, 

those above the line, relative to their geographic separation. The values presented in Table 

15, indicating the correlation between phenetic and geographic distances, are provided for 

comparative purposes because the abovementioned data points are not independent due to the 

underlying population structure (Roseman and Auerbach, 2015). 

The values indicate that isolation by distance alone does not explain the observed 

population structure in the samples (Table 15). These results further imply that some of the 

samples were not plotted where they ought to be, following the assumption that phenetic 

affinity is directly related to spatial variation. Focusing on intra-regional comparisons within 

the core, Hallstatt D (Austria), German (Stuttgart, Germany), Pottenbrunn (Austria), and 

Nebringen (Stuttgart, Germany) (except when compared to Dürrnberg, Austria) are plotted 

above the black reference line. This indicates that they are more divergent phenetically from 

the remaining core samples than anticipated based on geographic location. The opposite is 

true for those samples below this line, Dürrnberg (Austria) (when compared to Nebringen 

(Stuttgart, Germany) (Figures 48 and 55-59).
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Table 14. Symmetrical geographic straight-line distance matrix (km) among the samples (using actual or approximated center of each site or 

geographic region). 

Samples GER NEB POTT RAD KHK MunRain HALD RUD PON DUR WWS 

GER 0 176.23 481.47 394.15 406.96 243.80 358.01 852.02 1012.66 315.14 834.50 

NEB 176.23 0 643.40 488.43 523.92 310.49 530.80 681.42 1172.15 488.60 664.22 

POTT 481.47 643.40 0 316.22 241.22 619.16 156.16 1259.10 828.69 192.77 1240.94 

RAD 394.15 488.43 316.22 0 76.44 622.49 343.39 993.29 1118.52 336.06 975.30 

KHK 406.96 523.92 241.19 76.44 0 619.58 285.68 1061.50 1052.81 285.85 1043.44 

MunRain 243.80 310.49 619.16 622.49 619.58 0 466.40 951.81 910.53 426.69 936.03 

HALD 358.1 530.80 156.16 343.39 285.68 466.40 0 1182.57 778.68 43.39 1164.56 

RUD 852.02 681.42 1259.10 993.29 1061.50 951.81 1182.57 0 1850.31 1144.20 18.17 

PON 1012.66 1172.15 828.69 1118.52 1052.81 910.53 778.68 1850.31 0 796.76 1833.60 

DUR 315.14 488.60 192.77 336.06 285.85 426.69 43.39 1144.20 796.76 0 1126.22 

WWS 834.50 664.22 1240.94 975.30 1043.44 936.03 1164.56 18.17 1833.60 1126.22 0 

Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); NEB (Nebringen); 

MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutna-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack).
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Figure 48. Two-dimensional scatterplot of the German (Stuttgart, Germany) (GER) sample relative to the other samples based on geographic (x-

axis) versus. phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., 

y=0+1x, where y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. DUR (Dürrnberg); 

HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); POTT (Pottenbrunn); RAD (Radovesice); KHK (Kutná-

Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack); Pon (Pontecagnano). 
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Figure 49. Two-dimensional scatterplot of the Radovesice (Czech Republic) (RAD) sample relative to the other samples based on geographic 

(x-axis) versus phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., 

y=0+1x, where y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. DUR (Dürrnberg); 

HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); POTT (Pottenbrunn); KHK (Kutná-Hora-Karlov); RUD 

(Rudston Makeshift); WWS (Wetwang Slack); Pon (Pontecagnano).  
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Figure 50. Two-dimensional scatterplot of the Pontecagnano (southern, Italy) (PON) sample relative to the other samples based on geographic 

(x-axis) versus phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., 

y=0+1x, where y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. DUR (Dürrnberg); 

HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); POTT (Pottenbrunn); RAD (Radovesice); KHK (Kutná-

Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 
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Table 15. Coefficients of determination calculated via linear regression for all the samples. 

 

Sample r p 

GER .434 .247 

NEB .361 .276 

POTT .457  .157 

RAD .500 .105 

KHK .470 .120 

MunRain .465 .150 

HALD .444 .171 

RUD .681  .020 

PON .573 .065 

DUR .352 .287 

WWS .663 .022 

Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD 

(Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD 

(Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack). 

 

Focusing on intra-regional comparisons in the expansion regions, Kutná-Hora-Karlov 

(Czech, Republic) (except when compared to Rudston Makeshift, east Yorkshire, Britain), 

Radovesice (Czech Republic), Wetwang Slack (east Yorkshire, Britain) (when compared to 

Rudston Makeshift, east Yorkshire, Britain) and Rudston Makeshift (east Yorkshire, Britain) 

(when compared to Wetwang Slack, east Yorkshire, Britain) are plotted above the black 

reference line. Pontecagnano (southern Italy), Wetwang Slack (east Yorkshire, Britain) and 

Rudston Makeshift (east Yorkshire, Britain) (except in the Rudston Makeshift, east 

Yorkshire, Britain, and Wetwang Slack, east Yorkshire, Britain comparisons) are plotted 

below the line (Figures 49, 50 and 60-62).  

Emphasising extra-regional comparisons (core to expansion regions), those samples 

above the line include Kutná-Hora-Karlov (Czech, Republic) (except when compared to the 

Münsingen-Rain, Switzerland, Rudston Makeshift, east Yorkshire, Britain, and Wetwang 

Slack, east Yorkshire, Britain samples), Radovesice (Czech Republic) (except when 

compared to Pontecagnano, southern Italy), Wetwang Slack (east Yorkshire, Britain) and 
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Rudston Makeshift (east Yorkshire, Britain) (when compared to Nebringen, (Stuttgart, 

Germany) (Figures 48-50 and 55-62). Those below the line include, Nebringen (Stuttgart, 

Germany) and German (Stuttgart, Germany) (when compared to Pontecagnano, southern 

Italy), Dürrnberg (Austria) (when compared to Nebringen, Stuttgart, Germany, Rudston 

Makeshift, east Yorkshire, Britain, and Wetwang Slack, east Yorkshire, Britain), Nebringen 

(Stuttgart, Germany) (when compared to Dürrnberg, Austria), Münsingen-Rain (Switzerland) 

(except when compared to Kutná-Hora-Karlov, Czech Republic), Hallstatt D (Austria) (when 

compared to Rudston, east Yorkshire, Britain, and Wetwang Slack, east Yorkshire, Britain), 

Pottenbrunn (Austria) (when compared to Rudston Makeshift, east Yorkshire, Britain, and 

Wetwang Slack, east Yorkshire, Britain) (Figures 48-50 and 55-62). Overall, those samples 

above and below the black reference line vary depending on specific sample comparisons. 

This indicates a separation among the samples rather than a grouping by region. However, 

some core and expansion samples are almost consistently plotted above and below the black 

reference line (e.g., Hallstatt D, Austria, Nebringen, Stuttgart, Germany, and Rudston, east 

Yorkshire, Britain). Although the above Mantel correlation indicates a moderate positive 

association between geographic and phenetic distance; there does not appear to be a 

relationship among the samples and IBD based on the corresponding r values (Table 15). 

This suggests that although IBD may partly explain the population structure in the regions 

analysed, it was not the primary mechanism driving the observed intra-and-extra-regional 

variation. Other mechanisms influencing this variation including differential migration into 

each region before or during the Hallstatt and La Tène periods, small-scale migration, 

cultural assimilation, marriage practices (exogamy), and captives and/or enslavement cannot 

be ruled out as underlying causes or contributing to the observed population structure.  

 



 

229 

Chapter 7: Discussion, conclusion and future research 

Discussion 

 

Diverse populations within the core and expansion regions have been intrinsically 

linked based on perceived similarities in burial practice, art styles, and material culture. 

Subsequently, these associations have resulted in the creation of the so-called La Tène=Celtic 

paradigm (See page 1) (Collis, 2003; Cunliffe, 1984, 1991, 1997, 2009, 2018; Giles, 2012; 

Koch, 2006, 2007). The complex nature and scale of the interactions, population history, 

development trajectories, trade, exchange and the underlying biological relationships among 

presumed Celtic populations have not been the focus of much previous research (See page 1) 

(Anctil, 2016; Maxová et al., 2011; Scheeres, 2014a; Scheeres et al., 2013b, 2014b). Rather, 

the majority of previous research examining the spread of Hallstatt and La Tène artefacts has 

been chronological and typological. Additionally, this research has focused primarily on 

documentation and descriptions of diachronic change throughout the regions in which the 

above artefacts are found (Anthoons, 2007, 2011; Collis 1973, 1996, 2003; Cunliffe, 1997, 

2018; Giles, 2012; James, 2005; Koch, 2006). However, in spite of these limitations the 

notion of geographically distinct core and expansion regions are still commonly held within 

the field of Celtic studies (See page 1) (Collis, 2003; Cunliffe, 1997, 2018; Koch, 2006).  

Very few studies, e.g., aDNA, stable isotope, bioarchaeological and dental 

anthropological, have examined the biological relationships among populations possessing 

Celtic material culture (Anctil, 2016; Maxová et al., 2011; Scheeres, 2014a; Scheeres et al., 

2013b, 2014b). Although variation in dental nonmetric traits among Iron Age European 

populations has been indicated by previous research, these analyses have focused on modern 

populations and those traits characteristic of the broad European geographic dental complex 

(See page 1) (Coppa et al., 1998, 2000, 2007; Hallgrímsson et al., 2004; Hsu et al., 1999; 

Khudaverdyan, 2013; Maxová et al., 2011; Pacelli and Márquez-Grant, 2010; Scott et al., 

2013b; Vargiu et al., 2009; Weets, 2004; Zubova, 2014). Prior research has indicated that the 

underlying biological relationships among the above groups is more complex than previously 

assumed (See pages 1, 141 and 145) (Anctil, 2016; Maxová et al., 2011; Scheeres, 2014a; 

Scheeres et al., 2013b, 2014b). The morphological traits that comprise specific regional 

populations within Europe and their variation among and within archaeological samples, 

from any period, have not been the focus of much research (Adler, 2005; Anctil, 2016; Coppa 
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et al., 1998, 1999, 2000, 2007; Cucini et al., 1999; Hallgrímsson et al., 2004; Henneberg, 

1998; Hsu et al., 1999; Khudaverdyan, 2013; Maxová et al., 2011; Mcilvaine et al., 2014; 

Pacelli and Márquez-Grant, 2010; Rathmann et al., 2016, 2019; Scott et al., 2013b; Thorson, 

2018; Vargiu et al., 2009; Zubova, 2014). Consequently, the range of dental nonmetric trait 

variation and phenetic diversity among and within diverse European populations, whether 

archaeological or modern, is unknown (See pages 1 and 113). Although, previous work by 

the author has examined the distribution of nonmetric traits among the proto-Celtic and Celtic 

groups during the Iron Age, in Britain and continental Europe; the biological affinity among 

these diverse groups has largely been ignored by Celtic scholars (Anctil, 2016). So, 

archaeological and modern European populations have been broadly characterized and 

described as having morphologically simple mass reduced dentitions (See page 202, 

Appendix III) (Anctil, 2016).  

The archaeological evidence suggests the presence of diverse intra-and-extra-regional 

contact; however, the associated artefact descriptions are primarily typological and limited in 

scope (Arnold, 1988; Brewster, 1980; Dent, 1979, 1982, 1984; Hodson, 1990; Lenski, 2008, 

2014; Cameron, 2008, 2011, 2013, 2016; Nash Briggs, 2003; Ramsl, 2002, 2003; Stead, 

1979, 1991a; Wendling et al., 2015; Scheidel, 1997). Although some regional variation in 

artefact design and manufacture has been documented, only the presence of these differences 

has been mentioned. The exact nature of these connections is not described in detail (See 

pages 19 and 32) (Budinský and Waldhauser, 2004; Hodson, 1990; Müller, 1998; Müller et 

al., 2008; Velemínský, 1999; Velemínský et al., 2004; Waldhauser, 1987, 1993). Further, the 

influence of migrants, captives and/or slaves and how they contribute to the spread of 

material culture, particularly in relation to the development of new designs or ways of 

thinking, is unknown (Cameron, 2008, 2011, 2013, 2016; Lenski, 2008, 2014). 

 Though Hallstatt and La Tène artefacts such as, gold and silver objects, and 

Mediterranean imports (e.g., Attic pottery, wine flagon, and amphorae), have been 

comparatively better documented in some regions, e.g., Dürrnberg (Austria), and Münsingen-

Rain (Switzerland), the majority of descriptions are still vague (See pages 19, 32, 145 and 

155) (Bouzek, 2009; Hellebrandt, 1999; Kaenel and Müller, 1998; Marion, 2009; Soudska, 

1994; Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Vitali, 2003; Vitali, 

2008; Wendling and Wiltschke-Schrotta, 2015; Wells, 2008). Consequently, these artefacts in 

previous studies focused on the Celts have been used to link the diverse regions in which they 

are found (See pages 19, 32 and 54) (Brewster, 1980; Budinský and Waldhauser, 2004; Dent, 
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1979, 1982, 1984; Müller, 1998; Müller et al., 2008; Stead, 1979, 1991a; Waldhauser, 1987, 

1993). However, the majority of regional comparisons involve broad geographic areas that 

are often based on a limited number of artefacts or are site specific (See page 54). These 

artefacts are also predominantly described as belonging to the Hallstatt or La Tène periods 

overall, rather than to a specific division, e.g., LTA (Hodson, 1990; Müller, 1999; 

Tiefengraber and Wiltschke-Schrotta, 2012, 2014, 2015). Thus, the temporal and cultural 

associations among Celtic artefacts and populations may be uncertain (See page 54). 

Moreover, their distribution alone may not adequately document the extent and diversity of 

the cultural connections among the populations in which Hallstatt and La Tène material 

culture is found (See pages 19, 32 and 54). Therefore, the intrinsic link between these 

material cultures and Celtic populations is primarily derived from modern interpretations of 

their ethnicity and the application of the La Tène=Celtic paradigm to the diverse groups 

possessing the above artefacts (see page 54). However, in spite of these limitations, the 

archaeological evidence indicates the presence of varied and far-reaching connections during 

these periods, which are likely more complex than previously presumed.  

Trade as a mechanism for the spread of Celtic material culture and throughout the 

regions in which it is found has not been the focus of much research (see pages 1, 19 and 32) 

(Anthoons, 2007, 2011; Collis 1973, 1996, 2003; Cunliffe, 1997, 2018; Giles, 2012; James, 

2005; Koch, 2006). Documentations and descriptions of trade have predominantly focused on 

the distribution of Mediterranean imports along the Atlantic trade route (See page 32) (Collis, 

2003; Cunliffe, 1997, 2018; Koch, 2006). Although, local productions of trade items, i.e., 

fibulae, have been documented, regional diversity in design, manufacture, and the presence of 

local reproductions have not been described in detail (Collis, 2003; Cunliffe, 1997, 2018; 

Koch, 2006). As such, trade and differential access to trade routes as a mechanism for the 

spread of the Hallstatt and La Tène material cultures throughout the regions to which they 

spread cannot be ruled out. Further, the presence of captives and/or slaves producing artefacts 

and designs, similar to those from their homelands may also be a cause for regional variation 

within the above archaeological cultures (See page 54) (Arnold, 1988; Lenski, 2008; 2014). 

Artefacts such as fibulae and weapons may represent trade and/or regional variants, but to 

determine the possible extent and influence of trade, captives and/or slaves throughout the 

regions containing Celtic artefacts, it is necessary to move beyond the La Tène=Celtic 

paradigm.  
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The presence of these artefacts has been used to identify populations as Celtic, 

regardless of their number and evidence of other cultural associations. The distribution of 

isolated find supports the differential incorporation of the above cultures into diverse 

populations within the broad regions described as Celtic (See pages 32 and 54) (Collis, 2003; 

Koch, 2006; Kruta, 1991; Selinsky, 2015). Thus, Celtic ethnicity, ancestry and culture have 

been frequently ascribed based on the presence of a single or limited number of artefacts and 

similarities in burial practices (See page 54) (Collis, 2003; Koch, 2006; Kruta, 1991). 

Specific artefacts and burial practices are presumed to be Celtic, such as torcs, fibulae, and 

square barrows, and their presence alone has been used to designate a population as Celtic. 

However, no logical justification is provided as to why one artefact or burial practice is 

ethnically significant and another is not (See page 54) (Collis, 2003; Dietler, 1994; Hodson, 

1964; Koch, 2003, 2006; Ruiz Zapatero 1990, 1993, 1996; Shennan, 1994). Further, as 

artefacts, are produced and integrated into different conceptions of cultural relevance, move 

and are copied between cultures it is difficult to rely on them as markers of identity (Halkon, 

2017).  

Intra-and-extra regional contact can also result in regional diversity within an 

archaeological culture, as evident in the Hallstatt and La Tène cultures (See page 61) (Collis, 

2003; Dietler, 1994; Hodson, 1964; Koch, 2003, 2006; Ruiz Zapatero 1990, 1993, 1996; 

Shennan, 1994). Therefore, what may appear to be a ubiquitous artefact may represent more 

complex tribal, group and population relationships. The association between the Iron Age and 

a Celtic ethnicity and ancestry have been derived in part, from modern interpretation and 

associations between archaeological culture and identity. Thus, the ascribed Celtic identity to 

diverse populations throughout Iron Age Europe is as much geographical as it is cultural (See 

pages 1 and 54). The potential presence of multiethnic communities, multiple ancestral 

lineages, and the maintenance of multiple ethnic identities within one community is often 

ignored by Celtic scholars (Frangipane, 2015; Hill, 1994; Lightfoot, 2015; Manzanilla, 2015; 

Rothman, 2015). Moreover, ascribed, externally constructed and perceived ethnic identities 

have also played a role in the discourse of the application of a Celtic identity to numerous 

diverse populations (See page 1) (Blanton, 2015; Bonacchi et al., 2016, 2018; Frangipane, 

2015; Goldstein, 2015; Grufludd et al., 1999; Hingley, 2018; Hingley et al., 2018; Lightfoot, 

2015; Manzanilla, 2015; Rothman, 2015). The application of Celtic ethnicity and/or ancestral 

heritage within and among populations in Iron Age Europe and Britain is still primarily 

reliant on the association between archaeological culture and identity. Consequently, the 
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application of ethnicity, or ancestry, to an archaeologically derived population such as the 

Celts is problematic. Although linguistic evidence has been used to ascribe a Celtic identity 

to numerous groups, this association is problematic as well. The intrinsic link between the 

presumption of a spoken Celtic language and population is based in part on their geographic 

distribution (See pages 19, 32 and 91) (Ball and Fife, 1993; Ball and Muller, 2012; Collis, 

2003; Forester et al., 2004; Forester and Toth 2003; Gray and Atkinson, 2003). However, due 

to the nature of the available linguistic evidence, fragmentary, it is difficult to reconstruct the 

underlying relationships among groups presumed to have spoken Celtic languages. Therefore, 

it is difficult to determine the degree of variation among languages identified as Celtic and 

their approximate boundaries (See page 91) (Barbujani and Sokal, 1990; Creanza et al., 2015; 

Greenhill et al., 2017; Longobardi, et al., 2015). In spite of the above limitation, the spread or 

presence of these languages is often linked with the spread of Celtic material culture, large-

scale migration and settlement collapse (Ball and Fife, 1993; Collis, 2003; Cunliffe, 1997, 

2009; Forester et al., 2004; Forester and Toth 2003; Gray and Atkinson, 2003).  

Settlement abandonment has been suggested to have occurred during the Hallstatt and 

La Tène periods and is believed to have accompanied the diachronic changes in burial 

practices and the quality and quantity of artefacts during the HaD/LTA and LTC/LTD 

transitions (See page 61, Table 8) (Collis, 2003; Cunliffe, 1997; James, 2005; Koch, 2007; 

Maier, 2003). However, there is no evidence, e.g., deteriorating climate conditions, that 

regions become significantly deserted (Collis, 2003; Cunliffe, 1997; James, 2005; Koch, 

2007; Maier, 2003; Smith, 2012). Thus, it is unlikely that large-scale migration events 

occurred frequently within or from these regions. Instead, mobility likely involved smaller 

groups or single individuals and was related to exogamy, trade, warfare or allegiance 

fosterage (See page 61) (Anctil, 2016; Collis, 2003; Cunliffe, 1997, 2010, 2018; James, 2005; 

Koch, 2007; Scheeres, 2014a; Scheeres et al., 2013b, 2014b;Waldhauser, 1999). Further, as 

cultural continuity is evident in some regions during the HaD/LTA and LTC/LTD transitions, 

the similarities and regional differences in material culture throughout these regions may 

indicate increased individual mobility or small-scale migration (See page 61) (Anctil, 2016; 

Collis, 2003, Cunliffe, 1997; Hodson, 1968; James, 2005; Koch, 2007; Stöckli, 1991). 

Stable isotope analyses also support varying levels of individual mobility and intra-

and-extra-regional contact (Knipper et al., 2013, 2014, 2017; Müller-Scheeßel et al., 2015; 

Scheeres, 2014a; Scheeres et al., 2013b, 2014b). These analyses may appear to support the 

notion that Celtic warriors were highly mobile, as described by the Greek and Roman 
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primary sources (Nash Briggs, 1984, 1985, 2003). However, stable isotope research has 

shown that the mobility associated with the so-called warriors was predominantly intra-

regional (See page 61) (Knipper et al., 2013, 2014, 2017; Müller-Scheeßel et al., 2015; 

Scheeres, 2014a; Scheeres et al., 2013b, 2014b).  

The frequency of non-local weapon burials has been found to vary by region. 

Although in some regions such as Radovesice (Czech Republic) and Kutná-Hora-Karlov 

(Czech Republic) the majority of males were found to have moved into the region later in life 

(Scheeres, 2014a; Scheeres et al., 2013b, 2014b). At Radovesice (Czech Republic) 22.2%, 2 

out of 9, of male burials with weapons, were local, while 77.7%, 7 out of 9 individuals, were 

non-local (Scheeres, 2014a; Scheeres et al., 2014b). A similar pattern is evident at Kutná-

Hora-Karlov (Czech Republic) 33.3%, 3 out of 9 individuals were local and 66.6%, 6 out of 9 

individuals were non-local (Scheeres, 2014a; Scheeres et al., 2014b). The presence of 

weapons in the burials of local individuals suggests that mobility among males in these 

regions was not limited to the so-called warriors (See page 61). Further, the above regions 

also had a significant proportion of non-local individuals overall, 74.3%, 26 out of 35 

individuals, and 76%, 19 out of 25 individuals, respectively (Scheeres, 2014a; Scheeres et al., 

2013b, 2014b). Trade items in these regions have also been found in burials associated with 

both local and non-local individuals (Knipper et al., 2017; Oelze et al., 2012; Scheeres, 

2014a; Scheeres et al., 2013b). The archaeological evidence suggests a high level of mobility 

among the alleged Celtic warriors, but this association is not found in all the regions in which 

these burials have been found (See pages 61, 164 and 168) (Knipper et al., 2017; Oelze et al., 

2012; Scheeres, 2014a; Scheeres et al., 2013b). Therefore, the classical Greek and Roman 

descriptions of the highly mobile Celtic warriors and/or mercenaries may have been restricted 

to specific regions (Hauschild, 2015; Scheeres et al., 2014b; Tomaschitz, 2002). Moreover, 

the presence of Celtic weapons throughout Europe has been argued to support the high level 

of mobility among warriors. However, the distribution of these items may also indicate the 

presence of diverse trade routes through which Celtic weapons and other materials and items 

were exchanged (See pages 32 and 61) (Arnold, 2005, 2015, 2016a, b; Arnold and Hagmann, 

2015; Georganas, 2018; Fernández-Götz and Arnold, 2017, 2018; Hauschild, 2010a, b, 2015; 

Scheeres et al., 2013b, 2014b; Webster, 1996). Although burial with a weapon, may not 

always correlate with or indicate individual mobility (Scheeres et al., 2013b). This is evident 

in several regions including, Nerbringen (Stuttgart, Germany), Monte Bibele (Bologna, Italy), 

and Magdalenenberg (southwest Germany), in which the majority of the burials with 
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weapons were of local individuals (See pages 61 and 149) (Oelze et al., 2012; Scheeres et al., 

2013b, 2014b; Schweissing, 2013; Waneke, 1999).  

In several previous studies, weapon burials associated with evidence of injuries 

derived from combat have been correlated with warriors, however, this association is 

disputed as not all individuals given a weapon burial have injuries derived from combat 

present (Anderson et al., 2018; Arnold, 2005, 2015, 2016a, b; Arnold and Hagmann, 2015; 

Bertaud, 2017; D'Onofrio, 2011; Fernández-Götz and Arnold, 2017, 2018; Georganas, 2018; 

Harrison, 2015; Härke,1990; Jordan, 2016; Kurila, 2007; Pitman, and Doonan, 2018; Rustoiu 

and Berecki, 2015; Rustoiu, 2013; Thorpe, 2013; Ucko,1969; Webster, 1996;Whitley, 2002). 

Furthermore, injuries derived from, or associated with, combat have been found in burials 

without weapons (See page 61) (Anderson et al., 2018; Arnold, 2005, 2016a, b; Arnold and 

Hagmann, 2015; Bertaud, 2017; D'Onofrio, 2011; Fernández-Götz and Arnold, 2017, 2018; 

Georganas, 2018; Harrison, 2015; Härke,1990; Jordan, 2016; Kurila, 2007; Pitman, and 

Doonan, 2018; Rustoiu and Berecki, 2015; Rustoiu, 2013; Thorpe, 2013; Ucko,1969; 

Webster, 1996; Whitley, 2002).  

