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Objective: To summarise current evidence for the utility of interval imaging in monitoring
disease in adult brain tumours, and to develop a position for future evidence gathering
while incorporating the application of data science and health economics.

Methods: Experts in ‘interval imaging’ (imaging at pre-planned time-points to assess
tumour status); data science; health economics, trial management of adult brain tumours,
and patient representatives convened in London, UK. The current evidence on the use of
interval imaging for monitoring brain tumours was reviewed. To improve the evidence that
interval imaging has a role in disease management, we discussed specific themes of data
science, health economics, statistical considerations, patient and carer perspectives, and
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multi-centre study design. Suggestions for future studies aimed at filling knowledge gaps
were discussed.

Results: Meningioma and glioma were identified as priorities for interval imaging utility
analysis. The “monitoring biomarkers”most commonly used in adult brain tumour patients
were standard structural MRI features. Interval imaging was commonly scheduled to
provide reported imaging prior to planned, regular clinic visits. There is limited evidence
relating interval imaging in the absence of clinical deterioration to management change
that alters morbidity, mortality, quality of life, or resource use. Progression-free survival is
confounded as an outcome measure when using structural MRI in glioma. Uncertainty
from imaging causes distress for some patients and their caregivers, while for others it
provides an important indicator of disease activity. Any study design that changes imaging
regimens should consider the potential for influencing current or planned therapeutic trials,
ensure that opportunity costs are measured, and capture indirect benefits and added
value.

Conclusion: Evidence for the value, and therefore utility, of regular interval imaging is
currently lacking. Ongoing collaborative efforts will improve trial design and generate the
evidence to optimise monitoring imaging biomarkers in standard of care brain tumour
management.
Keywords: glioblastoma, high grade glioma, glioma, meningioma, interval imaging, magnetic resonance imaging,
utility, monitoring biomarker
INTRODUCTION

Over the last decade the treatment landscape for adult brain
tumours has changed incrementally for some tumour types, such
as metastases, where there have been improvements in systemic
therapy and brain radiotherapy (1). For other tumour types there
has been little change. The management of glioblastoma remains
largely based on maximum safe resection and radiotherapy with
concomitant and adjuvant temozolomide chemotherapy (2).
Evidence from randomised controlled trials [level 1 (3)]
underpins clinical treatments of adult brain tumours. In
contrast, there is little evidence (< level 3) to support the
current imaging practices used to monitor disease progression
or response to treatment (4, 5). Therefore, the clinical utility [the
relevance and usefulness of an intervention in patient care using all
sources of evidence (6)] of interval imaging (imaging at pre-planned
time-points to assess tumour status, as compared with scanning for
reasons of clinical deterioration) is largely unknown.

“Interval imaging” was first introduced into neuro-oncology
in 1977 by Victor Levin, shortly after the introduction of
computed tomography (CT) (7). In 1981 the World Health
Organisation (WHO) convened two expert meetings on the
“Standardization of Reporting Results of Cancer Treatment”.
The recommendations were widely adopted to ensure
consistency of timing between centres and became the basis of
subsequent iterations of high-grade glioma treatment monitoring
and result reporting (8). These evolved with the development of
MRI. In 1990, Macdonald also recommended assessing factors
affecting imaging appearance such as corticosteroid use (9) which
2

subsequently formed the basis of the AVAglio trial response criteria
(10) and the 2010 response assessment in neuro-oncology (RANO)
trial guidelines (11). There is a demonstrable historical lineage
following the advent of CT for how enhancing tumour size,
following exogenous contrast administration, has been
incorporated into current clinical and trial practice. The expert
committees were informed by observational studies, supported by a
biologically plausible assumption that the images from each time-
point, or the rate of change in a series of imaging investigations, are
reliable “monitoring biomarkers” (12) reflecting tumour behaviour.
The assumption is that changes in tumour size identify progression
of disease, potentially before it becomes clinically apparent, resulting
in a lead time improvement for therapeutic intervention. Indeed,
there may be benefits in changing management before the
development of irreversible disability or before the extent of
tumour precludes intervention. Some justification for
enhancement as a disease proxy has been inferred from data
showing that enhancing tumour size and extent of resection are
“prognostic biomarkers” (12) at both first presentation and
recurrence (13–15). However, there is no evidence that earlier
diagnosis influences prognosis pre- or post-operatively, and
individual enhancing tumour growth trajectories vary between
individuals with the same histological tumour type.

Deriving an evidence base surrounding current imaging
practices is important for several reasons. There is a lack of
biological specificity for contrast enhancement, particularly in
the context of treatment effects and pseudophenomena, which
can confound imaging assessment. There is also variability in
clinical adoption of interval imaging practice across UK and
February 2021 | Volume 11 | Article 620070
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European neuro-oncology centres which is unlikely to be in the
best interests of patients or healthcare systems (16, 17). It is also
noteworthy that the widely reported observation that increasing
enhancement tracks growth of most brain tumour types, has
extended the use of contrast-enhancing tumour size as a
biomarker beyond high-grade glioma. The impetus to derive
an evidence-base is driven by researchers (4, 5, 16), but more
importantly patients and carers (Box 1) (18). This in part relates
to factors such as understanding the anxiety surrounding the
imaging event and awaiting the results – so-called “scanxiety”
(19). Furthermore, determining the health economics related to
interval imaging is equally important. These include
understanding the direct costs of subsequent investigations (for
example, ‘advanced imaging’ requiring additional sequences and
processing time, or earlier interval imaging than usual),
additional hospital appointments that may follow uncertain
tumour changes, continuation of futile therapies, as well as
indirect and opportunity costs.

