
This is a repository copy of Large-Scale Pixel-Precise Deferred Vector Maps.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/169264/

Version: Accepted Version

Article:

Thöny, M, Billeter, M orcid.org/0000-0003-1806-2587 and Pajarola, R (2018) Large-Scale
Pixel-Precise Deferred Vector Maps. Computer Graphics Forum, 37 (1). pp. 338-349.
ISSN 0167-7055

https://doi.org/10.1111/cgf.13294

© 2017 The Authors Computer Graphics Forum © 2017 The Eurographics Association and
John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Thöny,
M., Billeter, M. and Pajarola, R. (2018), Large‐Scale Pixel‐Precise Deferred Vector Maps.
Computer Graphics Forum, 37: 338-349. , which has been published in final form at
https://doi.org/10.1111/cgf.13294. This article may be used for non-commercial purposes
in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Volume 0 (1981), Number 0 pp. 1–11 COMPUTER GRAPHICS forum

Large-Scale Pixel-Precise Deferred Vector Maps

Matthias Thöny†1 Markus Billeter1,2 Renato Pajarola1

1Departement of Informatics, University of Zürich
2Chalmers University of Technology

Figure 1: Example of a vector map data set showing a part of a street network consisting of 16 million line segments.

Abstract

Rendering vector maps is a key challenge for high-quality geographic visualization systems. In this paper we present a novel

approach to visualize vector maps over detailed terrain models in a pixel-precise way. Our method proposes a deferred line

rendering technique to display vector maps directly in a screen-space shading stage over the 3D terrain visualization. Due to the

absence of traditional geometric polygonal rendering, our algorithm is able to outperform conventional vector map rendering

algorithms for geographic information systems, and supports advanced line antialiasing as well as slope distortion correction.

Furthermore, our deferred line rendering enables interactively customizable advanced vector styling methods as well as a tool

for interactive pixel-based editing operations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Displaying vector maps is an important component in geographical
visualization applications such as virtual globe software, mapping
and navigation systems, as well as other interactive geo-spatial 3D
environments. Vector maps are used to represent geographic fea-
tures such as streets, rivers, contour lines or land use information.

† e-mail:{mthoeny|billeter|pajarola@ifi.uzh.ch}

An example of such data can be seen in Fig. 1. Displaying and vi-
sualizing these data sets interactively in real-time 3D applications,
such as Google Earth, Caesium Virtual Globe and Map Engine,
or NASA Worldwind is a challenging task. Improving the perfor-
mance and accuracy of interactive visualization of large-scale vec-
tor maps is thus an important goal. In this paper we address the
problem of rendering large-scale vector maps with many millions
of line segments within a 3D real-time geo-visualization applica-
tion. This massive amount of vector map data is challenging be-

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

(a) (b)

Figure 2: Example artifacts when rendering vector maps. (a) Vector lines floating or intersecting the underlying 3D terrain, and (b) texture

mapping based projection and resolution artifacts.

cause of limited memory capacities and because of the rendering
cost per frame which must be minimized for real-time purposes.

In geographic visualization systems, previous vector map ren-
dering methods may cause visual artifacts that negatively affect the
interactive data exploration quality and corresponding geo-spatial
analysis tasks. Examples of such artifacts are shown in Fig. 2. In
particular, when combining multiple 3D vector maps and a contin-
uous multiresolution level-of-detail (LOD) terrain mesh the mis-
matching resolutions may cause significant artifacts in the visual-
ization. The problems shown in Fig. 2(a) occur because line seg-
ments of vector maps (in yellow) with differing resolution float
above or intersect the terrain. This unpredictable scene configura-
tion makes the problem very complicated for geometric line ren-
dering methods. Texture based approaches do not suffer from this
intersection problem, but from other artifacts such as aliasing and
projective distortions as shown in Fig. 2(b).

Compared to other vector map rendering methods, our approach
performs a deferred shading pass for displaying the vector map data
on top of the traditionally rendered 3D terrain surface such as to
avoid dependence on modified (preprocessed) vector map geome-
try. Consequently this avoids the coupling between different vector
maps or between vector maps and the terrain height-field during a
preprocessing stage, and all data set combinations are changeable
at runtime. Furthermore, on the one hand, we can avoid artifacts
as shown in Fig. 2, and on the other hand we also achieve pixel-
precise line display results even with multiple layers of vector maps
with different resolutions being visualized on top of the 3D terrain.
Moreover, modern map visualization systems should allow the user
to interactively change their map visualization with advanced vec-
tor styling methods. This requires a flexible line rendering method
capable of extending the geometric line rendering to include line
styling capabilities.

In this paper, we present an extended description of our ap-
proach [TBP16], including newly added functionality on coverage-
based line antialiasing as well as slope distortion-corrected line ren-
dering. In particular, we describe our deferred rendering approach
which exploits a clustered line buffer structure to interactively vi-
sualize large-scale vector maps with many millions of line features
in a pixel-precise manner, and we report new GPU-optimized ren-
dering performance results.