Moreover, these burials are often only described as possessing a weapon, with age 

estimates of the individual human skeletal remains and comprehensive weapon descriptions 

often not provided (Oelze et al., 2012; Scheeres et al., 2013b). Several of the weapons 

recovered from these burials have been repaired repeatedly, and have been interpreted to 

represent prestige items or family keepsakes; although any evidence of repair, the location(s) 

and estimated frequency is not often described (See page 61) (Arnold, 2005, 2016a, b; Arnold 

and Hagmann, 2015; Bertaud, 2017; Fernández-Götz and Arnold, 2017, 2018; 

Harrison, 2015; Jordan, 2016; Oelze et al., 2012; Rustoiu, 2013; Scheeres et al., 2013b, 

2014b; Schweissing, 2013; Waneke, 1999; Whitley, 2002). Consequently, the presence of a 

weapon alone may not designate the individual as a warrior. Thus, the correlation between 

the presence of weapon burials throughout the regions possessing Celtic artefacts and the 

presumption of highly mobile mercenaries may be tenuous.  

Although, some of these burials may represent warriors, their mobility as indicated by 

stable isotope analysis does not support that described by the Greeks and Romans (Arnold, 

2005, 2016a, b; Arnold and Hagmann, 2015; Fernández-Götz and Arnold, 2017, 2018; Oelze 

et al., 2012; Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Schweissing, 2013; Tomaschitz, 

2002; Waneke, 1999). This evidence also does not support the notion that the degree of 

mobility indicated among burials with weapons, and thus mercenaries, is in line with that 

http://eprints.gla.ac.uk/view/author/33247.html
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reported by the Greeks and Romans (See page 61) (Knipper et al., 2014; Oelze et al., 2012; 

Scheeres, 2014a; Scheeres et al., 2014b). This evidence suggests that mobility among the so-

called warriors was predominantly intra-regional (Knipper et al., 2014; Oelze et al., 2012; 

Scheeres, 2014a; Scheeres et al., 2014b). Furthermore, analysis of  mobility within several 

regions has shown that both males and females were mobile before reaching adulthood, 

including Kutná-Hora-Karlov (Czech Republic), Radovesice I and II (Czech Republic), 

Basel-Gasfabrik (Switzerland), Glauberg (Hesse, Germany) (See pages 61, 164 and 168) 

(Knipper et al., 2014; Scheeres, 2014a; Scheeres et al., 2014b). These findings are in line 

with the previous nonmetric dental analyses indicating the presence of biologically distinct 

populations within the regions associated with the Celts (See pages 1, 141 and 145) (Anctil, 

2016; Maxová et al., 2011). Residential changes and individual mobility do not appear to be 

confined to the core or expansion regions; individuals appear to have been moving within 

regions irrespective of these designations. Consequently, the stable isotope evidence does not 

support frequent large-scale migrations within these regions. Therefore, the large numbers of 

Celtic tribes migrating throughout Central Europe and into Britain, documented by the 

Romans, could be considered as pure propaganda (See page 61) (Collis, 2003; Delbrück, 

1900; Furger-Gunti, 1984; Handford, 1982). Instead, mechanisms including isolation, small-

scale or individual migration, fosterage, exogamy, limited extra-regional mobility, and gene 

flow, may have influenced the population history and/or structure within the above regions 

(Konigsberg, 2006; Relethford, 1996; Relethford and Blangero, 1990). Thus, the old model 

of mass migration during the 4th and 3rd centuries BC of homogeneous Celtic populations that 

abandoned their homelands in the core, and migrated into the expansion regions may not 

explain the range of biological and ethnic variation among these groups (See page 61). The 

available modern European genetic evidence further supports the notion of a greater degree 

of biological variation among these groups than previously indicated. 

Different Y-chromosome and mtDNA haplogroups and sub-clades are evident within 

and among the regions associated with Celtic material culture and language(s) (Busby et al., 

2012; Capelli, 2003; Cassidy et al., 2015; Cruciani et al., 2011; Lucotte, 2015; Weale et al., 

2002; Wilson et al., 2001). The presence of overlapping haplogroups and sub-clades, within 

these regions suggests that a combination of different mechanisms including small-scale 

migration and genetic drift may have resulted in the observed diversity (See pages 103, 105 

and 107) (Busby et al., 2012; Capelli, 2003; Cassidy et al., 2015; Cruciani et al., 2011; 

Lucotte, 2015; Weale et al., 2002; Wilson et al., 2001). However, previous studies have relied 
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on the Y-chromosome and mtDNA haplogroup and sub-clade distributions indicated by 

modern populations (Busby et al., 2012; Cruciani et al., 2011; Lucotte, 2015; Weale et al., 

2002; Wilson et al., 2001). Consequently, they might not adequately reflect the amount of 

diversity within or among populations during the Iron Age (See pages 103, 105 and 107). 

Further, these studies have attempted to document the above distribution in broad geographic 

regions associated with Celtic populations (Busby et al., 2012; Cruciani et al., 2011; Lucotte, 

2015; Weale et al., 2002; Wilson et al., 2001). Therefore, the range of variation among the 

diverse region-specific groups is unknown. However, despite these limitations, the modern 

European genetic evidence is in line with the archaeological, linguistic and stable isotope 

evidence indicating small-scale migration, demic diffusion and/or assimilation (See pages 61, 

103, 105 and 107). 

Although the above lines of evidence suggest the presence of diverse regional 

populations, they alone have not been sufficient to determine the underlying biological 

relationships, population history, and structure within the core and expansion regions. 

Therefore, the degree of phenotypic variation within and among populations in these regions 

is unknown. However, biodistance analyses provide a measure of diversity within and among 

populations or groups through examination of phenotypic expression (See page 119) 

(Buikstra et al., 1990). This analytical method facilitates comparisons among populations 

based on genetic and/or phenotypic characters including dental morphological traits (Buikstra 

et al., 1990). These traits are discrete anatomical units that show patterns of distinct 

geographic variation, as well as within, between, and among populations (See pages 113, 

119, 124, 125 and 131). Significant differences in the frequency of trait expression between 

populations suggest influence from mechanisms such as gene flow, genetic drift, and 

mutation. Differences in dental nonmetric trait expression can therefore be used to determine 

affinity between and among populations (Bedrick et al., 2000; Buikstra et al., 1990; Harris 

and Sjøvold, 2004; Hanihara, 2008, 2010; Hillson, 1996; Irish, 1993, 1998a, b, c, 2000, 2005, 

2010; Irish and Guatelli-Steinberg, 2003; Sjøvold, 1973). Further, the establishment of the 

ASUDAS system, which is the standard and most widely used method for identifying 

nonmetric traits, has facilitated comparisons of broad geographic and region-specific 

populations (See pages 113 and 119) (Hillson, 1996; Scott and Turner, 1988; Turner et al., 

1991). The ASUDAS system, specifically 36 of these traits, based on the work of Irish (1993) 

has been used in numerous previous studies and have been established as successful in 

describing and comparing the biological affinity among and within populations (Anctil, 2016; 
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Coppa et al., 1998, 2000, 2007; Cucina et al., 1999; Hanihara, 2008, 2010; Irish, 1993, 1997, 

1998b, c, 2000, 2005, 2006, 2008, 2010, 2016; Irish et al., 2014, 2018; Irish and Guatelli-

Steinberg, 2003; Matsumura et al., 2009; Turner, 1969; 1984, 1985).  

Previous biodistance analyses, based on dental morphological data, have documented 

the presence of regional diversity and biologically distinct populations within the regions 

associated with the Celts (See pages 1, 141 and 145) (Anctil, 2016; Maxová et a., 2011). 

Although there are some differences between the results of dental and genetic analyses, the 

discrepancies are likely the result of the fact that dental traits evolve slowly. Therefore, they 

may provide a population history more in line with a deeper time scale than the genetic data 

(Hubbard, 2012; Irish et al., 2020; Ricaut et al., 2010). However, previous genomic analyses 

have found a significant and positive correlation (r=0.574, p< 0.001 and r=0.500, p=.021) 

between dental nonmetric and nuclear microsatellite data used to distinguish global and 

regional populations (See pages 1, 125 and 131) (Hubbard, 2012; Rathmann et al., 2017). 

This supports the notion that dental morphological traits provide similar information about 

biological affinity and population structure as genetic data (Hubbard, 2012; Hubbard et al., 

2015; Irish et al., 2020; Ricaut et al., 2010; Scott and Turner 1997). The heritability of dental 

traits, 40%-80%, further supports the association between genetic and dental datasets (See 

pages 113, 125 and 131) (Jordan and Abrams, 1992; Mizoguchi, 1978; Scott, 1991; Scott and 

Irish, 2017; Scott and Turner, 1997; Willermet et al., 2013). Therefore, dental morphological 

data can be used to represent, by proxy, the genetic variation among and within populations. 

These data were used to address the following research questions: 

 

1. Do Celtic populations within the expansion regions exhibit more phenetic diversity than 

those within the core?   

2. Were populations in the expansion regions acculturated, genetically influenced by the 

arriving Celts, and/or replaced?  

3. Are the observed morphological differences among the samples within the core and 

expansion regions explained by an isolation by distance model? 

  

The following sections will explore each research question in relation to the biological 

variation among the samples analysed.  
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Do Celtic populations within the expansion regions exhibit more phenetic diversity than 

those within the core?  

 

The biological affinity analysis indicates that the populations in the expansion regions 

exhibit less phenetic diversity than those within the core as 2 samples within these regions are 

biologically indistinguishable; whereas all the samples within the core are phenetically 

diverse. Although 2 samples in each region are not phenetically diverse, those within the core 

represent different temporal periods of one sample, Dürrnberg Hallstatt (Austria) and 

Dürrnberg La Tène (Austria), while those in the expansion regions represent 2 separate 

samples, Kutná-Hora-Karlov (Czech Republic) and Radovesice (Czech Republic). However, 

the sample composition is not evenly distributed within these regions, as there are more core 

than expansion samples, 6 and 4, respectively. Therefore, the core regions may appear to 

exhibit more phenetic diversity because there are more samples. In spite of the discrepancy in 

sample distribution, there is no evidence for population continuity based on the samples 

analysed, with the exception of those above. Some of the sample pairs have comparably low 

MMD values including, Dürrnberg La Tène (Austria), and Wetwang Slack (east Yorkshire, 

Britain) 0.028 and Dürrnberg (Austria), and Wetwang Slack (east Yorkshire, Britain), 0.025, 

respectively (See page 206). However, all of the remaining sample pairs have significant and 

moderate to high phenetic distances comparatively. Intra-and-extra regional diversity is 

indicated by the 25 trait MMD comparison (Table 11). Phenetic heterogeneity, among most 

of the samples, is indicated by both 20 trait MMD comparisons (Tables 12 and 13). However, 

there is a greater emphasis on divergence in the 20 trait analyses, with the Dürrnberg 

(Austria) sample combined (See page 206). Based on the above MMD analyses, the null 

hypothesis that there is no difference in dental nonmetric traits is rejected at the .025 alpha 

level for all samples, except the Dürrnberg (Austria), Kutná-Hora-Karlov (Czech Republic) 

and Radovesice (Czech Republic) samples. These samples have MMD values that are less 

than 2 times their SD, this indicates that they are phenetically indistinguishable and represent 

the same biological population (See page 206) (Irish, 2010, 2016; Irish et al., 2014, 2018; 

Sjøvold, 1973,1977). The remaining samples represent biologically distinct populations, as 

their MMD values are greater than 2 times their SD (See pages 188, 206, Tables 12 and 13) 

(Irish, 2010, 2016; Irish et al., 2014, 2018; Sjøvold, 1973,1977).  

Although the Hallstatt and La Tène periods of the Dürrnberg (Austria) sample are not 

significantly different from one another, the MMD distances decrease during the La Tène 
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period (20 trait MMD values 0.058-0.084 and 0.041-0.057, respectively) (See page 206). 

Mechanisms such as, rerouting of trade routes, a change in locations from which marriage 

partners or migrants were drawn, increased migration from neighbouring intra-and-extra-

regional populations during the La Tène period, or migration into the region prior to the HaD 

period may have resulted in a decrease in phenetic differentiation within this sample (See 

pages 19, 61, 206 and 206, Table 8). Additionally, it has been suggested that Dürrnberg 

(Austria) may have been a trading centre, based on the abundant presence of trade and high-

quality artefacts. The presence of an active nearby salt mine also supports this notion, as the 

population would have had control of a valuable commodity (See pages 61 and 155) 

(Adshead, 1992; Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling 

and Wiltschke-Schrotta, 2015).  

Further support is provided by the apparent demographic expansion and decline 

during the La Tène period, evident in the conversion of burial to settlement areas and the 

subsequent reconversion into burial areas (Thorsten et al., 2017; Tiefengraber and Wiltschke-

Schrotta, 2015; Wendling and Wiltschke-Schrotta, 2015). Although, this apparent population 

increase and decline may also have been the result of deteriorating climate conditions or the 

declining productivity of the salt mine (See pages 155, 157, 158 and 159) (Adshead, 1992; 

Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and Wiltschke-

Schrotta, 2015). However, as no stable isotope analysis has been conducted on the skeletal 

material from Dürrnberg (Austria), the number of non-local individuals is unknown. 

Consequently, it is difficult to determine whether the decreasing MMD values indicate 

decreasing phenetic similarity during the Hallstatt and La Tène periods due to an increase in 

the number of migrants (See page 61). Alternatively, the decreasing phenetic similarity may 

be related to a prior migration into the region and subsequent phenetic diversification through 

gene flow or genetic drift. However, other processes such as small-scale migration, exogamy, 

and cultural assimilation cannot be ruled out. Similar processes may also have resulted in the 

phenetic similarity between the Radovesice (Czech Republic) and Kutná-Hora-Karlov (Czech 

Republic) samples. 

The regions in the Czech Republic in which the Radovesice (Czech Republic) and 

Kutná-Hora-Karlov (Czech Republic) samples are located are in close geographic proximity, 

only 76.44 km apart. Therefore, they may have derived from the same original population, 

and it is possible the samples had not become phenetically distinct (See pages 164, 168 and 

221). Alternatively, frequent gene flow between the samples may have occurred through 
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processes such as exogamy and migration, to the extent that they became genetically 

indistinguishable from one another. However, the Radovesice (Czech Republic) and Kutná-

Hora-Karlov (Czech Republic) samples were discovered through the course of construction, 

which destroyed several graves and fragmented much of the recovered skeletal material 

(Valentová, 1991; Valentová and Sankot, 2012). Further, the shallow grave depth at Kutná-

Hora-Karlov (Czech Republic) may have resulted in the loss of several burials due to 

construction, taphonomic or agricultural processes such as erosion (Valentová, 1991; 

Valentová and Sankot, 2012). These processes and shallow grave depth are also believed to 

have reduced the number of burials recovered from Nebringen (Stuttgart, Germany) (See 

pages 149 and 168) (Krämer, 1964). Therefore, Radovesice (Czech Republic) Kutná-Hora-

Karlov (Czech Republic) and Nebringen (Stuttgart, Germany) may represent sub-samples. 

Additionally, the Radovesice (Czech Republic) sample was pooled to obtain an adequate 

sample size for statistical analysis and comprises both the Radovesice I and II (Czech 

Republic) cemeteries. Since it is unknown whether these cemeteries represent a single or 

composite population, the pooled sample may not adequately represent the range of variation 

within the original population (See page 164). 

 The German (Stuttgart, Germany), Rudston Makeshift (east Yorkshire, Britain), and 

Pontecagnano (southern Italy) samples also represent pooled or sub-samples, and as such are 

also subject to the above caveat. The Münsingen-Rain (Switzerland) sample can also be said 

to be a sub-sample, as only the skulls of 77 out of 220 individuals were recovered (See page 

145). Consequently, the above samples may represent a proportion of the variation present in 

the original populations. The results of the biodistance analysis may need to be interpreted 

with a degree of caution in regard to these samples. However, no additional skeletal material 

from the above samples is available for analysis. Thus, these samples do not need to be 

interpreted with the same degree of caution as the German (Stuttgart, Germany), Rudston 

Makeshift (east Yorkshire, Britain), and Pontecagnano (southern Italy) samples. Although no 

additional skeletal material is available from Radovesice (Czech Republic) this sample 

represents a composite sample and therefore should be interpreted with caution, as described 

above. Therefore, further samples are necessary to determine the biological affinity within 

those regions represented by either pooled or sub-samples.  

However, an overall trend towards limited intra-regional and no extra-regional gene 

flow is suggested by the MMD distance values among the samples. Although increased intra-
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and-extra-regional gene flow within these broad geographic regions cannot be ruled out; as 

the samples reflect a proportion of the total possible phenetic and regional variability during 

this period. Both the 20 trait MMD distances (0.028-0.084 and 0.025-0.085, respectively) 

also support a significant degree of phenetic variation among the core and expansion regions, 

those represented by the samples, compared to that indicated by the other lines of evidence, 

i.e., archaeological (See pages 32, 206, Tables 12 and 13). These distances also support the 

phenetic divergence between the Celtic samples and the comparative sample, Pontecagnano 

(southern Italy). This divergence supports the presence of greater regional variation among 

European Iron Age populations than previously assumed. Further, the presence of 

biologically distinct populations associated with and without Celtic material culture suggests 

that the La Tène=Celtic paradigm may be nominal. The observed phenetic diversity also 

supports the potential issues with utilizing type artefacts, such as fibulae, to characterize a 

culture and its subsequent dispersals, as the presence of these artefacts alone cannot be 

reliably used to establish ethnic and biological relationships (See pages 32 and 206) (Collis, 

2003; Cunliffe, 1997, 2009; Giles, 2012; Koch, 2006). The overall sample distributions 

indicated by the MMD distances, the nominal application of the La Tène=Celtic paradigm, 

and the issue with the associations of type artefacts are also indicated by the MDS graphs and 

cluster Dendrograms (See pages, 194, 199, 211 and 215, Figures 39-41 and 46-47, 

respectively) (Collis, 2003; Cunliffe, 1997, 2009; Giles, 2012; Koch, 2006).  

The quantitatively identified inter-sample trends as indicated by the MMD matrices 

are also evident in the MDS graphs and hierarchical cluster dendrograms (See pages 206, 211 

and 215, Figures 39-41 and 42-47, respectively). The sample distributions indicated by the 

MDS graphs share similar distributions. However, the relative positions of some samples, 

such as Pontecagnano (southern Italy), and Wetwang Slack (east Yorkshire, Britain) are 

switched due to differential trait weighting (See pages 211 and 215). The configurations of 

the 25 and both 20 trait MDS graphs also share some patterning with the PCA graph, 

including the relative positions of the Dürrnberg La Tène (Austria), Dürrnberg pooled 

(Austria), and Rudston Makeshift (east Yorkshire, Britain) samples (See page 202, 211, 

Figures 38 and 39-41, respectively). Although the core and expansion region samples are 

interspersed, in the PCA and all of the MDS graphs, clear separation among samples is 

evident (See pages 202 and 211, Figures 38 and 39-41, respectively). Further, in the above 

graphs, the samples are interspersed by region. Therefore, the separation of Celtic 

populations and material culture into the core and expansion regions may be nominal. The 
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social and/or cultural changes within these regions are also not explained by the current 

application of the core and expansion model within the field of Celtic studies. The temporal 

and geographic designation of the above areas does not consider the diverse internal social 

dynamics and individual development trajectories of the societies involved (See page 1) 

(Cordell 1979; Martin and Plog 1973; Tainter and Gillio 1980). However, this model is still 

utilized in the field of Celtic studies to describe populations throughout Iron Age Europe 

possessing Celtic material culture and languages; regardless of the complex nature and 

interactions among populations within the above regions (Collis, 2003; Koch, 2006). The 

sample distributions indicated by the above graphs also suggest that the observed variation 

may also indicate the presence of region-specific rather than broad geographically distributed 

populations or groups. This pattern and the presence of diverse populations possessing Celtic 

material culture are also supported, in part, by the archaeological evidence. 

 The archaeological evidence indicates far-reaching and diverse intra-and-extra-

regional connections during the Hallstatt and La Tène periods (See pages 19, 32, Table 8) 

(Almagro-Gorba, 1991; Budinský and Waldhauser, 2004; Haffner, 1976; Joachim, 1968; 

Krämer, 1964; Koch, 2006; Ramsl, 2002; Rustoiu, 2008, 2011a, b; Rustoiu and Egri, 2014; 

Salac, 2011; Soudska, 1994; Tiefengraber and Wiltschke-Schrotta, 2012, 2014; Valentová, 

1991, 1993 Valentová and Sankot, 2012; Waldhauser, 1993). Dispersal of typical artefacts 

such as, fibulae; torcs; bracelets; Mediterranean imports (e.g., Attic pottery, wine flagons, and 

red-figure pottery); gold and silver items indicate the development and maintenance of the 

above connections during these periods (See pages 19, 32, Tables 1, 4 and 5) (Budinský and 

Waldhauser, 2004; Collis, 2003; Haffner, 1976; Joachim, 1968; Krämer, 1964; Koch, 2006; 

Ramsl, 2002; Rustoiu, 2008, 2011a, b; Rustoiu and Egri, 2014). However, the distributions of 

the above artefacts are still commonly interpreted under the La Tène=Celtic paradigm. 

Although the archaeological evidence does not support the notion of broad geographically 

distributed populations or groups; the presence of Celtic artefacts are still interpreted to 

indicate the presence of Celtic populations (See pages 32 and 54) (Cunliffe, 1997, 2009; 

Collis, 2003; Giles, 2012; Hauschild et al., 2013; Hellebrandt, 1999; Hellebrandt and 

Hellebrandt, 1990; James, 1999; Koch, 2003, 2006; Kruta, 1991; Marion et al., 2005a, b; 

Marion, 2008; Ramsl, 2002, 2012a, b, 2014a, b; Scheeres, 2014a; Scheeres et al., 2013b, 

2014b; Stead, 1991a; Vitali, 1987, 1988, 1991; Vitali et al., 2002; Wendling et al., 2015). The 

presence of regional variation in artefact design, manufacture and distribution further support 

the presence of biologically distinct populations, as indicated by the MMD distances (See 
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page 206). The above connections are also supported by the distribution of Celtic art styles, 

and burial practices during the Hallstatt and La Tène periods (See pages 19, 32, Tables 2, 6, 3 

and 7, respectively). However, the patterns indicated by the dispersal of these artefacts are 

more diverse and indicative of a greater degree of regional connectivity than described by 

previous studies (See pages 32 and 206). The spread of Celtic material culture during the 4th 

and 3rd centuries BC has been predominantly interpreted to indicate large-scale migration. 

However, the above distributions are in line with small-scale migration, individual 

movement, limited intra-and-extra-regional movement, cultural diffusion and/or assimilation. 

The spread of Celtic artefacts through these mechanisms is also supported by the MMD 

values and the available stable isotope analyses (See page 61 and 206).  

However, as the samples analysed only represent a proportion of the total populations 

within the core and expansion regions, they may be phenetically similar to other groups, not 

analysed, within these regions. The Dürrnberg (Austria) sample may be phenetically similar 

to other Austrian samples such as Mannersdorf (Austria), Oberndorf (Austria), and Ossarn 

(Austria). The Kutná-Hora-Karlov (Czech Republic) and Radovesice (Czech Republic) 

samples may have more affinity to others within the Czech Republic including Jenišův Újezd 

(Czech Republic) and Manětín-Hrádek (Czech Republic), a finding which is partly supported 

by the stable isotope evidence. Some regions had comparatively high numbers of non-local 

individuals such as Radovesice (Czech Republic) and Kutná-Hora-Karlov (Czech Republic) 

where 74.3% (26 out of 35 individuals) and 76% (19 out of 25 individuals) of the individuals 

were migrants, respectively (See page 61) (Scheeres, 2014a; Scheeres et al., 2014b). 

However, these individuals migrated into the region from the surrounding areas rather than 

from extra-regional locations (Scheeres, 2014a; Scheeres et al., 2014b). Limited intra-

regional movement is also supported by the stable isotope evidence for non-local individuals 

from Münsingen-Rain, Switzerland (Moghaddam et al., 2014; Scheeres, 2014a). The majority 

of the population was local, only 14.7%, 5 out of 34 individuals, migrated from the 

neighbouring areas in the Swiss Plateau (Moghaddam et al., 2014; Scheeres, 2014a). A 

similar pattern is evident at Nebringen (Stuttgart, Germany), Manching (southern Germany), 

and Monte Bibele (Bologna, Italy), where 88%, 15 out of 17 individuals, 77%, 14 out of 18 

individuals, 81%, 17 out of 21 individuals, respectively, of the populations, were found to be 

local (Scheeres, 2014a; Scheeres et al., 2013b; Scheeres et al., 2014b; Schweissing, 2013; 

Waneke, 1999). Limited mobility is also evident in Kirkburn (east Yorkshire, Britain), Garton 

Station (east Yorkshire, Britain) and Wetwang Slack (east Yorkshire, Britain) (Jay et al., 
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2013; Jay and Montgomery, 2020). Further, in the majority of the populations with 

comparatively high amounts of non-local individuals, e.g., Radovesice (Czech Republic), 

movement was primarily intra-regional (See page 61). However, there is also evidence for 

limited extra-regional movement. The majority of migrants from Magdalenenberg (southwest 

Germany) and Basel-Gasfabrik (Switzerland), 17.1%, 13 out of 76 individuals, and 37%, 20 

out of 54 individuals, respectively, were from extra-regional locations (Knipper et al., 2017; 

Oelze et al., 2012).   

Migrants identified in the above European studies were from diverse and 

geographically distant locations including, Austria, France, Heuneburg (southern Germany), 

northern Italy, the Alps, the Swiss Plateau, the Iberian Peninsula, the Black Forest, a region in 

southwestern Germany near the French border, and the Mediterranean (See page 61). 

(Knipper et al., 2017; Oelze et al., 2012). Further, the majority of the individuals that moved 

during adulthood and were males (Knipper et al., 2017; Oelze et al., 2012). This suggests that 

individual mobility was common within some regions associated with the Celts. Rather than 

the large-scale population-level migration reported by the Greeks and Romans. The above 

stable isotopic evidence also suggests that limited extra-regional migration and relatively 

high intra-regional movement may have characterized Celtic populations (See page 61). 