The purpose of this position statement is to summarise the
current evidence base for the utility of interval imaging in brain
tumours and to propose potential studies for future evidence
gathering incorporating the disciplines of data science and
health economics.
MATERIALS AND METHODS

Clinicians, scientists, and patient advocates and representatives
with expertise in interval imaging, data science, health economics
or trial management of adult brain tumours, convened in
London, UK, in April 2019 in conjunction with a National
Cancer Research Institute (NCRI) Brain Tumour group
workshop. Available evidence for interval imaging pathways
for different tumour types was discussed in the context of
research recommendations of previous publications, including
the UK’s National Institute for Health and Care Excellence
(NICE) brain tumour guidelines NG99 (Supplementary Table 1)
and a systematic review of glioma imaging (4, 5, 16). Specifically,
we sought to assess value in the context of morbidity, mortality,
quality of life and resource use (together these outcomes give the
additional outcome measure of cost effectiveness). Clinical utility
incorporates all these outcome measures as well as considering
Frontiers in Oncology | www.frontiersin.org 3
the interests and goals of stakeholders (6). In addition, the results
of a UK national clinical practice survey on the use of internal
imaging in glioblastoma management were reviewed.
Opportunities to generate evidence were explored in the
context of specific study designs, with a focus on the utility
and limitations of applying each design to a specific scenario. We
outlined the advantages and disadvantages of each design based
on current evidence and expert opinion. The discussion was
compiled into a manuscript and circulated to NCRI Brain
Tumour Group members and invited experts in attendance as
well as those unable to attend. Edits and feedback were
incorporated until all authors were in agreement with the
content, and a position statement was produced around
potential approaches to studying interval imaging in glioma
and meningioma.
RESULTS

Targeting of Interval Imaging Studies
Following explicit agreement that there was an evidence gap, and
that the JLA priority (Box 1) should be addressed, an initial
question was to determine which brain tumour types should be
included in the position statement. Whilst central nervous
system (CNS) tumours comprise a range of diverse histological
and molecular entities (20), meningioma and gliomas are the two
commonest accounting for 36% and 28% of tumours,
respectively. These were selected as the focus for interval
imaging studies. Although brain metastases are more common
overall, because of the rapidly evolving treatment paradigms
according to primary cancer site (stereotactic radiosurgery,
chemotherapy, immunotherapy) (1), the reliance on disease
response assessment in the body to systemic treatments, and
the fact that this can even vary between different intracranial
lesions in the same individual (1), it was agreed that metastases
were beyond the scope of the workshop (21–23). It was
acknowledged that high-grade (WHO III-IV) and lower-grade
(WHO II) infiltrating gliomas should be treated separately.
Individual imaging biomarker techniques beyond standard
structural clinical MRI have been reviewed extensively
elsewhere (24, 25) and the uptake of these “advanced” MRI
and positron emission tomography (PET) techniques is limited
BOX 1 | A National Institute for Health Research (NIHR) James Lind Alliance (JLA) Priority.
The National Institute for Health Research (NIHR) James Lind Alliance (JLA) brings patients, carers and clinicians together in Priority Setting Partnerships stating that
“addressing uncertainties about the effects of a treatment should become accepted as a routine part of clinical practice” and that “patients, carers and clinicians should
work together to agree which, among those uncertainties, matter most and deserve priority attention”.

In 2015, the group met to establish the ten highest clinical priority uncertainties in neuro-oncology in the UK. Number two is: “what is the effect on prognosis of interval
scanning to detect tumour recurrence compared with scanning on symptomatic recurrence in people with a brain tumour?” Patients expect imaging will give an accurate
account of the effect of treatment and either reassure or initiate a change in the treatment plan. If there is uncertainty regarding progression, that leads to anxiety until the
next scan or specialist MR imaging. In addition, if there is minor imaging progression only, there may be the clinical dilemma as to whether to change management if there
are further options, even though the patient has had no clinical deterioration and it is not known whether earlier pre-symptomatic intervention improves survival.

This might be interpreted as:
“For me, a patient, does earlier scanning to detect asymptomatic progression improve my quality of life and survival, or does it not make any difference, or make it

worse?”
And:
“Would I, as a doctor, improve the quality of life and survival of my patients if I monitored them more proactively and detected progression before it became

symptomatic or does it not make any difference or make it worse?”
February 2021 | Volume 11 | Article 620070
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and highly heterogeneous, even in specialist neuro-oncology
centres across Europe (17). The focus at the workshop was
therefore on determining the value of the structural MRI
interval imaging pathway and methods to interrogate this,
although the potential role of additional imaging techniques
remains relevant. Improving the diagnostic performance of
structural or “advanced” imaging biomarkers is a further
means to rationalise imaging timepoints by reducing repeat
imaging while there is ongoing uncertainty. Key points
regarding study design types are summarised in Table 1.

Interval Imaging Overview
Neuro-oncology multi-disciplinary team meetings (MDTs,
referred to as “Tumor Boards” in North America) consider
longitudinal patient management, with serial imaging follow-
up having a central role. Meningioma and glioma imaging follow
up schedules from UK’s National Institute for Health and Care
Excellence (NICE) brain tumour guidelines NG99 are shown in
Supplementary Tables 2 and 3 (4). In the broadest sense,
interval imaging is typically performed in order to determine
whether a tumour is growing, which may initiate or change
treatment. A planned imaging schedule provides clinicians with
a framework to track an aspect of tumour biology just before
clinical review and allows easier administrative timetabling for
the imaging department, MDT planning, and the patient diary
planning, but cannot determine what the symptoms will be at the
point of imaging. The radiologist only has information of
symptoms at the time of request, which may limit
interpretation. This allows decisions to be made on
commencing, continuing, or discontinuing treatment and
provides insight into whether treatment has caused a
meaningful alteration in tumour biology. Standard structural
MRI is routinely used for this purpose. In some centres,
“advanced” MRI techniques (e.g. dynamic-susceptibility
contrast enhanced, DSC, imaging or 1H-magnetic resonance
spectroscopy MRS) or PET (targeting glucose or amino acid
uptake) helps problem solving in instances when structural
imaging is indeterminate (16, 17). As an alternative to a
planned imaging schedule, imaging can also be triggered by a
change in symptomatology or clinician concern, regardless of
any scheduled follow-up interval. While triggered imaging is
more difficult to organise at short notice, the strategy benefits
from addressing patient concerns regarding the cause of new
symptoms and providing the radiologist with contemporaneous
clinical information at the time of imaging. In most centres the
strategy for interval imaging is a combination of both a planned
schedule and triggered imaging (16). Clinical and other non-
imaging biomarkers of disease progression, whether as triggers
for imaging or additional treatment response biomarkers, have
the potential to be incorporated into the patient pathway and
would benefit from further research (Supplementary
Information 1).

