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Abstract We consider the evolution model proposed

in [9,6] to describe illusory contrast perception phe-

nomena induced by surrounding orientations. Firstly,

we highlight its analogies and differences with widely

used Wilson-Cowan equations [48], mainly in terms of

efficient representation properties. Then, in order to

explicitly encode local directional information, we ex-

ploit the model of the primary visual cortex V1 pro-

posed in [20] and largely used over the last years for

several image processing problems [24,38,28]. The re-

sulting model is capable to describe assimilation and

contrast visual bias at the same time, the main novelty

being its explicit dependence on local image orienta-
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tion. We report several numerical tests showing the abil-

ity of the model to explain, in particular, orientation-

dependent phenomena such as grating induction and a

modified version of the Poggendorff illusion. For this

latter example, we empirically show the existence of a

set of threshold parameters differentiating from inpaint-

ing to perception-type reconstructions, describing long-

range connectivity between different hypercolumns in

the primary visual cortex.

Keywords Wilson-Cowan equations · Primary Visual

Cortex · Orientation-dependent modelling · Contrast

Perception · Variational modelling · Geometrical

optical illusions

1 Introduction

Recent studies on vision research have shown that many,

if not most, popular vision models can be described by

a cascade of linear and non-linear (L+NL) operations

[33]. This is the case for several reference models de-

scribing visual perception - e.g. the Oriented Difference

Of Gaussians (ODOG) [12] or the Brightness Induction

Wavelet Model (BIWaM) [36] - and, analogously, for

models describing neural activities [18]. These L+NL

models are suitable in many cases for describing reti-

nal and thalamic activity, but they have been shown

to have low predictive power for modelling the neural

activity in the primary visual cortex (V1), explaining

less than 40% of the variance of the data [18].

Furthermore, there exist several models in vision re-

search which are not in the aforeementioned form of

(L+NL) operations. Prominent examples are, for in-

stance, models describing neural dynamics via Wilson-

Cowan equations [48,16]. These equations describe the

activation state a(ξ, t) of a population of neurons at
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time t > 0 with V1 coordinates ξ = (x, θ), where x ∈ R2

is the spatial preference and θ ∈ P1 ' [0, π) is the ori-

entation preference, via the following ODE:

∂

∂t
a(ξ, t) = −αa(ξ, t)

+ ν

∫
R2×P1

ω(ξ‖ξ′)σ(a(ξ′, t)) dξ′ + h(ξ, t). (1)

Here, α, ν > 0 are fixed parameters, ω(ξ‖ξ′) is a ker-

nel modelling the interaction at two different locations

ξ and ξ′, σ : R → R is a non-linear sigmoid satura-

tion function and h represents the external stimulus.

Wilson-Cowan models in the form (1) have been ex-

tensively studied within the neurosciences community

to describe cortical low-level dynamics, see, e.g. [21].

However, their use in the context of psychophisics as a

tool to describe, for instance, visual illusions has been

considered only recently by the authors in [7], where a

discussion on the lack of a variational counterpart for

model (1) is given.

In [9,10,6] the authors show how a slight, yet effec-

tive, modification of the Wilson-Cowan equation that

does not consider orientation admits a variational for-

mulation through an associated energy functional which

can be linked to histogram equalisation, visual adapta-

tion and the efficient representation principle, an im-

portant school of thought in vision science [35]. This

principle, introduced by Attneave [2] and Barlow [4],

is based on viewing neural systems through the lens

of information theory and states that neural responses

aim to overcome neurobiological constraints and to op-

timise the limited biological resources by self-adapting

to the statistics of the images that the individual typi-
cally encounters, so that the visual information can be

encoded in the most efficient way. Natural images (and,

more generally, images in urban environments) are in

fact not random arrays of values, since they present a

significant statistical structure. With respect to such

statistics, nearby points tend to have similar values; as

a result, there is significant correlation among pixels,

with a redundancy of 90% or more [1], and it would

be highly inefficient and detrimental for the visual sys-

tem to simply encode each pixel independently. Another

very important reason to remove redundant statistical

information from the representation is that the statis-

tical rules impose constraints on the image values that

are produced, preventing the encoded signal from uti-

lizing the full capacity of the visual channel, which is

another inefficient or even wasteful use of biological re-

sources. By removing what is redundant or predictable

from the statistics of the visual stimulus, the visual

system can concentrate on what’s actually informative

[39]. Remarkably, the efficient representation principle

has correctly predicted a number of neural processing

aspects and phenomena, and is the only framework able

to predict the functional properties of neurons from a

very simple principle. In [1], Atick makes the point that

one of the two different types of redundancy or ineffi-

ciency in the visual system is the one that happens if

some neural response levels are used more frequently

than others: for this type of redundancy, the optimal

code is the one that performs histogram equalisation,

which can be obtained by means of the aforementioned

modification of the WC model (1).

Contribution The first contribution of this paper is to

formally prove that in a continuous setting Wilson-

Cowan equations are non-variational, and for this rea-

son their solutions do not provide a representation as

efficient as the modification corresponding to local his-

togram equalisation.