However, the degree and directionality of migration associated with these populations appear 

to be region-specific. Further samples are necessary to determine whether limited extra-

regional movement is also evident in other regions associated with the Celts. The 

comparatively high degree of intra-regional mobility within the regions analysed, except for 

Nebringen (Stuttgart, Germany) may also reflect a rerouting or breakdown of trade routes 

(See page 61). Alternatively, changes in marriage partner procurement networks may have 

impacted mobility. However, patrilocality, small-scale and/or family migration cannot be 

ruled out as mechanisms driving migration throughout the above regions. The patterns 

indicated by the archaeological, stable isotope, and MMD values are also supported by the 

available modern European genetic and extinct linguistic evidence (See pages 61, 103, 105, 

107 and 206). 

The modern European distribution of Y-chromosome and mtDNA haplogroups and 

sub-clades (e.g., R1b-S28/U152 and H5) supports the presence of distinct populations within 

the diverse regions broadly defined as Celtic. However, as previous modern European genetic 

analyses have relied on the Y-chromosome and mtDNA distributions indicated by modern 

populations, they might not adequately reflect the amount of diversity in the Iron Age (See 
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pages 103, 105 and 107) (Busby et al., 2012; Cassidy et al., 2015; Cruciani et al., 2011; 

Lucotte, 2015; McEvoy et al., 2004; Weale et al., 2002; Wilson et al., 2001). Although 

variations in regional patterns are indicated by the above lines of evidence, the available 

linguistic inscriptions are more limited. Despite the longstanding association between a 

spoken Celtic language and an ethnically or biologically Celtic population, there is not a 

considerable indication of linguistic differences throughout the regions these languages are 

believed to have spread (See page 91). Since the continental Celtic languages are extinct and 

the majority of the inscriptions are fragmentary; it is difficult to determine the degree of 

variation among populations based on the presence and distribution of these languages and 

their approximate linguistic boundaries (See page 91) (Arnold, 2005; Collis, 2003; 

Tomaschitz, 2002). However, based on the significant concordance between ancient and 

modern genetic and extinct linguistic data; the presence of genetic boundaries, as indicated by 

the distributions of haplogroups and the MMD distances, may be used as a proxy for 

linguistic boundaries among Celtic populations (See pages 105, 107 and 206) (Barbujani et 

al., 1990; Bickel, 2019; Creanza et al., 2015; Greenhill et al., 2017; Longobardi et al., 2015; 

Sokal, 1988; Sokal et al., 1988, 1989, 1990). Although the preceding biodistance analysis 

indicates the presence of phenetic heterogeneity among the samples, the results may need to 

be interpreted with a degree of caution. 

As the samples have been predominately dated by associated artefacts, they may be 

pooled temporally. Consequently, temporal differences may not be adequately represented. 

However, as the populations associated with the Hallstatt and La Tène cultures are 

predominately dated by artefact association, except for a few studies, these dates often 

represent the only available dates in most cases (See pages 19 and 32) (Collis, 2003; Cunliffe, 

1979, 1997; Hodson, 1990; James, 2005; Jay et al., 2013; Jay and Montgomery, 2020; Kruta, 

1991; Müller, 1999; Tiefengraber and Wiltschke-Schrotta, 2012, 2014, 2015; Wells, 1998). 

Therefore, these dates may represent the earliest possible movement of the above cultures 

into specific regions. Although some populations, e.g., Dürrnberg (Austria), have been 

assigned to specific periods such as LTA, this association is still based on presumed artefact 

dates and distributions. Consequently, the majority of previous studies have ascribed 

populations associated with these cultures to the period overall (See pages 19 and 32). 

Additionally, those samples that can be broken down by period from the above region are too 

small for statistical analysis (i.e., a sample size of < 20 individuals) the results of which 

would likely be tenuous or represent spurious relationships (See pages 113 and 119) (Irish, 
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1993, 1997, 2008, 2010). Other potential issues with the samples include the assumptions of 

population history and structure analyses. The caveats associated with these analyses may 

appear to be violated by the geographic distribution of the samples. Under these analyses, it is 

assumed that populations were able to interbreed and therefore were contemporaneous in 

time and space (See page 118) (Alt et al., 2012; Exoffier et al., 1992; Konigsberg, 2006; 

Relethford and Blangero, 1990). Comparisons of populations that are vastly temporally and 

spatially disparate violates this caveat, e.g., sub-Saharan Africa and Turkey (Alt et al., 2012; 

Exoffier et al., 1992; Konigsberg, 2006; Relethford and Blangero, 1990).  

Further, archaeological samples that are dated by associated artefacts may also violate 

this assumption, as it is unknown whether they are contemporaneous (See page 118). 

Although the samples used in this analysis have been dated in the above manner and are 

geographically separate; the stable isotope and archaeological evidence suggest that they 

were able to interbreed and were roughly contemporaneous (See page 61). Moreover, the 

Hallstatt D (Austria) and Dürrnberg Hallstatt (Austria) samples are not contemporaneous 

with the others; however, it is believed that populations during this period migrated into 

neighbouring regions after the collapse of the salt mine at the type site (Barth, 1991; Collis, 

2003; Cunliffe, 1997). Consequently, these samples were included in this analysis as they 

may have interbred with those remaining. However, as the sample dates may represent the 

earliest possible, there may have been more intra-regional similarity than indicated by the 

MMD values (See page 206). Further, as these dates are the only available, and the above 

manner is still the predominant method for dating Celtic populations, it is unlikely that more 

temporally specific populations will become available for analysis. The stable isotope 

evidence indicates that diverse and geographically separate populations were able to 

interbreed such as those from Magdalenenberg (southwest Germany), northern Italy and the 

Iberian Peninsula (Knipper et al., 2017; Oelze et al., 2012). Although the number of migrants 

moving within the above regions indicates small-scale or individual migration; the presence 

of individuals from geographically dispersed areas suggests that these populations were able 

to interbreed to some extent (See pages 61, 206 and 221). The presence of diverse and far-

reaching connections between the samples analysed, also supports the notion that these 

groups were able to interbreed. However, it is advised that, when possible, archaeological 

samples be restricted to populations within a realistic geographic distance so that 

interbreeding can occur (See pages 118 and 119) (Knudson and Stojanowski, 2008). The 

geographic distances of some samples such as Rudston Makeshift (east Yorkshire, Britain) 
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and Wetwang Slack (east Yorkshire, Britain) may appear to violate this assumption. 

However, the above evidence for migration across vast distances indicates that interbreeding 

across similar distances did occur during the Iron Age. Further, the stable isotope analyses 

indicating movement into diverse and distant regions may only represent a proportion of the 

total sample available for analysis (See page 61). Dietary and mobility stable isotope 

information suggests that many Iron Age people spent their lives local to their burial place or 

within their tribal territory, such as the data observed for east Yorkshire (Britain) (Jay and 

Montgomery, 2020). The Iron Age population from Wetwang Slack (east Yorkshire, Britain) 

has been found to be a predominantly local community with currently no evidence for long-

distance mobility (See pages 61 and 172) (Jay and Montgomery, 2020). Strontium stable 

isotope values indicate that a few individuals (3 out of 7 individuals) were mobile to some 

extent. However, these individuals were not likely long-distance migrants and were instead 

moving around the regional landscape (See pages 61 and 172) (Jay and Montgomery, 2020).  

Additionally, there is evidence for long-distance movement of adults and sub-adults 

within Iron Age Britain and possibly a few individuals from Europe have been reported from 

Kent, Derbyshire, and west Yorkshire (Britain) (Millard, 2014; Montgomery et al., 2007). 

There is also stable isotope evidence from cattle and horses in this period, which shows that 

some animals were travelling over 100 km (Bendrey et al., 2008; Hamilton et al., 2019; 

Madgwick et al., 2013; Montgomery et al., 2007; Schulting et al., 2019; Stevens et al., 

2013b). This suggests that if animals, e.g., cattle, were moving so were people. Therefore, 

movement into these regions may have been more common than indicated. Additionally, 

there is accumulating evidence for long-distance mobility of people and cattle within Iron 

Age Britain, such as from Ham Hill hillfort (Somerset) (Madgwick et al., 2013) and the A1M 

motorway in west Yorkshire (Montgomery et al., 2007) (see also, Chadwick, 2008; Hamilton 

et al., 2019; Schulting et al., 2019; Stevens et al., 2013b). At the site of Cliffs End Farm 

(Kent), movement throughout the Bronze and Iron Age is indicated (McKinley et al., 2014; 

Millard, 2014). Therefore, the MMD distances should be interpreted considering the above 

assumptions. As the samples represent archaeological populations, the regional comparisons, 

indicated by the MMD distances, may also need to be interpreted with a degree of caution 

due to the presence of heavy dental wear. Although methods such as trait downgrading and 

upgrading facilitate the scoring of moderately worn dentitions to increase sample sizes, these 

methods were not used (See page181, Appendix III) (Irish et al., 2014, 2018; Scott and Irish, 

2017). Instead, the level of wear was recorded per tooth, major differences in wear were also 



  

 

 

 249  

 

 

documented when encountered to account for the MCAR assumption (Scott and Irish, 2017). 

Further, the majority of the samples had similar degrees of wear, mild to moderate. Severe 

dental wear, when observed, was encountered over the majority of an individual’s dentition 

(See page 181, Appendix III). Consequently, these individuals were removed from the 

ensuing analysis. It was subsequently determined whether the degree of wear permitted trait 

scoring or not. Moderate to severe dental wear when encountered was restricted to specific 

teeth such as the molars. In these cases, the antimere was scored when available. Although 

when the antimere was not available or the level of wear was too great, the affected tooth was 

not scored for any trait (See page 181, Figure 34). Variation in sample sizes (among those 

used in this analysis) may also have minimized the extent of the biological diversity, or lack 

thereof among the samples as indicated by the MMD distances (See page 206, Table 8). 

Therefore, the samples may not document all the variation present in the original populations. 

Thus, the possibility of within-population variation cannot be ruled out. However, the overall 

pattern indicated by the MMD distances is also supported by the archaeological, stable 

isotope, extinct linguistic and modern European genetic evidence (See pages 19, 32, 61, 91, 

103, 105, 107, 119, 124 and 206). This suggests that while there may have been more intra-

regional phenetic similarity in the original populations than indicated by the biodistance 

analysis, limited extra-regional movement and genetic drift likely characterized the 

population structure of the samples. Further, as the results of the biodistance analysis are 

supported by the above lines of evidence and previous analyses; the underlying phenetic 

relationships are likely representative of those in the original populations.  

In spite of the above limitations, the preceding biodistance analysis indicates that the 

majority of the samples represent biologically distinct populations. This suggests that limited 

intra-and-extra-regional gene flow, genetic drift, small-scale migration, cultural diffusion 

and/or assimilation likely characterized the population structure within the core and 

expansion regions. A finding that supports those of a previous biodistance analysis 

suggesting the presence of biologically distinct populations associated with the Hallstatt and 

La Tène cultures (See pages 141 and 145) (Anctil, 2016). These analyses further suggest that 

these processes were occurring among populations irrespective of their presence in the core 

or expansion regions. The notion that the spread of Celtic material culture occurred in tandem 

with a concomitant biological change is not supported. However, further samples, from the 

core and expansion regions, are necessary to determine whether the above patterns are also 

observed in other regional populations associated with the Celts. 
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Were populations in the expansion regions acculturated, genetically influenced by the 

arriving Celts, and/or replaced? 

 

Both the 20 trait MMD distances, with the Dürrnberg (Austria) sample combined and 

temporally separated, suggest that the samples analysed within the expansion regions were 

likely acculturated through trade, cultural diffusion and/or assimilation (See page 206, Tables 

12 and 13). The samples from the above regions are biologically distinct from those within 

the core, this suggests that they were not genetically influenced or replaced, through large-

scale migration and gene flow by populations from these regions (See pages 188 and 206). 

The null hypothesis that there is no difference in nonmetric traits among these populations is 

rejected at the 0.025 alpha level for most of the sample pairs. The alternative hypothesis is 

supported in regard to the Radovesice (Czech Republic) and Kutná-Hora-Karlov (Czech 

Republic) samples. However, the regional distribution of the samples may have resulted in 

those in the core appearing more diverse. The overall phenetic diversity among the majority 

of the samples analysed indicates that genetic drift rather than gene flow is likely to have 

influenced the population structure. However, small-scale migration not significantly 

influencing gene flow, and isolation cannot be ruled out. Therefore, at this broad geographic 

level, population and/or ethnic diversity among the samples is suggested except for those 

mentioned above. This suggests that the notion that migration was a primary factor for the 

spread of Celtic material culture into the expansion regions may not be supported (See pages 

19, 32, 61 and 206). Although there is some evidence of migration among the above samples 

and within the different temporal periods of the Dürrnberg (Austria) sample, it does not 

appear to have been common among the diverse regions represented by the samples. This 

notion is supported by the archaeological, stable isotope and modern European genetic 

evidence (See pages 61, 105 and 107).  

The above lines of evidence indicate diverse and far-reaching intra-and-extra-regional 

variation during the Hallstatt and La Tène periods (Atkinson and Gray, 2017; Busby et al., 

2012; Collis, 2003; Cruciani et al., 2011; Forester et al., 2004; Forester and Toth 2003; Gray 

and Atkinson, 2003; Haffner, 1976; Joachim, 1968; Koch, 2006; Krämer, 1964; Kruta, 1991, 

2004; Ramsl, 2002, 2015; Ramsl et al., 2011b). However, the above patterns are more varied 

and suggest a higher degree of regional concordance than those indicated by the biodistance 

analyses (See pages 19 and 32). This discrepancy suggests that the samples were likely 

relatively isolated and had limited to no gene flow with one another. Consequently, processes 
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such as trade, cultural diffusion and/or assimilation may have resulted in the similarities in 

material culture and presumably language more than previously believed. However, the 

presence and influence of captives and/or slaves on the diachronic changes in material culture 

cannot be ruled out. This notion is further supported by both the 20 trait MMD distances, 

which indicate limited intra-regional and no extra-regional gene flow (See page 206). The 

presence of biologically distinct populations, and by proxy ancient or modern genetic and 

linguistic boundaries, indicates that the spread of Celtic material culture into the expansion 

regions analysed was not accompanied by a concomitant biological change. Therefore, the La 

Tène=Celtic paradigm and the old mass migration model may not adequately explain the 

observed phenetic variation among presumed Celtic populations. The MMD values further 

support the tenuous association ascribed by the above paradigm and model to the diverse 

populations analysed (See page 206). However, this model does not explain the underlying 

biological relationships, aDNA, stable isotope and bioarchaeological studies, among the 

samples. Rather, migration among the diverse regions represented is suggested.  

The period of Celtic migrations has been the focus of previous research. However, the 

longstanding question of whether the spread of La Tène material culture throughout the 

expansion regions, during the 4th and 3rd centuries BC, was related to increased individual 

mobility or large-scale migration is still prevalent within the field of Celtic studies (See page 

61) (Anthoons, 2007; Arnold, 2005; Fernández-Götz, 2013, 2014a, b; Prien, 2005; Ramsl, 

2003; Tomaschitz, 2002). Previous attempts to model migration scenarios from the core to 

expansion regions have primarily focused on the information provided by the Greek and 

Roman authors, as well as the presence of Celtic artefacts in any quantity, including isolated 

finds (See pages 19, 32 and 61) (Anthoons, 2007; Arnold, 2005; Chapman, 1997; Fernández-

Götz, 2013, 2014a, b; Hakenbeck, 2008; Karl, 2005; Knipper et al., 2014, 2017; Prien, 2005; 

Ramsl, 2003; Tomaschitz, 2002). 

However, the proposed migrations and processes driving the observed cultural 

expansion during the above period, as described by Greek and Roman authors, are ambiguous 

(Anthoons, 2007, 2011; Collis, 2003; Cunliffe, 1997; James, 2005; Tomaschitz, 2002). 

Movements of Celtic populations have been described primarily as massive large-scale 

events that involved entire populations which expanded from Central Europe and 

subsequently spread throughout the rest of Europe and into Asia Minor and Turkey (See page 

61) (Anthoons, 2007, 2011; Collis, 2003; Cunliffe, 1997; James, 2005; Selinsky, 2015; 

Tomaschitz, 2002). However, the proposed scale of these migrations, described by the Greeks 
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and Romans, is not supported by the archaeological, modern European genetic, and stable 

isotope evidence (See pages 19, 32, 61, 103, 105 and 107) (Collis, 2003; Delbrück, 1900; 

Furger-Gunti, 1984; Handford, 1982). Archaeological evidence of migration has been the 

focus of several studies (Anthony, 1990, 1992, 1997 Arnold, 2005; Brumeister, 2000; Härke, 

1998). Several previous analyses have attempted to determine the presence of non-local 

individuals almost exclusively through examinations of the variance in material culture 

associated with diverse populations and their temporal and chronological distributions 

(Anthony, 1990, 1997; Arnold, 2005; Brumeister, 2000; Chapman, 1997; Hakenbeck, 2008; 

Karl, 2005; Knipper et al., 2014, 2017; Ramsl, 2003).  

The diverse artefacts associated with the Hallstatt and La Tène cultures may not 

reflect a Celtic ethnicity or designate the diverse cultures to which they spread as Celtic. 

Consequently, the identity ascribed to these artefacts may be nominal or based in part on 

modern perceptions and interpretations of this identity (See page 54). Further, a Celtic or 

other ethnic identity was not likely transferred along with the objects themselves. Although 

the objects may be Celtic, they may not have been used and incorporated in the same, or 

similar ways, in different cultures. The spread of these artefacts also may represent trade 

routes or items, and therefore, far-reaching cultural rather than biological connections 

(Arnold, 1995, 2005; Collis, 2003; Cunliffe, 1997, 2018; Roberts and Vander Linden, 2011; 

Schillinger et al., 2017; Stark et al., 2008; Stead, 1979). Therefore, the presence of these 

artefacts may not denote the spread of a Celtic people, or ethnicity, as indicated in the 

preceding biodistance analysis (See pages 19 and 32) (Anthoons, 2007, 2011; Collis, 1973; 

Collis, 2003; Cunliffe, 1984, 1991, 1994, 1997, 2009; Dent, 1982, 1985, 1995; Giles, 2012; 

Hodson, 1964, 1968, 1990; Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Stead, 1991a). 

Although migration is evident among some of the samples, Radovesice (Czech Republic), 

Kutná-Hora-Karlov (Czech Republic) and Dürrnberg (Austria) it may also have been a 

mechanism for the spread of Celtic material culture, but at a much smaller scale than 

previously believed (See page 61). Further samples from the core and expansion regions, are 

necessary to determine whether there is corresponding evidence for small-scale intra-regional 

migration among other Celtic populations. The 20 trait MMD distances among all samples 

also suggest that migration may partially explain the observed population structure with 

regards to the above samples (See page 206, Tables 12 and 13). Additionally, if the above 

samples represent trading centres, as supported by the archaeological and stable isotope 

evidence, they would likely have had ethnically diverse populations (Tiefengraber and 
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Wiltschke-Schrotta, 2012, 2014, 2015; Scheeres, 2014a; Scheeres et al., 2013b; Valentová, 

1991, 1993; Valentová and Sankot, 2012; Wendling et al., 2015). Furthermore, based on the 

above MMD distances, there was no gene flow between the above samples and the 

neighbouring regions analysed. However, gene flow may have occurred between these 

groups and other intra-and-extra-regional populations not analysed (See page 206). 

Consequently, the possibility that they represent trading centres cannot be ruled out.  

Further support for migration is indicated by settlement abandonment during the 

LTB/LTC period, at Radovesice (Czech Republic) and Kutná-Hora-Karlov (Czech Republic) 

(See pages 61, 164, 168, Table 8). The artefacts associated with these populations include 

several costly and exotic prestige items. However, these items are primarily associated with 

the LTB period (Table 8) (Salac, 2011; Rabsiler et al., 2017; Valentová, 1991, 1993; 

Valentová and Sankot, 2012). This finding, combined with the fact that they were abandoned 

during the LTC period, supports the notion that large-scale migration to another region 

occurred during this period (Table 8). However, due to the shallow grave depth, and the 

potential for burial loss due to construction or agricultural processes, it is unknown whether 

the regions were in fact abandoned (Valentová, 1991; Valentová and Sankot, 2012). Further, 

rerouting or breakdown of trade routes may have resulted in the decline in prestige items and 

migration during the beginning of the LTC period. Settlement abandonment is also believed 

to have occurred during the HaD/LTA and LTC/LTD transitions (Table 8). This process is 

also believed to have occurred in tandem with changes in burial practice and the spread of 

Celtic material culture (See pages 61, 164 and 168) (Collis, 2003; Cunliffe, 1997; James, 

2005; Koch, 2007; Maier, 2003). 

Settlement abandonment during the above periods has also been interpreted to support 

large-scale migration in the regions in which it is evident (Collis, 2003; Cunliffe, 1997; 

James, 2005; Koch, 2007; Maier, 2003). Although settlement abandonment has been 

documented in some areas such as Hallstatt D (Austria), during these transitions, there is no 

evidence that they become significantly deserted (Collis, 2003; Cunliffe, 1997; James, 2005; 

Koch, 2007; Maier, 2003; Smith, 2012). Further, there is evidence for settlement continuity 

during the above transitions in several regions including, Münsingen-Rain (Switzerland) and 

Dürrnberg (Austria) (See pages 145 and 155). This indicates that while migration may have 

facilitated the spread of Hallstatt and La Tène artefacts, the observed diachronic changes in 

material culture likely resulted from diverse social processes, including trade, exogamy, 

cultural diffusion and/or assimilation (Collis, 2003; Cunliffe, 1997, 2018; James, 2005; Koch, 
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2007; Maier, 2003; Smith, 2012). These processes as mechanisms for the spread of Celtic 

artefacts are also supported by the available stable isotope evidence.  

Overall, the stable isotopic information indicates that some regions, such as 

Radovesice (Czech Republic) and Kutná-Hora-Karlov (Czech Republic) had comparatively 

high numbers of non-local individuals (Scheeres, 2014a; Scheeres et al., 2014b). However, 

the majority were not from extra-regional locations (See page 61) (Scheeres, 2014a; Scheeres 

et al., 2014b). The latter supports the notion that while some settlements may have been 

abandoned during the LTC period, a large-scale migration event from the core to expansion 

regions during this period is not likely (See page 61, Table 8). Deteriorating climate 

conditions during the 4th and 3rd centuries BC have also been argued to have been a cause for 

migrations of Celtic populations during this period (Büntgen et al., 2011; Fischer et al., 2006; 

Grove, 1979; Gutiérrez-Elorza and Kromer and Friedrich, 2007; Lamb, 1977; Magny et al., 

2009; Guiterrez-Elorza and Peña-Monné, 1998). The average temperature has been estimated 

to have decreased by 2°C, while precipitation increased by approximately ±10-20% (Büntgen 

et al., 2011; Fischer, 2006; Grove, 1979; Gutiérrez-Elorza and Peña-Monné, 1998; Kromer 

and Friedrich, 2007; Lamb, 1977; Magny et al., 2009). Although since no corresponding 

temperature and precipitation values for the preceding period have been documented for 

comparison, it is not possible to determine the scale of these changes (See page 61) (Büntgen 

et al., 2011; Gutiérrez-Elorza and Peña-Monné, 1998; Lamb, 1977).  

However, there is no evidence that climate changes were a primary driving force 

behind migration during this period. The archaeological evidence indicates that some 

populations, such as Münsingen-Rain (Switzerland) adapted to these changes through 

corresponding dietary changes, i.e., an increase in millet consumption (See pages 61 and 145) 

(Hunt el al., 2008; Moghaddam et al., 2014; Motuzaite-Matuzeviciute et al., 2013). Others 

such as, Dürrnberg (Austria), east Yorkshire (Britain), Basel-Gasfabrik (Switzerland), 

Magdalenenberg (southwest Germany), Radovesice (Czech Republic) and Kutná-Hora-

Karlov (Czech Republic), were able to adapt to lower subsistence levels without any 

significant dietary change, based on stable isotope and environmental studies (See pages 155, 

164, 168, 172 and 177) (Jay and Richards, 2006, 2007; Jay et al., 2008; Jay and Montgomery, 

2020; Le Huray et al., 2006; Le Huray and Schutkowski, 2005; Oelze et al., 2012). However, 

the absence of apparent dietary changes in the above regions may indicate that corresponding 

evidence has not been recovered (Jay and Richards, 2006, 2007; Jay et al., 2008; Jay and 

Montgomery, 2020; Le Huray et al., 2006; Le Huray and Schutkowski, 2005; Oelze et al., 
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2012). Alternatively, this may suggest that dietary changes were not necessary to adapt to the 

deteriorating climate conditions. Although climate change may have caused some of the 

observed mobility, it does not appear to have been the primary mechanism for the observed 

phenetic and cultural variation during the above period (See page 61) (Evans, 2004; 

Fernández-Götz, 2016; Hauschild, 2010a; Müller et al., 2003; Muller, 2004; Pétrequin et al., 

2010; Schonfelder, 2010; Tinner et al., 2003). The overall pattern of limited intra-and-extra-

regional migration indicated by the archaeological and stable isotope evidence is also 

supported by the available modern European genetic evidence (See pages 61, 105 and 107). 

Although there is evidence for different Y-chromosome and mtDNA haplogroups, and sub-

clades, throughout the regions analysed, they are based on modern distributions.  

Therefore, the degree of variation during the Iron Age may not be adequately 

represented. However, the presence of genetically distinct populations in these regions is 

supported by both the 20 trait MMD distances (See page 206, Tables 12 and 13). This 

suggests that while the degree of variation may be underrepresented, Celtic material culture 

was not restricted to phenetically similar groups, except for the Radovesice (Czech Republic) 

and Kutná-Hora-Karlov (Czech Republic) samples. The modern European genetic evidence 

further supports the notion that the expansion region samples were likely acculturated 

through trade, cultural diffusion and/or assimilation. Diverse lines of evidence support this 

notion such as archaeological, stable isotope, and modern European genetic. However, based 

on the nature of the available linguistic evidence, fragmentary and limited, support for the 

above notion is difficult to determine (See pages 61, 91, 103, 105 and 107). Consequently, as 

the phenetic relationships indicated by the MMD distances can be used as a proxy for 

linguistic boundaries, this evidence may support this notion. The evidence for some intra-

regional and limited or no extra-regional movement, as indicated archaeologically and 

through the MMD derived phenetic relationships further supports this notion. 