The emergence of novel therapies, such as immunotherapy
have created challenges for follow-up imaging of glioma in
clinical trials, with pseudophenomena occurring in up to 5% of
patients leading to the development of modified response
assessment approaches such as iRANO (26). The central
Frontiers in Oncology | www.frontiersin.org 4
modification is that the moratorium on progressive disease is
extended to cover the first 6 months of treatment. Stopping
routine interval imaging for 6 months is, however, not
recommended given the potential for the side effects of these
therapies. Immunotherapy is not currently recommended as a
second-line treatment option in most countries outside of
research trials.

Interval Imaging and Confounds
Although MRI is a safe and effective technique, structural imaging
can lead to false positive, false negative, and indeterminate results,
particularly relating topost-treatment relatedpseudophenomena in
glioma. In glioblastoma, pseudoprogression is an early post-
treatment related effect typically occurring within 6 month of
finishing concomitant temozolomide and radiotherapy whereas
pseudoresponse typically occurs after anti-angiogenic agents such
as bevacuzimab have been administered. False positive progression
and false negative treatment response aremanifest as an increase or
decrease in MRI contrast enhancing volume respectively.
Confounding of treatment response commonly occurs with the
use of current standard interval imaging conventions in therapeutic
and novel imaging glioma trials due to the impact of such
pseudophenomena (27). Delayed treatment effects such as
increased enhancement due to radiation necrosis can similarly
cause false positive progression. Other examples of non-
specificity include post-operative peritumoral parenchymal
enhancement following operative “tissue handling”; or following
operative infarction. Confounding is particularly relevant if
progression-free survival is used as an outcome measure which is
fundamentally based on, and therefore affected by, the timing of
routine interval imaging. In part to mitigate this, objective criteria
such as RANO require a threshold of enhancing size change (a 25%
increase or 50% decrease in the product of perpendicular
dimensions) and an indication of clinical status, corticosteroid
dose, and other possible confounds of deterioration such as
unrelated health issues; and for true positive progression there is a
requirement for sustained size change beyond one time point. It is
noteworthy that overall survival is also confoundedbydifferences in
treatment at progression.Management typically consists of second-
line chemotherapy including the combination of procarbazine,
lomustine and vincristine (PCV) (28–30), TMZ re-challenge (31,
32) or supportive care. Not only is management heterogenous, but
pseudophenomona will confound this management choice.
Furthermore, such detail to understand these co-variates are
rarely included in studies (33).

The Patient and Carer Experience of
Interval Imaging
Patients undergoing MRI often experience anxiety prior to and
during scanning (34). Up to 37% of patients undergoing MRI
experience moderate to high levels of anxiety related to the
procedure itself (35–37). When the patient is aware they have a
brain tumour that is being assessed for response or progression,
anxiety is likely to be more frequent and magnified. Such
“scanxiety” is a recognised consequence of interval imaging in
cancer (19). Incorporating phenomena such as “scanxiety” into
neuro-oncological studies requires patient-reported outcome
February 2021 | Volume 11 | Article 620070
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TABLE 1 | Different study designs to interrogate interval imaging.

Design Time
direction

Tumour and
Comment

Objectives and Comment Advantages Disadvantages

Audit
(single centre)

Retrospective HGG
Meningioma
LGG

• understand MDTM decision making (not
morbidity and mortality)
• understand if there is standardised MRI
interval imaging protocol or not; if so
protocol details

• fast way to estimate factors
influencing MDTM decision making
• can inform more complex studies
• some modelling of health economic
outcomes plausible in meningioma/
LGG who undergo imaging over many
years

• level 3 evidence
(confounded data capture)
• high likelihood that modelling
of health economic outcomes
may fail

Audit
(multicentre)

Retrospective HGG
Meningioma
LGG

• understand MDTM decision making (not
morbidity and mortality)
• modelling of health economic outcomes;
requires some data to predict what would
have happened in the absence of the
change in management (counterfactual
outcomes).
• understand if there is standardised MRI
interval imaging protocol or not; if so
protocol details

• larger numbers: more statistical
inference
• more representative sample
• fast way to estimate factors
influencing MDTM decision making
• modelling of health economic
outcomes plausible in meningioma/
LGG who undergo imaging over many
years
• can inform more complex studies

• level 3 evidence
(confounded data capture)
• time consuming preparing data
collection
• effort could be going into level
1 or 2 evidence
• robustness in the modelling of
health economic outcomes
dependent on quality of data
used to extrapolate
counterfactual outcomes

Observational
(single centre)

Prospective HGG
Meningioma
LGG

• test decision making at MDTM (not
morbidity and mortality)
• No need to examine those imaging
timepoints clearly changing management if
audit shows this already
• understand if there is standardised MRI
interval imaging protocol or not; if so
protocol details

• level 2 evidence
• accurately understand all factors
influencing MDTM decision making
• potential to capture data on multiple
timepoints throughout pathway

• time consuming collecting
prospective data
• maybe challenging for a health
economic assessment given a
lack of comparator data may
limit the scope of economic
evaluation

Observational
(multicentre)
(additional
points relating
to cancer
registries
shown in bold)

Prospective HGG
Meningioma
LGG

• test decision making at MDTM (not
morbidity and mortality)
• no need to examine those imaging time
points clearly changing management if audit
shows this already
• understand if there is standardised MRI
interval imaging protocol or not; if so
protocol details
• cancer registries may allow high level
interval imaging comparisons

• level 2 evidence
• accurately understand all factors
influencing MDTM decision making
• potential to capture data on multiple
timepoints throughout pathway
• more representative sample
• possibly RADIANT (UK) perform
study
• quality assured available
resource
• with large datasets, interval
imaging comparisons, accounting
for health service organization
variation, may provide useful
information