2. Related Work

In the following section we review state-of-the-art techniques for
vector map rendering, as well as relevant work related to clustered
deferred shading. The terrain rendering in this work is based on
RASTeR [BGP09, GMBP10] but could be replaced by other state-
of-the-art systems such as [LH04, DKW09, LKES09, RRPCC12,
KJCH15].

2.1. Vector Map Visualization

Vector maps as shown in Figs. 1 and 2 are usually line or polygon
based data describing geometric objects with specific attributes.
This geometric information can be used directly for a 3D visual-
ization as shown in [BN08]. However, the most popular method
is the combination of vector maps with image based information,
like aerial photographic data, projected onto a 3D terrain surface
model. In this context, the closest related prior approaches for vec-
tor map visualizations can be divided into three categories: (1)
texture based, (2) applying geometric subdivision and (3) using
shadow volumes. These methods are described in more detail in the
survey of interactive visualization of vector data [KD02] and the
survey of a digital earth [MAAS15]. A possible system description
for these methods can be found in [CR11]. In Tab. 1 we summarize
the main advantages and limitations of these three approaches in
comparison to our new deferred vector map visualization method.

The most common vector map rendering method used in geo-
visualization systems is the texture based approach. Different de-
scriptions of this method as well as comparisons to other methods
can be found in [KD02,WKW∗03,SLL08,WLB09]. The basic idea
is that vector maps are orthographically projected and rasterized
to images and used as textures mapped on the terrain, e.g. as in
Fig. 2(b). In general, any rendering system can easily apply tex-
tures to (terrain) surfaces, therefore, it is convenient and simple to
implement such a texture based vector map visualization. In addi-
tion, texture based methods are often used if the development tar-
gets have limited hardware capabilities such as embedded devices,
mobile platforms or browser based applications.

Texture based vector maps, however, may suffer from artifacts as
shown in Fig. 2(b). The highlighted artifacts are caused by the 2D
texture projection as well as limited texture resolution. If the texture

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

Criteria Geometric Approach Texture Mapping Approach Shadow Volumes Deferred Vector Maps
Rendering artifacts (Fig. 2) Intersections, z-Buffer artifacts texture aliasing, distortions geometric aliasing geometric aliasing
Output accuracy tesselation resolution texture resolution pixel-accurate pixel-accurate
Dynamic changes recompute tesselation redraw textures yes* yes
Interactive styling & editing recompute tesselation evaluate texture content missing geometry at shading update line buffer
Memory consumption geometry only hi-res textures geometry only geometry only
Additional geometry needed recompute tesselation none geometry extrusion only line information
Preprocessing requirements complete terrain necessary texture hierachy no preprocessing line buffer generation
GPU requirements none none geometry shader* random memory reads
Applicable to large data intensive preprocessing expensive redraw/preprocessed pixel overdraw too expensive demonstrated with > 106 lines

Table 1: The table summarizes the differences between previous methods and our new technique (last column). *GPU requirements may be

traded for a preprocessing step, making dynamic changes more costly.

resolution is increased more memory is needed. Many systems thus
work with preprocessed texture pyramids, but adding higher reso-
lutions increases on one hand the memory consumption and on the
other hand also the amount of texture files in these systems expo-
nentially. Additionally, the texture pyramid may introduce border
artifacts of the vector map information during rendering when used
in a multiresolution LOD system. Moreover, most of the systems
using this type of visualization do not allow immediate modifica-
tion and styling of vector maps within an interactive 3D display
session.

To achieve a precise and suitable visualization for interactive
vector map modification, it is necessary to manage a dynamic tex-
ture pyramid and to implement an on-the-fly rasterization step for
updating vector maps. The amount of re-rasterization grows with
the complexity of modification possibilities such as selection of
vector map layers or highlighting of selected elements. Artifacts of-
ten appear when moving the view frustum close to the surface and
the camera points to a far distance. In these cases, the texture based
approach can get overly complex and costly in terms of memory,
rendering time and system flexibility.

In geometric subdivision approaches for vector maps [KD02,
SGK05, XSWJ10, DXZS13] lines are subdivided according to the
terrain mesh structure as illustrated in Fig. 3. Along the line seg-
ment at every change in slope of the underlying terrain, corre-
sponding to crossing triangle edges, the line segment is subdi-
vided. An application of the geometric line subdivision in combina-
tion with advanced map styling features can be found in [VTW11]
and [WSL12]. The methods show possible ways to do precise line
renderings. However, this geometric approach for vector maps has
the drawback that its line subdivision requires a predetermined and
fixed combination of terrain triangulation and vector map subdivi-
sion. Dynamically changing terrain information, as is the case in
continuous LOD terrain rendering, as well as unforeseeable com-
binations or editing of vector map data sets are hard to manage in
this approach, and therefore, interaction possibilities are limited.
This problem becomes even harder when the terrain information
contains multiple layers. This is the case when height maps of dif-
ferent resolutions are combined and transitions between them are
generated dynamically.

It cannot be assumed that a single point has a unique fixed height
value, and often terrain blending is done in the shader stage such
that the final mesh cannot be retrieved. In such cases graphical ar-

p
0

p
1

(a)

p
0

p
1

p
2 p

3

p
4

p
5

(b)

p
1

p
0

(c)

p
1

p
0

(d)

Figure 3: Example for subdivision of a line according to the terrain

height field. (a) Shows the elevation profile and (b) the subdivision.

