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Key points 

i. Long-term trends exist in DW1 amplitudes in WACCM6 simulations.  

ii. The results suggest that increasing trends in CO2 as well as ENSO are responsible for 

the increasing trend in tidal amplitudes.  

iii.  In addition to CO2, the global tidal amplitudes in temperature are affected by changes 

in ODSs in the upper stratosphere.  

 

Abstract 

Long-term variability and tendencies in migrating diurnal tide (DW1) are investigated 

for the first time using a three-member ensemble of historical simulations by NCAR’s Whole 

Atmosphere Community Climate Model, latest version 6 (WACCM6) for 1850-2014 (165 

years). The model reproduces the climatological features of the tide in temperature (T), zonal 

wind (U) and meridional wind (V). The amplitudes peak in the upper mesosphere and lower 

thermosphere (above ~0.001 hPa) at the equator for T (~10 K) and over 20-30°N and S 

latitudes for U (~15 m/s) and V (~25 m/s). The contributions of solar cycle (SC), quasi 

biennial oscillation (QBO) at 10 hPa and 30 hPa, El Niño–southern oscillation (ENSO), 

ozone depleting substances (ODS), carbon dioxide (CO2), and stratospheric sulfate aerosols 

(volcanic eruptions) to change in annual mean amplitudes are analyzed using multiple linear 

regression. The tidal amplitudes in three components show a long-term increase in the upper 

stratosphere (0.95 hPa – 10.7 hPa) and the upper mesosphere (0.0001 hPa – 0.01 hPa), 

predominantly due to increasing CO2 with a smaller contribution from the trend in ENSO.  

Interestingly, the global mean tidal amplitude in T decreases sharply after 1950-1960 until 

1995 and then increases in association with changes in ODSs. The seasonal differences in 

tidal responses to the above indices can be as large as the overall signals.  All the responses 

are stronger in the upper mesosphere; however there is also a pronounced negative response 
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of temperature tide to ODSs over mid-high latitudes around the stratopause (~1 hPa) during 

all seasons.   

 

1. Introduction 

Atmospheric solar tides play a vital role in transferring energy and momentum 

between various regions of the atmosphere. These global scale oscillations can be observed in 

temperature, wind, density and pressure. Tides are classified into migrating and non-

migrating [Chapman and Lindzen, 1970]. Migrating tides are sun-synchronous and follow the 

apparent westward motion of the sun at periods which are harmonics of a solar day. The 

dominant dynamical mode in the mesosphere and lower thermosphere (MLT) is the migrating 

diurnal tide (DW1) [Chapman and Lindzen, 1970; Burrage et al., 1995]. It is driven primarily 

by diurnal variations of the solar heating due to the absorption of infrared (IR) radiation by 

water vapour in the troposphere (~0-15 km) and ultraviolet (UV) radiation by ozone in the 

stratosphere and lower mesosphere (~30-60 km) [Forbes, 1995]. The release of latent heat by 

deep convection in the tropical troposphere is another excitation mechanism [e.g., Hagan and 

Forbes, 2002; Chang et al., 2008; Mukhtarov et al., 2009 and references therein; Davis et al., 

2013]. The tidal perturbations generated in the lower and middle atmosphere propagate 

vertically with increasing amplitude in response to decreasing density and deposit energy and 

momentum into the background atmosphere as they dissipate in the MLT region.  