Next, we introduce an explicit orientation depen-

dence into this modification via a lifting procedure in-

spired by neuro-physiological models of V1 [20,24,38]

and their applications to image processing [14,50]. The

lifting procedure, illustrated in Figure 1, consists in

associating to each point of the retinal plane x ∈ R2

the tangent direction θ of the contour at point x, thus

‘lifting’ the retinal plane R2 within the feature space

R2 × P1 of positions and orientations. This mathemat-

ical construction mimics the neural representations of

the image features that the cortex performs, according

to well-known studies in vision science such as the one

by Hubel and Wiesel [30].

Following the preliminary version of this work [8],

we then report some numerical evidence showing how

the proposed model is able to better reproduce some

visual perception bias than both its orientation inde-

pendent version, and state-of-the-art (L+NL) models

describing visual perception. In particular, after report-

ing some numerical results for classical non-orientation-

dependent illusions, we test our model on orientation-

dependent Grating Induction (GI) phenomena (gener-

alising the ones presented in [12, Figure 3], see also

[34]) and show a direct dependence of the output im-

age on the orientation, which cannot be reproduced via

orientation-independent models.

We then test the proposed model on a modified

version of the Poggendorff illusion, a geometrical op-

tical effect where a misalignment of two collinear seg-

ments is induced by the presence of a surface [45,46],

see Figure 12. For this modified version, our model is

able to nicely integrate the feature of contrast with

respect to the state-of-the-art models for the classi-

cal phenomenon, such as those based on filtering tech-

niques, [12,36], those based on the statistics of natural
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Fig. 1: Pipeline for cortical-inspired image processing: Each x ∈ R2 is lifted in the space R2 × P1 according to the

correspondent tangent direction of the curve at point x. In the lifted space, many operations can be performed,

such as completion of missing paths of the initial curve. Then, the information retrieved within the lifted space

can be reprojected onto the R2 plane.

images [29], and different cortical-based ones [26,27].

Moreover, we also show that such feature is not cor-

rectly integrated by the classical Wilson-Cowan equa-

tions (1), even if orientation-dependent.

Finally, for the Poggendorff illusion, we extend the

numerical discussion in [8] by further reporting an em-

pirical study concerning the sensitivity of the model

to some parameters, which evidences the existence of

threshold values able to change the nature of the com-

pletion properties of the model, e.g. to make it switch

from inpainting type (geometrical completion) to per-

ception type (perceptual completion).

2 Variational and evolution methods in vision

research

The use of variational methods for solving ill-posed

imaging problems is nowadays very classical within the

imaging community. For a given degraded image f and

a (possibly non-linear) degradation operator T describ-
ing noising, blurring and-or under-sampling phenom-

ena, the solution of the problem

find u s.t. f = T (u) (2)

often lacks fundamental properties such as existence,

uniqueness and stability, requiring alternative strate-

gies to be used in order to reformulate the problem in

a well-posed way.

In variational regularisation approaches, for instance,

one looks for an approximation u? of the real solution

u by solving a suitable optimisation problem, so that

u? ∈ arg min E(u), (3)

where E is a (possibly non-convex) energy functional

which typically combines prior information available

both on the image and on the physical nature of the

signal (in terms, for instance, of its noise statistics),

see, e.g., [19] for a review.

In convex scenarios, a common alternative to deal

with such methods consists in taking their Fréchet deriva-

tive w.r.t. to some norm, which reduces them to evolu-

tion equations of the form

∂

∂t
u = −∇E(u), u|t=0 = f, (4)

under appropriate conditions on the boundary of the

image domain. In this formulation, the solution u? in

(3) is found alternatively by looking for stationary so-

lutions of the parabolic PDE above. We remark that

while the connection between variational problems and

parabolic PDEs is always possible by taking the gradi-

ent descent, the reverse is not always possible, as it re-

quires some additional structure of the functional space

considered that may lack in several cases. We will com-

ment on this issue in the next section, where we will

provide some examples in this respect looking at neuro-

physiologically inspired models for vision.

In such context, evolution equations have been orig-

inally used as a tool to describe the physical transmis-

sion, diffusion and interaction phenomena of stimuli in

the visual cortex, see, e.g. [21]. Similarly, variational

methods have been studied by the vision community to

describe efficient neural coding, see, e.g. [44,35], i.e. all

the mechanisms used by the human visual system to

optimise the visual experience via the reduction of re-

dundant spatio-temporal biases linked to the perceived

stimulus.

In the context of vision, a first study on the effi-

cient representation aspects of some neuro-physiological

model analogous to the one considered in this work, has

been recently performed by the authors in [7] where sev-

eral visual illusions are tested and reproduced.

2.1 Wilson-Cowan-type models for neuronal activation

A prominent example of evolution models describing

neuronal dynamics are the Wilson-Cowan (WC) equa-

tions [48,16]. Consider a neuronal population parametrised

by a set Ω, endowed with a measure dξ supported on
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the whole Ω. Denoting by a(ξ, t) ∈ R the state of a

population of neurons with coordinates ξ ∈ Ω at time

t > 0, the Wilson-Cowan model reads

∂

∂t
a(ξ, t) = −βa(ξ, t)

+ ν

∫
Ω

ω(ξ‖ξ′)σ(a(ξ′, t)) dξ′ + h(ξ, t). (WC)

Here, β > 0 and ν ∈ R are fixed parameters, ω(ξ‖ξ′)
models interactions at two different locations ξ and ξ′,

the function h represents an external stimulus, and σ :

R→ R is a non-linear sigmoid saturation function.