(c) Shows the line on top of the terrain and (d) the subdivision of

the line matching the terrain mesh.

tifacts would appear. Another issue is the precise overlay of pla-
nar geometric objects, which often leads to z-buffer artifacts (z-

fighting) due to the limited precision of the depth buffer.

The shadow volume approach for vector map visualizations pro-
duces high quality solutions because the algorithm works indepen-
dent from the terrain resolution and always produces a pixel-precise
result on the screen [DZY08, WLB09, YZM∗11]. The idea is that
the geometry of a vector map is orthographically projected on the
terrain by extruding the vector map’s line segments into 3D polyhe-
dral objects. The vertically extruded polyhedrons are then rendered
in two steps, first front faces then back faces. Analog to shadow
volumes, every screen pixel counts the difference between front
and back faces. The result per pixel then contains the information
if this pixel is a part of a projected vector map or not.

The main drawback of shadow volume approach is that multi-
ple geometry rendering passes are required for the vector map, in
addition to the terrain, and that the vector map geometry has to be
extruded, e.g. in a geometry shader. On one hand there is about four
times more geometry than in the original vector map, and on the
other hand every extruded line segment has to be rendered twice.
Furthermore, in case of large vector maps the vertically extruded
geometry covers large portions of the screen and may produce a

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

Cluster per pixel

G- buffer Stage

Cluster Evaluat ion

Deferred Line Shading

Line Preprocessor:

Line Assignm entClustered Line Buffer

Norm als

Depth

Color

Cluster I nform at ionCom posit ion

Figure 4: Our deferred line rendering pipeline for large-scale vector map visualization. After the generation of the G-buffer, the cluster

evaluation is performed and used as input in combination with the clustered line buffer for the deferred vector map line shading. The

clustered line buffer is prepared in the line assignment preprocess.

massive overdraw. Overall, this severely limits the technique to ren-
dering very moderately sized vector maps of maybe a few thousand
line segments. A special case is shown in [OC11] where the method
is optimized for vector maps only containing lines. Furthermore, it
is hard to preserve the original vector map information so that ad-
vanced vector styling or procedural texturing can be achieved.

2.2. Deferred Shading

Our deferred line rendering approach is inspired by the way lighting
calculations are done in deferred shading pipelines [ST90, LD12].
Deferred shading is applied to reduce the amount of shading oper-
ations by introducing a two-pass rendering pipeline. The first pass
renders the geometry and produces a set of textures containing geo-
metric scene information such as color, normal, depth or light infor-
mation. The collection of output textures of the first pass is called
a G-buffer. All shading operations are done as image based effects
using the information from the G-buffer in as few shading passes
as possible. These render passes implement the effective shading
and lighting for every pixel as well as other screen-space post pro-
cessing operations such as e.g. antialiasing [CML11] or ambient
occlusion [BS08].

Building up a deferred shading pipeline raises on one hand the
GPU memory consumption for additional texture layers, and on the
other hand the pixel fill rate because many more images are pro-
duced than effectively used as final output frames. Eventually the
overall rendering effort per frame can nevertheless be reduced dras-
tically and allows for more image-space effects within one single
frame. Clustered Deferred Shading described in [OBA12] subdi-
vides the view frustum into clusters to improve the rendering speed
for scenes with many lights. In our concept we took over the idea
of clustering scene objects by creating line clusters in world-space
as a preprocess.

3. Deferred Vector Map Rendering

All approaches discussed in Sec. 2.1 are using some kind of ex-
tracted geometry or geometry rasterized on textures for vector map
visualizations. However, modern programmable GPUs allow us to
develop much more flexible systems. The basic idea of our line

projection and rendering approach is to directly project and display
vector maps on top of the terrain surface using an adaptation of
the deferred shading principle without the need to generate inter-
mediate geometric objects or rasterize vector lines into textures. In
contrast to common rendering methods where the color of a pixel
is derived from the main (geometry) rendering pass, our approach
inverts this principle for vector map visualization.

In Fig. 4 we outline the main steps of our deferred line rendering
method as further detailed below. In a deferred shading stage, for
every pixel corresponding to a point on the terrain it is determined
if it contributes to the visualization of a vector map feature. Using
the G-buffer data obtained from the main terrain rendering pass, we
back-project each pixel into the 3D world and determine its loca-
tion within the vector map, see also Fig. 6. To identify candidate
line features, we use a spatial data structure storing all vector map
line elements, which we call a clustered line buffer. An optimized
search within the clustered line buffer allows us to find the closest
line features quickly and shade pixels accordingly.

3.1. Clustered Line Buffer

In our approach, during the deferred shading stage, for each pixel
the closest intersecting line feature, if any, must be determined very
quickly. For this we use our clustered line buffer which clusters the
individual line segments of the vector map features into a large 2D
structure of cells. Every line segment is assigned to each cell it in-
tersects. This can be a regular grid as currently implemented, but it
could also be a multi-level nested grid or other space-partitioning
hierarchy to better adapt to variations in the feature density in very
large vector maps. Important is the ability to perform point-to-cell
look-ups very efficiently, to allow fast identification of the clus-
ter containing the lines potentially intersecting a pixel. Moreover,
within each cluster the line segments are organized in an effective
spatial search index structure to accelerate line search and pruning
as well as minimize distance calculations after the coarse cluster
identification.