 

Tides continue to be a major focus of scientific research, not only because of their 

large amplitudes but also due to lack of comprehensive understanding of their short- and 

long-term variability. Numerous observational and modeling studies have shown that the 

DW1 amplitude has a strong semi-annual seasonal cycle with maxima during or shortly after 

equinoxes [e.g. Burrage et al., 1995; Chang et al., 2008; Xu et al., 2009; Mukhtarov et al., 
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2009; Smith, 2012]. Interannual variations that are in phase with the quasi-biennial oscillation 

(QBO) [e.g., Xu et al., 2009] and El Niño–Southern Oscillation (ENSO) [Gurubaran et al., 

2005; Lieberman et al., 2007; Pedatella and Liu, 2012] have also been documented. The 

QBO is an oscillation in the equatorial stratospheric winds between eastward and westward 

flow, with the phases descending with time, and having a period of ~27 months [e.g., Reed et 

al.,1961]. The QBO is believed to be due to the momentum deposited by upward propagating 

tropical waves including gravity waves and planetary waves [e.g., Baldwin and Dunkerton, 

2001]. The tidal propagation into the MLT region depends on wave sources/forcing, wave 

propagation through background mean zonal winds, and dissipative characteristics, with the 

QBO affecting tidal propagation. The experimental studies by Vincent et al. [1998] reported a 

March/April maximum of diurnal tidal amplitude when the QBO winds at 30 hPa were 

eastward. Gurubaran and Rajaram, [1999] emphasized the connection between interannual 

variability in the mesospheric tidal amplitudes and the stratospheric QBO from the long-term 

MF radar wind observations over Tirunelveli (8.7°N, 77.8 °E). ENSO is a coupled 

atmosphere and ocean phenomenon connected to irregularly periodic (2-7 years) warming in 

sea surface temperatures over the equatorial eastern and central eastern Pacific Ocean [e.g., 

Gurubaran et al., 2005]. More details on ENSO can be found in Scaife et al., [2019]. It 

influences the global rainfall, temperature, and wind patterns. The atmospheric response to 

ENSO involves perturbations in tropospheric convection that influence the tidal forcing and 

produce large variability in tidal amplitudes in the MLT.  

 

Most of the studies on tides have focused on seasonal, intraseasonal and interannual 

variability of the DW1 tide using relatively short-term observations and model simulations. 

Knowledge of how natural forcings such as the solar cycle (SC), QBO, ENSO and long-term 

changes in radiatively active gases (CO2, O3, CH4, N2O, chlorofluorocarbons) together affect 
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the tidal amplitude is scarce. Although some studies have reported a link between the tidal 

variability and one or more of the above natural forcings [e.g., Vincent et al., 1998; 

Gurubaran and Rajaram, 1999; Hagan et al., 1999; Trenberth et al., 2002; Gurubaran et al., 

2005, 2009; Lieberman et al., 2007; Xu et al., 2009; Sridharan et al., 2010; Oberheide et al., 

2011; Pedatella and Liu, 2012; Liu et al., 2017; Dhadly et al., 2018; Vitharana et al., 2019; 

Sridharan, 2019, 2020], they focus either on short periods or on a specific geographic 

location. Furthermore none of these studies have looked at all of the different forcings 

combined.  

 

The present study provides the first detailed investigation of the variability and long-

term tendencies of the DW1 amplitudes in middle atmosphere (stratosphere and mesosphere) 

since preindustrial times (1850-1860) associated with solar activity, QBO, ENSO, ozone 

depleting substances (ODS), carbon dioxide (CO2), and stratospheric sulfate aerosols 

(produced primarily by volcanic eruptions). The results are based on an ensemble of three 

realizations with historical simulations of NCAR’s Whole Atmosphere Community Climate 

Model version 6 (WACCM6) for the period of 1850-2014 (165 years).  Here realizations 

stand for model runs starting on the same calendar date but with different initial conditions, 

as discussed in Section 2.1. The long-term variability and tendencies are derived with respect 

to the pre-industrial time of 1850-1860 using multiple linear regression (MLR) analysis. 