• time consuming preparing data
collection
• time consuming collecting
prospective data
• data may not be detailed
enough & incomparable

RCT
(multicentre)

Prospective HGG

Meningioma
& LGG
challenging
given long
follow up

• compare: symptomatic imaging vs.
regular interval imaging
• non-inferiority study

• level 1 evidence to assess morbidity,
mortality
• analysis of quality of life & resource
use outcomes using trial data and
extrapolation with a decision model
• Answers JLA question

• recruitment challenging both
for patients & PI (“no equipoise”).
This may be explored by
feasibility study.
• time consuming preparing data
collection
• time consuming collecting data
• expensive

RCT
(multicentre)

Prospective HGG • compare: EPMRI vs.
No EPMRI
• non-inferiority study

• level 1 evidence to assess morbidity,
mortality
• analysis of quality of life & resource
use outcomes using trial data and
extrapolation with a decision model

• recruitment challenging both
for patients & PI (“no equipoise”).
This may be explored by
feasibility study.
• time consuming preparing data
collection
• time consuming collecting data
• expensive

RCT
(multicentre)

Prospective HGG

Meningioma
& LGG
challenging

• compare: joint decision between patient
and clinician for imaging vs.
regular interval imaging
• non-inferiority study

• level 1 evidence to assess morbidity,
mortality
• analysis of quality of life & resource
use outcomes using trial data and
extrapolation with a decision model

• recruitment challenging both
for patients & PI (“no equipoise”).
This may be explored by
feasibility study.
• time consuming preparing data

(Continued)
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TABLE 1 | Continued

Design Time
direction

Tumour and
Comment

Objectives and Comment Advantages Disadvantages

given long
follow up

collection
• time consuming collecting data
• expensive

RCT
(multicentre)

Prospective HGG

Meningioma
& LGG
challenging
given long
follow up

• compare: imaging vs. no imaging at a
timepoint informed by prior studies
• non-inferiority study

• level 1 evidence to assess morbidity,
mortality
• analysis of quality of life & resource
use outcomes using trial data and
extrapolation with a decision model

• recruitment challenging both
for patients & PI (“no equipoise”).
This may be explored by
feasibility study.
• time consuming preparing data
collection
• time consuming collecting data
expensive

RCT
(multicentre)

Prospective HGG

Meningioma
& LGG
challenging
given long
follow up

• compare: imaging vs no imaging at
multiple (or all) timepoints
• non-inferiority study

• level 1 evidence
• to assess morbidity, mortality
analysis of quality of life & resource
use outcomes using trial data and
extrapolation with a decision model
• Analysis of multiple points of current
pathway

• recruitment challenging both
for patients & PI (“no equipoise”).
This may be explored by
feasibility study.
• potential ethical concerns
• complex
• very large numbers required as
multiple decision points
• time consuming preparing data
collection
• time consuming collecting data
expensive

RCT
(multicentre)

Prospective HGG

Meningioma
& LGG
challenging
given long
follow up

• compare: imaging at multiple short interval
timepoints (e.g. at 1 month) vs routine
interval imaging (e.g. at 3 months)
• non-inferiority study

• level 1 evidence
• to assess morbidity, mortality
• analysis of quality of life & resource
use outcomes using trial data and
extrapolation with a decision model
• Optimal way to understand points of
progression

• compliance
• challenging both for patients &
PI. This may be explored by
feasibility study.
• difficult to justify increased
scans if no clear step towards a
change in management after
scans.
• time consuming preparing data
collection
• time consuming collecting data
very expensive

in silico
(single centre)

Retrospective HGG
Meningioma
LGG

• discover high value imaging time points
• understand influence of co-variates

• some discovery prediction
• some modelling opportunities
• some limited ability to inform RCTs
of best imaging point to analyse
• some ability to look at different levels
of granularity including radiomics
• some assessment of morbidity,
mortality
• may support some model based
economic evaluation
• small possibility of finding ways to
improve survival

• lower level evidence (level not
quantifiable)
• (confounded data capture)
• modelling limited with small
numbers

in silico
(multicentre)

Retrospective HGG
Meningioma
LGG

• discover high value imaging time points
• understand influence of co-variates

• larger numbers: more discovery
prediction
• more representative sample
• modelling opportunities
ability to look at different levels of
granularity including radiomics
• inform RCTs of best imaging point
to analyse
• leverage additional trial data e.g.
EORTC or intellance AbbVie (2 month
follow up) or Paradigm (3 month
follow up) or CODAGLIO trial data
• more accurate modelling of
morbidity, mortality,

• lower level evidence (level not
quantifiable) (confounded data
capture)
• time consuming preparing data
collection

(Continued)
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(PRO) measures which are well defined and reliable and
therefore can generate high-quality evidence (38).

Uncertainty is defined as an individual’s “lack of ability to
determine the meaning of illness‐related events” (39). In patients
with primary brain tumours this has a direct impact on all
negative mood states (tension, depression, anger, fatigue, and
confusion) measured using the Profile of Mood States‐Short
Form (POMS‐SF)) (40). These negative mood states impact on
symptom severity, with higher levels of uncertainty associated
with worse negative mood states and symptom severity. Due of
the high likelihood of disease progression or recurrence in
glioma, negative mood states may be exacerbated when
patients who have symptoms are awaiting MRI results.
Interventions designed to reduce uncertainty may help lessen
patients’ perception of symptom severity, which may
subsequently result in better treatment outcomes and quality of
life. One solution might be “one-stop” clinics in neuro-oncology,
but this can be logistically challenging due to managing scanner
capacity and radiologist availability for providing direct access
Frontiers in Oncology | www.frontiersin.org 7
reporting. Another approach to reduce uncertainty might be to
provide re-assurance that the disease is better or to give a clear
management plan for treatment at the point when the imaging
results are conveyed to them. Conversely, any new uncertainty or
uncertainty that persists following imaging, such as the
consideration of pseudophenomena, might reinforce or
perpetuate negative mood states. In the typically slower
progressing lower grade glioma and meningioma, where there
is less impact of pseudophenomena and delayed treatment
effects, it is unclear how the relatively long imaging intervals
influence uncertainty.