In the following we further assume that the interac-

tion kernel ω is non-negative and normalised by∫
Ω

ω(ξ‖ξ′) dξ′ = 1. (5)

Moreover, as sigmoid σ we consider the following odd

function:

σ(ρ) := min{1,max{αρ,−1}}, α > 1, (6)

which has been previously considered, e.g., in [9]. Ob-

serve that, depending on the sign of ν, model (WC) is

able to describe both excitatory (ν > 0) and inhibitory

local interactions (ν < 0), see, e.g. [16, Section 3]. Due

to the oddness of σ, this latter case can be equivalently

expressed by keeping ν > 0 and replacing σ with its

“mirrored” version σ̂(ρ) = σ(−ρ), ρ ∈ R, see Figure 2.

Equation (WC) has been studied intensively over

the last decades to describe several neuronal mecha-

nisms in V1, see, e.g. , [25,43,21,3,40]. However, one

interesting aspect which, up to our knowledge, has not

been previously investigated, is whether it complies with
any efficient representation principle, or, in more math-

ematical terms, whether it can be interpreted as the

gradient descent of some energy functional in the form

(4).

In fact, it is possible to show that the WC model

(WC) does not satisfy any variational principle. As a

consequence, it cannot implement an efficient neural

coding mechanism. A preliminary study has been per-

formed by the authors in a recent preprint [7] in a com-

pletely discrete setting. Here, we make these consider-

ations more rigorous by the following theorem.

Theorem 1 Assume that there exists two sets of pos-

itive measure U1, U2 ⊂ Ω, U1 ∩ U2 = ∅ such that

ω(ξ‖ξ′) 6= 0 for any ξ ∈ U1 and ξ′ ∈ U2. Then, for

σ as above, the Wilson-Cowan equation (WC) does not

admit a variational formulation.

Proof We proceed by contradiction. Let E be a densely

defined energy functional on L2(Ω) such that (WC) can

be expressed in the form (4). Let f1, f2 ∈ L2(Ω) be two

non-negative functions such that

supp fi ⊂ Ui, and ‖fi‖L2(Ω) = 1 for i = 1, 2. (7)

For any v ∈ R2, let us define now J : R2 → R by

J(v) = E(v1f1 + v2f2). (8)

By definition, there holds ∂iJ(v) = 〈∇E(v1f1+v2f2), fi〉,
i = 1, 2. Thus, by (4) and (WC) we have

∂iJ(v) = βvi − 〈h, fi〉

− ν
∫
Ω

∫
Ω

ω(ξ‖ξ′)fi(ξ)σ

(
2∑
k=1

vkfk(ξ′)

)
dξ dξ′. (9)

Since σ is Lipschitz by differentiating again we have

∂jiJ(v) = βδij

− ν
∫
Uj

(∫
Ui

Ψij(ξ, ξ
′) dξ

)
σ′ (vjfj(ξ

′)) dξ′. (10)

Here, δij is the Kroenecker delta symbol. Moreover, we

let

Ψij(ξ, ξ
′) = ω(ξ‖ξ′)fi(ξ)fj(ξ′), i, j ∈ {1, 2}, (11)

and observed that, since suppΨij ⊂ supp fi× supp fj ⊂
Ui × Uj and U1 ∩ U2 = ∅, it holds

σ′

(
2∑
k=1

vkfk(ξ′)

)
= σ′(vjfj(ξ

′)) ∀ξ′ ∈ Uj . (12)

We claim that (10) implies that J ∈ C2. Indeed,

letting m be the measure with density
∫
Ω
Ψij(ξ, ·) dξ,

explicitly computing σ′ yields

∂jiJ(v) = βδij − ναm
(
{ξ′ : |fj(ξ′)| ≤ 1/(αvj)}

)
. (13)

Up to restricting U1 and U2, we can assume m(Ω) <

+∞. Hence, the measurability of fj and the continuity

of the measure m imply that ∂jiJ is continuous. This

proves the claim.

To conclude the proof, we now show that ∂21J 6≡
∂12J , which contradicts the C2 differentiability of J

by the Schwarz theorem and thus shows that the r.h.s.

of (WC) cannot be the gradient of an energy. To this

purpose, let v ∈ R2 and compute

∂12J(v)− ∂21J(v)

= ν

∫
Ω×Ω

(
Ψ12(ξ, ξ′)σ′ (v2f2(ξ′))

− Ψ21(ξ, ξ′)σ′ (v1f1(ξ′))

)
dξ dξ′

= ν

∫
Ω×Ω

Ψ12(ξ, ξ′) [σ′ (v2f2(ξ′))− σ′ (v1f1(ξ))] dξ dξ′.
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(a) Excitatory sigmoid σ (b) Inhibitory sigmoid σ̂ = −σ

Fig. 2: Symmetric behaviour of excitatory and inhibitory sigmoid functions in the form (6) with α = 5.

(14)

Here, we used that Ψji(ξ, ξ
′) = Ψij(ξ

′, ξ), due to the

symmetry of ω. By the explicit expression of σ′, letting

v1 tend to infinity and choosing v2 = 0 in the above

yields

lim
v→(+∞,0)

(
∂12J(v)−∂21J(v)

)
= να

∫
Ω×Ω

Ψ12(ξ, ξ′) dξ dξ′.

(15)

The r.h.s. being positive by assumption and by (7), this

completes the proof of the statement.