Section 2 provides the brief description of model simulations and data analysis, section 3 

presents the results, section 4 discusses the results and concluding remarks are provided in 

section 5. 
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2. Model Simulations and Methodology 

2.1. WACCM6 Description 

WACCM is a comprehensive global climate numerical model that extends from 

Earth’s surface into the lower thermosphere (6x10-6 hPa; ~140 km). The latest version, 

WACCM6 [Gettleman et al., 2019] is run as the atmospheric component of NCAR’s 

Community Earth System Model, version 2 (CESM2) [Danabasoglu et al., 2020]. It 

simulates a self-generated QBO and ENSO with realistic magnitude and occurrence rate. The 

vertical resolution changes with altitude from 1.1 - 1.4 km in the troposphere and lower 

stratosphere to 1.75 km in the upper stratosphere and 3.5 km in the upper mesosphere and 

lower thermosphere [Garcia et al, 2017]. The changes to this version from the previous 

release (WACCM4; Marsh et al., 2013) include higher horizontal resolution of 0.95°x1.25° 

(latitude x longitude) and additional chemical compounds and reactions, including additions 

to the representation of ion chemistry and heterogeneous reactions. An extensive description 

of WACCM6, including several important features of the model and its validation, can be 

obtained from Gettelman et al., [2019]. In the configuration used in this investigation, the 

atmospheric model includes coupled chemistry and a coupled ocean model.  

 

The diurnal tides in WACCM6 are computed using every model timestep (30-minute 

resolution) and archived as monthly means. In the present investigation, we compute monthly 

mean amplitudes of the migrating diurnal tide in temperature (T24), zonal wind (U24) and 

meridional wind (V24) to investigate the long-term variability and the response to the SC, 

QBO, ENSO, ODSs, CO2 and stratospheric sulfate aerosols in the middle atmosphere and 

lower thermosphere during 1850-2014 from three realizations. The three realizations were 

started from an energy-balanced pre-industrial Control simulation, at times separated by 5 to 

10 years, such that ENSO, QBO and other atmospheric and ocean cycles are in different 
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states at the start of each realization. As a result, the internal dynamical variability in the three 

realizations is largely uncorrelated, which facilitates isolation of the responses to external 

forcing. 

 

2.2. Methodology 

  The dependency of tidal amplitude on the seven indices (there are two indices for the 

QBO) is derived from MLR analysis. The regression model uses monthly output averaged 

either over 12 months, for year-to-year variations, or over three months of each year for 

seasonal variations. The analysis is carried out for the period 1850-2014 at each latitude and 

pressure grid point with anomalies with respect to 1850-1860. The expression for MLR 

model is given below. 

)(...4.3.30.10..)( 72654327.101 tAODCCOCEESCCNINOCQBOCQBOCFCKt  
    

                                                                                                                         ……………….. 

(1)                                                                                                                                                          

where   is the predictand (T24 or U24 or V24), t is time (years), K is a constant, C1-C7 are 

regression coefficients and   is the residual. All the predictors are defined from the three 

realizations of WACCM6.  F10.7  is the solar radio flux at 10.7 cm, a proxy for solar activity 

(in solar flux unit, sfu; 1 sfu=10-22 Wm-2 Hz-1); for QBO10 and QBO30, the zonal wind (ms-1) 

is averaged over 5°N-5°S at 10 hPa and 30 hPa, respectively; the NINO3.4 index is the 3-

month running mean of sea surface temperature (K) averaged for 5°N-5°S and 120°W-

170°W; EESC (Equivalent Effective Stratospheric Chlorine in ppbv) is proxy for ODS and 

calculated as the area-weighted global average of the sum of the inorganic chlorine and 60 

times the inorganic bromine (ClOy+60 BrOy) at 1 hPa pressure. Here the number 60 signifies 

that bromine is 60 times more efficient than chlorine in destroying ozone [Newman et al., 

2007; Stolarski et al., 2010]. The CO2 represents the global mean of surface carbon dioxide 
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volume mixing ratio (ppmv) and AOD is area weighted global mean of stratospheric aerosol 

optical depth at 550 nm as proxy for stratospheric sulfate aerosols (volcanic eruptions).  The 

F10.7 radio flux index and the global mean surface CO2 are specified in the model simulations. 

The other indices are calculated from the model chemical or dynamical fields. 