There are several sources of low-level evidence (level 4)
indicating that patient and carer anxiety related to perceived
unnecessary MRI scans or inaccurate or indeterminate
imaging findings in primary brain tumours is a concern.
This was a motivating factor behind the James Lind Alliance
Priority Setting Partnership priority to establish the value
and benefit of neuro-oncological interval scanning (18). Study
design into interval imaging would benefit from including
TABLE 1 | Continued

Design Time
direction

Tumour and
Comment

Objectives and Comment Advantages Disadvantages

• may support some model based
economic evaluation
• possibility of finding ways to improve
survival

in silico
(single centre)

Prospective HGG

Meningioma
& LGG
challenging
given long
follow up

• discover high value imaging time points
• understand influence of co-variates

• Moderately higher level evidence
(level not quantifiable)
• some discovery prediction
• some modelling opportunities inform
RCTs of best imaging point to analyse
• ability to look at different levels of
granularity including radiomics
• potential to add MR fingerprinting
• moderately more accurate modelling
of morbidity, mortality, quality of life,
resource use, co-variates
• small possibility of finding ways to
improve survival

• modelling limited with very
small numbers
• time consuming collecting data
• if adding additional
experiments e.g. MR
fingerprinting, trial more complex

in silico
(multicentre)
Non-federated
(additional
federated
points shown
in bold)

Prospective HGG

Meningioma
& LGG
challenging
given long
follow up

• discover high value imaging time points
• understand influence of co-variates

• Higher level evidence (level not
quantifiable)
• larger numbers: more discovery
prediction
• more representative sample
• modelling opportunities
• inform RCTs of best imaging point
to analyse
• ability to look at different levels of
granularity including radiomics
• potential to add MR fingerprinting
• leverage Health Data Research UK
BRAIN MATRIX, BRIAN
• more accurate modelling of
morbidity, mortality, quality of life,
resource use
co-variates
• possibility of finding ways to improve
survival
• overcome concerns regarding
de-identification
• constant iteration of models

• time consuming preparing data
collection
• time consuming collecting data
expensive
• if adding additional
experiments e.g. MR
fingerprinting, trial more complex
• federated learning is still at
the research stage: time
consuming to develop and
resolve challenges
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patient-reported outcomes (PRO) so that “uncertainty reduction”
can be measured.

Interval Imaging Practices With a Focus
on Glioblastoma
There is no robust evidence (< level 3) to support the value or
lack of value for the imaging practices currently used to monitor
disease or to determine the response of any treatment given in
adult brain tumours (4). There is also a lack of evidence around
the utility of early post-operative MRI (EPMRI; within 72 h) on
adult brain tumour patients after surgical resection of
glioblastoma (16, 41–43). Interval imaging conventions are
based predominantly on expert opinion and have been
primarily motivated by efforts to standardise outcomes for
comparing therapeutic trials (9, 11). For EPMRI, it is also
noted that indirect contributors to value, such as improving
surgical practice (5, 44), are challenging to measure, particularly
at the start of a complex treatment pathway. Any study design
into interval imaging value must consider current or planned
therapeutic trials where outcomes are based on interval imaging
regimens. Similarly, there should be awareness that current
imaging conventions and the reliance of regulatory approval
pathways on them [e.g. FDA endorsing RANO-based treatment
outcomes (45)] might impede the development of innovative
imaging solutions and other biomarkers designed to rationalise
or optimise the imaging pathway.

An understanding of current practice is critical to subsequent
study design. A recent UK-wide national clinical practice survey
on the use of interval imaging in glioblastoma management (GIN
CUP study) showed considerable variation between centres (16).
Similarly, the timing and interval length between MRI
examinations in the period following completion of adjuvant
chemotherapy, shows considerable inter-institutional variation.
It is also noted that current UK, European, and international
guidelines (4, 46–49) show variation and lack of consensus on the
frequency and timing of neuroimaging during the post treatment
follow-up period, likely as a result of the lack of objective evidence
base and different resourcing between jurisdictions.

In summary, there is considerable variation in interval imaging
practice between centres during the glioblastoma post treatment
follow-up period which should be considered in the study design of
interval imaging value. Neuroimaging is believed to be crucial in
making subsequent plausible management decisions once
treatment is initiated, however there is a paucity of evidence for
this assertion at all timepoints. Additional evidence, therefore,
needs to be obtained to determine whether imaging protocols
used in current routine clinical practice, and the type of
neuroimaging performed at each component of the pathway,
result in a measurable and impactful change in management (as
opposed to the perception of a change or impact). Determining
whether there is a change in outcome and value (morbidity,
mortality, quality of life or resource use) is key.

Health Economics of Interval Imaging
Economic evaluation addresses issues of efficiency and cost
effectiveness: are the resources required to provide the
Frontiers in Oncology | www.frontiersin.org 8
intervention, in this case MRI scans, justified by the health
benefits? If the MRI scan offers no health benefit, then the
intervention is not considered cost effective, with robust
economic evaluation required to determine under which
circumstances cost-effectiveness is achieved. Whilst retrospective
analyses may determine to some extent whether there has been a
change in management, prospective studies are needed to quantify
the benefit in the context of confounds.