Remark 1 The above argument can be easily extended

to any Lipschitz choice of sigmoid σ with non-constant

derivative.

To overcome this problem and deal with a model

complying with the efficient representation principle,

we will consider in the following a variation of (WC)

which has been introduced in [9,6,31] for Local His-

togram Equalisation (LHE). Using the same notation

above, this model can be written as

∂

∂t
a(ξ, t) = −βa(ξ, t)

+ ν

∫
Ω

ω(ξ‖ξ′)σ(a(ξ, t)− a(ξ′, t)) dξ′ + h(ξ, t).

(LHE)

We note that the only difference between (LHE) and

(WC) is the different input of the sigmoid σ appearing

inside the integral. While in (WC) this is equal to the

stimulus intensity at the location ξ′, in (LHE), this is

equal to a local difference between the population at

the point under consideration and a neighbouring one.

Following the same line of proof as in [9], and letting

Σ : R → R be any (even) primitive function of the

sigmoid, it is easy to show that equation (LHE) is in fact

the gradient descent in the sense of (4) of the following

energy functional

E(a) =
β − 1

2

∫
Ω

|a(ξ)|2 dξ +
1

2

∫
Ω

|a(ξ)− h(ξ)|2 dξ

+
ν

2

∫
Ω

∫
Ω

ω(ξ‖ξ′)Σ(a(ξ)− a(ξ′)) dξ′ dξ. (16)

2.1.1 Orientation-independent modelling

We now discuss on the application of (LHE) to describe

contrast perception phenomena. We model the visual

plane as a rectangular domain Q ⊂ R2 and consider

grey-scale visual stimuli to be functions f : Q → [0, 1],

such that f(x) encodes the brightness intensity at x. In

order to derive evolution equations, for a given an initial

stimulus f0 we denote by µ its local intensity average

computed as the convolution µ = g ?f0 of f0 with some

filter g ∈ L1(Q) with
∫
Q
g(x) dx = 1. Simple Gaussian

filters have been considered in [6], whereas a sum of

Gaussian filters has been considered in [31] to describe

multiple inhibition effects happening at a retinal-level

[49]. Note that µ can itself encode a global reference to

the Grey-World (GW) principle [9] by simply setting

µ(x) ≡ 1/2 for any x. Analogously, we further assume

that the activation in (LHE) is given by a = f−1/2 and

that the external stimulus h is given by a weighted sum

of the initial stimulus a|t=0 = f0 − 1/2 and its filtering

via g. Namely, for λ > 0,

h = (g ? a)|t=0 + λa|t=0 = µ+ λf0 −
1 + λ

2
. (17)

By simply plugging these ingredients in (LHE), and let-

ting β = 1 + λ, we obtain the following (orientation-

independent) LHE evolution model:

∂

∂t
f(x, t) = −(1 + λ)f(x, t) (LHE-2D)

+ ν

∫
Q

ω(x, y)σ
(
f(x, t)− f(y, t)

)
dy + (µ(x) + λf0(x)) .
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We stress that our particular choice of β is motivated

again by the GW principle. In fact, one can check that

this is the only choice guaranteeing that the constant

visual stimulus f0(x) ≡ 1/2 is indeed a fixed point for

this evolution model.

As far as the interaction kernel ω is concerned, in

[31] the authors consider in (LHE) a kernel ω which is

a convex combination of two bi-dimensional Gaussians

with different standard deviations. While this variation

of the model (LHE-2D) is effective in describing assimi-

lation effects, the lack of dependence on the local orien-

tation makes such modelling intrinsically not adapted

to explain orientation-induced contrast and colour per-

ception effects such as the ones described in [36,41,12].

Reference models capable to explain these effects are

mostly based on oriented Difference of Gaussian linear

filtering coupled with some non-linear processing, such

as the ODOG and the BIWaM models described in [12,

11] and [36], respectively. However, despite their good

effectiveness in the description of several visual percep-

tion phenomena, these are not based on any neuronal

evolution modelling nor on any efficient representation

principle.

2.1.2 Orientation-dependent modelling

Let us turn to the orientation-dependent models. For

a given visual stimulus f , we let Lf : Q × [0, π) → R
be the corresponding cortical activation in V1, where

Lf(x, θ) encodes the response of the neuron with spa-

tial preference x and orientation preference θ to the

stimulus f . Such activation is obtained via convolution

with the receptive fields of V1 neurons, as explained in

Appendix A, see also [37,20,24,38]. Then, similarly to

above, we consider a = F − 1/2 for F (x, θ), and take

as external stimulus h = Lµ+ λLf0 − (1 + λ)/2. This,

and the choice β = 1 + λ, yield to the equation

∂

∂t
F (x, θ, t) = −(1 + λ)F (x, θ, t) (LHE-3D)

+ ν

∫ π

0

∫
Q

ω(x, θ‖y, φ)σ
(
F (x, θ, t)− F (y, φ, t)

)
dy dφ

+ (Lµ(x, θ) + λLf0(x, θ)) .

We remark once again that the above model de-

scribes the dynamic behaviour of activations in the 3D

space of positions and orientation. As explained in Ap-

pendix A, once a stationary solution is found, the two-

dimensional perceived image can be efficiently found by

f(x) =
1

π

∫ π

0

F (x, θ) dθ. (18)

Remark 2 In the following we will consider the interac-

tion to be excitatory (i.e., ν > 0) for both (LHE-2D)

and (LHE-3D) models. Indeed, the integral term in

both models is positive at x if, e.g., f(x, t) > f(y, t).