 

             The seasonal and annual predictors are defined as the anomalies with respect to the 

pre-industrial period of 1850-1860. The regression coefficients/responses and the 

contributions (product of regression coefficient and the corresponding index) to the simulated 

changes are calculated for three realizations separately and then averaged for presentation.   

 

3. Results  

In this section, we present first the overall picture (latitude-pressure) of DW1 tidal 

variability in four seasons from WACCM6 simulations and then the predictors defined for 

MLR analysis along with their temporal variations. Also, the changes in tidal amplitudes 

(ΔT24, ΔU24, ΔV24) from the pre-industrial time (1850-1860) and the responses/contributions 

of the natural and anthropogenic forcings are presented.  

 

3.1. Seasonal and Latitudinal Variation of DW1 Amplitude 

            Figure 1 shows the latitude-pressure variation of composite mean (averaged for 1850-

2014 over the three realizations) DW1 amplitudes in T, U and V for four seasons: MAM 

(March, April, May), JJA (June, July, August), SON (September, October, November) and 

DJF (December, January, February). The maximum amplitudes occur in the upper 

mesosphere and lower thermosphere (above ~0.01 hPa) over the equator in T24 (up to 10 K) 

and around 20-30°N and S in U24 (up to 15 m/s) and V24 (up to 25 m/s). The local maxima in 

T24 around the stratopause (~1 hPa) over mid-high latitudes are consistent with the first 
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symmetric trapped   (1, -2) mode [Pancheva and Mukhtarov, 2011], which does not 

propagate vertically into the mesosphere. The amplitudes in the three components are larger 

in MAM and DJF and this variation is comparatively stronger in V24 than in U24. The 

seasonal behaviour of the simulated tide differs somewhat from numerous observations 

indicating maxima at the equinoxes. 

 

3.2. Time Series of the Predictors 

            The time series of the annual mean predictors used for the regression analysis are 

shown in Figure 2 for 1850-2014. Four of the predictors, viz., F10.7, EESC, CO2 and AOD, 

are identical, or almost identical, in the three realizations. The QBO10, QBO30 and NINO3.4 

are uncorrelated among the three realizations. There are no apparent long-term trends in the 

QBO indices. There is a trend in the NINO3.4 index in the most recent decades that is 

consistent with an overall warming in the ocean temperature. More details on the predictors 

can be obtained from Ramesh et al., [2020]. 

 

3.3. Temporal Variation of Annual Mean Tide 

            The left column of Figure 3 shows the upper stratosphere (0.95 hPa - 10.7 hPa; ~30.4 

km – 48.3 km) annual mean of ΔT24 (left y-axis), ΔU24 and ΔV24 (right y-axis) along with the 

contributions due to the seven predictors for the latitudes where the tidal fields peak (T24 at 

the equator; U24 and V24 averaged over 20-30°N and S; this average is denoted as E23 

hereafter). Δ refers to difference since 1850-1860. The ΔT24, ΔU24 and ΔV24 are further 

compared with that of the area-weighted global average of each field given in the right 

column. The regression coefficients from the MLR analysis are significant at the 95% 

confidence level (significance level is 0.05) for each realization for E23 and global averages. 

The tidal amplitude increases with time for E23 in all three components; the increase is 
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slower before 1950 and accelerates afterwards. The global U24 and V24 also increase but at a 

relatively slower rate after this year. It is worth noting that the global T24 (top right panel of 

Figure 3) increases until 1950-1960 but drops sharply afterwards, until the late 2000’s, when 

it increases again. This difference between T24 and the wind tides appears in the global mean 

but not at the equator (top left panel) and is confined to the pressure range encompassing the 

stratopause (cf. Fig. 4, top row). These characteristics suggest that the different behavior of 