To determine cost effectiveness, an estimate of the impact of
imaging on overall resource use is required as well as an estimate
of the impact of imaging on survival and quality of life.
Consideration of resource data collection is important in the
design of future studies. Prospective collection of quality of life
data can support a within-trial analysis of quality adjusted life-
years (QALYs: a measure of the impact of the intervention on
health-related quality of life and survival). To inform QALYs,
quality of life is typically measured using generic quality of life
instruments, of which the most commonly used are the EuroQol
EQ-5D (50), the SF-6D (51) (based on the Rand SF-36
questionnaire) and the health utilities index (52). The EQ-5D
is the most commonly used measure, and reports health status as
the level of functioning in five domains. The five level (5L)
instrument differentiates 3,125 response combinations each of
which has an associated tariff ranging from 1 for full health,
through 0 for dead, to negative scores for a small number of
health states considered worse than dead. Measurement might be
performed at baseline and 3 monthly intervals during the
imaging period, in a similar fashion to interval imaging. More
extensive questionnaires such as the European Co-operative
Oncology Group Quality of Life Questionnaire Core 30
(EORTC QLQ C30) (53) may provide a more targeted capture
of quality of life and may prove to be suitable instruments.
Further work is required to determine more detailed evidence
surrounding patients’ views on quality of life in relation to
interval imaging cost effectiveness. Other sources of
information to capture outcomes such as mortality or resource
use can come from case report forms (CRF) within a trial or from
clinical registers, e.g. the Surveillance, Epidemiology and End
Results database in the US (SEER) (54) and the National Cancer
Registration and Analysis Service (NCRAS) in the UK (55).
Administrative databases may also provide useful data on
diagnosis, treatments and survival (56). The literature also
provides estimates of the cost of care for relevant events that
may not be observed during a trial such as the cost of end-of-life-
care (EOLC) (57).

Trial follow-up is frequently insufficient to capture the full
implications of monitoring and treatment on patient costs and
outcomes. A decision model is commonly used to extrapolate
costs and outcomes beyond trial follow-up, often over the
remaining lifetime of the patient cohort. The most commonly
used is the Markov model, which captures patient trajectories as
a sequence of health states representing progression of the
disease (58). Estimation of lifetime costs and outcomes of
different monitoring and treatment strategies allows
quantification of the difference in costs and outcomes across
strategies. The ratio of incremental costs to incremental
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outcomes, known as the incremental cost-effectiveness ratio
(ICER), reports the efficiency of more effective strategies in
terms of the cost per unit improvement in outcome. These
data typically influence recommendations from national health
technology agencies on the use of new technology and care
pathways, although the application of an explicit upper limit or
threshold with regard to cost-effectiveness is limited to the UK,
Australia and Canada (59).

Deriving evidence to determine the cost effectiveness of
interval imaging requires consideration of the impact of
imaging on downstream costs and outcomes. Downstream
costs for surgical treatments such as craniotomy or licensed
chemotherapy drugs can greatly outweigh the costs of the
imaging. Hence quantifying small changes in treatments
arising from imaging is important. Therefore, any design or
modelling to optimise interval imaging cost effectiveness in
routine clinical practice should incorporate changes in the
costs of any subsequent alteration in treatment i.e. related and
opportunity costs. For example, the model should incorporate
changes in the costs of continuing expensive and ineffective
therapies which themselves may be associated with adverse
effects; changes to surgical procedures which themselves may
be associated with reduced or prolonged hospital stays; and
changes to the costs of rehabilitation if the clinical impacts of
progression of underlying disease are altered.

The conclusions of any health economic design framework
described above are most applicable to integrated healthcare
systems such as the UK. In these healthcare systems, imaging was
historically considered relatively costly, and most agencies
endorse rationing which can limit use. However, other
reimbursement models in other healthcare systems can
incentivise additional investigation, as reflected by the wide
discrepancy in MRI use between countries (60).

Beyond providers, there are individual financial implications
for imaging. For example, 54% of carers of US patients with high-
grade gliomas out of active treatment had costs of $271 per
month with transportation to hospitals amongst the greatest out
of pocket costs (61). These personal costs may be lower in
healthcare systems such as the UK where hospitals and
charities provide additional support, but evidence suggests they
remain substantial (62). Health economic modelling would
benefit from incorporating such individual costs and regional/
international variations.

More evidence to determine the cost effectiveness of interval
imaging incorporating the patient, carer, and healthcare system
is required. Careful study design using standard tools should
achieve this. Evidence on cost-effectiveness will improve care
pathways in all systems, and is central to the efficient use of
resources in centrally funded healthcare systems.

Data Science In Silico Interval
Imaging Studies
In silico studies are those performed on a computer or via
computer simulation. Sophisticated algorithms or simulations
can advance scientific understanding, although the inferences
drawn must recognise the limitations introduced by the
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simplified or reductive framework. The results of these
simulations can be tested in existing trials or serve as a guide
for future trials. Machine learning applications may move
beyond inferential statistical approaches to attempt to extract
more accurate predictions from complex datasets. Such
approaches for imaging monitoring biomarkers in neuro-
oncology are at an early stage of development in terms of
clinical validation and applied techniques are not yet ready to
be incorporated into the clinic (63, 64). A recent systematic
review using PRISMA-DTA and QUADAS-2 methodology,
showed that the small numbers of patients included in
machine learning studies, the high risk of bias and concerns of
applicability in the study designs, and the low level of evidence
given that the monitoring biomarker studies are retrospective,
suggest that limited conclusions can be drawn from the data (33).

Studies may take advantage of enhanced computational
approaches to build data-rich neuro-oncology monitoring
biomarker models, although more involved or computationally
expensive approaches such as those used in deep learning, may
not de facto outperform more traditional machine learning
techniques, for example multivariate logistic regression (63). It
is also notable that studies applying machine learning to build
neuro-oncology monitoring biomarker models have yet to show
overall advantage over those using traditional statistical methods
in terms of analytical validation and diagnostic performance (63,
65, 66). Such statistical methodology is wide ranging and
includes generalised estimating equations and mixed models
(67) but for clarity, we note that there is a continuum between
the two fields, a pertinent example being non-parametric
orthogonal transformations for dimensionality reduction.

We note several barriers in translating machine learning
which the neuro-oncology community must appreciate for in
silico study design: (1) the clinical context may not be
represented with a decreased ability to perform holistic
evaluations of patients, with loss of valuable and irreducible
aspects of the human experience such as psychological,
relational, social, and organizational issues (68); (2) accuracy-
driven performance metrics have led to more opaque models
(69) although advances in interpretability and explainability may
mitigate this somewhat (70); (3) binding the empirical data to
categorical interpretation misses an intrinsic ambiguity in the
observed phenomena (71) which might negatively affect
performance (68); (4) overreliance on the capabilities of
automation can lead to the related phenomenon of deskilling
(72). Furthermore, there are several technical limitations that
make many algorithms unreliable: domain adaptation is still in
its infancy and further solutions are required to help algorithms
extrapolate well to new hospitals. Uncertainty estimation is still
underdeveloped, and necessary to know when algorithms are
out-of-distribution or when the accuracy might be poor.
Robustness to data issues, such as artefacts, is very much
needed but also at its infancy. Lastly, the presence of multiple
pathologies (for example, tumours and stroke) can also confound
algorithms as these cases are rare and often unlabelled.