The clustered line buffer is thus a data structure enabling fast
point-to-line search queries and is designed to be used efficiently on
the GPU during the deferred shading pass, as illustrated in Fig. 5(a).

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

Index offset
per cluster

12

Index count
per cluster

3

... n

l
n

0 12... 13 14

Line segment index buffer:

Line segment buffer:

l
0

2 ...

p
5

p
6

(a)

p
1

p
2

p
3

p
4

C
(3,1)

C
(0,0)

C
(u,v)

C
(1,2)

(b)

Figure 5: (a) The clustered line buffer GPU data structures consist of multiple array buffers and textures supporting efficient point-to-cluster

location and point-to-line search queries from a given geographical location. (b) Assignment of feature lines to clusters by rasterization.

The clusters of this line buffer are formed during a preprocess-
ing pass which assigns all vector map line segments to their cor-
responding clusters as further described below.

Two line segment buffer arrays store the start- and end-point co-
ordinates {ps, pe} of the individual line segments li on the GPU. A
single line segment index buffer stores the indices to line segments
concatenated for all cluster. The cluster grid is represented by two
2D integer textures, ou,v representing the cluster’s index offset into
the line segment index buffer and cu,v for the index count denoting
the number of lines in the cluster. In a line assignment preprocess,
for each cluster Cu,v the vector map line features intersecting it are
recorded, counted, and then concatenated to form the line segment
index buffer.

The texture sizes for ou,v and cu,v equal the size of the cluster grid
Cu,v. On one hand the grid should not be too coarse, because that
would include too many line segments within each cluster. On the
other hand the amount of clusters is limited to the texture memory
that can feasibly be afforded. In our implementation we typically
divide the map space into 256× 256 clusters to express the clus-
ter indices u,v as one byte each. Other multi-level nested grids or
space partitioning structures could be used as well, given a memory
efficient implementation and fast cluster identification on the GPU.

The line assignment to a specific cluster follows a Bresenham-
like line rasterization as illustrated in Fig. 5(b), with certain line
segments being assigned to multiple clusters. As the actual line
drawing style is not known beforehand, we currently assume a pre-
determined conservative maximal line width which is incorporated
into the line assignment. As indicated in Fig. 5(b), the line segment
l1 = {p1, p2} lies in at least two clusters, but since the line has a
certain line width it must be assigned to all clusters it overlaps, e.g.
C1,2. Similarly, for l2 = {p3, p4} all overlapping clusters along the
line are included, e.g. also including C3,1.

To optimize the point-to-line query after the coarse point-to-
cluster location, we use a hierarchical spatial index structure to or-
ganize all line segments within one cluster Cu,v. For simplicity com-
bined with efficiency we generate a fully balanced binary bounding
volume hierarchy (BVH) over the lines within each cluster which
are sorted along a space filling curve according to their midpoint.
Other optimized BVHs could further improve upon this solution.

3.2. Deferred Line Shading

The final fragment color for a screen pixel is determined in the de-

ferred line shading stage, see also Fig. 4. In this stage our approach
decides whether a pixel contributes to the visualization of a vec-
tor map element or not. Using the clustered line buffer, where all
line segments are grouped into clusters, the search space of all line
segments influencing a single pixel can be restricted to the line seg-
ments belonging to a certain cluster into which the pixel projects.
Hence the line identification consists of two main steps: in the first
step it is necessary to determine the cluster in the clustered line
buffer affecting a certain pixel. The second step determines if and
which line effectively intersects the given pixel considering the ap-
plied line-style width.

The cluster of a certain pixel s(x,y) is determined by a backwards
projection of the pixel position from screen space to world space
coordinates. For every screen position s(x,y) a back projection can
be applied using the corresponding depth d(x,y) from the G-buffer
information, illustrated in Fig. 6 by the red line. The back projec-
tion of s(x,y,d(x,y)) then results in the point Is which is the pixel’s lo-
cation in world coordinates. The back projection can be expressed
as multiplication with the inverse view-projection matrix MVP as
Is = M−1

VP · s(x,y,d(x,y)).

With the information about the clustered line buffer’s subdivi-
sion of the vector map and the point Is in world space, it is easy to
calculate the cluster Cu,v containing the point Is. In other words, this
step maps the screen-space pixel locations (x,y) to the cluster-index
space (u,v). In Fig. 4 we visualize this cluster evaluation by color-
ing each pixel in (red,green) based on its relative position within
the corresponding cluster.

p1

p2 p5

p4
p3

Is

s(x,y)

Figure 6: Pixel back-projection and vector map location.

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

Using the back-projected 3D point location Is of a pixel s(x,y)
with depth d(x,y) from the G-buffer we thus have determined the
cluster Cu,v containing any potential line candidates. We now have
to determine if the point Is lies within a certain distance of any
line segment li ∈ Cu,v in the 2D vector map plane. As illustrated
in Fig. 6, point Is lies inside a certain distance to the line segment
p1, p2 of the vector map. Thus it is considered to be part of that
line segment and the pixel s(x,y) can be colored accordingly using
the current style and visualization parameters.