Previous studies have focused almost exclusively on the diachronic and presumed 

biological changes within the expansion regions (Anthoons, 2007, 2011; Collis, 1973; Collis, 

2003; Cunliffe, 1984, 1991, 1994, 1997, 2009; Dent, 1982, 1985, 1995; Giles, 2012; Hodson, 

1964, 1968, 1990; Scheeres, 2014a; Scheeres et al., 2013b, 2014b; Stead, 1965a, b, 1976, 

1985b, 1984b, 1991a, b, c, 1999, 2006). However, the preceding biodistance analysis 

indicates that these changes were not restricted to these regions. Variation of a similar scale is 

also evident within the samples from the core, suggesting that the populations within these 

regions may have been acculturated rather than genetically influenced and/or replaced as 
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well. Therefore, the old model of mass migration and the presumption that the spread of 

Celtic material culture into the expansion regions was the result of one-way movement from 

the core are not supported. Rather, the above lines of evidence and both the 20 trait MMD 

distances support the presence of far-reaching and diverse connections among populations in 

these regions (See page 206). Further, the assumption that migration was a primary factor for 

the spread of Celtic artefacts is not supported. The diverse populations possessing these 

artefacts may have subsequently lost their cultural autonomy and have been subsumed into a 

greater nominal Celtic identity. Therefore, the variation within the Hallstatt and La Tène 

artefacts found throughout these regions may represent diverse populations and/or different 

ethnicities (See page 54). Consequently, the above cultures may not be representative of 

Celtic populations, ethnicity or ancestry throughout the regions they extended.   

Are the observed morphological differences among the samples within the core and 

expansion regions explained by an isolation by distance model?  

 

The broad geographic variation and presence of biologically distinct populations 

within the core and expansion regions are further supported by the differences in dental trait 

frequencies among the samples. The core region samples have high frequencies of several 

traits including, Deflecting Wrinkle LM, C1–C2 Crest LM1, and Lingual Cusp LP2 (See 

page 196, Table 9). High frequencies of numerous traits including, Distal Accessory Ridge 

UC, Labial Curvature UI1, and Carabelli’s trait UM1 are observed in the expansion regions 

(See page 196, Table 9). Some traits such as Groove Pattern LM2 and Anterior Fovea LM1 

are observed at similar frequencies among both regions (See page 196, Table 9). Although 

the expansion regions appear to have higher frequencies of most traits, comparatively, the 

majority of these are observed in the sub-samples, Rudston Makeshift (east Yorkshire, 

Britain) and Pontecagnano (southern Italy) (See page 196, Table 9). The variation in 

nonmetric traits among the samples is likely caused by numerous processes such as small-

scale migration, limited intra-and-extra-regional gene flow, genetic drift, and isolation by 

distance. Geographic boundaries such as the Alps may have acted as barriers to gene flow 

among the samples. The intra-and-extra-regional patterns indicated in the comparative-

sample scatterplots are comparable to those from the PCA and MDS graphs (See pages 202 

and 211, Figures 48-50, 55-62, 38 and 39-41, respectively). Some variation is evident, due to 

differential trait weighting, but the general pattern is recurrent. The samples are interspersed 
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and a clear separation evident. This pattern is also observed in the comparative sample 

dendrograms (See page 215, Figures 44-47). However, in these comparisons, the 2 samples 

that are phenetically indistinguishable, Radovesice (Czech Republic) and Kutná-Hora-Karlov 

(Czech Republic) are clustered together. This supports the notion that limited gene flow 

characterised the population structure among the samples analysed. The observed patterns 

further imply that the majority of the samples are more phenetically divergent than expected 

based on their geographic locations, based on the assumption that genetic affinity is inverse 

to spatial distance (See page 206). 

Numerous intra-and-extra-regional comparisons are indicated by the comparative 

sample scatterplots (Figures 48-50 and 55-62, respectively). Those samples that are plotted 

above or below the black reference line are not consistent and vary depending on specific 

sample comparisons. (Figures 48, 55-59 for intra-regional comparisons, Figures 49, 60-62 for 

extra-regional, and Figure 50 for the comparative sample, respectively). Further, the samples 

are interspersed and no clear geographic separation is evident (See page 206). This suggests 

that the geographic division of Celtic populations into the core and expansion regions may be 

nominal. The complex relationships among and within these regions were likely influenced 

by trade and exchange more than is presumed or documented within the field of Celtic 

studies (Anthoons, 2011; Collis, 2003; Cunliffe, 1997, 2018; Giles, 2012; Halkon, 2013, 

2017; Koch, 2006; Kruta, 1991). The extent of trade among these regions may have been of 

sufficient scale to create dependent relations of a centre and periphery nature among 

populations within the core and expansion regions; however, it is difficult to determine the 

extent, directionality and trajectory of any exchange as Celtic material culture within these 

areas is not consistently documented or described (See pages 1, 19 and 32) (Anthoons, 2011; 

Collis, 2003; Cunliffe, 1997, 2018; Giles, 2012; James, 2005; Koch, 2006; Kruta, 1991). 

Furthermore, the identification of the trade route(s) through which Hallstatt and La Tène 

artefacts were transported alone is not sufficient to support the notion of a direct centre and 

periphery relationship between these regions. Rather, the presence of these artefacts 

throughout Iron Age Europe, evidence of regional diversity in design and manufacture, and 

the presence of biologically distinct populations possessing these items suggest that 

populations in these regions had access to diverse and far-reaching trade routes. 

The notion of a geographic division between populations in the core and expansion 

regions is likely also intrinsically linked with the old model of mass migration during the 4th 

and 3rd centuries BC. Consequently, isolation by distance may partly explain the observed 
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population structure, but it was not likely the primary process driving the variation among the 

samples (See pages 61 and 206). The comparative sample scatterplots further support 

differential rates of several processes such as small-scale migration, genetic drift, gene flow, 

and prior migration into the regions analysed before or during the Hallstatt and La Tène 

periods as driving the observed phenetic variation among the samples, such as in the 

preceding Bronze Age (Figures 48-50 and 55-62) (Callaway, 2017; Cassidy et al., 2016; 

Hamilton et al., 2019; Madgwick et al., 2013; McKinley et al., 2014; Millard, 2014; 

Montgomery et al., 2007; Oppenheimer, 2007, 2012; Pearson et al., 2019; Schulting et al., 

2019; Stevens et al., 2013b; Sykes, 2006). However, as Rudston Makeshift (east Yorkshire, 

Britain) represents a sub-sample these results should be interpreted with a degree of caution 

regarding this sample (See pages 177). Some of the other samples have the same 

composition, or are pooled, such as German (Stuttgart, Germany) and Pontecagnano 

(southern Italy) (See pages 143 and 179). Thus, caution should also be used in light of their 

associations with isolation by distance. However, prior migration(s) into some of the regions 

analysed cannot be ruled out (See page 206). 

 The modern European genetic evidence suggests that the Y-chromosome 

haplogroups R1a, I, and J are likely intrusive to the British Isles and may have arrived during 

the Neolithic, 4,000-2,500 BC (See page 107) (Cruciani et al., 2004, 2007; Di Giacomo et al., 

2004; Hill et al., 2000) (See Figure 1 in Myres et al., 2010 for a map showing the R1b 

haplogroup distributions listed in this section). The distributions of these haplogroups are 

limited and similar to those in continental Europe during this period (See page 107) (McEvoy 

et al., 2004; Richards et al., 2000; Richards et al., 2002; Rosser et al., 2000; Rootsi et al., 

2004; Semino et al., 2004; Scozzari et al., 2001; Torroni, 1998, 2001b; Weal et al., 2002). 

After individuals carrying these haplogroups moved into this region, they interacted 

biologically with the local populations and subsequently diversified (See page 107). 

However, the Rudston Makeshift (east Yorkshire, Britain) and Wetwang Slack (east 

Yorkshire, Britain) samples are almost consistently plotted below the black reference line. 

Indicating that they are less phenetically divergent than expected based on geographic 

location. The opposite is true when these samples are compared to one another (See page 

206, Figures 61-62). This suggests that limited gene flow likely occurred between the 

Rudston Makeshift (east Yorkshire, Britain) and Wetwang Slack (east Yorkshire, Britain) 

samples and comparatively higher rates may have occurred with others in east Yorkshire, and 

neighbouring areas. This notion is supported by the geographic proximity of these samples to 
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one another and others in this region (Figure 31). Wetwang Slack (east Yorkshire, Britain) is 

comparatively geographically closer to other cemeteries including, Garton Station (east 

Yorkshire, Britain), whereas Rudston Makeshift (east Yorkshire, Britain) is in closer 

proximity to Burton Fleming (east Yorkshire, Britain). Further, the grouping of the 

cemeteries in east Yorkshire (Britain) suggests that gene flow may have been restricted to 

between adjacent groups (Figure 31). Consequently, the populations in this region may have 

been more phenetically diverse than presumed. Therefore, the application of the broad Arras 

cultural heading to these diverse populations may be nominal. However, due to the 

composition of the Rudston Makeshift (east Yorkshire, Britain) sample, further samples are 

necessary to determine whether this pattern is supported. 

Since these samples are frequently less divergent than expected based on location, 

prior migration into Britain during the Hallstatt or La Tène periods cannot be ruled out. 

However, based on the MMD distances extra-regional gene flow between Rudston Makeshift 

(east Yorkshire, Britain) and Wetwang Slack (east Yorkshire, Britain) and the remaining 

samples was likely not frequent (See page 206, Tables 12 and 13). This notion is also 

supported by the observed similarities in some traits such as, Groove Pattern LM2, among the 

samples (See page 206, Table 9). Although this similarity is not likely related to frequent 

gene flow or migration among the samples, as indicated by both the 20 trait MMD distances, 

it may represent those present in the parent population(s) (Tables 9, 12 and 13). Subsequent 

diversification, limited admixture, and isolation during the above periods likely resulted in 

the observed population structure within the Rudston Makeshift (east Yorkshire, Britain) and 

Wetwang Slack (east Yorkshire, Britain) samples. This notion is also supported by their 

respective MMD distances compared to the remaining samples during the above periods 

(0.047-0.077 and 0.028-0.077, respectively). However, a greater emphasis on divergence is 

evident in the MMD distances in the 20 trait MMD comparison with the Dürrnberg (Austria) 

sample combined (0.043-0.082 and 0.025-0.083, respectively) (See page 206, Tables 12 and 

13). This suggests that those populations intermixing with the Dürrnberg (Austria) sample 

during the above periods may have also interbred with Rudston Makeshift (east Yorkshire, 

Britain) and Wetwang Slack (east Yorkshire, Britain). The higher MMD values with the latter 

20 trait comparison support the notion that migration and/or inbreeding among these groups 

was not frequent. The relative positions of the remaining samples, above or below the black 

reference line, are similar, except for Kutná-Hora-Karlov (Czech Republic) (See page 206, 

Figures 54 and 55). This suggests that gene flow between the above samples and those 
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remaining may have involved similar populations but to different extents. Further, the high 

MMD distances in these comparisons may also indicate the breakdown and/or rerouting of 

trade routes. The relative scarcity of Hallstatt or La Tène artefacts in east Yorkshire (Britain) 

and the abundant presence of distinctly British items also supports the above notions (See 

pages 19 and 32). 

Prior migration during the Hallstatt or La Tène periods also cannot be ruled out 

among the remaining samples. Other sample pairs that are less phenetically distinct than 

expected based on geographic location include, Nebringen (Stuttgart, Germany), Dürrnberg 

(Austria), Münsingen-Rain (Switzerland) and Kutná-Hora-Karlov (Czech Republic) (See 

page 206, Figures 48, 50, 51 and 53, respectively). This suggests that similar processes likely 

resulted in the observed phenetic diversity among these samples. Further, as those samples 

above and below the reference line are interspersed the spread of Celtic artefacts was likely 

more complex than previously believed. Although due to the composition of some samples 

such as Pontecagnano (southern Italy), Rudston Makeshift (east Yorkshire, Britain), and the 

pooled German sample (Stuttgart, Germany), these results may need to be interpreted with a 

degree of caution. However, the overall patterning indicates clear separation and limited gene 

flow among the samples. This supports the notion that diverse and numerous mechanisms 

contributed to the observed population structure and variation, including those mentioned 

above.  

The significance of the relationship between phenetic, by proxy genetic, and 

geographic distances was determined by the Mantel correlation (See pages 193 and 206) 

(Kimura and Weiss, 1964; Konigsberg, 1990; Wright, 1943). This correlation between the 

MMD and geographic distance matrices, r=.309 (p=0.049) is a moderate positive correlation 

(See page 221) (Cohen, 1988). The above Mantel correlation indicates that isolation by 

distance partly explains the phenetic differences among the samples analysed. Therefore, the 

null hypothesis that there is no significant difference in nonmetric traits and geographic 

distances is rejected at the 0.025 alpha level for most of the samples. However, there does not 

appear to be a relationship among the samples and Isolation by distance based on the 

corresponding r values (See pages 190, 193, 221, Table 15). Consequently, the results of the 

preceding analysis do not support isolation by distance as the primary mechanism behind the 

observed variation. Rather, diverse processes such as small-scale migration, and limited intra-

and-extra regional gene flow were likely driving the phenetic variation among the samples 

analysed. Although, between the Radovesice (Czech Republic) and Kutná-Hora-Karlov 
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(Czech Republic) samples gene flow rather than isolation and genetic drift likely resulted in 

the observed phenetic similarity. However, within the remaining samples, genetic drift and 

isolation likely dominated the population structure. The above correlation between phenetic 

and geographic distances was determined using inter-population straight-line distances, as the 

migration and/or transportation routes between the geographically diverse core and expansion 

regions are not known with certainty. Although these distances do not reflect reality on the 

landscape and are therefore approximations (as are some sample locations used in this 

analysis), any potential migration routes throughout these regions would be approximations 

as well (See pages 135, 190 and 206). Further, some populations that are in close geographic 

proximity are phenetically distinct, such as Rudston Makeshift (east Yorkshire, Britain) and 

Wetwang Slack (east Yorkshire, Britain). This suggests that any potential migration routes 

among Celtic populations in close proximity may not represent those actually used. Although 

linear distances are potential underestimates, they should be less biased for analytical 

purposes (See pages 135 and 206) (Irish et al., 2018; Konigsberg, 1990; Relethford, 2004).  

Therefore, gene flow among the samples did not likely occur frequently, with the 

exception of Kutná-Hora-Karlov (Czech Republic), and Radovesice (Czech Republic). 

Although gene flow between Kutná-Hora-Karlov (Czech Republic) and Dürrnberg (Austria) 

may have occurred more regularly with other intra-regional populations or other large trading 

centres, resulting in ethnically diverse populations. The stable isotope evidence also suggests 

that small-scale and individual migration was common among geographically diverse 

populations (See page 61). This suggests that migration associated with trading centres may 

have occurred more frequently among intra-regional locations. Consequently, individual 

movement among extra-regional locations may have been more common. However, gene 

flow with other extra-regional populations not analysed cannot be ruled out. Thus, additional 

samples are necessary in order to determine whether this pattern is supported in other regions.  

Samples that are in close geographic proximity in the core such as, Hallstatt D 

(Austria) and Pottenbrunn (Austria) have mostly large and significant MMD distances, based 

on the 20 trait comparison with the Dürrnberg (Austria) sample combined (0.043-0.082 and 

0.042-0.082, respectively). A similar pattern is also evident in the expansion region samples 

such as Rudston Makeshift (east Yorkshire, Britain) and Wetwang Slack (east Yorkshire, 

Britain) (0.043-0.082 and 0.025-0.083, respectively) (See page 206, Table 13). The MMD 

values for the above samples are similar, although slightly lower, in the 20 trait comparison 

among all the samples (Table 12). This indicates that the spread of Hallstatt and La Tène 
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material culture throughout these regions was more complicated than simple one-way 

movement to the expansion regions. The results indicate that there is partial support for 

isolation by distance as a cause for the observed phenetic diversity among the samples. 

However, the observed underlying biological relationships are more complex than previously 

assumed under the La Tène=Celtic paradigm. Consequently, several processes including, 

migration prior to or during the Hallstatt and La Tène periods; small-scale migration and/or 

individual movement during these periods; gene flow; genetic drift; isolation; limited intra-

and-extra-regional gene flow; cultural diffusion and/or assimilation likely characterised the 

population structure of the samples. This finding is in line with the archaeological, art style, 

modern European genetic, stable isotope, and linguist lines of evidence; that indicate diverse 

and far-reaching connections, regional diversity and limited extra-regional movement (See 

pages 19, 32, 61, 105 and 107). The historical descriptions of the spread of Celtic 

populations, languages and material culture as described by Greek and Roman authors may 

partly reflect the actual distributions. This is suggested by the presence of phenetically 

diverse populations compared to the Pontecagnano (southern Italy) sample, which is located 

outside the known area of maximum Celtic expansion (See pages 138 and 179). However, the 

above descriptions cannot be relied on exclusively as the descriptions and ascribed 

associations, ethnic, cultural and/or biological, have been inextricably linked and jumbled. 

Subsequently creating a situation in which the ensuing view of Celtic Iron Age Europe has 

been perceived as timeless and traditional, yet has little explanatory value. 

 

Summary and conclusions 

 

The primary goals of this thesis were to determine if populations within the expansion 

regions exhibited more phenetic diversity than those within the core; whether populations in 

these regions were acculturated, genetically influenced by the arriving Celts, and/or replaced. 

A further goal was to determine if the observed dental morphological differences among the 

samples within the above regions are the result of isolation by distance. The biological 

distance estimates suggest the following. First, populations in the expansion regions exhibit 

less biological diversity than those within the core. Specifically, two samples within these 

regions are biologically indistinguishable, the remaining two are biologically distinct, and all 

samples within the core are phenetically diverse. Thus, populations in the expansion regions 
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are genetically distinct from those in the core and were likely acculturated, not genetically 

influenced by these groups. Limited intra-and-extra regional gene flow and genetic isolation 

explain the population structure within the above regions. Second, overall phenetic 

heterogeneity, biological diversity, and population discontinuity are indicated, as the majority 

of the samples within both regions are biologically distinct from one another. This diversity 

may also reflect genetic and linguistic boundaries among the samples. Third, waves of 

migration from the core during the 4th and 3rd centuries BC were not likely responsible for 

diachronic changes in material culture within the expansion regions. Fourth, the separation of 

populations and material culture into the core and expansion regions; and the application of 

Celtic ethnicity to diverse populations possessing artefacts and a spoken language(s) 

identified as Celtic may be a nominal association, i.e., in name only. Simply put, the 

comparative results suggest that these groups represent biologically distinct populations. 

The null hypothesis that there is no difference in nonmetric traits among populations 

in the expansion regions is rejected at the 0.025 alpha level for most of the sample pairs. The 

alternative hypothesis is not supported for 2 samples, Radovesice (Czech Republic) and 

Kutná-Hora-Karlov (Czech Republic) in these regions as they are phenetically 

indistinguishable (See page 206, Tables 12 and 13). However, the regional distribution of the 

samples may have resulted in those in the core appearing more diverse. Therefore, more 

samples from the expansion regions are necessary to determine whether this pattern is also 

evident. The samples are characterized by an overall morphologically simple, mass-reduced 

dentition often associated with European populations, despite high frequencies of some mass-

additive traits such as Carabelli’s trait UM1 (See pages 196 and 202, Appendix III). Those 

samples in the expansion regions may appear to have higher frequencies of several traits, as 

well as a more diverse dental complex. However, the majority of these traits occur within the 

sub-samples, Rudston Makeshift (east Yorkshire, Britain) and the comparative sample, 

Pontecagnano (southern Italy). Therefore, the expansion region samples may not be 

characterized by comparatively higher frequencies of these traits. Notable differences are 

evident in individual trait frequencies among the samples, which influence the overall 

phenetic dissimilarity (See pages 196, 239 and 250). Although some traits occur at similar 

frequencies among most of the samples, such as Groove pattern LM2, this uniformity is not 

reflected in the 20-trait MMD distances, dendrograms, MDS or PCA graphs (See pages 196, 

202, 206, 211, Tables 12 and 13, Figures 38, 39-41 and 44-47 respectively). This suggests 

that the observed trait similarity is not likely related to frequent gene flow among the 
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samples. Instead, it may represent similarities that were present in the parent population(s) 

and subsequent diversification. The samples may have become genetically distinct due to 

other processes such as isolation, genetic drift, limited intra-and-extra regional gene flow 

from the regions analysed, and increased gene flow from other neighbouring regions not 

analysed. The presence of phenetic diversity among all but 2 of the samples, those mentioned 

above, suggests that the geographic division among populations possessing Celtic material 

culture, languages, burial practices, and art styles may be nominal. Further, the presence of 

genetically distinct populations within these regions suggests that the association between 

these populations, and the Hallstatt and La Tène cultures may be tenuous.  

However, the samples may have been pooled temporally, as they are dated, primarily, 

based on associated artefacts. Further, as this dating method is still commonly used, most 

populations have been assigned to either the Hallstatt or La Tène period overall. As such, the 

temporal differences between and within the samples analysed may not be adequately 

represented. Consequently, as the majority of Celtic populations are dated in this manner, 

these dates often represent those only available (See pages 19, 32 and 54) (Collis, 2003; 

Cunliffe, 1979, 1997; James, 2005; Kruta, 1991; Müller, 1999; Wells, 1998). Therefore, the 

dates assigned to Celtic populations may actually represent the earliest possible movement of 

Hallstatt or La Tène artefacts into the diverse regions which they spread. Further, this manner 

is still commonly used to assign dates to Celtic populations. Few studies have attempted to 

assign more specific dates, e.g., LTA 450-400 BC, to specific populations such as Dürrnberg 

(Austria) (Hodson, 1990; Jay et al., 2013; Tiefengraber and Wiltschke-Schrotta, 2012, 2014, 

2015). Additionally, these divisions are still based on chronological distributions of artefacts 

(See pages 19, 32 and 54). Further, those samples that can be sub divided into distinct 

temporal categories are often too small for statistical analyses. Consequently, these analyses 

would likely result in tenuous and/or spurious reconstructions of population affinity. The 

geographic separation of the samples may suggest that they were not likely to interbreed. 

However, the stable isotope evidence indicates that vastly geographically separated 

populations were able to interbreed (See page 61) (Jay et al., 2013; Knipper et al., 2017; 

Moghaddam et al., 2014; Oelze et al., 2012; Scheeres, 2014a; Scheeres et al., 2014b). 

Overall, the results of the preceding biodistance analysis suggest that Iron Age populations 

were more phenetically diverse than assumed. However, the results of this analysis should be 

interpreted with a degree of caution in relation to the geographic distribution of the samples 

and their ability to interbreed.  



  

 

 

 265  

 

 

The effect of dental wear on nonmetric trait observation and recording should also be 

taken into consideration in light of the results of the preceding analysis. Other potential issues 

include the sample composition, pooled and sub-samples and the potential loss of burials due 

to shallow grave depth, construction, taphonomic or agricultural processes. Therefore, the 

degree of variation present in the original populations may not be represented by the samples 

(See pages 181, 239 and 250). Although the temporal and regional differences among the 

samples may be under represented, the presence of phenetic heterogeneity indicates the 

presence of biologically distinct populations associated with Hallstatt and La Tène cultures. 

Therefore, the presence of increased intra-regional similarity cannot be ruled out. Although 

the results should be interpreted in light of the above caveats, they are supported by other 

lines of evidence such as stable isotope, archaeological, modern European genetic and 

linguistic (See pages 61 and 91). This suggests that the phenetic relationships indicated by the 

MMD distances likely represent those during the Iron Age. Further, the presence of diverse 

populations within the broad regions described as Celtic, suggests that there is a greater 

degree of phenetic variation among populations during this period than previously assumed. 

The available stable isotope evidence also supports limited-intra-and-extra-regional 

gene flow, small-scale and individual migration among the samples (Jay et al., 2013; Jay and 

Montgomery, 2020; Knipper et al., 2013, 2014, 2017; Moghaddam et al., 2014; Oelze et al., 

2012; Scheeres, 2014a; Scheeres et al., 2014b). The Radovesice (Czech Republic) and Kutná-

Hora-Karlov (Czech Republic) samples have comparatively high migration rates, 74.3% (26 

of 35 individuals) and 76% (19 of 25 individuals), respectively (See pages 61, 229, 239, 250 

and 256) (Scheeres, 2014a; Scheeres et al., 2013b, 2014b). However, the stable isotope 

evidence does not support large-scale migration, as the number of migrants in the majority of 

the regions analysed was comparatively low (See pages 61, 164 and 168) (Jay et al., 2013; 

Jay and Montgomery, 2020; Knipper et al., 2013, 2014, 2017; Moghaddam et al., 2014; 

Oelze et al., 2012; Scheeres, 2014a; Scheeres, 2014b). Further, in those regions above with 

higher numbers of non-local individuals, there was no evidence that these individuals were 

part of a single migration event. The stable isotope evidence further suggests that residential 

changes and individual mobility may not have been confined to the core or expansion regions 

(See pages 61, 229 and 250). Movement appears to have been occurring irrespective of the 

above regional designations. The far-reaching and diverse connections indicated by Tables 1, 

4 and 5 also support the above notion. However, the archaeological evidence suggests that 

populations during the Iron Age, possessing Celtic artefacts, were more inter-connected (See 
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pages 19 and 32) (Almagro-Gorba, 1991; Budinský and Waldhauser, 2004; Haffner, 1976; 

Joachim, 1968; Krämer, 1964; Koch, 2006; Ramsl, 2002; Rustoiu, 2008, 2011a, b; Salac, 

2011; Soudska, 1994; Tiefengraber and Wiltschke-Schrotta, 2012, 2014; Valentová, 1991, 

1993; Valentová and Sankot, 2012; Waldhauser, 1993). This discrepancy may indicate the 

presence of diverse and numerous trade routes throughout continental and non-continental 

Europe during this period. The presence of diverse haplogroups and sub-clades, genetic 

population markers, within the regions associated with the Celts further supports the above 

notion (See pages 103, 105 and 107) (Busby et al., 2012; Cassidy et al., 2015; Cruciani et al., 

2011; Lucotte, 2015; McEvoy et al., 2004; Weale et al., 2002; Wilson et al., 2001).  