Thus, in order to enhance the contrast between x and

its surround we need to have ν > 0.

We now discuss on the numerical aspects required

to implement model (LHE-3D).

2.2 Discretisation via gradient descent

First, we discretise the initial (square) image f0 as an

N ×N matrix. For simplicity, here we assume periodic

boundary conditions. We additionally consider K ∈ N
orientations, parametrised by k ∈ {1, . . . ,K} 7→ θk :=

(k − 1)π/K.

The discretised lift operator, still denoted by L, then

transforms N ×N matrices into N ×N ×K arrays. Its

action on an N × N matrix f is defined for n,m ∈
{1, . . . , N} and k ∈ {1, . . . ,K} by

(Lf)n,m,k = F−1
(
(Ff)� (RθkFΨ cake)

)
n,m

, (19)

where � is the Hadamard (i.e., element-wise) product

of matrices, F denotes the discrete Fourier transform,

Rθk is the rotation of angle θk, and Ψ cake is the cake

mother wavelet (see Appendix A).

We let F 0 = Lf0, and G0 = Lµ, where the local

intensity average µ is given by a Gaussian filtering of f0.

The explicit time-discretisation of the gradient descent

(LHE-3D) is, for ∆t� 1 and ` ∈ N,

F `+1 − F `

∆t
= −(1 + λ)F ` +G0 + λF 0 +

1

2M
RF ` . (20)

Here, for a given 3D Gaussian matrix W encoding the

weight ω, and an N ×N ×M matrix F , we let, for any

n,m ∈ {1, . . . , N} and k ∈ {1, . . . ,K},

(RF )n,m,k

:=

N∑
n′,m′=1

K∑
k′=1

Wn−n′,m−m′,k−k′σ(Fn,m,k−Fn′,m′,k′).

(21)

We refer to [9, Section IV.A] for the description of an

efficient numerical approach used to compute the above

quantity in the 2D case and that can be translated ver-

batim to the 3D case under consideration.

After a suitable number of iterations ¯̀ of the above

algorithm (measured by the stopping criterion ‖F `+1−
F `‖2/‖F `‖2 ≤ τ , for a fixed tolerance τ � 1), the out-

put image is then found via (18) as f̄n,m =
∑K
k=1 F

¯̀
n,m,k.
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3 Numerical results

In this section we present the results obtained by apply-

ing the cortical-inspired model presented in the previ-

ous section to some well-known phenomena where con-

trast perception may be affected by local orientations.

We compare the results obtained by our orientation-

dependent 3D model (LHE-3D) with the correspond-

ing 2D model (LHE-2D) already considered in [31,6]

for histogram equalisation and contrast enhancement.

We further compare the performance of these models

with two standard reference models based on oriented

Gaussian filtering: the Oriented Difference Of Gaus-

sians (ODOG) model [12], and the Brightness Induc-

tion Wavelet Model (BIWaM), introduced in [36]. In

the former, the output is computed via a convolution

of the input image with oriented difference of Gaussian

filters in six orientations and seven spatial frequencies.

The filtering outputs within the same orientation are

then summed in a non-linear fashion privileging higher

frequencies. The BIWaM model is then a variation of

the ODOG one, the difference being the dependence on

the local surround orientation of the contrast sensitivity

function1.

Parameters. All the images considered in the following

numerical experiments have size 200 × 200 pixels. The

lifting procedure to the space of positions and orienta-

tions is by discretising [0, π] via K = 30 orientations.

The relevant cake wavelets are then computed follow-

ing [5], setting the frequency band bw to bw = 4 for

all experiments. In (LHE-3D), we compute the local

mean average µ and the integral term by Gaussian fil-
tering with standard deviation σµ and σω, respectively.

The gradient descent algorithm stops when the relative

stopping criterion defined in Section 2.2 is verified with

a tolerance τ = 10−2.

3.1 Non-orientation-dependent examples

In this section we test (LHE-2D) and (LHE-3D) on

several classical non-orientation-dependent illusions. In

particular, we focus on the three following examples:

(i) White’s illusion [47], presented in Figure 3a. Here,

the left gray rectangle appears darker than the right

one, although both are identical. (ii) The Simultaneous

Brightness Contrast [17], presented in Figure 3b, con-

sists in the lighter appearance of the left gray square

than the right one, while both are identical. (iii) The

1 For our comparisons we used the ODOG and BIWaM
codes freely available at https://github.com/TUBvision/
betz2015 noise.

Luminance illusion [32] presented in Figure 3c, consists

in four identical dots over a background where inten-

sity increases from left to right: the dots on the left are

perceived being lighter than the ones on the right.

See [7] for more non-orientation-dependent examples.

Discussion. As Figure 3 shows, both (LHE-2D) and

(LHE-3D) are predicting the three described illusions.

Notice that also the BIWaM and ODOG methods can

correctly reproduce them (see, e.g., [12,36]).

3.2 Grating induction with oriented background

Grating induction (GI) is a contrast effect which has

been first described in [34] and later studied, e.g., in

[12]. As the name suggests, the phenomenon describes

the induction of a regular alternation of intensity changes

on a constant image region due to the presence of an

inducing background.