For large and complex vector maps as shown in Figs. 1 and 13,
however, per-pixel line identification and point-to-line distance
tests can become costly in our deferred line shading approach and
some further optimizations are called for as described below.

The point-to-line search and distance calculation within a clus-
ter Cu,v should be optimized to keep the per-pixel computation cost
low. Given the varying number of line segments in different clus-
ters, for large vector maps we organize the line segments within
each cluster in a BVH as already mentioned in Sec. 3.1 to limit the
number of distance test computations.

Given a pixel’s position Is in world coordinates and in vector-
map space, the BVH can be traversed effectively to identify the leaf
nodes containing any line segments l′i ⊆Cu,v which are potentially
closer than a certain given distance from Is. Only for this subset
of lines l′i the point-to-line distance has eventually to be computed.
Therefore, even for very large vector maps with many millions of
lines, the amount of line distance tests required per cluster is even-
tually reduced to a small number and can thus be performed in a
fragment shader for each pixel efficiently.

3.3. Projective Line Adjustment

The orthographic projection of line segments to the terrain stretches
the line segments and does not take the terrain slope into account.
This apparent artifact appears especially for high elevation differ-
ence. An example is shown in Fig. 7. The problem can be solved by
adjusting the line distance considering the terrain slope value and
the view information according to the following formula:

d′ =
(n · Ey)

(1 − v) · Ey
·d

To adjust a line segment to the terrain slope we have to adjust it’s
line width and therefore the distance for which a pixel is considered
to be on the line. The illustration in Fig. 8 shows the correlation of
projection, terrain slope and the camera view.

As an adjustment factor we use the dot product between the nor-
mal n and up vector Ey of our local coordinate system E. A value
close to 0.0 describes a steep slope, whereas values close to 1.0
describe almost horizontal areas. Therefore, lines lying on extreme
slope values are shaded narrower than before. From a top view,
those lines appear now tighter than others. Thus, it is necessary to
consider the view angle v as well as using the dot product between
the inverse vector of the camera direction v and the coordinate sys-
tem’s up vector Ey. A horizontal view point will now rely on a
strong gradient adjustment while a view point from top will limit
the line adjustment. Results for the projective line adjustment can
be seen in Fig. 7.

(a) Uncorrected line example

(b) Slope distortion-corrected lines

Figure 7: Slope distortion-corrected line rendering results. (a) Un-

corrected line with a street pattern partly on steep terrain. (b) Ad-

justed lines with respect to terrain normal. Values in plain areas

are adjusted less.

E
yn

d’

d
line

d
line

n

(a)

E
yn

d
line

d
line

-v

-v

(b)

Figure 8: Illustration to projective line adjustment. (a) Higher

slope vectors narrow the line distance. So that dline has to be cor-

rect to d′. (b) Due to the normal correction the camera view angle

has to be adjusted as well as to prevent different line sizes for the

same view angle.

3.4. Line Styles and Interaction

The deferred line rendering method outlined above can further sup-
port visualization features beyond bare line rendering. In particular,
the screen-space per-pixel shading allows the implementation of
advanced colorization decisions like applying different line styles
and line patterns on-the-fly during interactive rendering. Cross-
sectional color patterns can easily be incorporated into a generic
line shader taking the width of the line feature and the distance
of the pixel to the line into account (see also Fig. 10 and results
in Sec. 4). Longitudinal procedural patterns can be applied using
pattern buffers and more complex line shaders as well. Further-
more, given the pixel-to-line distance to the closest or all pixel-
intersecting line features, blended compositing of multiple features
or over background can be achieved. Dynamically varying or view-
dependent visualization parameters can also be incorporated into

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

the deferred line shading process, as demonstrated e.g. in Fig. 12
with an interactive lens function.

3.5. Coverage-based Anti-aliasing

Proper anti-aliasing is a key concern when rendering lines. In par-
ticular, the presented system needs to deal with lines at all scales.
A line close-up may end up covering many pixels, while a view
from a far distance needs to deal with lines much thinner than the
footprint of a pixel (or of a pixel’s subsample).

We draw inspiration from Persson’s method for rendering distant
phone wires [Per12]. In summary, when finding lines that may af-
fect a pixel (i.e., during traversal), the lines’ widths are adjusted to
be at least one pixel wide. During shading, we find approximatively
the line’s coverage of the pixel to be shaded. The coverage is used
to blend the line with the sample’s background color.

The coverage is a value between zero and one and represents the
fraction of the pixel’s area that a line covers. In order to efficiently
compute the coverage, we introduce an approximation where we
consider lines to always be aligned with one of the pixel grid’s axes
and that the line segment’s start and end lies far outside of the pixel.
With these assumptions, the coverage, cline, can be expressed as:

Apix = w2
pix

Aline = wpix ·
(

min
(wpix

2
−d,

wline

2

)

+min
(wpix

2
+d,

wline

2

))

cline = clamp
(

Aline/Apix,0,1
)

.