However, this evidence is based on the distributions indicated by modern populations. 

Therefore, the diversity indicated by the modern European genetic evidence may not 

adequately reflect that in the Iron Age. The linguistic evidence suggests the presence of 

diverse insular and continental Celtic languages (See pages 91, 103, 105 and 107). However, 

due to the nature of the available inscriptions (e.g., fragmentary and geographically 

dispersed) it is difficult to determine whether the above notions are also supported (Ball and 

Fife, 1993; Ball and Muller, 2012; Cowgill, 1975; Campanile, 1976; De Hoz, 1992; Eska, 

1998; Evans, 1995; Forester and Toth, 2003; Isaac, 2010; Joseph, 2010; Renfrew, 2013). 

However, the phenetic diversity indicated by the MMD distances may be used as a proxy for 

genetic and linguistic boundaries among the samples (See page 91) (Barbujani et al., 1990; 

Bickel, 2019; Creanza et al., 2015; Greenhill et al., 2017; Longobardi et al., 2015; Sokal, 

1988; Sokal et al., 1988, 1989, 1990). Consequently, differential rates of several processes 

including, limited intra-and-extra-regional gene flow, genetic drift, small-scale and prior 

migrations, and isolation likely resulted in the population structure observed among the 

samples. Although the spread of Hallstatt and La Tène artefacts have been interpreted to 

represent migration, large-scale and/or frequent, this notion as the primary mechanism for 

their dispersal is not supported by the MMD distances (See page 206). However, evidence for 

migration is suggested by the 20 trait MMD distances for the Dürrnberg (Austria) Hallstatt 

and La Tène period samples. Although these temporal periods are phenetically 

indistinguishable, the MMD distances decrease during the La Tène period (See page 206). 

Diverse social processes including the breakdown and rerouting of trade routes, differential 

migration rates, change(s) in populations from which marriage partners were drawn, or 

migration into the region prior to the Hallstatt period may have resulted in the decreasing 

phenetic differentiation within this sample.  
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Migration and/or frequent gene flow may also have occurred between the Radovesice 

(Czech Republic) and Kutná-Hora-Karlov (Czech Republic) samples as they are also 

phenetically indistinguishable (See pages 206, 239, 250 and 256). These samples may have 

originated from the same parent population and therefore had not become phenetically 

distinct. Frequent gene flow through exogamy or migration between the above samples may 

also have resulted in the observed phenetic similarity. Although migration may have occurred 

among, and within, the above samples, it does not appear to have been common among those 

remaining. Further, the MMD distances do not support the large-scale migration throughout 

the regions possessing Celtic artefacts as described by the Greeks and Romans. 

Consequently, the old model of mass migration during the 4th and 3rd centuries BC, and the 

large numbers associated with migrating Celtic tribes described by the Greeks and Romans, is 

not supported and may be in part the result of Roman political propaganda (See page 61) 

(Collis, 2003; Delbrück, 1900; Furger-Gunti, 1984; Handford, 1982). Although as the 

samples are all phenetically distinct from the comparative sample, Pontecagnano (southern 

Italy) some of the cultural affiliations described by those above may represent actual cultural 

relationships (See pages 61, 206 and 256). However, additional samples are required to 

determine the extent of this association. These affiliations should be interpreted with caution 

as the Greeks and Romans habitually described Celtic populations using prerogative 

externally applied ethnonyms. Further, the terms the Greeks and Romans commonly used to 

describe the Celts, Keltoi/Celtae and Galli/Gallia respectively, were used interchangeably as 

they are today (Collis, 1996, 1997, 2003; Cunliffe, 1997; Karl, 2002, 2004, 2007, 2010; 

Moore, 2012). This suggests that while some descriptions may be relied on, the majority may 

represent political propaganda derived from second-hand information (See pages 54 and 61). 

This notion is also supported by the MMD distances (See page 206, Tables 12 and 13). The 

presence of biologically distinct populations associated with Celtic artefacts suggests that the 

association between these artefacts and a biologically Celtic population may be tenuous. The 

moderate positive correlation, r-.309, p=0.049, between the samples and geographic distance 

also supports this notion (See pages 206, 221 and 256). The results further indicate that 

isolation by distance was not likely the primary mechanism behind the observed variation 

among the samples. However, further samples are necessary to determine whether this pattern 

is also observed among other Celtic population within the core and expansion regions (see 

pages 206 and 256, Table 15). Thus, a combination of limited intra-and-extra-regional gene 

flow, genetic drift, isolation, small-scale, individual or prior temporal migration, trade, 
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cultural diffusion and/or assimilation are likely responsible for the observed cultural, genetic 

and linguistic variation among the samples. Therefore, the ethnic affiliation assigned to the 

samples does not appear credible based on the preceding biodistance analysis. This suggests 

that the population history and structure among Celtic populations are more complex than 

previously assumed under the La Tène=Celtic paradigm. 

In the field of Celtic studies, the presence of Hallstatt or La Tène artefacts, have been 

interpreted to indicate the presence of an ethnically, biologically, linguistically or culturally 

Celtic population. However, the dispersal of these artefacts is not likely only related to 

migration throughout the regions to which they spread. Therefore, other mechanisms for this 

dispersal, such as trade routes, the presence and influence of captives and/or slaves on the 

diachronic changes in material culture, particularly concerning the development of new 

designs or ways of thinking, cannot be ruled out (See page 54) (Arnold, 1988; Cameron, 

2008, 2011, 2013, 2016; Lenski, 2008; 2014; Nash Briggs, 2003; Scheidel, 1997). Further, it 

is difficult to determine if the presence of these artefacts signifies the presence of a Celtic 

population. Although the presence of certain artefacts, such as fibulae, have been used to link 

diverse populations to the Celts; they are also associated with other cultures, e.g., Italic (See 

pages 32 and 54) (Collis, 2003; D’Agostino, 1974, 1988; D'Agostino and Gastaldi, 1988; De 

Natale, 1992; Fredericksen, 1974: Koch, 2006; Serritella, 1995). Thus, the description of the 

artefacts themselves as Celtic may be tenuous, or nominal. However, their design and 

subsequent variations may be characterized as such. Consequently, cultural assimilation and 

diffusion are equally viable hypotheses to explain the wide geographic distribution and 

incorporation of the Hallstatt and La Tène cultures, into diverse populations throughout 

continental and non-continental Europe. The vast interconnected trade network that likely 

existed in Iron Age Europe brought diverse populations and/or tribes into contact with one 

another and enabled these cultures, and the Celtic languages to spread throughout these 

regions. The differential incorporation of these cultures into these diverse groups further 

supports the notion of differential rates of processes such as cultural assimilation and 

diffusion throughout the regions associated with the Celts. 

 However, the spread of Celtic material culture throughout Iron Age Europe is still 

intrinsically linked with the La Tène=Celtic paradigm. This concept is still prevalent in the 

field of Celtic studies and is commonly used to designate populations as Celtic, regardless of 

documented regional differences. Consequently, the theoretical frameworks that surround 

modern Celtic research are predominantly derived from interpretations of ethnicity, ancestry, 
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interpopulation connectivity, population history and the contextualization of archaeological 

cultures via a culture history approach. New theoretical and methodological frameworks, 

processual and post-processual approaches, have gradually attempted to replace this concept 

(See pages 1 and 54) (Clark, 2014; Jones, 2002; Johnson, 2011; Trigger, 2006). However, 

Celtic ethnicity and ancestral heritage, as applied to diverse populations, are still 

predominantly reliant on material evidence derived from a culture history epistemology. 

Although few previous studies have indicated the presence of phenetically diverse 

populations associated with Celtic artefacts; regional diversity has not been the focus of much 

dental anthropological, archaeological or stable isotopic research (See page 54) (Anctil, 2016; 

Maxová et al., 2011). Further, bioarcheological analyses on the populations associated with 

the Celts are limited. Therefore, the degree of variation among the diverse populations 

possessing Hallstatt and La Tène artefacts is largely unknown (Anctil, 2016; Maxová et al., 

2011). Although this diversity is supported by other lines of evidence such as archaeological, 

stable isotope, linguistic and modern European genetic, these alone have not been sufficient 

to document its extent (See pages 19, 32, 61, 91, 103, 105 and 107). However, the results of 

the previous biodistance analyses indicate the complex nature of the underlying biological 

relationships among Celtic populations (Anctil, 2016; Maxová t al., 2011). These analyses 

further support the notion that to determine the extent of the phenetic variation among these 

populations it is necessary to rely on diverse lines of evidence and to move beyond those 

above and the La Tène=Celtic paradigm. 

The presence of phenetically distinct populations, and/or ethnic groups, which have 

been intrinsically linked with the Celts suggests that the Hallstatt and La Tène material 

cultures do not necessarily represent a historical Celtic ethnicity. Rather, they represent 

physical phenomena that existed in time and space and have been interpreted to represent a 

Celtic ethnicity or ancestry. Consequently, these cultures may not be representative of any 

specific ethnic group. Further, it cannot be demonstrated that they specifically represent a 

Celtic ethnicity. They have been ascribed to this ethnicity and ancestry because they are 

commonly found in regions believed to have been inhabited by people presumed to be Celtic, 

linguistically, culturally or biologically. The correlations between the Greek and Roman 

descriptions of Celtic populations throughout these regions have also resulted in this ascribed 

ethnicity (See pages 1 and 54) (Collis 2003; Cunliffe, 1997, 2009, 2018; Koch, 2006, 2007). 

Previous studies have defined the Celts through perceived similarities in archaeological 

culture, linguistics, art styles and burial practices (Chadwick, 1970; Collis, 1997a, b, 1999; 
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Cunliffe, 1984, 1991, 1994, 1997, 2018; De Marinis, 1977; Dietler, 1994; Dunham, 1991; 

Giles, 2012; Karl, 2002, 2004, 2007, 2010; Koch, 2003, 2006, 2007, 2009b, 2013; Kruta, 

2004; Maier, 2003; Meid, 2008; Oppenheimer, 2007; Poppi, 1991; Royrvik, 2012). Although 

these studies have attempted to establish the presence of the Celts throughout the core and 

expansion regions, they were operating under the premise that the term Celt is biological as 

well as cultural.  

However, the pejorative definitions associated with the classical terms, the inherent 

linguistic nature of the modern term, and the inconsistent application of these terms make 

application to a specific population and/or group difficult (Collis, 2003; Cunliffe, 1997; 

James, 2005; Karl, 2010). The application of the term Celt as an ethnonym is further 

complicated by the consensus, in the field of Celtic studies, that there is some degree of 

shared identity among the diverse populations associated with Hallstatt and La Tène artefacts. 

However, the nature of this shared identity is not further elaborated (Collis, 2003; Cunliffe, 

1997, 2018; James, 2005). The presence of phenetically distinct populations, as indicated by 

both the MMD comparisons, also supports the notion that the term Celt/Celtic may not have 

any biological meaning and may be purely a cultural phenomenon (See page 19, 32, 54 and 

206). Consequently, the term Celtic cannot be reliably used as a pan-European ethnic label 

for populations inhabiting continental and non-continental Europe during the Iron Age.  

It is more appropriate to contextualize groups associated with the above artefacts as a 

fluid network of autonomous societies speaking related languages linked by exchange 

networks, and shared certain artefacts and social practices that have been differentially 

incorporated into diverse regional cultures. If the ascribed Celtic ethnicity associated with 

these populations is ruled out as a constructed and artificial stereotype, derived in part from 

modern interpretations and associations, these regions instead can be described as interaction 

zones among different cultures. The presence of biologically distinct samples within these 

regions, suggests that these diverse populations may have lost their cultural autonomy and 

were subsumed into a greater Celtic identity. Further, the diverse lines of evidence suggest 

that the intrinsic link between Celtic ethnicity and material culture may be nominal. Thus, the 

modern concepts of the Celts can be said to be a contemporary construct that has hindered the 

understanding of the extent of regional diversity and cultural autonomy among diverse 

populations throughout Iron Age Europe. 
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Future Work 

 

There are several prospects for future biodistance analyses notably to include more 

intra-and-extra-regional samples to address the extent of the biological affinity among these 

diverse populations; as well as establishing whether these groups are phenetically similar to 

those used in this analysis. There are several avenues for future work (See Armit et al., 2020, 

for information about the social and biological relationships between Iron Age Britons and 

populations in continental Europe). First, comparison of the Hallstatt D (Austria) sample in 

this analysis, to others from the same period, e.g., those within the Hünsruck-Eifel and 

Baden-Württemberg (southwest Germany) regions. Second, analysis of other regional Iron 

Age samples not associated with the Celts. Third, examination of the nonmetric traits within 

the different east Yorkshire (Britain) cemeteries. Fourth, examination and comparison of the 

diverse proto-Celtic and Celtic populations. Fifth, comparison of the La Tène populations in 

the Champagne (northeast France) region to those in Yorkshire. The above analyses will help 

to establish the level of biological diversity among populations possessing Celtic material 

culture and language(s) during the Iron Age, as well as further examining the extent to which 

Celtic ethnicity and cultural identity have been ascribed to these diverse groups. 

Consequently, the range of dental nonmetric variation within European populations during 

the Iron Age will also be improved. Further, the diverse cultural heritage and autonomy 

among populations throughout Iron Age Europe, previously associated with the Celts, will be 

documented. This will also illuminate possibilities for future analyses into the population 

history of these populations irrespective of the La Tène=Celtic paradigm. 
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Appendix I 

 

Morphological crown and root features 

 

Maxillary traits 

 

Winging U1I 

 

Upper central incisors may be rotated mesiolingualward, giving a V-shaped appearance when 

viewed from the occlusal surface. No reference plaque. Four possible grades may occur: 

 

1) Bilateral winging  

2) Unilateral winging  

3) No expression 

4) Counter winging  

 

Labial Curvature UI1 

 

Labial surface of the tooth may display a notable convex curvature. Reference plaque ASU 

UI1 labial curvature grades scored as: 

 

0) No expression 

1) Trace curvature  

2) Weak curvature  

3) Moderate curvature  

4) Strong curvature 
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Palatine Torus 

 

Linear bony exostosis that may develop along the palatine suture, in adults only. No reference 

plaque is available for this trait. Five possible ASU grades are: 

 

1) No expression  

2) Trace (1-2 mm elevation) 

3) Medium (2-5 mm) 

4) Marked (>5 mm) 

5) Very marked (may be as high as 10 mm) 

 

Shovel UI1 

 

The possible presence of mesial and distal vertical ridges on lingual surfaces, giving the tooth 

a shovel-like appearance. Six grades can be scored with reference plaque ASU UI1 shovel: 

 

0) No expression  

1) Faint expression 

2) Trace ridges 

3) Semi-shovel shaped  

4) Shovel shaped 

5) Marked shovelling 

 

Double shovel UI1 

 

Both mesial and distal marginal ridges may be present on the labial surface. Six possible 

grades have been established on reference plaque ASU UI1 double-shovel: 

  

0) No expression 
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1) Trace ridges on one margin 

2) Trace ridges on both margins   

3) One moderate and one trace ridge   

4) Two moderate ridges 

5) One large and one moderate ridge 

6) Two large ridges  

 

 

Interruption Grove UI2 

 

Grove on lingual borders of teeth. No reference plaque is available for this trait. Rather, this 

trait is graded as absent or present and location.   

 

 

Tuberculum Dentale UI2 

 

Ridging or cusp formation may occur on the mediolingual surface. There are eight possible 

grades using reference plaques ASU UC tuberculum dentale (grades 1-4), and ASU UC distal 

accessory ridge (grades 5-6): 

 

0) No expression  

1) Faint ridging  

2) Trace ridging  

3) Strong ridging  

4) Pronounced ridging  

5) A weakly developed cuspule  

5) Weakly developed cuspule with free tip 

6) Strong cusp with free tip 
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Figure 51. Example of Tuberculum Dentale grade 4. Superior occlusal view of the maxilla. Nebringen (Stuttgart, Germany) burial 7417, adult 

male.  

  

 

Tuberculum 

Dentale grade 4 
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Mesial Ridge UC (Bushman Canine) 

 

A mesiolingual ridge which may be notably larger than the distolingual ridge, may 

incorporate the tuberculum dentale. This trait is also called “Bushman Canine” after Morris 

(1975). Four Possible grades may be scored with reference plaque ASU UC mesial ridge:  

 

0) No expression 

1) ML ridge larger than DL, and weakly attached to the tuberculum dentale 

2) ML ridge larger than DL, and moderately attached to the tuberculum dentale 

3) ML ridge is much larger than the DL, and is fully incorporated into the tuberculum dentale 

 

Distal Accessory Ridge UC 

 

Anterior to upper canine distal marginal ridge, another distolingual ridge can be found. This 

feature can be very pronounced. The six possible ASU grades on reference plaque DAR UC 

are:  

 

0) No expression 

1) Ridge is very faint 

2) Ridge is weakly developed 

3) Ridge is moderately developed  

4) Ridge is strongly developed 

5) Ridge is very large  

 

Hypocone UM
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Cusp 4 may range from absent to large and developed. Seven possible grades exist and can be 

scored with the ASU UM hypocone reference plaque: 

 

0) No expression  

1) Faint ridge present 

2) Faint cuspule present  

3) Small cusp present 

3.5) Moderate-sized cusp present 

4) Large cusp present  

5) Very large cusp present 

 

Cusp 5 (Metaconule) UM1 

 

The possible presence of a fifth cusp between the third and fourth cusps. There are six 

possible grades that can be scored with the reference plaque ASU UM cusp 5: 

 

0) No expression 

1) Tiny round cusp 

2) Tiny wedge-shaped cusp 

3) Small cusp 

4) Medium-sized cusp 

5) Large cusp 

 

Carabelli’s Trait UM1 

 

If this trait is present, the Mesiolingual aspect of upper molars may show a range of variation 

from a furrow to a large free cusp. An eight-grade classification, originated by Dahlberg 

(1956), is used for this trait and can be scored with reference plaque Zoller Laboratory UM 

Carabelli cusp: 
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0) No expression 

1) Furrow 

2) Pit 

3) Double furrow 

4) Small attached cusp 

5) Large attached cusp 

6) Small free cusp 

7) Large free cusp  

 

 

Figure 52. Example of Carabelli’s trait, grade 7. Superior occlusal view of the maxilla. 

Pontecagnano (southern Italy) burial 373, adult female. 

 

 

 

 

Carabelli’s 

trait grade 
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Parastyle UM3 

 

If present, the buccal surface may display variation from a pit to a free cusp. There are six 

grades evident on the reference plaque ASU UM parastyle: 

 

0) No expression 

1) Pit 

2) Small attached cusp 

3) Small free cusp 

4) Medium-sized free cusp 

5) Large free cusp 

 

Enamel extension UM1 

 

An extension of the enamel border may be present which may extend toward the root apex. 

No reference plaque. Four possible ASU grades may be scored: 

 

0) No expression 

1) A short extension (up to 1 mm) 

2) A medium extension (up to 2 mm) 

3) A lengthy extension (up to 4 mm +) 

 

 

Root Number UP1 

 

The number of free roots. No reference plaque. This trait is scored according to number of 

roots present. 
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Figure 53. Example of Root Number UP1. Distal side view. Nebringen (Stuttgart, Germany) 

burial 7403, adult male. 

 

 

 

 

 

Root number UM2 

 

The upper second molar may be reduced in size and display very simple morphology. There 

is no reference plaque for this trait. Rather, it is scored as normal or peg-shaped. 

 

 

 

 

Two 

roots 
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Figure 54. Example of Root Number UM2. Two rooted UM2, one inter-radial projection 

separates one root from two fused roots. Buccal, cheek side, view. Kutná-Hora-Karlov (Czech 

Republic) Burial 15, individual 1, adult male. 

 

 

 

 

Odontome P1-P2 

 

This trait refers to any pin sized, spike-shaped enamel and dentine projection occurring on the 

occlusal surface of the premolars. No reference plaque is available for this trait. Instead it is 

scored as either present or absent. 

Two fused 

roots 

Single 

root 
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Congenital Absence UM3 

 

The upper third molar may not be formed in adults. There is no ASU reference plaque for this 

trait. It is also scored as tooth present of absent. 

 

Midline Diastema 

 

In addition to the ASUDAS traits, the occurrence of the UI1 midline diastema has also been 

recorded. Previous research suggests that this trait can be recorded as a present/absent level 

of dichotomization (Irish, 1993, 1997, 1998 a, b, c, 2016; Irish et al., 2014; Irish and Turner, 

1989, 1990). This trait is recorded based on a measurement between the upper central 

incisors: 

 

0) No diastema (space < .5 mm) 

1) Diastema (space ≥ .5 mm) 

 

The midline diastema has been found to occur in high frequencies in many aboriginal African 

populations, however, it is not common in other populations (Dervall, 1949; Jacobson, 1982; 

Shaw, 1931; Sperber, 1958; Van Reenen, 1964). Thus, this feature may prove to be a useful 

African marker.  

 

Mandibular traits 

 

Lingual Cusp Number LP2 

 

The number of lingual cusps observed on the lower premolars are recorded. Four possible 

grades can be scored with the ASU LP2 reference plaque: 0-3 cusps   
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Anterior Fovea LM1 

 

A depression that may occur anterior to cusps 1 and 2 on the lower first molar. This trait can 

range in expression from absent, to a large depression with a ridge connecting the mesial 

margins of the two first two cusps. There are five possible grades which are scored with the 

ASU LM1 anterior fovea reference plaque: 

 

0) No expression 

1) Faint depression anterior to cusps 

2) Small depression 

3) Medium depression  

4) Large depression  

 

 

Mandibular Torus 

 

A nodular bony exostosis may develop on the lingual side of the mandible near the lower 

canine and premolars. No reference plaque is available for this trait. Rather, four possible 

ASU grades exist and are scored as follows: 

 

0) No expression 

1) Traces elevation 

2) Elevation between 2 to 5 mm 

3) Elevation greater than 5 mm 

 

Groove Pattern LM2 
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The pattern created by the connections among the cusps on the occlusal surface of the lower 

second molar. There is no reference plaque for this trait. The three possible grades are 

recorded as follows: 

 

Y: Cusps 2 and 3 touch  

X: Cusps 1 and 4 touch  

+: Cusps 1 through 4 touch  

 

Rocker Jaw 

 

This trait is observed on the inferior surface curvature of the mandibles horizontal ramus. 

This trait is age-dependent and only occurs in adults. There is also no reference plaque for 

this trait. Instead it is recorded as three possible ASU grades: 

 

0) No expression  

1) Slight curvature of the Jaw 

2) Extreme curvature, allowing the jaw to rock back and forth when placed on a flat surface  

 

Cusp Number LM1 

 

The number of cusps present on the lower first molar, excluding the metaconulid, cusp 7. No 

reference plaque is available for this trait. Three possible grades exist, 4-6 cusps, and are 

recorded as the number present.  

 

 

Cusp Number LM2 
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The number of cusps present on the lower second molar, excluding the metaconulid. There is 

also no reference plaque for this trait. The three possible grades, 4-6 cusps, are scored as the 

number present.  

 

Deflecting Wrinkle LM1 

 

A medial ridge may be present on occlusal surface of the lower first molar, and be present on 

cusp 2. Expression of this ridge can range from absent, to a large which may connect with 

cusp 3. There are four possible grades observed on the reference plaque ASU LM deflecting 

wrinkle: 

 

0) No expression  

1) Ridge extends ½ way across the cusp  

2) Ridge extends completely across the cusp 

3) Ridge extends into the central groove 

 

 

C1-C2 (Distal Trigonid) Crest LM1 

 

A ridge may connect the distal borders of cusps 1 and 2 on the lower first molar. This trait is 

scored as present or absent with the aid of a reference plaque developed by Hanihara (1961) 

for deciduous teeth.  

Protostylid LM1 

 

A paramolar cusp that may occur on the mesiobuccal surface of cusp 1 on the lower first 

molar. The trait is often associated with the buccal groove, a groove on the cheek side of the 

lower first molar, and can range from a pit to a separate cusp. There are eight possible ASU 

grades which are scored using the Zoller Laboratory reference plaque LM protostylid:  
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0) No Expression 

1) Buccal pit 

2) Distal deviation of the buccal groove  

3) Secondary mesial groove occurs 

4) Secondary groove is larger than 3 

5) Secondary groove is larger than 4 

6) Small cusp 

7) Large cusp 

 

Cusp 7 (Metaconulid) LM1 

 

An additional cusp may be present in the lingual groove between cusps 2 and 4 on the lower 

first molar. Six possible grades exist and can be scored with the ASU LM1 cusp 7 reference 

plaque: 

 

0) No expression 

1) Faint cusp 

1A) Faint bulge on the lingual surface of cusp 2 

2) Small cusp 

3) Medium-sized cusp 

4) Large cusp 

 

Tome’s Root LP2 

 

This trait is observed when a deep groove is observed on the mesial and distal root surfaces. 

There are six possible grades which are scored with the ASU LP Tome’s root reference 

plaque: 

 

0) No expression 
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1) Shallow groove is present 

2) Moderate groove is present 

3) Deep groove is present  

4) Very deep groove is present 

5) Two free roots are present   

 

 

Root Number LC 

 

The number of free roots observed on the lower canine. No reference plaque is available for 

this trait. Rather, it is scored according to number of free roots present. 