In this section we describe our results on a varia-

tion of GI where a relative orientation θ describes how

much the background is oriented with respect to a con-

stant gray bar in the middle of the image, see Figure 4.

Here, when the background has a different orientation

from the central grey bar (i.e. θ > 0), an alternation

of dark-grey/light-grey patterns within the central bar,

is produced and perceived by the observer. This phe-

nomenon is contrast dependent, as the intensity of the

induced grey patterns (dark-grey/light-grey) is in oppo-

sition with the background grating. Moreover, it is also

orientation-dependent, since the perceived intensity of

the phenomenon varies depending on the background

orientation, and, in particular, it is maximal when the

background bars are orthogonal to the central one.

Discussion. We observe that, in accordance with vi-

sual perception, model (LHE-3D) predicts the appear-

ance of a counter-phase grating in the central grey bar,

see Figures 5d and 7d. The same result is obtained by

the ODOG model, see Figures 5a and 7a. In particular,

Figures 6 and 8 show higher intensity profile when the

background gratings are orthogonal to the central line,

with respect to the case of background angle equal to

π/3, see orange and green dashed line. On the other

hand, BIWaM and (LHE-2D) models do not appear

suitable to describe this phenomenon. See for compari-

son the red and blue dashed lines in Figures 6 and 8.

We will now consider a similar example, focusing

more precisely on the illusory completion of collinear

lines of the background in correspondence of the central

gray bar.

https://github.com/TUBvision/betz2015_noise
https://github.com/TUBvision/betz2015_noise
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(a) White’s illusion.

(b) Simultaneous Brightness Contrast illusion.

(c) Luminance illusion.

Fig. 3: Reconstruction of non-orientation-dependent examples. First column: Original image. Second column:

Reconstruction via the (LHE-2D) model. Third column: Reconstruction via the (LHE-3D) model. Parameters for

(LHE-3D): σµ = 3, σω = 8, λ = 0.5.

3.3 Poggendorff illusion

The Poggendorff illusion (see Figure 9b) consists in the

perceived misalignment of two segments of a same con-

tinuous line due to the presence of a superposed sur-

face. The perceived perceptual bias of the phenomenon

has been investigated and studied via neurophysiologi-

cal experiments, see, e.g., [45,46]. Recently, in [26,27],

a sub-Riemannian framework where orientations are

computed via Gabor filters has been used to study the

geometrical VS. perceptual completion effects induced

by the illusion, successfully mimicking our perception.

Here, we consider a modified version of the Poggendorff

illusion, where the background is constituted by a grat-

ing pattern, see Figure 9a, in order to account for both

contrast and orientation features.

Note that this example is actually similar to the one

considered in the previous section, the only difference

being the width of the central grey bar, which is the

responsible of the perceived misalignment.

Discussion. The result obtained by applying (LHE-3D)

to Figure 9a is presented in Figures 9c and 10d. As for

the results on the grating induction presented in Section

3.2, we observe an induced counter-phase grating in the

central grey bar.

In this experiment we focus on whether it is possible

to compute numerically an image output reproducing
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(a) Relative orientation θ = π/2. (b) Relative orientation θ = π/3.

Fig. 4: Grating inductions with varying background orientation.

(a) ODOG. (b) BIWaM. (c) (LHE-2D). (d) (LHE-3D).

Fig. 5: Model outputs of input Fig. 4a. Parameters for (d): σµ = 10, σω = 5, λ = 0.5.

(a) ODOG and BIWaM. (b) (LHE-2D) VS (LHE-3D) models.

Fig. 6: Middle line-profiles of outputs in Fig. 5.

the perceived misalignment between some fixed black

stripe in the bottom part of Figure 9a and its collinear

prosecution in the upper part. Note that the perceived

alignment differs from the actual geometrical one: for

a fixed black stripe in the bottom part, the alignment

of the corresponding collinear top stripe is in fact per-

ceived slightly flushed left, see Figure 9b, where sin-

gle stripes have been isolated for better visualisation.

The problem here is therefore not an inpainting prob-

lem, which is classical in the imaging community, but

is rather to reconstruct the perceptual output from the

given input in Fig. 9a.

We now look at the results in Figure 9c and mark

by a continuous green line a fixed black stripe in the

bottom part of the image. In order to find the corre-

sponding perceived collinear stripe in the upper part,

we follow how the model propagates the marked stripe

across the central surface (dashed green line). We no-

tice that the prosecution computed via the (LHE-3D)

model does not correspond to its actual collinear prose-
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(a) ODOG. (b) BIWaM. (c) (LHE-2D). (d) (LHE-3D).

Fig. 7: Model outputs of input in Fig. 4b. Parameters for (d): σµ = 10, σω = 5, λ = 0.5.

(a) ODOG and BIWaM. (b) (LHE-2D) VS(LHE-3D) models.

Fig. 8: Middle line-profiles of outputs in Figure 7.

cution, but, rather, it is in agreement with our percep-

tion. Comparisons with reference models are presented

in Figures 10 and 11. We observe that the results ob-

tained via the proposed (LHE-3D) model cannot be re-

produced by the BIWaM nor the (LHE-2D) models,

which moreover induce a non-counter-phase grating in

the central grey bar which is different from the expected

perceptual result. On the other hand, the result ob-

tained by the ODOG model is consistent with ours, but

presents a much less evident alternating grating within

the central grey bar. In particular, the induced oblique

bands are not visibly connected across the whole grey

bar, i.e. their induced contrast is very poor and, con-

sequently, the induced edges are not as sharp as the

ones reconstructed via our model, see Figure 11 for an

example on the middle-line profile.