Nonetheless, we emphasise that machine learning models
have key advantages: whilst three decades ago it was noted that
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they require less formal statistical training given developments in
software (73, 74), more recently there has also been a
transformative reduction in the requisite programming
expertise for researchers which has been enabled by open
source software standardised implementations (75–77); have
the ability to detect implicitly any complex non-linear
relationship between independent and dependent variables (73,
78); and have the ability to detect all possible interactions
between predictor variables (69). Indeed, new approaches have
proven to bring new perspectives and insights to the diagnosis of
neuro-oncology pathologies, such as glioma (79, 80). In
particular, some of these models are currently used as
diagnostic biomarkers (12) for prediction of tumour grading
and genomics from imaging as well as automating diagnosis
from histopathology; furthermore prognostic biomarkers can
provide insights into survival (80).

Advances in brain tumour database curation will facilitate
integration of imaging data with demographic, clinical, and
molecular marker data into large databases [in the UK, for
example, these include Health Data Research UK, the Tessa
Jowell BRAIN MATRIX (81) or BRIAN – the Brain tumouR
Information and Analysis Network (82)]. The capture of large
volumes of data and the inclusion of a wider spectrum of imaging
phenotypes, typically results in improved diagnostic
performance during machine learning or statistical tasks; the
relative improvement of deep learning model performance is
particularly marked (83–85). Note that for deep learning, the
dependency on very large datasets can be reduced by data
augmentation and transfer learning; the latter, where an
already developed model for a task is reused as the starting
point or a model on a second task, is especially advantageous for
medical tasks since these pre-trained models not only obviate the
need for very large datasets but are less computationally
expensive (70, 79, 80). Once established, incoming data from
each of these larger scale live repositories will facilitate ongoing
refinement and assessment of impacts. Examples of machine
learning tools that have been used with large datasets in neuro-
oncology, as well as generic approaches to multi-centre machine
learning which might overcome privacy issues, are contained in
the Supplementary Information 2.

Initiatives and consensus statements have provided
recommended frameworks (86–89) for standardising imaging
biomarker discovery, analytical validation, and clinical validation
(12), which can help to improve the robustness of study design of
machine learning applied to neuro-oncology. It is clear that for
such an approach large, well-annotated datasets, and therefore,
multi-disciplinary and multi-centre collaborations are mandated
(63), and this will require a collaborative approach to reach
meaningful dataset size and quality.

Interval Imaging Study Design and
Statistical Considerations
The overarching purpose of any study design would be to
determine the value of interval imaging and to maximise this
value where possible. Ideally, studies would provide robust
evidence (≤ level 3) for morbidity, mortality, quality of life and
resource use (together these outcomes give the additional
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outcome measure of cost effectiveness) of three tumour groups
(meningiomas, lower grade gliomas, and high-grade gliomas)
undergoing interval imaging. Further Patient and Public
Involvement (PPI) work is underway to refine measurable
metrics although a primary outcome of mortality and
secondary outcomes of quality of life e.g. the EUROQOL EQ
5D–5L or EORTC QLQ C30 score, may be sensible. Outcomes
are confounded by treatment type and motivate thorough co-
variate collection. Progression-free survival is especially
confounded as described above and must be considered
carefully as an outcome measure in glioma study design. This
is a major driver for the consideration of adopting “advanced
imaging” in more robustly defining a progression event
through imaging.

Given these, it is likely that different approaches are required
to construct an evidence framework surrounding interval
imaging (Table 1); building the framework is likely to be
stepwise (90), using less robust evidence (< level 3) initially as
well as determining baseline quality of life and resource use
outcomes. Whilst the trial giving the highest level of evidence
would be a randomised controlled trial (RCT), and likely a non-
inferiority design, knowing which aspects of the pathway to
randomise will require additional supportive intermediate
evidence from preliminary studies. For example, data can be
acquired using audit or observational studies to determine
whether there is a change in management or not. If
management is changed, an RCT may be able to address
whether there is additional value from the change in
management in terms of morbidity, mortality, quality of life
and resource use. However, there may be challenges for
recruitment of patients into an RCT, predominantly influenced
by tumour type. For example, in a high-grade glioma RCT with
reduced imaging in one arm, some participants and recruiters
may oppose reduced imaging in a tumour where changes in
disease can be rapid. It is plausible that there would be less
concern for lower grade gliomas or meningioma interval
imaging studies.

In silico studies using statistical or machine learning
approaches might provide an alternative to inform which
aspects of the pathway should be randomised in an RCT (91,
92). Alternatively, such techniques might be used to approximate
outcomes themselves, however, as with an RCT, a large number
of centres would be required to provide sufficient data,
particularly if PROs and health economic measures are also
incorporated. It is noteworthy that within existing provision and
clinical trials, there will be natural jitter and missed time points
in the follow-up of patients. With large datasets this might
provide an opportunity using appropriate modelling
techniques to assess the impacts of these natural timing
differences and missing data points. Despite the potential of in
silico studies, a disadvantage is that they do not produce level 1
evidence nor is it clear how the most complex modelling studies
equate with traditional levels of evidence (3).

Whilst the focus of study design relates to the structural MRI
interval imaging pathway and by default the “when” of imaging,
the “how” and “what else” remain important avenues for
research (5). It is conceivable that the interrogation of
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biomarkers such as MRI radiomic features, advanced MRI or
PET studies can be added as secondary objectives. It is
acknowledged that these are not routinely used nor widely
available modalities, and in the case of PET in particular, have
a distinct risk and cost effectiveness profile compared to
structural MRI. We note other expert consortia are looking
specifically into advanced imaging and processing techniques
to develop international recommendations and guidelines on
their application as monitoring biomarkers (93, 94).