 

 

Root Number LM1 

 

The number of free roots that are evident on the lower first molar. There is also no reference 

plaque for this trait. It is also scored based on the number of free roots that are observed. 

 

Root Number LM2 

 

The number of free roots observed on the lower second molar. No reference plaque is 

available for this trait. It is also scored based on the number of roots which are observed. 

 

 

Torsomolar Angle LM3 

 

The lower third molar may be rotated and be oriented towards a line drawn through the 

middle of the lower first and second molars. There is also reference plaque for this trait. 
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Three possible trait grades exist and include: straight, buccal rotation, and lingual rotation. 

This trait is recorded based on the degree of rotation. 

 

ASUDAS scoring sheet for maxillary dentition (Turner et al., 1991). 
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ASUDAS scoring sheet for mandibular dentition (Turner et al., 1991). 
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Appendix II 

Kendall’s Tau-b Table 

Traita Labial 

Curvature 

UI1       

Tuberculum 

Dentale UI2    

Distal 

accessory 

ridge UC 

Hypocone 

UM2                 

Cusp 5 

UM1                     

Carabelli’s 

trait UM1       

 

Parastyle 

UM3                 

Enamel 

extension 

UM1    

Root 

number 

UP1                

Labial 

Curvature 

UI1       

tb=.209 

α .590 

tb=.751 

α .018 

tb=.226 

α .690 

tb=.167 

α .175 

tb=.353 

α .740 

tb=.392 

α .391 

tb=.316 

α .476 

tb=.140 

α .207 

tb=.138 

α .194 

Tuberculum 

Dentale UI2    

tb=.751 

α .018  

tb=.258 

α .292 

tb=.348 

α .156 

 

tb=.408 

α .459 

tb=.157 

α .692 

 

tb=.118 

α .473 

 

tb=.175 

α .276 

tb=.255 

α .364 

tb=.330 

α .282 

 

Distal 

accessory 

ridge UC 

tb=.382 

α .745 

tb=.364 

α .218 

tb=.256 

α .239 

tb=.210 

α .390 

tb=.110 

α .580 

tb=.425 

α .540 

tb=.405 

α .285 

tb=.156 

α .191 

tb=.104 

α .178 

Hypocone 

UM2                 

tb=.125 

α .403 

tb=.314 

α .443 

tb=.234 

α .497 

tb=.204 

α .868 

tb=.396 

α .337 

tb=.108 

α .297 

tb=.282 

α .857 

tb=.276 

α .177 

tb=.248 

α .775 

Cusp 5 

UM1                     

tb=.252 

α .757 

tb=.233 

α .695 

tb=.330 

α .528 

tb=.191 

α .433 

tb=.088 

α .197 

tb=.518 

α .011 

tb=.159 

α .233 

tb=.142 

α .488 

tb=.202 

α .393 

Carabelli’s 

trait UM1       

tb=.405 

α .438 

tb=.218 

α .177 

tb=.376 

α .132 

tb=.402 

α .294 

tb=.518 

α .011  

tb=.418 

α .208 

tb=.229 

α .355 

tb=.127 

α .318 

tb=.101 

α .247 

Parastyle 

UM3                 

tb=.435 

α .220 

tb=.419 

α .683 

tb=.094 

α .589 

tb=.191 

α .396 

tb=.377 

α .170 

tb=.289 

α .296 

tb=.291 

α .300 

tb=.073 

α. 490 

tb=.100 

α. 132 

Enamel 

extension 

UM1    

tb=.366 

α .726 

tb=.146 

α .463 

tb=.131 

α .813 

tb=.314 

α .959 

tb=.178 

α .152 

tb=.270 

α .815 

tb=.055 

α .728 

tb=.141 

α .433 

tb=.399 

α .296 

Root 

number 

UP1                

tb=.305 

α .215 

tb=.305 

α .190 

tb=.295 

α .122 

tb=.146 

α .222 

tb=.247 

α .456 

tb=.385 

α .520 

tb=.399 

α .375 

tb=.355 

α .145 

tb=.417 

α .280 

aBold values indicate significant correlations, tb represents the test value and α represents the alpha value. 
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Kendall’s Tau-b Table cont. 

Trait Labial 

Curvature 

UI1       

Tuberculum 

Dentale UI2    

Distal 

accessory 

ridge UC 

Hypocone 

UM2                 

Cusp 5 

UM1                     

Carabelli’s 

trait UM1       

 

Parastyle 

UM3                 

Enamel 

extension 

UM1    

Root 

number 

UP1                

Root 

number 

UM2               

tb=.220 

α .102 

tb=.345 

α .402 

tb=.280 

α .502 

tb=.190 

α .652 

tb=.140 

α .741 

tb=.108 

α .799 

tb=.332 

α .421 

tb=.303 

α .291 

tb=.333 

α .225 

Lingual 

cusp LP2                 

tb=.199 

α .636 

tb=.357 

α .343 

tb=.247 

α .556 

tb=.242 

α .564 

tb=.154 

α .715 

 

tb=.173 

α .531 

tb=.201 

α .633 

tb=.201 

α .633 

tb=.247 

α .556 

Anterior 

fovea LM1             

tb=.242 

α .564 

tb=.226 

α .482 

tb=.130 

α .259 

tb=.145 

α .771 

tb=.393 

α .324 

tb=.324 

α .434 

tb=.433 

α .204 

tb=.350 

α .195 

tb=.290 

α .145 

Groove 

pattern 

LM2             

tb=.220 

α .102 

tb=.141 

α .234 

tb=.305 

α .220 

tb=.353 

α .393 

tb=.140 

α .703 

tb=.421 

α .190 

tb=.393 

α .652 

tb=.325 

α .145 

tb=.305 

α .248 

Rocker jaw                                           tb=.399 

α .226 

tb=.315 

α .255 

tb=.191 

α .201 

tb=.427 

α .215 

tb=.435 

α .620 

tb=.245 

α .140 

tb=.333 

α .463 

tb=.438 

α .857 

tb=.399 

α .259 

Cusp 

number 

LM1               

tb=.403 

α .827 

tb=.259 

α .150 

tb=.314 

α .102 

tb=.177 

α .842 

tb=.190 

α .421 

tb=.108 

α .799 

tb=.226 

α .318 

tb=.131 

α .366 

tb=.338 

α .277 

Cusp 

number 

LM2           

tb=.220 

α .396 

tb=.305 

α. 217 

tb=.190 

α .525 

tb=.199 

α .458 

tb=.226 

α .590 

tb=.443 

α .318 

tb=.167 

α .345 

tb=.396 

α .253 

tb=.440 

α .210 

Deflecting 

wrinkle LM       

tb=.252 

α .142 

tb=.209 

α .416 

tb=.258 

α .233 

tb=.382 

α .740 

tb=.142 

α .088 

tb=.141 

α .738 

tb=.262 

α .531 

tb=.472 

α .238 

tb=.104 

α .806 

C1–C2 crest 

LM1               

tb=.472 

α .316 

 

tb=.251 

α .199 

tb=.158 

α .088 

tb=.417 

. .353 

tb=.101 

α .191 

tb=.253 

α .472 

tb=.105 

α .706 

tb=.337 

α .285 

tb=.324 

α .434 

aBold values indicate significant correlations, tb represents the test value and α represents the alpha value. 
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Kendall’s Tau-b Table cont. 

Trait Root 

number 

UM2               

Lingual 

cusp LP2                 

Anterior 

fovea 

LM1             

Groove 

pattern 

LM2             

Rocker 

jaw                                           

Cusp 

number 

LM1               

Cusp 

number 

LM2           

Deflecting 

wrinkle 

LM       

C1–C2 

crest LM1               

Protostylid 

LM1                  

tb=.372 

α. .238 

tb=.112 

α .792 

tb=.102 

α .811 

tb=.332 

α .421 

tb=.353 

α .392 

tb=.280 

α .502 

tb=.141 

α .377 

tb=.226 

α .591 

tb=.373 

α .363 

Cusp 7 

LM1 

tb=.175 

α. .208 

tb=.305 

α .055 

tb=.372 

α .840 

tb=.226 

α .482 

tb=.130 

α .190 

tb=.154 

α .337 

tb=.353 

α .417 

tb=.102 

α .140 

tb=.208 

α .300 

Tome’s 

root LP1                 

tb=.155 

α. .055 

tb=.233 

α .640 

tb=.403 

α .320 

tb=.338 

α .840 

tb=.173 

α .530 

tb=.305 

α .438 

tb=.266 

α .435 

tb=.290 

α .215 

tb=.170 

α .100 

 Root 

number LC                 

tb=.220 

α. 080 

tb=.402 

α .500 

tb=.234 

α .427 

tb=.320 

α .154 

tb=.102 

α .220 

tb=.205 

α .324 

tb=.146 

α .366 

tb=.397 

α .247 

tb=.285 

α .475 

Root 

number 

LM1              

tb=.132 

α .757 

tb=.372 

α .842 

tb=.303 

α .108 

tb=.141 

α .055 

tb=.393 

α .813 

tb=.190 

α .055 

tb=.234 

α .330 

tb=.205 

α .141 

tb=.399 

α .178 

Root 

number 

LM2              

tb=.314 

α .305 

tb=.220 

α .757 

tb=.190 

α .102 

tb=.324 

α .102 

tb=.201 

α .556 

tb=.318 

α .633 

tb=.304 

α .443 

tb=.177 

α .842 

tb=.372 

α .250 

Torsomolar 

angle LM3       

tb=.293 

α .683 

tb=.178 

α .088 

tb=.226 

α .459 

tb=.259 

α .771 

tb=.318 

α .226 

tb=.130 

α .141 

tb=.438 

α .771 

tb=.377 

α .202 

tb=.280 

α .345 

aBold values indicate significant correlations, tb represents the test value and α represents the alpha value. 
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Kendall’s Tau-b Table cont. 

Trait Root 

number 

UM2               

Lingual 

cusp LP2                 

Anterior 

fovea 

LM1             

Groove 

pattern 

LM2             

Rocker 

jaw                                           

Cusp 

number 

LM1               

Cusp 

number 

LM2           

Deflecting 

wrinkle 

LM       

C1–C2 

crest 

LM1               

Root 

number 

UM2               

tb=.305 

α .450 

tb=.255 

α .253 

tb=.465 

α .339 

tb=.305 

α .255 

tb=.305 

α .252 

tb=.467 

α .287 

tb=.305 

α .575 

tb=.256 

α .353 

tb=.350 

α .396 

Lingual 

cusp LP2                 

tb=.305 

α .428 

tb=.355 

α .297 

tb=.334 

α .173 

tb=.132 

α .528 

tb=.375 

α .608 

tb=.335 

α .173 

tb=.160 

α .548 

tb=.374 

α .261 

tb=.473 

α .334 

Anterior 

fovea LM1             

tb=.297 

α .256 

tb=.322 

α .463 

tb=.148 

α .226 

tb=.393 

α .237 

tb=.132 

α .580 

tb=.297 

α .160 

tb=.243 

α .564 

tb=.399 

α .208 

tb=.440 

α .160 

 Groove 

pattern 

LM2             

tb=.334 

α .564 

tb=.460 

α .337 

tb=.138 

α .088 

tb=.256 

α .532 

tb=.261 

α .173 

tb=.399 

α .208 

tb=.328 

α .498 

tb=.367 

α .877 

tb=.372 

α .238 

Rocker jaw                                           tb=.160 

α .374 

tb=.131 

α .322 

tb=.173 

α .261 

tb=.265 

α .626 

tb=.233 

α .663 

tb=.148 

α .580 

tb=.261 

α .248 

tb=.441 

α .548 

tb=.364 

α .440 

Cusp 

number 

LM1               

tb=.274 

α .670 

tb=.197 

α .297 

tb=.443 

α .396 

tb=.440 

α .353 

tb=.342 

α .264 

tb=.140 

α .328 

tb=.208 

α .399 

tb=.248 

α .190 

tb=.160 

α .173 

Cusp 

number 

LM2           

tb=.248 

α .297 

tb=.476 

α .131 

tb=.350 

α .132 

tb=.131 

α .757 

tb=.440 

α .397 

tb=.197 

α .320 

tb=.160 

α .675 

tb=.372 

α .640 

tb=.380 

α .132 

Deflecting 

wrinkle LM       

tb=.173 

α .604 

tb=.334 

α .464 

tb=.320 

α .397 

tb=.463 

α .308 

tb=.457 

α .608 

tb=.334 

α .463 

tb=.173 

α .242 

tb=.197 

α .088 

tb=.398 

α .367 

C1–C2 crest 

LM1               

tb=.423 

α .463 

tb=.396 

α .132 

tb=.374 

α .564 

tb=.422 

α .755 

tb=.367 

α .870 

tb=.334 

α .608 

tb=.132 

α .480 

tb=.148 

α .173 

tb=.448 

α .160 

aBold values indicate significant correlations, tb represents the test value and α represents the alpha value. 
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Kendall’s Tau-b Table cont. 

Trait Labial 

Curvature 

UI1       

Tuberculum 

Dentale UI2    

Distal 

accessory 

ridge UC 

Hypocone 

UM2                 

Cusp 5 

UM1                     

Carabelli’s 

trait UM1       

 

Parastyle 

UM3                 

Enamel 

extension 

UM1    

Root 

number 

UP1                

Labial 

Curvature 

UI1       

Protostylid 

LM1                  

tb=.385 

α .687 

tb=.346 

α .385 

tb=.308 

α .414 

tb=.172 

α .535 

tb=.242 

α .469 

tb=.228 

α .587 

tb=.165 

α .695 

tb=.373 

α .366 

tb=.251 

α .460 

tb=.423 

α .297 

Cusp 7 LM1 tb=.440 

α .320 

tb=.160 

α .548 

tb=.243 

α .564 

tb=.334 

α .173 

tb=.399 

α .208 

tb=.208 

α .499 

tb=.334 

α .305 

tb=.205 

α .626 

tb=.197 

α .641 

tb=.146 

α .741 

Tome’s root 

LP1                 

tb=.398 

α .328 

tb=.384 

α .129 

tb=.385 

α .346 

tb=.337 

α .870 

tb=.365 

α .577 

tb=.335 

α. .080 

tb=.254 

α .898 

tb=.372 

α .238 

tb=.205 

α .315 

tb=.335 

α .417 

 Root 

number LC                 

tb=.280 

α .580 

tb=.240 

α .190 

tb=.274 

α .088 

tb=.402 

α .393 

tb=.354 

α .250 

tb=.334 

α .173 

tb=.242 

α .564 

tb=.374 

α .261 

tb=.245 

α .676 

tb=.197 

α .641 

Root 

number 

LM1              

tb=.146 

α .741 

tb=.398 

α .328 

tb=.396 

α .250 

tb=.347 

α .322 

tb=.263 

α .205 

tb=.198 

α .208 

tb=.267 

α .108 

tb=.160 

α .294 

tb=.320 

α .445 

tb=.322 

α .393 

Root 

number 

LM2              

tb=.360 

α .578 

tb=.205 

α .875 

tb=.335 

α .215 

tb=.366 

α .482 

tb=.141 

α .377 

tb=.234 

α .345 

tb=.153 

α .455 

tb=.353 

α .208 

tb=.332 

α .102 

tb=.190 

α .055 

Torsomolar 

angle LM3       

tb=.399 

α .177 

tb=.314 

α .175 

tb=.417 

α .141 

tb=.153 

α .090 

tb=.241 

α .140 

tb=.372 

α .804 

tb=.238 

α .112 

tb=.226 

α .102 

tb=.373 

α .591 

tb=.305 

α .190 

aBold values indicate significant correlations, tb represents the test value and α represents the alpha value. 
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Kendall’s Tau-b Table cont. 

Trait Protostylid 

LM1                  

Cusp 7 

LM1 

Tome’s 

root LP1                 

Root 

number 

LC                 

Root 

number 

LM1              

Root 

number 

LM2              

Torsomola

r angle 

LM3       

Protostylid 

LM1                  

tb=.305 

α .353 

tb=.191 

α .215 

tb=.234 

α .377 

tb=.230 

α .417 

tb=.131 

α .073 

tb=.324 

α .482 

tb=.302 

α .393 

Cusp 7 LM1 tb=.124 

α .130 

tb=.366 

α .153 

tb=.403 

α .443 

tb=.108 

α .208 

tb=.450 

α .591 

tb=.220 

α .390 

tb=.302 

α .345 

Tome’s root 

LP1                 

tb=.257 

α .073 

tb=366 

α .145 

tb=.314 

α .131 

tb=.357 

α .490 

tb=.283 

α .150 

tb=.397 

α .240 

tb=.403 

α .146 

 Root number 

LC                 

tb=.438 

α .131 

tb=.366 

α .153 

tb=.438 

α .205 

tb=.245 

α .280 

tb=.377 

α .427 

tb=.262 

α .102 

tb=.208 

α .132 

Root number 

LM1              

tb=.337 

α .258 

tb=.443 

α .203 

tb=.226 

α .130 

tb=.382 

α .130 

tb=.438 

α .190 

tb=.393 

α .140 

tb=.372 

α .141 

Root number 

LM2              

tb=.353 

α .202 

tb=.417 

α .366 

tb=.333 

α .757 

tb=.373 

α .591 

tb=.393 

α. 170 

tb=.277 

α .153 

tb=.191 

α .088 

Torsomolar 

angle LM3       

tb=.305 

α .255 

tb=.124 

α .324 

tb=.220 

α .434 

tb=.366 

α .652 

tb=.287 

α .177 

tb=.345 

α .402 

tb=.402 

α .752 

aBold values indicate significant correlations, tb represents the test value and α represents the alpha value. 
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Appendix III 

 

Disadvantages of using teeth as a research tool1 

 

Although there are many advantages to using teeth as a research tool, there are also 

several disadvantages. Information can be lost through wear and pathology, related to 

individual age and post-depositional damage. Further, single-rooted teeth (i.e., incisors) are 

often lost during curation and excavation. In skeletal collections, it is common to have all the 

multi-rooted posterior teeth (i.e., molars) with no anterior teeth (i.e., incisors). Consequently, 

highly variable sample sizes for shovelling versus Carabelli's cusp are common. The global 

range of dental variation has not been completely documented, resulting in patterns of 

regional population affinity and variation that are not completely understood. Fluctuating 

asymmetry can have a negative effect on trait expression; however, this downside can be 

avoided. Although fluctuating asymmetry occurs throughout the dentition; the antimeres can 

be scored with confidence in relation to the level of trait expression (Irish, 1993; Scott and 

Turner, 1997). Most traits are present on both antimeres because teeth are mirror images of 

each other, albeit inexact.  

As such, antimeres can be scored following two methods. One method involves 

counting only one side in all specimens (Haeussler et al., 1988; Scott and Turner, 1997). The 

second method is to score both antimeres and, allowing for asymmetry, count the side with 

the greatest expression (Scott and Turner, 1997). Because dental traits are continuous 

variants, they are difficult to score consistently into ordinal grades; differences in trait 

frequencies can exist between analyses that result in differential population affinity 

assessments. To avoid potentially biased data, proper scoring procedures should be exercised 

(Burnett et al., 2013; Nichol and Turner, 1986; Stojanowski and Johnson, 2015; Turner et al., 

1991). Dental wear results from three primary sources, striation, abrasion and erosion, and 

can also contribute to differential trait scoring, as the near-occlusal traits are more affected at 

the early wear-stages (Burnett, 2016). Attrition is the result of occlusal contact and 

interproximal contact between adjacent teeth. Abrasion is the result of friction between teeth, 

items or substances introduced into the mouth (Burnett et al., 2013). Abrasion resulting from 

food items includes non-spatially specific wear, as well as localized wear, and is derived from 
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specific food processing (Burnett et al., 2013). Nondietary causes of abrasion include sand in 

the diet, toothbrushes, toothpicks and using teeth as tools (Burnett et al., 2013; Bergström and 

Lavstedt, 1979; Erdal, 2008; Frayer, 1991; Larsen, 1985; Turner and Anderson, 2003; Ungar 

et al., 2001). Erosion is the chemical destruction of the dental tissues, e.g., enamel and 

dentine, in the absence of plague and is a modern phenomenon (Burnett et al., 2013; 

Kaidonis, 2008). Causes include vomiting, consuming highly acidic foods or beverages 

(Burnett et al., 2013; Holbrook et al., 2003; Kaidonis, 2008; Pindborg, 1970). Attrition, 

abrasion, and erosion rarely occur in isolation. Attrition and abrasion likely occurred in 

tandem in nonindustrialized societies, whereas the soft foods consumed as part of the modern 

diet have moderated the effects of abrasion (Burnett et al., 2013; Khan and young, 2011). 

Further, its effects are complex as wear increases with age and may differ between the sexes 

and populations (Burnett et al., 2013; Molnar, 1971; Tomenchuk and Mayhall, 1979).  As 

such wear is a potential source of frequency bias in dental morphological study and may 

result in the misinterpretation of morphological traits (Burnett et al., 2010, 2013; Burnett, 

1998, 2016; Morris, 1970). Scoring of nonmetric traits can be biased in two ways. The first is 

designated as grade shift, which occurs when a trait is scored as having a lesser frequency, 

trait downgrading, or having a greater frequency than actually present, trait upgrading, 

expression than is actually present. Both trait downgrading and upgrading affect trait counts 

by reducing or increasing frequencies of occurrence, respectively (Burnett et al., 2010, 2013). 

Additionally, a sampling bias may occur when teeth that are subjectively considered too worn 

for inclusion in subsequent analyses, and the missing data are assumed to be missing 

completely at random (MCAR) (Burnett, 2016).  

A particular trait even in the presence of heavy wear may be included for analysis, 

however, a trait which is absent on a similarly worn tooth is not (Burnett, 2016). 

Consequently, in the latter case, the tooth is excluded from analyses due to the assumption 

that the trait was worn away and is thus scored as no data. Although, in some cases, the trait 

was, in fact, absent as should have been scored as a grade 0 (Burnett, 2016). Thus, the 

frequency of a particular trait can be artificially increased when the missing completely at 

random, MCAR, assumption is violated (Burnett, 2016). One solution is to only score teeth 

with similar levels of wear. However, such similarity among samples, particularly 

archaeological samples, may not be readily available therefore significantly limiting sample 

sizes (Burnett et al., 2010; Burnett, 2016). Alternatively, acknowledgment of major 
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differences in wear among samples may affect particular traits that will help account for the 

MCAR assumption. Selecting only specific traits that are minimally or not affected by wear 

(i.e., root traits) is another alternative. As traits near the surface (i.e., shovelling) are more 

affected at early stages of wear than traits located lower on the crown surface (i.e., groove 

pattern). Shifting the standard breakpoints (the level of expression at which each trait is 

scored as present) upwards is the simplest solution, which can reduce or eliminate wear 

biases (Irish, 1993, 2006; Irish et al., 2014). This solution enables moderately worn dentitions 

to be recorded and subsequently included in analyses, and maximizes sample size (Burnett, 

1986, 2016; Burnett et al., 2013).  

Wear-related biases can be determined through analysis of trait frequencies across 

wear grades, which can indicate systematic grade shifting. Frequency and wear biases have 

been identified in previous studies (Burnett et al., 2010, 2013; Burnett, 2016). Significant 

wear biases have been found in the frequency of incisor shovelling, maxillary premolar 

accessory ridges, and lower molar cusp number. Wear related biases have also been reported 

in UI1 shovelling, UI1 double shovelling, canine distal accessory ridge UC, UM1 enamel 

extension, LM2 cusp number, and LM1 deflecting wrinkle (See Appendix 1 for trait 

descriptions) (Burnett et al., 2013; Burnett, 2016; Stojanowski and Johnson, 2015). These 

biases can lead to both intra-and inter-observer error through differential scoring, although 

this effect can be minimized by examination of trait frequencies across wear grades. 

Frequency of occurrence can be compared to tooth-specific wear scores to determine the 

relationship between wear and morphology. Only comparing samples, or teeth, with similar 

degrees of wear can also mitigate the effects of these biases. However, finding such similarity 

among samples, particularly archaeological samples, may not always be possible (Burnett et 

al., 2013). As a result, this method can significantly limit the samples available for 

comparison and analysis (Burnett, 2016; Burnett et al., 2013). Another method is to only 

select and score those specific traits that are minimally or not affected by wear, such as root 

traits. Shifting the breakpoints upwards can reduce or abolish certain wear biases size 

(Burnett, 1986, 2016; Burnett et al., 2013). An alternative method of addressing these biases 

is to acknowledge that there is a difference in wear among the samples being compared. A 

cautionary description detailing that some trait frequencies may have been affected should 

also be included (Burnett, 1986, 2016; Burnett et al., 2013). This method is recommended as 

trait upgrading is often only necessary when sample sizes need to be increased, or where 
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moderate to heavy wear is the norm; as it may lead to a spurious relationship among samples 

(Burnett, 1986, 2016; Burnett et al., 2013). Further, the underlying biological relationships, 

and variation, among samples may be obscured (Burnett et al., 2013). Patterns of missing 

data can also be examined to determine whether observer error accounts for differential trait 

recording (Stojanowski and Johnson, 2015).  

The rank scale plaques comprising the ASUDAS system promote intra-and inter-

observer recording repeatability, especially between observers (Stojanowski and Johnson, 

2015). Strict adherence to the ASUDAS standards and the use of intra-observer error checks 

can minimize the effects of error (Hillson, 1996; Irish, 1993, 1997, 1998a, b, c, 20002; Scott 

and Turner, 1997; Turner et al., 1991). Observer error can be limited through multiple scoring 

events by the same and/or numerous individuals and statistical analysis of the results. Such as 

a paired samples t-tests and Wilcoxon signed-rank test can determine whether the 

discrepancies in the scores fall within an acceptable range. Additional measures, such as 

grade dichotomization, are used to address concordance issues between observers (Nichol 

and Turner, 1986; Turner et al., 1991; Scott and Turner, 1997; Stojanowski and Johnson, 

2015). 