We stress that a numerical implementation of the

standard (WC) model, whose result is presented in Fig-

ure 13, is not able to reproduce the desired perceptual

completion. We believe such failure in replicating the

illusion to be due to the lack of a variational efficient

representation as shown in Theorem 1.

Threshold for inpainting versus perceptual completion

in the grating Poggendorff. Interestingly, the capabil-

ity of model (LHE-3D) to reproduce the visual phe-

nomenon is very much dependent on the choice of the
parameters σω, which accounts for the interaction among

different hypercolumns of the visual cortex, i.e. sim-

ple cells that refer to the same portion of the retina,

see Figure 14. As pointed out by the seminal works of

Hubel, Wiesel and Bosking [30,42,15], it is possible in

fact to identify at least two main types of connectiv-

ity in the visual cortex: the intra-cortical connectivity,

able to select the preferred orientations among cells be-

longing to the same hypercolumn and the long-range

connectivity, connecting simple cells belonging to dif-

ferent hypercolumns.

Perceptual phenomena such as those presented in

this work arise by means of an interaction between

these two connectivities, modelled in (LHE-3D) by the

parameter σω, that is, the standard variation of the

Gaussian ω, therefore accounting for smaller or bigger

local interactions. This parameter can thus be modu-

lated to simulate different type of interactions between

different hypercolumns: when σω is small with respect

to the overall size of the processed image, the geomet-
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(a) A variation of the Poggendorff illusion. The presence
of the grey central surface induces a misalignment of the
background lines.

(b) The classical Poggendorff illusion, extracted from
Fig. 9a.

(c) Output of model (LHE-3D). (d) The extracted perceived alignment computed.

Fig. 9: Poggendorff illusion: input and result by (LHE-3D). Parameters: σµ = 3, σω = 10, λ = 0.5.

rical completion (inpainting) can be reproduced. When

it is bigger, perceptual-oriented phenomena such as il-

lusory contours or geometrical optical illusions can be

modelled. The gradual change between these two types

of interactions depending on the size of ω is shown in

Figure 12, which highlights also the flexibility of our ap-

proach when it comes both to image processing and to

the modelling of the neural activity in the visual cortex.

4 Conclusions

In this paper, we considered a neuro-physiological evo-

lution model to study visual perception bias due to

contrast and, possibly, to local orientation dependence.

The proposed model has been originally introduced in

[9] in the context of image processing for local his-

togram equalisation (LHE) and is a variation of the

celebrated Wilson and Cowan (WC) equations (1), for-

mulated in [48] to describe the evolution of a population

of neurons in V1.

Firstly, in Section 2 we investigated on the efficient

representation properties of the original WC model in

contrast to the LHE one. In mathematical terms this

consists in interpreting the corresponding dynamics as

the gradient descent of suitable energy functionals. We

rigorously proved that for the WC model there is no

energy minimised by the WC-dynamics (Theorem 1),

while for the LHE variant, there exists an energy func-

tional (see formula (16)) minimised by its stationary

solutions.

Secondly, by mimicking the structure of V1, we ex-

tended the mathematical formulation of the LHE model

to a third dimension in order to describe local orienta-

tion preference. This new model, denoted by (LHE-3D),

can be efficiently implemented via convolution with ap-

propriate kernels and solved numerically via standard

explicit schemes. The information on the local orienta-

tion allows to describe contrast phenomena as well as

orientation-dependent illusions.

In Section 3 we tested this extension of LHE for

some orientation-independent brightness illusions, show-

ing that it is able to reproduce the perceptual results

as well as standard Linear + Non-Linear filtering (such

as the ODOG and the BIWaM models [12,36]) can do.

Then, we performed some further test on orientation-

dependent illusions (such as grating induction and the

Poggendorff illusion), observing that only the proposed

orientation-dependent extension of the LHE model is

capable to replicate the perceived visual bias. In agree-

ment with the theoretical sub-optimality of the stan-

dard WC model with respect to the efficient represen-

tation principle pointed out before, it turns out that
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(a) ODOG. (b) BIWaM. (c) (LHE-2D). (d) (LHE-3D).

Fig. 10: Reconstruction of the Poggendorff illusion 9a via reference models.

(a) ODOG and BIWaM. (b) (LHE-2D) VS (LHE-3D) models.

Fig. 11: Middle line-profiles of outputs in Figure 10.

(a) σω = 5 (b) σω = 6 (c) σω = 7 (d) σω = 10

Fig. 12: Sensitivity to parameter σw for (LHE-3D) model. The completion inside the middle gray bar changes from

geometrical (inpainting-type) to illusory (perception-type). Fixed parameters: σµ = 2, λ = 0.8.

(LHE-3D) is the only model capable of replicating the

illusion.

Finally, we reported a preliminary empirical discus-

sion on the sensitivity of model (LHE-3D) to parame-

ters describing different connectivity properties between

hypercolumns in V1. Our experiment revealed the ex-

istence of a threshold parameter in correspondence of

which the completion properties of model (LHE-3D)

switch from inpainting-type to perceptual-type. A more

accurate theoretical study based, e.g., on bifurcation

and stability analysis of the equilibria of the model, is

left for future research.