With this approximation, the coverage only depends on the line’s
width (wline), the pixel’s width (wpix) and d, the distance from the
center of the pixel to the line (Figures 9(a) and 9(b)). Note that a
factor of wpix appears on both sides of the division in the final step,
and an implementation can thus avoid multiplications with wpix in
the first place.

In our experiments, the error from the approximation is always
less than 0.1 of coverage. The worst case occurs for thin lines (ap-
proximately one pixel wide) centered on a pixel and at a 45◦ angle
(see Figure 9(c)). Our approximation overestimates the coverage to
1.0 (full coverage) instead of about 0.914. Figure 13(b) and 13(c)
show a comparison in practice for our coverage-based anti-aliasing.

The cheap approximation enables its use for the procedural
styling. We overlay borders and other details onto the main line
by evaluating the approximate coverage of the details and blend-
ing them onto the main line. This causes the different elements to
automatically blend into a single average color as the line gets thin-
ner and details become smaller than a single pixel. In particular,
symmetric details (such as borders on each side of a line) may be
produced by (procedurally) placing two lines with different widths
on top of each other.

4. Results

Our test results were made on an Intel Core i7 3.5 GHz, 16 GB
RAM, Nvidia GTX1080 8GB machine using C++ and OpenGL.
The G-Buffer stage as well as the Deferred Line Shading pass are
performed on a 3840×2160 framebuffer, which is later downsam-
pled to 1920×1080 for viewing. Our implementation allows us to

w
line

w
pix

d

(a) Input setup

d

w
line

(b) Approximation

(c) Error case

Figure 9: Coverage estimate. (a) The goal is to estimate the cover-

age, that is, the highlighted area (purple) as a fraction of the whole

area. (b) Our method approximates coverage as if the line were

aligned with the pixel setup. (c) The estimated coverage deviates

from the real coverage in some cases. A worst case occurs when

the line is centered on the pixel at a 45◦ angle; the worst observed

error is nevertheless less than 0.1 of coverage per pixel.

load and interactively visualize large-scale terrain and vector map
datasets. In particular, the system supports exploration of large-
scale vector maps interactively in a full 3D environment. Exper-
imental results illustrated in Fig. 14 show that our approach can
be used for large-scale interactive vector map visualization and
achieves a good performance for all views and flyovers. Resulting
images can be seen in Fig. 1, 13 and 14.

Tab. 2 lists the vector map datasets in detail and provides timings
for the line assignment stage as well. The use of hierarchical spatial
line indexing within the grid-based clustered line buffer makes the
interactive exploration of large vector maps possible. Vector maps
with several millions of line segments can be visualized at interac-
tive frame rates with our methods using the maximal cluster sizes
indicated in Tab. 2. The rendering performance is depending on the
per-pixel line search effort which relies on the distance calculation
costs, the number of lines and their organization within each clus-
ter in the line buffer. Fig. 4 shows an example for the content of the
cluster information.

In comparison to our first implementation in [TBP16] we could
achieve a significant performance gain thanks to a reimplemen-
tation of the deferred line shading stage. Significant increases in
performance (approx. 6− 9× speedup, w.r.t. Tab. 2 and [TBP16])
could be demonstrated by carefully identifying parts where dou-
ble precision is needed and where single precision is sufficient to
display the data without any precision artifacts. Double precision
is only required for the distance calculation and the view transfor-

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

Data set
Vector map Cluster Line Render

Lines max. size Assignment time
Vorarlberg ski slopes 64,724 835 3.37 s 8 ms
Vorarlberg streets 728,661 631 9.8 s 8 ms
New York PlutoMap 14v1 5,578,677 2,230 38.06 s 15 ms
Switzerland (TLM streets) 16,556,412 3,429 101.7 s 10 ms
Carinthia (isolines) 31,297,095 4,650 120.7 s 20 ms

Table 2: Dataset overview. For each vector map we used a

fixed cluster grid of 256 × 256. Average render times measured

for viewpoints (3840 × 2160 for 2 × supersampling) shown in

Fig. 13(d), 13(a), 13(c), including ∼5-10 ms for rendering terrain.

mation. The traversal of the binary hierarchy can be done in float
precision. In addition, we optimized the shader according to stan-
dard procedures such as reduced memory accesses.

In contrast to texture-based visualizations, it can be guaranteed
that the visual result is a pixel-precise rendering as demonstrated in
Fig. 10. Our system maintains full pixel precision at any zoom-in
factor even close to the terrain. In these situations, texture mapping
falls short, because it will always suffer from resolution artifacts
at some point, see also Fig. 10(f). In contrast to geometric line ren-
dering approaches, intersecting or floating line artifacts as shown in
Fig. 2(a), as well as z-fighting problems as shown in Fig. 10(a) can
be avoided. Furthermore our method offers the possibility to intro-
duce a coverage based anti aliasing method as described in Sec. 3.5.
The visual improvement is shown in Fig. 13(b) and 13(c).