E23 vs. global mean amplitude may be related to the effects of superposition of tidal modes 

near the stratopause. It is well known [Chapman and Lindzen, 1970] that the tidal response 

near the stratopause consists of the superposition of a vertically-propagating component, 

approximated by the (1,1) Hough mode, which is forced by heating due to water vapor in the 

troposphere, and a non-propagating component, forced in situ by ozone heating. The former 

is narrow in latitude, whereas the latter is very broad (and would be expected to dominate the 

response in the global mean, but not in E23). Insofar as the global mean T24 decreases and 

increases in unison with the behavior of EESC (cf. Fig. 3, first and sixth rows of the right 

column), the reduced amplitude of global mean T24 during the period of fast EESC growth is 

likely to be due to the reduction of ozone (and the concomitant reduction of heating; see 

Garcia et al., [2019]) at this time. 

 

            We discuss the responses to each of the predictors in the order shown in Figure 3 (top 

to bottom). Note that the units are the same in each panel so the magnitudes can be directly 

compared. The influence of solar cycle is clearly noticed in all three components of the tide 

although it is very small. This could be due to the fact that the solar flux at the wavelengths 

responsible for heating near 1 hPa does not have a large SC variation. The magnitude is 

relatively smaller in U24 than in V24. It is interesting that the U24 response to F10.7 is 

substantially stronger in the global mean than at averages for 20-30° N and S. It could be due 
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to the average over 20-30° N and S does not capture all of the U24 maxima (note that U24 has 

large amplitude beyond 20-30° latitudes, especially at the solstices, as per Fig. 1). The annual 

mean QBO and NINO3.4 signals are also quite small; the latter exhibits an increasing trend 

that is more pronounced after 1950. The magnitude of the equivalent effective stratospheric 

chlorine (EESC) contribution increases abruptly after 1950; the signals in global mean T24 

and in U24, V24 over both E23 and global mean are negative while that for T24 at the equator 

is positive. The EESC signals in all three tidal components begin to change after 1995. The 

regression analysis attributes the long-term increase in DW1 amplitude mainly to increasing 

trend in CO2. However, as shown in Ramesh et al. [2020], a complete separation of trends 

due to CO2 and EESC is not possible because of similarities in the time series of forcing. 

Although the stratospheric aerosols (AOD) have negligible impact on global mean tidal 

amplitudes, they show negative contribution in all the three components for E23 with slightly 

larger effect on U24 than V24.  

 

            Figure 4 is similar to the Figure 3 except for a pressure range in the upper 

mesosphere lower thermosphere (0.0001 hPa - 0.01 hPa; ~79 km – 107 km). T24, U24, and V24 

increase in this region also. The trends and the contributions of the predictors are similar for 

the global mean and E23 except for the contribution of the solar cycle. For E23, the solar 

contribution to T24 is out of phase with those in U24 and V24; i.e., when the solar flux is 

higher, the amplitude of T24 is higher but the amplitudes of U24 and V24 are lower. This could 

be related to in-situ contributions to the DW1 temperature amplitudes versus increased 

dissipation of DW1 wind amplitudes at solar minimum versus solar maximum. The QBO 

signals show appreciable year-to-year variability but no long-term trend. The amplitude 

response to EESC is negative and its contribution to the overall trend has a magnitude of 

about 10% of that from CO2. CO2 is the dominant contributor to the increasing trend in the 
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tidal amplitude. 

 

3.4. Latitudinal Distribution of the Responses 

Figure 5 illustrates the latitude-pressure variation of the ΔT24 response to the seven 

predictors in four seasons. Note that the units are defined differently for each row; in this 

figure we want to emphasize the seasonal responses to each predictor rather than the 

comparisons between the responses to the various predictors. The statistical significance of 

the responses is calculated from t-test [e.g., Wilks, 2006] and the regions where the results are 

not significant at the 95% confidence level are denoted by stippling in the figures. It is clear 

that the responses vary quite a bit among seasons although some common features are seen.  