Another potential disadvantage is the lack of knowledge of the exact modes of 

inheritance. However, previous nonmetric analyses have indicated population affinities in 

line with genetic and known linguistic evidence and distribution without a complete 

understanding of the modes of inheritance. Dental traits have been argued to be polygenetic 

with a quasi-continuous range of expression or the existence of a gene model for specific 

traits (Dahlberg, 1971; Hubbard, 2012; Jernvall, 2000; Jernvall and Jung, 2000; Nichol, 1990; 

Noss et al., 1983; Salazar-Ciudad and Jernvall, 2010; Scott, 1973; Skinner at al., 2008 

Turner, 1969, 1969). However, because dental size and morphology have a substantial 

genetic component (40-80% and 60-80% respectively), understanding the exact modes of 

inheritance is not necessary for affinity studies (Hubbard, 2012; Hughes and Townsend, 

2013; Jernvall, 2000; Jernvall and Jung, 2000; Nichol, 1990; Noss et al., 1983; Salazar-

Ciudad and Jernvall, 2010; Scott, 1973; Skinner at al., 2008 Turner, 1969, 1969). The 

concordance between biodistance estimates obtained from dental and genetic data also 

supports the use of dental traits in these analyses. The lack of standardization, however, is not 

as easy to overcome.  
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The lack of standardization in scoring procedures between studies results in errors 

when utilizing previously published data. Because dental traits are continuous variants and 

are thus difficult to score consistently along an ordinal scale, they may be evaluated based on 

individual training and/or personal opinion (Hillson, 1996; Scott and Turner, 1997; Turner et 

al., 1991). However, with the advent of the ASUDAS system, this issue has been somewhat 

reduced (Haeussler et al., 1988; Irish, 2010, 2015; Irish et al., 2014; Nichol and Turner, 1986; 

Scott and Turner, 1997). Adherence to the ASUDAS protocols and intra and inter-observer 

error trials combined with statistical analysis can minimize the effect of differential trait 

scoring. Asymmetry in the antimeres may also impact dental nonmetric trait analysis, as the 

morphology of one antimere is not necessarily matched by the opposite (Nichol and Turner, 

1986; Scott and Turner, 1997). Some studies have indicated that fluctuating asymmetry of 

nonmetric traits increases from the mesial to distal (front to back) teeth (Saunders and 

Mayhall, 1982). However, a high degree of concordance has been found between the 

antimeres, and little evidence has subsequently been found for directional asymmetry (Garn 

et al., 1966; Mizoguchi, 1992).   

 

Advantages of using teeth as a research tool1 

 

Although there are disadvantages to the analysis of dental nonmetric traits, their 

effects can be minimized through careful adherence to the ASUDAS system and the use of 

inter-and-intra-observer checks. The loss of information through dental wear and/or post-

mortem depositional damage can be minimized if the antimere is available for analysis (Irish, 

1993, 2010, 2015; Irish et al., 2014; Scott and Turner, 1997). However, numerous previous 

studies have described the relationships among populations, and/or groups, which mirror, and 

are concordant, with those based on genetics, linguistics, documented population history and 

other skeletal morphological traits (Irish, 1993, 1998, 2010, 2015; Irish et al., 2014 Scott and 

Turner, 1997). This indicated that dental morphological analyses, with the ASUDAS system, 

are applicable to biodistance studies despite diverse levels of tooth wear.   

 Overall, the disadvantages of dental morphological analysis do not preclude its use. 

As analysis of dental morphological variation has been shown to determine broad and 

regional scale population differentiation and affinity, the results of which have been 

independently corroborated by genetic and linguistic analyses when the linguistic distribution 
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is known in numerous previous studies (Coppa et al., 2000, 2007; Hanihara, 2008, 2010; 

Irish, 1993, 2010, 2015; Irish et al., 2014). However, when the linguistic distribution and 

relationships are unknown the link between languages and populations is tenuous, although 

dental phenetic relationships can be used to approximate the linguistic and genetic boundaries 

(Hanihara, 2008, 2010; Hubbard, 2012; Irish, 1993, 2010, 2015; Irish et al., 2014). Dental 

morphological analysis is, therefore, a useful tool for determining biological affinity among, 

between, and within populations.     

Teeth have several attributes that make them especially suited to anthropological 

analysis. They are hard, primarily the enamel, which has the lowest porosity and highest 

density of all body tissues (Hillson, 1996; Kraus et al., 1969). The mineralized 

fluorhydroxyapatite (mineralized substance formed by the reactions between small amounts 

of fluoride and hydroxyapatite) enamel covers the crown, thus protecting the underlying 

dentine; making the teeth less susceptible to degradation after death (Hillson, 1996). 

Therefore, teeth are better able to survive in the archaeological record. Teeth act as an 

intermediary between individuals and their environment and their use as tools and everyday 

interaction with the environment can leave diagnostic scars. This relationship allows for 

interpretations about the interactions between individuals and their environments, resulting in 

discernible clues as to diet, health and the cultural use of teeth (Frayer et al., 1988; Larsen, 

1985; Merbs, 1983; Molleson and Jones, 1991).  

Teeth are also less affected by the environment than other living tissues such as bone. 

Once teeth are formed, they do not change, with the exception of attrition and pathological 

damage. Because environmental stressors do not affect teeth as much as other living tissues, 

they can be used for short-term affinity studies within and between populations (Hillson, 

1996; Turner, 1969; Hillson, 1996). Teeth also evolve slowly, enabling long term diachronic 

studies through analysis of tooth morphology. However, dramatic changes in both dental 

morphology and tooth size are evident subsequent to the development of food production and 

ceramic technology. Samples of both living and dead individuals can be compared, thereby 

allowing for comparisons between extinct and extant populations. Moreover, teeth, while 

complex, display a largely consistent range in size within species and sex (Irish, 1993, 2010; 

Scott, 1973; Scott and Turner, 1997; Turner et al., 1991). Teeth are also evolutionally 

conservative (Irish, 1993, 2010; Scott and Turner, 1997; Turner et al., 1991). Therefore, teeth 

are well-suited to provide insight into numerous genetic, pathological, behavioural, cultural, 
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and environmental relationships, making them a preferred subject of biological inquiry. 

Dental analysis has been employed in several fields, including, genetics, growth and 

development, pathology, forensics, and hominid origins, because of the attributes mentioned 

above. 

On a global scale, morphological trait frequencies have been found to vary according 

to broad geographical categories. Nonmetric traits are discrete anatomical units that are 

expressed at differing frequencies within and among populations, thus allowing for 

interpretations at both micro-and macro-evolutionary levels (Hubbard, 2012; Irish, 1993, 

2010, 2015; Irish et al., 2014). Morphological traits have a high genetic component, 40-80%, 

which facilitates their use in biodistance, population history and structure analyses. The 

results of which have been shown to corroborate those from other lines of evidence including, 

linguistic, genetic, historical and archaeological (Hubbard, 2012; Irish, 1993, 2010, 2015; 

Irish et al., 2014; Ricaut et al., 2010). Further, a concordance between biodistance estimates 

obtained from dental and genetic data suggests that dental data are suitable for providing 

estimates of biological affinity in line with genetic analyses (Hubbard, 2012; Ricaut et al., 

2010). Regional and global relationships have been revealed through nonmetric trait analysis, 

the results of which are in line with genetic and linguistic evidence where known (Hubbard, 

2012; Irish, 1993, 2010, 2015; Irish et al., 2014). Indicting the patterns of population affinity 

indicated through dental nonmetric analysis is not an artefact of the analysis, but actually 

represents a true affinity relationship. Several studies have indicated a strong correlation 

between genetic and dental reconstructions of biological affinity (Cavalli-Sforza et al., 1994; 

Cavalli-Sforza et al., 1988; Hubbard, 2012; Ricaut et al., 2010; Scott and Turner, 1997; 

Sofaer et al., 1972b; Wijsman and Never, 1986).   

Further, previous studies have indicated that the biodistance data collected from 

dental traits will be significantly and positively concordant with that from genetic based 

studies (Hanihara, 2008; Hubbard, 2012; Ricaut et al., 2010; Turner, 1987, 1989). Although 

there are some differences between the results of nonmetric trait and genetic analysis, the 

discrepancies between the two are likely due to the fact that dental traits evolve slowly they 

may provide a population history more in line with a deeper time scale than the genetic data.   

Because ASUDAS traits do not follow simple inheritance patterns, the phenetic 

differences and similarities between and within populations can be used to approximate levels 

of genetic affinity (Berry, 1968; Dahlberg, 1971; Garn et al., 1963; Grüneburg, 1965; 
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Hubbard, 2012; Irish, 1993, 2010, 2015; Irish et al., 2014; Jackes et al., 2001; Kollar and 

Baird, 196; Scott and Turner, 1997; Sofaer, 1970). Thus, dental nonmetric traits can be used 

to determine the amount of gene flow between populations. During the early period of 

nonmetric trait analysis, researchers utilized these traits to describe and document population 

differences and general differences in trait expression. These comparative studies were used 

on both global and regional scales as well as the derivation of modern populations from a 

common ancestral population (Turner, 1984, 1985). On a regional scale, the frequency of trait 

expression between prehistoric populations from India was determined to be intermediate in 

relation to trait expression to Europeans and Asians (Lukacs and Walimbe, 1984). These 

analyses have also indicated the presence of region-specific rather than broad geographically 

distributed populations and/or groups, with a trend towards limited intra-and-extra-regional 

mobility (Hubbard, 2012; Irish, 1993, 2010, 2015; Irish et al., 2014; Scott and Turner, 1997). 

Specific dental complexes have been identified for the Mongoloid and Australian dentitions 

based on the frequencies of specific dental traits such as incisor shovelling, Carabelli's cusp, 

and Tomes root (Scott and Turner, 1997). Variations in the frequencies of nonmetric dental 

traits have enabled regional divisions based on population history. These variations among 

populations have been classified into broad geographical categories based on their specific 

combination of high, intermediate, and low morphological trait expression (Scott and Turner, 

1997; Turner et al., 1991). 

Western Eurasians are characterized by morphologically simple teeth overall 

(Mayhall et al., 1982). Sub-Saharan Africans have high frequencies of lower first molar cusp 

7, Carabelli's cusp UM1, and cusps 5 and cusp 6 LM1. Sino-Americans exhibit higher 

frequencies of dental morphological variation and exhibit more morphological traits. The 

Sunda Pacific groups, in Polynesia and Micronesia, fall into the middle range for trait 

frequency. Finally, the Sahul-Pacific groups, Australia, New Guinea, and other Melanesian 

groups, exhibit high and intermediate frequencies, of several morphological traits (Townsend 

et al., 1990; Hanihara, 1968). Although there is evidence for global-scale variations in 

morphological trait frequencies there is also regional variation that can indicate variations 

within the broad dental complexes. The ASUDAS system is the most widely used and useful 

method for scoring and evaluating dental nonmetric traits. The use of this standardized 

system minimizes observer error and enables the use of common terminology. Only those 
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traits that have been associated with genetic heritability are included in the system (Nichol 

and Turner, 1986; Scott and Turner, 1997).  
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Appendix IV 

Figure 55. Two-dimensional scatterplot of the Nebringen (NEB) sample relative to the other samples based on geographic (x-axis) versus 

phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., y=0+1x, where 

y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. Ger (German); DUR (Dürrnberg); 

POTT (Pottenbrunn); HALD (Hallstatt D); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston 

Makeshift); WWS (Wetwang Slack); Pon (Pontecagnano). 

 

Region 

Core    

Expansion    

Comparative  

 



 

425 
 

Figure 56. Two-dimensional scatterplot of the Pottenbrunn (POTT) sample relative to the other samples based on geographic (x-axis) versus 

phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., y=0+1x, where 

y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. Ger (German); DUR (Dürrnberg); 

HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD 

(Rudston Makeshift); WWS (Wetwang Slack); Pon (Pontecagnano).  
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Figure 57. Two-dimensional scatterplot of the Dürrnberg (DUR) sample relative to the other samples based on geographic (x-axis) versus 

phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., y=0+1x, where 

y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances.  HALD (Hallstatt D); German 

(GER); NEB (Nebringen); MunRain (Münsingen-Rain); POTT (Pottenbrunn); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston 

Makeshift); WWS (Wetwang Slack); Pon (Pontecagnano). 
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Figure 58. Two-dimensional scatterplot of the Münsingen-Rain (MunRain) sample relative to the other samples based on geographic (x-axis) 

versus phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., y=0+1x, 

where y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. DUR (Dürrnberg); HALD 

(Hallstatt D); German (GER); NEB (Nebringen); POTT (Pottenbrunn); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston 

Makeshift); WWS (Wetwang Slack); Pon (Pontecagnano). 
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Figure 59. Two-dimensional scatterplot of the Hallstatt D (HALD) sample relative to the other samples based on geographic (x-axis) versus 

phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., y=0+1x, where 

y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. DUR (Dürrnberg); German (GER); 

NEB (Nebringen); MunRain (Münsingen-Rain); POTT (Pottenbrunn); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston 

Makeshift); WWS (Wetwang Slack); Pon (Pontecagnano). 
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Figure 60. Two-dimensional scatterplot of the Kutná-Hora-Karlov (KHK) sample relative to the other samples based on geographic (x-axis) 

versus phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 provided (i.e., y=0+1x, 

where y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. DUR (Dürrnberg); HALD 

(Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); POTT (Pottenbrunn); RAD (Radovesice); RUD (Rudston 

Makeshift); WWS (Wetwang Slack); Pon (Pontecagnano). 
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Figure 61. Two-dimensional scatterplot of the Rudston Makeshift (east Yorkshire, Britain) (RUD) sample relative to the other samples based on 

geographic (x-axis) versus phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 

provided (i.e., y=0+1x, where y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. DUR 

(Dürrnberg); HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); POTT (Pottenbrunn); RAD (Radovesice); 

KHK (Kutná-Hora-Karlov); WWS (Wetwang Slack); Pon (Pontecagnano). 
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Figure 62. Two-dimensional scatterplot of the Wetwang Slack (east Yorkshire, Britain) (WWS) sample relative to the other samples based on 

geographic (x-axis) versus phenetic (y-axis) distances. Solid black linear equation reference line with slope (b) of 1 and y-intercept (a) of 0 

provided (i.e., y=0+1x, where y=a+bx) to illustrate where the other sample would be if a 1:1 correspondence existed between the distances. DUR 

(Dürrnberg); HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); POTT (Pottenbrunn); RAD (Radovesice); 

KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); Pon (Pontecagnano). 
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Appendix V 

Table 16. Rotated component matrix for the first 2 components. 

 

Trait *                                             

Component 

PCA 1                                         

 

PCA 2 

Eigenvalue 10.285 6.225 

Variance 47.855 34.277 

Total Variance 47.855 82.133 

Labial Curvature UI1            .361 -.576 

Interruption groove UI2    -.146 .370 

Tuberculum Dentale UI2*   .451 -.889 

Distal accessory ridge UC* .278 -.805 

Hypocone UM2* -.032 -.376 

Cusp 5 UM1                          -.547 .373 

Carabelli’s trait UM1            -.777 .401 

Parastyle UM3* -.576 -.776 

Enamel extension UM1* .016 .696 

Root number UP1* .995 -.116 

Root number UM2* .802 .795 

Lingual cusp LP2* .992 .034 

Anterior fovea LM1* .996 .027 

Groove pattern LM2* .694 .721 

Rocker jaw                            -.418 .398 

Cusp number LM1* .463 .881 

Cusp number LM2* -.456 -.880 

Deflecting wrinkle LM* .976 .211 

C1–C2 crest LM1* .935 -.348 

Protostylid LM1* -.949 -.318 

Tome’s root LP1* -.952 .184 

Root number LC* -.153 .949 

Root number LM1* -.968 .210 

*Denotes the 20 final traits used for MMD analysis after editing (Table 9). Boldface 

numbers indicate “strong” loadings (i.e., > |0.500|). 
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Table 16 continued. Rotated component matrix for the first 2 components.  

 

Trait *                                             

Component 

PCA 1                                         

 

PCA 2 

Root number LM2* -.734 -.093 

Torsomolar angle LM3* -.916 .392 

*Denotes the 20 final traits used for MMD analysis after editing (Table 9). Boldface 

numbers indicate “strong” loadings (i.e., > |0.500|). 
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Appendix VI 

Table 17. Component loadings, eigenvalues and variance for the for the first 3 components 

explained for the samples. 

Component 

Trait*                                                     1                              2                                     3 

Eigenvalue 12.440 8.261 4.222 

Variance 47.855 34.277 5.089 

Total Variance 47.855 82.133 87.221 

Labial Curvature UI1            .362 -.556 -.217 

Interruption groove UI2    -.156 .416 -.461 

Tuberculum dentale UI2*   .487 -.866 -.017 

Distal accessory ridge UC* .321 -.832 .169 

Hypocone UM2 -.215 -.427 .421 

Cusp 5 UM1                          -.511 .464 -.004 

Carabelli’s trait UM1*            -.851 .319 .101 

Parastyle UM3* -.524 -.803 .070 

Enamel extension UM1* .022 .669 .294 

Root number UP1* .797 -.056 -.039 

Root number UM2* .790 .607 -.009 

Lingual cusp LP2* .994 .090 .011 

Anterior fovea LM1* .895 .035 -.046 

Groove pattern LM2* .648 .754 -.014 

Rocker jaw                            -.432 .353 .111 

Cusp number LM1* .406 .703 -.017 

Cusp number LM2* -.416 -.802 .013 

Deflecting wrinkle LM* .864 .259 -.015 

C1–C2 crest LM1* .752 -.302 -.015 

Protostylid LM1* -.729 -.364 .013 

Tome’s root LP1* -.882 .164 -.018 

Root number LC* -.202 .866 -.014 

Root number LM1* -.782 .162 -.013 

Root number LM2* -.735 -.130 -.025 

Torsomolar angle LM3* -.835 .342 -.005 

*Denotes the 20 final traits used for MMD analysis after editing (Table 9). Boldface 

numbers indicate “strong” loadings (i.e., > |0.500|). 
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Figure 63. Three-dimensional scatterplot of the first three components among the samples 

for 25 dental traits. The first three components account for 87.22% of the total variance 

(47.85% on the x-axis, 34.27% on the y-axis and 5.08% on the z-axis). Dürrnberg La Tène 

(DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German 

(GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-

Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang Slack). 
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Table 18. Rotated component matrix for the first 3 components.  

 

 

 

Trait*                                            

 

 

 

PCA 1                 

Component 

 

 

PCA 2                            

 

 

 

PCA 3 

Eigenvalue 12.440 8.261 4.222 

Variance 47.855 34.277 5.089 

Total Variance 47.855 82.133 87.221 

Distal accessory ridge UC* .278 -.805 .274 

Hypocone UM2* -.032 -.376 .463 

Cusp 5 UM1                          -.547 .373 -.117 

Carabelli’s trait UM1            -.777 .401 .086 

Parastyle UM3* -.576 -.776 .130 

Enamel extension UM1* .016 .696 .216 

Root number UP1* .995 -.116 -.018 

Root number UM2* .802 .795 -.035 

Lingual cusp LP2* .992 .034 .051 

Anterior fovea LM1* .996 .027 -.036 

Groove pattern LM2* .694 .721 -.063 

Rocker jaw                            -.418 .398 .028 

Cusp number LM1* .463 .881 -.058 

Cusp number LM2* -.456 -.880 .090 

Deflecting wrinkle LM* .976 .211 -.006 

C1–C2 crest LM1* .935 -.348 -.065 

Protostylid LM1* -.949 -.318 .011 

Tome’s root LP1* -.952 .184 -.008 

Root number LC* -.153 .949 -.0129 

Root number LM1* -.968 .210 -.080 

Root number LM2* -.734 -.093 -.051 

Torsomolar angle LM3* -.916 .392 -.089 

*Denotes the 20 final traits used for MMD analysis after editing (Table 9). Boldface 

numbers indicate “strong” loadings (i.e., > |0.500|). 
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Appendix VII 

 

Three-dimensional MDS ALASCAL graphs of the MMD distances among the 

samples. 

 

Figure 64. Three-dimensional MDS graph of the 25 trait MMD distances among the samples. 

Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); HALD 

(Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD 

(Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack). 
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Figure 65. Three-dimensional MDS graph of the 20 trait MMD distances among all the 

samples. Dürrnberg La Tène (DURL); Dürrnberg Hallstatt (DURH); Pottenbrunn (POTT); 

HALD (Hallstatt D); German (GER); NEB (Nebringen); MunRain (Münsingen-Rain); RAD 

(Radovesice); KHK (Kutná-Hora-Karlov); RUD (Rudston Makeshift); WWS (Wetwang 

Slack). 
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Figure 66. Three-dimensional MDS graph of the 20 trait MMD distances among the samples, 

with the Dürrnberg sample combined. Dürrnberg La Tène (DURL); Dürrnberg Hallstatt 

(DURH); Pottenbrunn (POTT); HALD (Hallstatt D); German (GER); NEB (Nebringen); 

MunRain (Münsingen-Rain); RAD (Radovesice); KHK (Kutná-Hora-Karlov); RUD 

(Rudston Makeshift); WWS (Wetwang Slack). 
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Appendix VIII 

This appendix summarises information about the individuals excavated and the 

methods used by the recording osteologist to determine age-at-death and estimate sex for 

adults. It details the number of individuals included or excluded from this analysis, and 

sample demography. 

Hallstatt D, Austria 

  

Initial excavations led by Johann Georg Ramsauer were conducted from 1846-1863. 

Further excavations continued off and on until 1899. Further excavations were led by 

Frederick Morton and continued from 1937-1939 (See page 141) (Hodson, 1990). The burials 

analysed in this thesis comprise a group of 44 burials excavated by Frederick Morton.  

 

Age-at-death determinations  

  The specific age-at-death categories in the original site reports for the Hallstatt 

cemetery are not present in the site archive (Hodson, 1990). Furthermore, the majority of the 

recovered skeletal material are too fragmentary to adequately determine these categories (See 

page 141). However, Hodson (1990) assigned age categories to the remains: sub-adult 

(juvenile 16-20 years old), adult (20-50 years old), and mature adult (50+ years old). These 

categories were based on tooth eruption, epiphyseal and cranial suture closure (Hodson, 

1990, page 22). Consequently, those individuals, adults and sub-adults, with permanent 

dentitions were selected for this analysis (See page 141). 

 

Sex estimations 

Sex was estimated through examination of secondary sex characteristics of the skull 

and pelvis (Hodson, 1990, page 22). However, the specific methods used to estimate sex were 

not described (Hodson, 1990, page 22).  

 

Number of individuals recovered 

Although in total 1,045 burials were uncovered, the majority were cremations 

(Hodson, 1990). It is unknown how many inhumations were recovered from the other phases 

of excavation or temporal periods from the Hallstatt cemetery, as the initial excavation 

reports are not available (Hodson, 1990). In total 44 individuals were recovered from the 

HaD phase of this cemetery (See pages 138, 141, Table 8).  
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Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis   

In total 42 individuals, 12 males (11 adults, 1 sub-adult), 7 possible males (5 adults, 2 

sub-adults), 6 females (4 adults, 2 sub-adults), 4 possible females (3 adults, 1 sub-adult), and 

13 adult individuals of unknown sex, for whom nonmetric dental traits could be scored, were 

used in this analysis (Table 8). The 2 individuals excluded from this research represent 2 

possible adult females.   

 

German pooled sample, Stuttgart 

 

These burials were excavated during the early to mid to late 1900s, in total 43 burials 

were uncovered (See page 143) (Balkwill, 1976; Burmeister, 2000; Dehn, 2013; Ebrecht et 

al., 2014; Gleirscher, 2006; Miron, 2012; Müller-Scheeßel, 2007; Paret, 1924, 1938; Stuck, 

1985). As the excavation archive is not present (See below), the specific excavation locations 

and dates are not available (Burmeister, 2000; Gleirscher, 2006; Müller-Scheeßel, 2007). 

 

     

Age-at-death determinations  

The initial excavation reports for these burials have been lost, consequently the 

methods used to determine age-at death are unknown (archivist pers. comm Michael 

Franken) (Burmeister, 2000; Gleirscher, 2006; Müller-Scheeßel, 2007). Consequently, the 

age-at-death categories are described on an individual burial basis. These categories include, 

sub-adult (juvenile 17-20 years old) and adult (20-50 years old) (Burmeister, 2000; Dehn, 

2013; Ebrecht et al., 2014; Gleirscher, 2006; Miron, 2012; Müller-Scheeßel, 2007; Stuck, 

1985). The individuals recovered from these burials are commonly described based on sex 

and age categories e.g., adult male, but it is unknown how these designations were decided 

(Burmeister, 2000; Dehn, 2013; Ebrecht et al., 2014; Gleirscher, 2006; Miron, 2012; Müller-

Scheeßel, 2007; Stuck, 1985). Due to this limitation, only individuals with permanent 

dentitions (adults and sub-adults), for whom age and sex designations had been provided 

were used in this analysis.  
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Sex estimations 

Sex is presumed to have been estimated from examination of the pelvis and skull 

(Burmeister, 2000; Dehn, 2013; Ebrecht et al., 2014; Miron, 2012; Stuck, 1985).  

 

Number of individuals recovered 

In total, 43 inhumations were uncovered (Balkwill, 1976; Burmeister, 2000; Dehn, 

2013; Ebrecht et al., 2014; Gleirscher, 2006; Miron, 2012; Müller-Scheeßel, 2007; Paret, 

1924, 1938; Stuck, 1985) (See pages 138, 143, Table 8). 

 

 

Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis   

Overall 35 individuals, 17 males (11 adults, 6 sub-adults), 7 possible adult males, 6 

adult females, 2 possible adult females and 3 adult individuals of unknown sex for whom 

nonmetric dental traits could be scored, were used in this analysis (Table 8).The eight 

individuals included from this analysis include 3 adult females, 3 males (2 adults, 1 juvenile) 

and 2 adult individuals of unknown sex.   