Our deferred line rendering is able to support interactively
changing visualization parameters such as line size or styling prop-
erties as well as view-dependent data selection without reloading or
re-rasterization of any textures. Examples for such advanced styles
can be seen in Fig. 10, 11 and 13. Other styles properties are pos-
sible as well as style ordering shown in Fig. 11 and line stipples
shown in Fig. 13(e). Furthermore, a screenshot of an interactive
pixel-precise vector map data-lens example is shown in Fig. 12.

5. Conclusion

In this paper we present a novel approach for handling vector data
sets within interactive 3D environments. Our approach represents
an efficient and flexible solution for different purposes. It can be
used for interactive exploring and editing vector maps and vector
map styles as well as for large-scale visualizations. In particular,
it is also suitable for dynamic level-of-detail and out-of-core geo-
graphic visualization systems. Our next steps are the extension of
the system to work with polygonal objects and incorporating a vec-
tor map out-of-core level-of-detail system to make larger data sets
accessible.

Acknowledgements

The authors want to thank the Swiss Federal Office of Topogra-
phy Swisstopo for providing the Swiss VECTOR25 and SwissTLM
data sets as well as the Landesvermessungsamt Feldkirch, Austria,
for providing the data sets of Vorarlberg. This project was partially
supported by a Forschungskredit of the University of Zürich (grant
no. FK-16-015) and a Swiss National Science Foundation (SNSF)
research grant (project no. 200021_169628).

(a) (b) (c)

(d) (e) (f)

Figure 10: Comparison of our approach (b,c,d,f) with normal 3D

geometry (a) and texture based rendering (e): (a) Street rendered as

a geometric object. (b) Street rendered with our method. (c) & (d)

Streets rendered with our method using an advanced vector style.

(e) A street rendered with texture mapping at highest resolution

available. (f) Overlay of (d) and (e) for direct comparison.

(a) (b)

Figure 11: Overlapping line segments. (a) Without ordering the

method will introduce an exact distance-based split. (b) Styles can

be selectively prioritized over other styles so that highways (or-

ange) can be drawn over regular streets (yellow).

(a) (b)

Figure 12: Example for interactive editing functionality. It is poss-

bile to interactivly fade out specific categories of streets from the

vector map on a pixel-precise basis.

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

(a)

(b) (c)

(d) (e)

Figure 13: (a) An example for line rendering of street data with styling pattern. (b) & (c) Carinthia isolines with black contour lines. (b)

Distant contour lines suffer from aliasing artifacts. (c) Distant contour lines rendered with our coverage based antialiasing. (d) Visualization

of ski slopes over a hill-shade textured terrain with blue and red colored slopes for beginner and advanced levels respectively. (e) Zoom in to

ski slopes showing off-piste tracks with a stippled style pattern.

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

(a)

(b)

(c)

Figure 14: Rendering times for every frame, including the G-buffer LOD terrain rendering pass, the deferred vector map pass and a down-

sampling pass. Framebuffers have size 3840× 2160 using line coverage anti-aliasing and 2x2 downsampling for a 1920× 1080 output

resolution: (a) Vorarlberg flyover (b) Switzerland flyover (c) Carinthia flyover. Screenshots below measurements show views at particular

frame times.

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Gregory Wyss & Claudio Mura & Renato Pajarola / Large-Scale Pixel-Precise Deferred Vector Maps

References

[BGP09] BÖSCH J., GOSWAMI P., PAJAROLA R.: RASTeR: Simple and
efficient terrain rendering on the GPU. In Proceedings Eurographics -

Area Papers (2009), pp. 35–42. doi:10.5167/uzh-29729. 2

[BN08] BRUNETON E., NEYRET F.: Real-time rendering and editing of
vector-based terrains. Computer Graphics Forum 27, 2 (April 2008),
311–320. doi:10.1111/j.1467-8659.2008.01128.x. 2

[BS08] BAVOIL L., SAINZ M.: Screen space ambient occlusion. In
ShaderX 7 (2008), NVIDIA Corporation. 4

[CML11] CHAJDAS M. G., MCGUIRE M., LUEBKE D.: Subpixel re-
construction antialiasing for deferred shading. Proceedings Interactive

3D Graphics and Games (2011), 15–22. doi:10.1145/1944745.
1944748. 4

[CR11] COZZI P., RING K.: 3D Engine Design for Virtual Globes. A.
K. Peters, Ltd., 2011. 2

[DKW09] DICK C., KRÜGER J., WESTERMANN R.: GPU ray-casting
for scalable terrain rendering. In Proceedings Eurographics - Area Pa-

pers (2009), pp. 43–50. doi:10.2312/ega.20091007. 2

[DXZS13] DENG B., XU D., ZHANG J., SONG C.: Visualization of vec-
tor data on global scale terrain. In Proceedings International Conference

on Computer Science and Electronics Engineering (2013), pp. 85–88.
doi:doi:10.2991/iccsee.2013.22. 3

[DZY08] DAI C., ZHANG Y., YANG J.: Rendering 3D vector data using
the theory of stencil shadow volumes. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences 37

(2008), 643–648. 3

[GMBP10] GOSWAMI P., MAKHINYA M., BÖSCH J., PAJAROLA R.:
Scalable parallel out-of-core terrain rendering. In Proceedings Euro-

graphics Symposium on Parallel Graphics and Visualization (2010),
pp. 63–71. doi:10.2312/EGPGV/EGPGV10/063-071. 2