The magnitudes peak in the equatorial upper mesosphere in all seasons for all the predictors 

except F10.7. The response due to the solar cycle is positive and peaks at and above the 

mesopause (~0.0003 hPa, ~100 km) globally; this distribution could be due to the in-situ 

generated DW1 tide in the thermosphere. It is worth noting that the EESC signal is negative 

around the stratopause in all seasons over mid-high latitudes and has a significantly strong 

response in the summer hemisphere. The meridionally broad tidal responses at the 

stratopause are characteristic of trapped tidal modes that are generated in situ due to the solar 

heating from stratospheric ozone. The negative ΔT24 response to EESC is associated with 

declining ozone concentration. There is also a negative signal in the summer mesosphere that 

has a latitude and pressure structure indicative of the dominant diurnal tide. 

  

            Figure 6 is similar to Figure 5, but for ΔV24. The ΔU24 responses (not shown) are very 

similar to, although weaker than, those of ΔV24. The statistically significant responses due to 

all the predictors except for F10.7 are largely confined to 15-30°N and S and peak in the upper 

mesosphere. Some of the responses (F10.7, NINO3.4, EESC and AOD) are variable in sign 
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and not significant.    

 

4. Discussion 

            The simulations indicate long-term increase in tidal amplitudes in the upper 

stratosphere and upper mesosphere. The analysis indicates that the three variables that are 

most important in predicting long-term changes in tidal amplitude are CO2 concentration, 

EESC, and solar variability. Increasing CO2 enhances the solar heating through its effect of 

increasing water vapor in the troposphere. The analysis indicates that there is a secondary 

contribution (with smaller values than the contribution due to CO2) from the trend in ENSO 

(NINO3.4), which influences tropical convection and latent heat release.   

 

As seen in Figure 3, the global mean T24 in the upper stratosphere decreases abruptly 

after 1950-1960 and then starts to increase around 1995. The DW1 tide is partially forced by 

the direct absorption of solar radiation by ozone in the stratosphere. The extratropical diurnal 

temperature variation near the stratopause is trapped; i.e. it is locally forced but does not 

propagate vertically. The coincidence in the timing of the extratropical T24 changes and the 

increase in ODSs (EESC) suggests a mechanism. The decrease in ozone abundance due to 

photochemical loss during 1950-1995 in turn reduces solar heating and thereby reduces that 

part of the diurnal variation in temperature in the upper stratosphere that is forced in situ by 

solar heating. Such a change in the diurnal temperature variation will be seen as a reduction 

in T24 even when it is not a propagating tide.  The fact that similar changes are not seen is U24 

and V24 supports this interpretation. Afterward, the recovery of ozone due to declining ODSs 

reverses this trend.  
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In contrast, both the overall change in T24 (top left panel of Figure 3) and the EESC 

contribution to it show positive responses over the equator. This suggests that T24 at the 

equator is not dominated by the trapped mode, which leads in turn to the conclusion that the 

propagating tide has larger amplitude than the trapped tide there. As shown in Ramesh et al. 

[2020], the MLR analysis cannot cleanly separate the responses to forcing from CO2 and 

from ODS. The low latitude responses of T24, U24, and V24 to ODS appear to be 

contradictory, suggesting that a decrease in ozone concentration leads to a larger tide. It is 

plausible that this positive response of DW1 to ODS is another indication of the ambiguity of 

sorting out which mechanisms are forcing long-term variations in the stratosphere. Another 

plausible explanation is that the tide forced by ozone heating is out of phase with that 

propagating from the troposphere so that they destructively interfere. In that case, a decrease 

in ozone heating would amplify the net tidal amplitude; evaluation of this option requires 

additional diagnostic information not available from the WACCM simulations. An impact of 

EESC on the propagating tide would be identifiable in the region above the stratopause. 

There, the signal is not clear. T24 over the equator (Figure 5) shows a variable response: 

positive in some seasons, negative in others. The most coherent negative response is seen 

during JJA (Figures 5 and 6), when the T24 is weakest (Figure 1).  