 

Münsingen-Rain, Switzerland 

 

 Excavations led by Jakob Wiedmer-Stern began in 1906 and subsequently uncovered 

220 graves. However, only the skulls of 77 individuals determined to have “superior” 

preservation, were recovered and collected (See page 145) (Hodson, 1968; Jud, 1998). 

  

Age-at-death determinations  

The recovered individuals have been assigned to the following age-at-death 

categories, infant I (0-7 years old), infant II (7-12 years old), sub-adult (juvenile 12-20 years 

old), adult (20-50 years old), and mature (50+ years old) (Hodson, 1968, page 12; Jud, 1998; 

Müller et al., 2008). These categories were based on analyses of tooth eruption, and cranial 

suture closure (Hodson, 1968, page 12; Jud, 1998; Müller et al., 2008).  

 

Sex estimations 

Sex was determined through examination of secondary sex characteristics of the skull, 

as only the skulls are available for analysis (Hodson, 1968, page 12; Hung, 1962; Jud, 1998; 
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Müller et al., 2008). Consequently, the sex estimations are described as possible male, 

possible female and unknown (Hodson, 1968, page 12; Hung, 1962; Jud, 1998; Müller et al., 

2008).  However, the specific methods used to estimate sex were not described (Hodson, 

1968, page 12; Hung, 1962; Jud, 1998; Müller et al., 2008).   

 

Number of individuals recovered 

Although 220 burials have been recorded from the Münsingen-Rain cemetery only 77 

individuals were recovered and collected (See pages 138, 145, Table 8) (Hodson, 1968; Jud, 

1998).   

 

Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis   

In total 42 individuals, 21 possible males (17 adults, 4 sub-adults), 19 possible 

females (16 adults, 3 sub-adults) and 2 adult individuals of unknown sex, for whom 

nonmetric dental traits could be scored, were used in this analysis (Table 8). The 35 

individuals excluded from this research include 12 possible females (8 adults, 4 sub-adults), 

15 possible males (11 adults, 4 sub-adults) and 8 adult individuals of unknown sex.  

 

 

Other/notes 

Due to the global Covid-19 pandemic, the author is unable to provide images with a scale bar 

for Figures 33-35, 51-54 (See pages 183, 185-186, 394, 397, 399-400).  

   

 

Individuals used in stable isotopic analysis, Scheeres (2014a), Scheeres et al (2014b) and 

Moghaddam et al (2014).  

The bolded numbers represent those individuals also used in this analysis.  

Scheeres (2014a), Scheeres et al (2014b) and Moghaddam et al (2014) conducted a stable 

isotopic analyses on several of the individuals from this cemetery including burials 6, 8a, 8b, 

9, 10, 12, 13a, 14, 16, 17, 19, 20, 26, 28, 31, 32, 40, 42, 43, 48, 52, 56, 63, 69, 72, 78, 91, 

121, 122, 130, 134, 135, 149, 152, 156, 157, 158,  and 175 (See page 145). 
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Nebringen, Stuttgart, Germany 

 

Rescue excavations were conducted in 1959 after road construction uncovered 6 

graves (Krämer, 1964). Overall, 26 burials, 21 inhumations, 4 cremations and a few isolated 

skeletal fragments from an additional unidentified grave were recovered (See page 149, Table 

8) (Krämer, 1964). Some burials are believed to have been lost due to construction, 

agricultural or taphonomic processes, such as erosion. Consequently, the number of burials is 

believed to have been as high as 35 (Krämer, 1964, 1966; Scholz et al., 1999).   

 

Age-at-death determinations  

The following age-at-death determinations have been used to describe the individuals 

recovered from Nebringen (Stuttgart, Germany), infant I (0-7 years old), infant II (7-14 years 

old), sub-adult (juvenile 14-21 years old), adult (21-45 years old), mature (45-60 years old) 

and senile (>60 years old) (Krämer, 1964, page 25, 1966; Scholz et al., 1999). The above 

categories were established based on tooth eruption, cranial suture, epiphyseal and cranial 

suture closure (Krämer, 1964, page 25, 1966; Scholz et al., 1999).    

  

 

Sex estimations 

Sex estimations were based on examination of the skull and pelvis, however, the 

specific methods above used to construct these categories is not recorded in the site archive 

(Krämer, 1964, 1966; Scholz et al., 1999).  

 

Number of individuals recovered 

In total 26 burials, 21 inhumations, 4 cremations were uncovered (See pages 138, 149, 

Table 8) (Krämer, 1964)  

 

Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis   

In total 22 individuals, 8 males (7 adults, 1 sub-adults), 2 possible adult males, 6 

females (5 adults, 1 sub-adult), 2 adult possible females, and 4 adult individuals of unknown 

sex, for whom nonmetric dental traits could be scored, were used in this analysis (Table 8).  

The remaining 4 individuals excluded from this research represent 1 adult female, 1 adult 

male and 2 adult individuals of unknown sex.   
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Other/notes 

Due to the global Covid-19 pandemic, the author is unable to provide images with a 

scale bar for Figures 33-35, 51-54 (See pages 183, 185-186, 394, 397, 399-400). 

  

Individuals used in stable isotopic analysis (Scheeres 2014a), Scheeres et al (2014b) 

 The bolded numbers represent those individuals also used in this analysis.  

Scheeres (2014a) and Scheeres et al (2014b) conducted a stable isotopic analysis on several 

of the burials from this cemetery including burials 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 18, 19, 20, 

23, 24, and 25 (See page 149). 

 

Pottenbrunn, Austria 

 

Excavations, led by J Bayer in the early twentieth century, uncovered 2 burials dating 

to the HaC/HaD period and 12 dating to the La Tène period (See page 152) (Bayer, 1930; 

Neugebauer, 1991; Ramsl, 2002). Rescue excavations in the 1970s, led by JW Neugebauer 

and P Scherrer, continued off and on until 1982 (Neugebauer, 1991, 1992; Ramsl, 2002).  

 

Age-at-death determinations  

The age-at-death designations used for the recovered individuals from Pottenbrunn 

(Austria) include, infant I (0-7 years old), infant II (7-14 years old), sub-adult (juvenile 14-21 

years old), adult (21-45 years old), mature adult (45-60 years old) and senile (>60 years old) 

(Ramsl, 2002, page 20). The above categories were established based on tooth eruption, 

epiphyseal and cranial suture closure (Ramsl, 2002, page 20).  

 

Sex estimations 

Sex was estimated using the morphology of the skull and pelvis (Ramsl, 2002, page 

20). However, the specific methods used to estimate sex were not described (Ramsl, 2002, 

page 20).  

 

Number of individuals recovered 

In total, 46 inhumations, including several double burials, and 11 cremations were 

uncovered (Ramsl, 2002) (See pages 138, 152, Table 8). 
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Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis   

In total 41 individuals, 14 males (11 adults, 3 sub-adults), 3 possible adult males, 7 

adult females, 4 possible adult females and 13 individuals (8 adults, 5 sub-adults) of unknown 

sex, for whom nonmetric dental traits could be scored, were used in this analysis (Table 8). 

The individuals excluded from this research include 2 adult females, 1 adult male and 2 adult 

individuals of unknown sex (n=5).  

 

Dürrnberg, Austria 

 

 Rescue excavations, in response to construction, led by O Klose and E Penninger, 

began in the Eislfeld, Friedhof and Lettenbuhl grave fields between 1928-1932 (See page 

155) (Klose, 1932; Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015). 

Further excavations, led by F Moosleitner, were conducted from 1979-1982 in the 

Romersteig grave field. Additional excavations, led by JW Neugebauer and K Zeller, in the 

Friedhof and Lettenbuhl grave fields were carried out from 1983-1984, briefly in 1987, and 

again from 1996-1997 (Neugebauer, 1983, 1984; Tiefengraber and Wiltschke-Schrotta, 2015; 

Zeller, 1997, 2001). Continuous excavations from 1963-1997 were conducted in the Eislfeld 

grave field (See page 155) (Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; 

Wendling and Wiltschke-Schrotta, 2015).  

 

Age-at-death determinations  

The following age-at-death designations are used for the recovered skeletal material 

from Dürrnberg, infant I (0-2 years old), infant II (2-10 years old), sub-adult (juvenile 10-20 

years old), adult (20-50 years old), and Mature adult (50+ years old) (Thorsten et al., 2017; 

Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and Wiltschke-Schrotta, 2015; 

Wendling et al., 2015). Several methods have been used to establish these categories such as, 

tooth eruption, epiphyseal and cranial suture closure (Thorsten et al., 2017; Tiefengraber and 

Wiltschke-Schrotta, 2015; Wendling and Wiltschke-Schrotta, 2015; Wendling et al., 2015). 

However, the majority of the recovered individuals are not described by their specific age-at-

death determinations, rather they are described as belonging to a particular age category, e.g., 

adult or juvenile (Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; 

Wendling and Wiltschke-Schrotta, 2015; Wendling et al., 2015). Furthermore, the specific 

methods used to establish the above categories are not described (Thorsten et al., 2017, page 
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662; Tiefengraber and Wiltschke-Schrotta, 2015, page 259; Wendling and Wiltschke-

Schrotta, 2015, page 170; Wendling et al., 2015, page 180).  

 

Sex estimations 

Sex was assessed through examination of secondary sex characteristics of the skull 

and pelvis (Thorsten et al., 2017; Tiefengraber and Wiltschke-Schrotta, 2015; Wendling and 

Wiltschke-Schrotta, 2015; Wendling et al., 2015). However, the specific methods used to 

estimate sex were not described (Thorsten et al., 2017, page 662; Tiefengraber and 

Wiltschke-Schrotta, 2015, page 259; Wendling and Wiltschke-Schrotta, 2015, page 170; 

Wendling et al., 2015, page 180). 

 

Number of individuals recovered 

Overall, 128 individuals, 48 dating to the Hallstatt period and 80 to the La Tène 

period, recovered from the Friedhof, Lettenbuhl, Romersteig and Eislfeld grave fields within 

the Dürrnberg cemetery and were used this analysis (See pages 138, 155, Table 8).   

  

  

Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis   

In total 35 individuals from the Hallstatt period including 11 males (10 adults, 1 sub-

adult), 3 possible males (2 adults, 1 sub-adult), 9 females (8 adults, 1 sub-adult), 2 possible 

adult females and 10 adult individuals of unknown sex, date to the Hallstatt period. The 

individuals excluded from this analysis include 3 adult females, 3 possible females (2 adults, 

1 sub-adult), 3 adult males, 1 possible adult male and 3 adult unknown individuals (n=13). In 

total, 67 individuals from the La Tène period including 24 males (21 adults, 3 sub-adults), 8 

possible males (5 adults, 3 sub-adults), 12 females (10 adults, 2 sub-adults), 7 possible adult 

females and 16 individuals (13 adults, 3 sub-adults), of unknown sex. The 13 individuals 

excluded from this analysis from the La Tène period include 4 females (3 adults, 1 sub-adult), 

2 possible adult females, 3 adult males, 1 possible adult male and 3 adult individuals of 

unknown sex. These individuals include those for whom nonmetric dental traits could be 

scored, were used in this analysis (See page 155, Table 8). Overall, the Dürrnberg sample is 

comprised of 102 individuals from the above periods.  
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Other/notes 

Due to the global Covid-19 pandemic, the author is unable to provide images with a 

scale bar for Figures 33-35, 51-54 (See pages 183, 185-186, 394, 397, 399-400). 

  

Radovesice I and II, Czech Republic 

 

 Rescue excavations at the Radovesice I cemetery began in 1974 and further 

excavations were conducted in 1976 (Budinský and Waldhauser, 2004; Waldhauser, 1987, 

1993, 1999). At Radovesice II excavations were carried out in 1981 (See page 164) 

(Budinský and Waldhauser, 2004). 

 

Age-at-death determinations  

 

The recovered individuals from Radovesice I and II have been categorized into the 

following age-at-death cohorts, infant I (0-6 years old), infant II (6-10 years old), sub-adult 

(juvenile 10-17 years old) adults (17-40 years old), and mature adult (40-60 years old) 

(Budinský and Waldhauser, 2004; Herrmann et al., 1990, page 25). These age designations 

were constructed based on epiphyseal and cranial suture closure (Budinský and Waldhauser, 

2004; Waldhauser, 1993; Herrmann et al., 1990, page 25). However, the specific methods 

used to create the initial age-at-death determinations were not described (Budinský and 

Waldhauser, 2004; Waldhauser, 1993; Herrmann et al., 1990, page 25).  

 

Sex estimations 

Sex was estimated using the skull and pelvis morphology (Budinský and Waldhauser, 

2004; Waldhauser, 1993; Herrmann et al., 1990, page 26). However, the specific methods 

used to achieve these designations were not described (Budinský and Waldhauser, 2004; 

Waldhauser, 1993; Herrmann et al., 1990, page 26). 

 

Number of individuals recovered 

The recovered skeletal material from Radovesice I and II is highly fragmented, 

therefore it is unknown whether the recovered individuals represent the entire cemetery 

population (Budinský and Waldhauser, 2004; Waldhauser, 1993). Although 34 inhumations, 

three cremations and 23 inhumations have been recovered from Radovesice I and II, 

respectively, only 33 individuals have been identified to a specific age-at-death category (21 
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adults, 2 sub-adults, 8 mature individuals, and 2 infants II (See page 164, Table 8) (Budinský 

and Waldhauser, 2004; Waldhauser, 1993; Herrmann et al., 1990; Scheeres et al., 2014b). In 

total 57 individuals were recovered from the Radovesice I and II cemeteries (See pages 138, 

164) (Budinský and Waldhauser, 2004; Waldhauser, 1993; Herrmann et al., 1990; Scheeres et 

al., 2014b). 

 

Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis  

In total 40 individuals, 12 males (10 adults, 2 sub-adults), 8 possible males (6 adults, 

2 sub-adults), 9 females (8 adults, 1 sub-adult), 5 possible females (4 adults, 1 sub-adult), and 

6 individuals (5 adults, 1 sub-adult) of unknown sex, for whom nonmetric dental traits could 

be scored, were used in this analysis (Table 8). The 17 individuals excluded from this 

research represent 6 females, 3 possible females, 2 males, 2 possible males and 4 individuals 

of unknown sex.  

 

Other/notes 

 

Individuals used in stable isotopic analysis, Scheeres (2014a), Scheeres et al (2014b) 

The bolded numbers represent those individuals also used in this analysis. 

 Scheeres (2014a) and Scheeres et al (2014b) conducted a stable isotopic analysis on 

several of the burials from this cemetery including burials 1, 2, 3, 11, 13, 14, 16, 20, 21, 22, 

24, 25, 31a, 31b, 33, 34, 35, 36, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, and 

23 (See page 164). 

  

 

Kutná-Hora-Karlov, Czech Republic 

 

Rescue excavations were conducted from 1988-1989 (See page 168) (Valentová, 

1991, 1993; Valentová and Sankot, 2012).  

  

Age-at-death determinations  

The following age-at-death categories have been used to describe the recovered 

individuals from Kutná-Hora-Karlov  cemetery, infant I (0-2 years old), infant II (2-10 years 

old), sub-adult (juvenile 10-18 years old), adult (18-35 years old), mature I (35-50 years old) 
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and mature II (50+ years old) (Valentová, 1991; Valentová and Sankot, 2012). These 

categories were constructed based on tooth eruption, epiphyseal and cranial suture closure 

(Valentová, 1991; Valentová and Sankot, 2012, page 286). However, the specific methods 

used to create the initial age-at-death cohorts were not described (Valentová, 1991; Valentová 

and Sankot, 2012, page 286).   

 

Sex estimations 

Sex was estimated through and examination of secondary sex characteristics of the 

skull and pelvis (Valentová, 1991; Valentová and Sankot, 2012, page 286). However, the 

specific methods used to estimate sex were not described (Valentová, 1991; Valentová and 

Sankot, 2012, page 286).  

 

Number of individuals recovered 

Some of the recovered skeletal material from Kutná-Hora-Karlov is highly 

fragmented, as the burials were discovered during the course of construction (Valentová and 

Sankot, 2012; Valentová, 2002, 2003). In total, 48 inhumations and one cremation burial 

were recovered (Valentová, 1991; Valentová and Sankot, 2012). However, only 51 

individuals have been identified to a specific age-at-death category (3 infants, 3 sub-adults, 

18 adults, 17 mature I and 10 mature II adults (See pages 138, 168, Table 8) (Valentová, 

1991; Valentová and Sankot, 2012).  

 

 

Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis  

In total 37 individuals, 11 males (7 adults, 3 sub-adults), 9 possible males (8 adults, 1 

sub-adult), 7 females (6 adults, 1 sub-adult), 4 possible females (2 adults, 2 sub-adults), and 6 

individuals (4 adults, 2 sub-adults) of unknown sex, for whom nonmetric dental traits could 

be scored, were used in this analysis (Table 8). The 11 individuals excluded from this 

analysis represent 3 females, 4 possible females, 2 males and 2 individuals of unknown sex.  

 

Other/notes 

Due to the global Covid-19 pandemic, the author is unable to provide images with a 

scale bar for Figures 33-35, 51-54 (See pages 183, 185-186, 394, 397, 399-400). 
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Individuals used in stable isotopic analysis, Scheeres (2014a), Scheeres et al (2014b).  

The bolded numbers represent those individuals also used in this analysis. 

Scheeres (2014a) and Scheeres et al (2014b) conducted a stable isotopic analysis on 

several of the burials from this cemetery including burials 5, 8, 10, 14, 15, 17, 18, 19, 20, 21, 

22, 24, 25, 26, 28, 30, 32, 35, 36, 37, 38, 39, 40, 43, 45, 46, 47, and 49 (See page 168). 

 

Wetwang Slack, Britain 

 

Initial excavations were led by JR and R Mortimer and continued from 1965-1975. 

Subsequent excavation from 1975-1981, were led by J Dent (See page 172) (Dent, 1982, 

1984). 

 

Age-at-death determinations  

The following age-at-death determinations have been assigned to the individuals 

recovered from the Wetwang Slack cemetery, infant I (0-6), infant II (6-10), sub-adult 

(juvenile10-17), adult (17-35), mature adult (35-45) and senile (45+) (Dent, 1982, 1984; 

Giles, 2012; Good, 2005). These categories were based on tooth wear, dental eruption, 

epiphyseal and cranial suture closure (Dent, 1982, 1984). However, the cemetery population 

is commonly described according to a specific age range, rather than an age-at-death 

category.   

 

Sex estimations 

Sex was estimated through investigation of secondary sex characteristics of the skull 

and examination of the pelvis (Dent, 1982, 1984, page 94). However, the specific methods 

used to estimate sex were not described (See page 172) (Dent, 1982, 1984, page 94). 

 

Number of individuals recovered/excavated  

 In total 180 individuals were recovered from the Wetwang Slack cemetery (See pages 

138, 172, Table 8).  

 

Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis  

In total 150 individuals, 60 males (57 adults, 3 sub-adults ), 10 possible males (8 

adults, 2 sub-adults), 57 females (48 adults, 9 sub-adults), 8 possible adult females and 15 
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adult individuals of unknown sex, for whom nonmetric dental traits could be scored, were 

used in this analysis (Table 8). The remaining 30 individuals represent 6 adult females, 16 

adult males, 3 possible adult males and 5 adult individuals of unknown sex.  

  

Other/notes 

Individuals used in stable isotopic analysis, Jay et al (2013), Jay and Montgomery 

(2020) 

The bolded numbers represent those individuals also used in this analysis. 

Jay et al (2013) and Jay and Montgomery (2020) conducted a stable isotopic analysis on 

several of the burials from this cemetery including burials 13, 14, 52, 59, 89, 98, 117, 122, 

143, 155, 156, 223, 236, 275, 301, 327, 400, 412, 430, 431, 453, 454, and 455 (See page 

172).  

  

Rudston Makeshift, Britain  

 

Initial excavations began in 1967-1971 uncovered burials R68-114. Further 

excavations in 1973 and 1975 revealed burials R135-189 (See page 177) (Giles, 2012, Stead, 

1991a) 

Age-at-death determinations  

Several age-at-death designations have been provided for the individuals recovered 

from Rudston Makeshift, including, infant (0-12 years old), sub-adult (juvenile 12-15 years 

old) and adults (15+ years old) (Stead, 1991a). However, the age-at-death of the cemetery 

population is frequently reported as a specific age range, e.g., 17-25 years old (Stead, 1991a). 

The above designations are based primarily on dental wear based on Brothwell and Payne 

(1982) dental wear chart. However, this system was modified to include a combined upper 

and lower dental wear score (Stead, 1991a, page 143).  

 

Sex estimations 

 Sex was assessed through examination of the pelvis and of secondary sex 

characteristics of the skull (Stead, 1991a, page 143). However, the specific methods used to 

estimate sex were not described (Stead, 1991a, page 143). 

 

Number of individuals recovered  
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In total, 180 individuals were recovered from the Rudston Makeshift (east Yorkshire, 

Britain) cemetery (Table 8).  However, a random sub-sample of 45 individuals were selected 

for analysis (See pages 138, 177, Table 8). 

 

Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis  

In total 40 individuals, 18 males (15 adults, 3 sub-adults), 6 possible males (4 adults, 

2 sub-adults), 16 females (14 adults, 2 sub-adults), 3 possible females (2 adults, 1 sub-adult), 

and 2 adult individuals of unknown sex, for whom nonmetric dental traits could be scored, 

were used in this analysis (Table 8).  

 

Other/notes 

 Along with the individual recovered from burial number, R99, two additional lower 

first premolars were present. These premolars were identified as additional as the individual 

recovered from this burial had all lower first and second premolars retained in the sockets 

within the mandible. The presence of these additional teeth was addressed and noted by the 

curator, (Dr. Julia Farley). It is unknown whether the premolars are still housed with the rest 

of the recovered remains from burial R99.  

 

Individuals used in stable isotopic analysis, Jay et al (2013) 

The bolded numbers represent those individuals also used in this analysis. 

Jay et al (2013) conducted a stable isotopic analysis on several of the burials from this 

cemetery including burials 143, 175, 178 and 180 (See page 177).  

 

Due to the global Covid-19 pandemic, the author is unable to provide images with a 

scale bar for Figures 33-35, 51-54 (See pages 183, 185-186, 394, 397, 399-400). 

 

 

Pontecagnano, Campania, Italy 

 

Rescue excavations, due to highway construction, began in the 1960s and uncovered 

several graves (D'Agostino, 1974; Fredericksen, 1974). However, these initial excavations 

were unsystematic, consequently, the exact boundaries of the cemetery are still unknown (See 

page 179) (D’Agostino, 1974; Fredericksen, 1974). Subsequent excavations were conducted 
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from 1973-1990, during which the Iron Age material was recovered, and were more 

systematic in nature (D’Agostino, 1974; Fredericksen, 1974). Therefore, more precise age 

and date categories were provided for the recovered individuals from this period  

(D’Agostino and Gastaldi, 1988; De Natale, 1992; Serritella, 1995) (See page 179).  

 

Age-at-death determinations  

Due to the more systematic 1973-1990 excavations more precise age-at-death 

categories have been provided for the individuals recovered during this phase of the 

archaeological work (D’Agostino and Gastaldi, 1988; De Natale, 1992; Serritella, 1995). 

These age-at-death categories include, infant I (0-8 years old), infant II (8-15 years old), sub-

adult (juvenile 15-20 years old), adult (21-50 years old), and mature adult (>50 years old) 

(D’Agostino and Gastaldi, 1988; De Natale, 1992; Serritella, 1995). These categorise were 

based on tooth eruption, epiphyseal and cranial suture closure (D’Agostino and Gastaldi, 

1988; De Natale, 1992; Serritella, 1995). However, the cemetery population is frequently 

described based on the above broad age-at-death designations, rather than by a specific age-

at-death (D’Agostino and Gastaldi, 1988; De Natale, 1992; Serritella, 1995). Consequently, 

the number of individuals which correspond to the above age-at-death designations is not 

consistently documented (D’Agostino and Gastaldi, 1988, page 20; De Natale, 1992, page 15; 

Serritella, 1995, page 22). 

 

Sex estimations 

Sex was assessed through an examination of the skull and pelvis, however, the 

specific methods used are not described (D’Agostino and Gastaldi, 1988, page 20; De Natale, 

1992, page 15; Serritella, 1995, page 22). 

 

Number of individuals recovered 

 Due to the unsystematic nature of the initial excavations the total number of burials 

within this cemetery is unknown (D’Agostino, 1974; Fredericksen, 1974). However, it has 

been estimated that as many as 6,000 burials may have been originally present (See pages 

138, 179, Table 8) (D’Agostino, 1974, 1988; Fredericksen, 1974). Only the skeletal remains 

of 700 individuals have been curated (D’Agostino and Gastaldi, 1988; De Natale, 1992; 

Serritella, 1995).  
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Total number of individuals, males, females and individuals of unknown sex, used in 

this analysis   

It was considered appropriate to limit the analysed individuals, including adults and 

sub-adults (juvenile 17+ years old) with permanent dentitions, to burials from a discrete and 

roughly contemporaneous period, 650-260 BC. Consequently, due to the limited time 

available for recording, 45 randomly chosen individuals were analysed from the 

Pontecagnano cemetery population. However, only 35 individuals from this sub-sample could 

be scored for nonmetric traits (See page 179). The 35 individuals used in this analysis include 

15 males (12 adults, 3 sub-adults), 4 possible adult males, 8 adult females, 4 possible females 

(3 adults, 1 sub-adult), and 4 adult individuals of unknown sex, for whom nonmetric dental 

traits could be scored, were used in this analysis (See page 179, Table 8). The remaining 10 

individuals excluded from this analysis include 4 adult females, 1 possible adult female, 2 

males (1 adult, 1 sub-adult), 1 possible adult male and 2 adult individuals of unknown sex.   

  

Other/notes 

Due to the global Covid-19 pandemic, the author is unable to provide images with a 

scale bar for Figures 33-35, 51-54 (See pages 183, 185-186, 394, 397, 399-400). 