[KD02] KERSTING O., DÖLLNER J.: Interactive 3D visualization of vec-
tor data in GIS. In Proceedings ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems (2002), pp. 107–
112. doi:10.1145/585147.585170. 2, 3

[KJCH15] KANG H., JANG H., CHO C.-S., HAN J.: Multi-resolution
terrain rendering with GPU tessellation. The Visual Computer 31, 4
(April 2015), 455–469. doi:10.1007/s00371-014-0941-6. 2

[LD12] LIKTOR G., DACHSBACHER C.: Decoupled deferred shading for
hardware rasterization. In Proceedings ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games (2012), pp. 143–150. doi:

10.1145/2159616.2159640. 4

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps: Terrain rendering
using nested regular grids. ACM Transactions on Graphics 23, 3 (August
2004), 769–776. doi:10.1145/1015706.1015799. 2

[LKES09] LIVNY Y., KOGAN Z., EL-SANA J.: Seamless patches for
GPU-based terrain rendering. The Visual Computer 25, 3 (February
2009), 97–208. doi:10.1007/s00371-008-0214-3. 2

[MAAS15] MAHDAVI-AMIRI A., ALDERSON T., SAMAVATI F.: A sur-
vey of digital earth. Computers and Graphics 53 (December 2015), 95–
117. doi:10.1016/j.cag.2015.08.005. 2

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clus-
tered deferred and forward shading. In Proceedings ACM SIG-

GRAPH/Eurographics Symposium on High-Performance Graphics

(2012), pp. 87–96. doi:10.2312/EGGH/HPG12/087-096. 4

[OC11] OHLARIK D., COZZI P.: A screen-space approach to rendering
polylines on terrain. In ACM SIGGRAPH Posters (2011), pp. 68:1–1.
doi:10.1145/2037715.2037792. 4

[Per12] PERSSON E.: Graphics gems for games: Findings from avalanche
studios. ACM SIGGRAPH Advances in Real-Time Rendering in
Games - Course Material, August 2012. URL: http://advances.
realtimerendering.com/s2012/index.html. 7

[RRPCC12] RIPOLLES O., RAMOS F., PUIG-CENTELLES A., CHOVER

M.: Real-time tessellation of terrain on graphics hardware. Computers

& Geosciences 41 (April 2012), 147–155. doi:10.1016/j.cageo.
2011.08.025. 2

[SGK05] SCHNEIDER M., GUTHE M., KLEIN R.: Real-time rendering
of complex vector data on 3D terrain models. In Proceedings Interna-

tional Conference on Virtual Systems and Multimedia (2005), pp. 573–
582. 3

[SLL08] SUN M., LV G. L., LEI C.: Large-scale vector data display-
ing for interactive manipulation in 3D landscape map. The International

Archives of the Photogrammetry, Remote Sensing and Spatial Informa-

tion Sciences 37 (2008), 507–512. 2

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of 3-D
shapes. In Proceedings ACM SIGGRAPH (1990), pp. 197–206. doi:
10.1145/97879.97901. 4

[TBP16] THÖNY M., BILLETER M., PAJAROLA R.: Deferred vector
map visualization. In Proceedings ACM SIGGRAPH Asia Symposium

on Visualization (2016), pp. 16:1–16:8. doi:10.1145/3002151.

3002157. 2, 7

[VTW11] VAARANIEMI M., TREIB M., WESTERMANN R.: High-
quality cartographic roads on high-resolution DEMS. Journal of Winter

School of Computer Graphics 19 (2011), 41–48. 3

[WKW∗03] WARTELL Z., KANG E., WASILEWSKI T., RIBARSKY W.,
FAUST N.: Rendering vector data over global, multi-resolution 3D
terrain. In Proceedings Eurographics Symposium on Data Visualiza-

tion (2003), pp. 213–222. doi:10.2312/VisSym/VisSym03/

213-222. 2

[WLB09] WANG X., LIU J., BI J.: Rendering of vector data on 3D
virtual landscapes. In Proceedings IEEE International Conference on

Information Science and Engineering (2009), pp. 2125–2128. doi:10.
1109/ICISE.2009.880. 2, 3

[WSL12] WILKIE D., SEWALL J., LIN M. C.: Transforming gis data
into functional road models for large-scale traffic simulation. IEEE

Transactions on Visualization and Computer Graphics 18, 6 (2012),
890–901. doi:10.1109/TVCG.2011.116. 3

[XSWJ10] XU Y., SUI Z., WENG J., JI X.: Visualization methods
of vector data on a Digital Earth System. In Proceedings Interna-

tional Conference on Geoinformatics (2010), pp. 1–5. doi:10.1109/
GEOINFORMATICS.2010.5567902. 3

[YZM∗11] YANG L., ZHANG L., MA J., KANG Z., ZHANG L., LI J.:
Efficient simplification of large vector maps rendered onto 3D land-
scapes. IEEE Computer Graphics and Applications 31, 2 (March/April
2011), 14–23. doi:10.1109/MCG.2010.63. 3

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