Regardless of the approach to achieve accurate, complete, and
transparent reporting of studies contributing to the evidence of
interval imaging in standard of care brain tumour management,
we strongly recommend following reporting guidelines from the
EQUATOR Network (95), available for example in prospective
biomarker studies (96, 97), RCTs (98) or economic
evaluations (99).
DISCUSSION

Determining the value, and therefore the utility, of interval
imaging in brain tumour management remains a key priority
in neuro-oncology. Meningioma and glioma were identified as
priorities for interval imaging utility analysis. Any study
design that changes imaging regimens should consider the
potential for influencing current or planned therapeutic
trials; ensure opportunity costs are measured; and that indirect
contributions to value are identified and assessed.

Whilst it was agreed that an RCT would provide level 1
evidence, no consensus was reached on specific trial design,
reflecting the immense challenge faced in addressing this
evidence gap. While development of level 1 evidence is the
desired goal, given that current practice is predominantly
based on expert opinion (level 5) there is a role for
establishing “intermediate level” evidence that might support a
future RCT. The outcomes of any study must include overall
survival, quality of life and resource use. The panel agreed that
this “intermediate level” evidence was unlikely to be obtained
solely through descriptive and inferential statistics of existing
datasets and would benefit from modelling and advanced
statistical and machine learning approaches, and that larger,
aggregate datasets would be required involving multicentre
collaborations. Overall, no consensus was reached as to the
specific studies which should be undertaken, but types of study
have been described here for consideration along with their
strengths and limitations.
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This position statement aims to provide a framework
for developing the evidence base for the value of interval
imaging in primary brain tumours and, thereafter, practice
recommendations. The panel welcomes any collaborative
approach from groups interested in aggregating data and
contributing to study design. Ongoing collaborative efforts will
improve trial design and generate the evidence to optimise
monitoring imaging biomarkers in standard of care brain
tumour management.
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93. Clement P, Booth T, Borovečki F, Emblem KE, Figueiredo P, Hirschler L, et al.
GliMR: Cross-Border Collaborations to Promote Advanced MRI Biomarkers
for Glioma. J Med Biol Eng (2020). doi: 10.1007/s40846-020-00582-z

94. Society of Neuro-Oncology. (2020). https://soc-neuro-onc.org/WEB/About_
Content/News_Pages/RANO_at_SNO.aspx.

95. Equator Network. (2020). https://www.equator-network.org/.
96. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al.

STARD Group. STARD 2015: An Updated List of Essential Items for
Reporting Diagnostic Accuracy Studies. Radiology (2015) 277(3):826–32.
doi: 10.1148/radiol.2015151516
Frontiers in Oncology | www.frontiersin.org 14
97. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis
(TRIPOD): the TRIPOD Statement. Eur J Clin Invest (2015) 45(2):204–14.
doi: 10.1111/eci.12376

98. Schulz KF, Altman DG, Moher DCONSORT Group. CONSORT 2010
statement: updated guidelines for reporting parallel group randomized
trials. Ann Intern Med (2010) 152(11):726–32. doi: 10.7326/0003-4819-152-
11-201006010-00232

99. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D,
et al. CHEERS Task Force. Consolidated Health Economic Evaluation
Reporting Standards (CHEERS) statement. Int J Technol Assess Health Care
(2013) 29(2):117–22. doi: 10.1017/S0266462313000160

Conflict of Interest: TB, speaker’s bureau for AbbVie and Siemens Healthineers.
Craig Buckley, Head of Research and Innovation – Siemens Healthineers GB&I.
JC, BrainMiner Founder. Involved in machine learning enterprise and business.
JK, involved in enterprise and business. MM, BrainMiner Founder. Involved in
machine learning enterprise and business. SO, BrainMiner Founder. Involved in
machine learning enterprise and business. MP, received payment for consultancy
work fromMerck not related to cancer. AW, unrestricted educational grant, Bayer
Schering, consultancy work and honoraria not related to cancer.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Booth, Thompson, Bulbeck, Boele, Buckley, Cardoso, Dos Santos
Canas, Jenkinson, Ashkan, Kreindler, Huskens, Luis, McBain, Mills, Modat, Morley,
Murphy, Ourselin, Pennington, Powell, Summers, Waldman, Watts, Williams, Grant
and Jenkinson. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
February 2021 | Volume 11 | Article 620070

https://arXiv.preprint.arXiv:1612.07003
https://doi.org/10.1038/nrclinonc.2016.162
https://doi.org/10.1148/radiol.2015142202
https://doi.org/10.1038/bjc.2014.639
https://doi.org/10.1016/S0140-6736(09)61116-8
https://doi.org/10.1016/S0140-6736(09)61116-8
https://doi.org/10.3171/2014.6.PEDS1321
https://doi.org/10.1093/neuros/nyz072
https://doi.org/10.1007/s40846-020-00582-z
https://soc-neuro-onc.org/WEB/About_Content/News_Pages/RANO_at_SNO.aspx
https://soc-neuro-onc.org/WEB/About_Content/News_Pages/RANO_at_SNO.aspx
https://www.equator-network.org/
https://doi.org/10.1148/radiol.2015151516
https://doi.org/10.1111/eci.12376
https://doi.org/10.7326/0003-4819-152-11-201006010-00232
https://doi.org/10.7326/0003-4819-152-11-201006010-00232
https://doi.org/10.1017/S0266462313000160
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	A Position Statement on the Utility of Interval Imaging in Standard of Care Brain Tumour Management: Defining the Evidence Gap and Opportunities for Future Research
	Introduction
	Materials And Methods
	Results
	Targeting of Interval Imaging Studies
	Interval Imaging Overview
	Interval Imaging and Confounds
	The Patient and Carer Experience of Interval Imaging
	Interval Imaging Practices With a Focus on Glioblastoma
	Health Economics of Interval Imaging
	Data Science In Silico Interval Imaging Studies
	Interval Imaging Study Design and Statistical Considerations

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