 

The response of ozone in the tropical upper stratosphere to the solar cycle is positive 

[e.g., Nath and Sridharan, 2014; Ball et al., 2019]. Due to the solar heating from ozone SW 

absorption [e.g., Hagan, 1996; McLandress, 1997], which maximizes in the upper 

stratosphere, the ΔT24 is in phase with the solar cycle up to upper mesosphere. However, the 

ΔU24 and ΔV24 over 20-30° latitudes in both hemispheres are in phase with solar cycle in the 

upper stratosphere but out of phase in the upper mesosphere. Sridharan et al. [2010] observed 

a negative response of the diurnal tide in wind fields (U,V) over Tirunelveli (8.7°N, 77.8°E) 
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in the upper mesosphere above ~80 km. Singh and Gurubaran, [2017] presented the 

anticorrelation between V24 and the sunspot number (SSN). The consistency in sign in the 

response to solar variability between the analysis of WACCM results presented here and the 

observations cited above gives confidence that the simulated response is realistic.  

 

5. Conclusions 

The important conclusions drawn from this study can be summarized as follows. 

i. The historical simulations show the long-term increase in annual mean tidal 

amplitudes in temperature (except global mean in upper stratosphere) and horizontal 

winds largely through increasing CO2 while the trend in ENSO plays secondary role.  

ii. The global temperature amplitude decreases sharply after 1950-1960 until 1995 and 

then increases in association with changes in ODSs.  

iii. The tidal amplitudes are positively correlated with SC in all three components, 

however in the upper mesosphere, the wind amplitudes are anticorrelated with SC 

over 20-30° latitudes.   

iv. The latitude-pressure distributions of responses indicate that the variations mostly 

peak at the latitudes and pressures where the tidal amplitudes themselves peak. An 

exception is the strong negative response of T24 to EESC around the stratopause at 

mid-high latitudes in association with the trapped modes. 
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Figure 1. The seasonal and latitude-pressure variation of composite mean (1850-2014) DW1 

amplitudes in T, U, V averaged for three realizations. Contour intervals are 1 K for the top 

panels, 2 m/s for the center panels, and 3 m/s for the bottom panels. 
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Figure 2. The time series of annual mean of seven predictors for three model realizations 

during 1850-2014. 
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Figure 3. The temporal variation of annual mean and area weighted global mean ΔT24, ΔU24, 

ΔV24 (mean of three realizations) and the contribution of each index viz., F10.7, QBO10, 

QBO30, NINO3.4, EESC, CO2 and AOD averaged (left panel) at equator for ΔT24 and over 

±20-30° latitudes for ΔU24, ΔV24 and (right panel) globally in the upper stratosphere (0.95 

hPa – 10.7 hPa) with ΔT24 and its contributions on the left y-axis and for ΔU24, ΔV24 on the 

right y-axis. 
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Figure 4. Same as Figure 3 but in the upper mesosphere (0.0001 hPa – 0.01 hPa). 
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Figure 5. The seasonal variation of latitude-pressure distribution of ΔT24 responses to F10.7, 
QBO10, QBO30, NINO3. EESC, CO2 and AOD averaged for three realizations. The 
responses in stippled regions are not significant at the 95% confidence level (p>0.05). 
Contour intervals - F10.7: 0.1 K/100 sfu, QBO10: 0.015 K/ms-1, QBO30: 0.015 K/ms-1, 
NINO3.4: 0.05 K/K, EESC: 0.02 K/ppbv, CO2: 0.005 K/ppmv, AOD: 0.1 K/0.1. 
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Figure 6.  Same as Figure 5 but for ΔV24. Contour intervals - F10.7: 0.1 m/s/100 sfu, QBO10: 

0.05 m/s/ms-1, QBO30: 0.05 m/s/ms-1, NINO3.4: 0.3 m/s/K, EESC: 0.1 m/s/ppbv, CO2: 0.01 

m/s/ppmv, AOD: 0.3 m/s/0.1. 