Further investigations should also address a more

accurate modelling reflecting the actual structure of V1.

In particular, this concerns the lift operation where the

cake wavelet filters should be replaced by Gabor filter-

ing as in [27], as well as the interaction weight ω which

could be taken to be the anisotropic heat kernel of [20].
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Fig. 13: Model output of the standard (WC) model for

the input in Fig. 9a. See [7] for other results via the

(WC) models and details on the implementation.

Fig. 14: In this image we illustrate the difference be-

tween intra-cortical connectivity (top) and long range

one (bottom), respectively from [20] and [15].

Finally, extensive numerical experiments should be per-

formed to assess the compatibility of the model with

psycho-physical tests measuring the perceptual bias in-

duced by these and other phenomena such as the ones

discussed in [7]. This would provide insights about the

robustness of the model in reproducing the visual path-

way behaviour.

A Orientation-dependent model of V1

Let us denote by R > 0 the size of the visual plane and

letDR ⊂ R2 be the diskDR := {x2
1+x2

2 ≤ R2}. FixR >

0 such that Q ⊂ DR. In order to exploit the properties

of the roto-translation group SE(2) on images, we now

consider them to be elements of the set:

I =
{
f ∈ L2(R2, [0, 1]) such that supp f ⊂ DR

}
. (22)

We remark that fixing R > 0 is necessary, since contrast

perception is strongly dependent on the scale of the

features under consideration w.r.t. the visual plane.

Orientation dependence of the visual stimulus is en-

coded via cortical inspired techniques, following e.g.,

[37,20,24,38,13]. The main idea at the base of these

works goes back to the 1959 paper [30] by Hubel and

Wiesel (Nobel prize in 1981) who discovered the so-

called hypercolumn functional architecture of the visual

cortex V1.

Each neuron ξ in V1 is assumed to be associated

with a receptive field (RF) ψξ ∈ L2(R2) such that its

response under a visual stimulus f ∈ I is given by

F (ξ) = 〈ψξ, f〉L2(R2) =

∫
R2

ψξ(x)f(x) dx. (23)

Since each neuron is sensible to a preferred position

and orientation in the visual plane, we let ξ = (x, θ) ∈
M = R2 × P1. Here, P1 is the projective line that we

represent as [0, π]/ ∼, with 0 ∼ π. Moreover, in order to

respect the shift-twist symmetry [16, Section 4], we will

assume that the RF of different neurons are “deducible”

one from the other via a linear transformation. Let us

explain this in detail.

The double covering ofM is given by the Euclidean

motion group SE(2) = R2 oS1, that we consider en-

dowed with its natural semi-direct product structure.

That is, for (x, θ), (y, ϕ) ∈ SE(2), we let

(x, θ) ? (y, ϕ) = (x+Rθy, θ + ϕ), (24)

where Rθ =

(
cos θ − sin θ

sin θ cos θ

)
. (25)

In particular, the above operation induces an action of

SE(2) onM, which is thus an homogeneous space. Ob-

serve that SE(2) is unimodular and that its Haar mea-

sure (the left and right-invariant measure up to scalar

multiples) is dxdθ.

We now denote by U(L2(R2)) ⊂ L(L2(R2)) the space

of linear unitary operators on L2(R2) and let π : SE(2)→
U(L2(R2)) be the quasi-regular representation of SE(2).

That is, π(x, θ) ∈ U(L2(R2)) is the unitary operator en-

coding the action of the roto-translation (x, θ) ∈ SE(2)

on square-integrable functions on R2. The action of

π(x, θ) on ψ ∈ L2(R2) is

[π(x, θ)ψ](y) = ψ((x, θ)−1y) = ψ(R−θ(y−x)), ∀y ∈ R2.
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Moreover, we let Λ : SE(2) → U(L2(SE(2))) be the

left-regular representation, which acts on functions F ∈
L2(SE(2)) as

[Λ(x, θ)F ](y, ϕ) = F ((x, θ)−1 ? (y, ϕ)), ∀(y, θ) ∈ SE(2).

(26)

Letting L : L2(R2) → L2(M) be the operator that

transforms visual stimuli into cortical activations, one

can formalise the shift-twist symmetry by requiring

L ◦ π(x, θ) = Λ(x, θ) ◦ L, ∀(x, θ) ∈ SE(2). (27)

Under mild continuity assumption on L, it has been

shown in [38] that L is then a continuous wavelet trans-

form. That is, there exists a mother wavelet Ψ ∈ L2(R2)

satisfying π(x, θ)Ψ = π(x, θ+π)Ψ for all (x, θ) ∈ SE(2),

and such that

Lf(x, θ) = 〈π(x, θ)Ψ, f〉, ∀f ∈ L2(R2), (x, θ) ∈M.

(28)

Observe that the operation π(x, θ)Ψ above is well de-

fined for (x, θ) ∈M thanks to the assumption on Ψ . By

(23), the above representation of L is equivalent to the

fact that the RF associated with the neuron (x, θ) ∈
M is the roto-translation of the mother wavelet, i.e.,

ψ(x,θ) = π(x, θ)Ψ .

Remark 3 Letting Ψ∗(x) := Ψ(−x), the above formula

can be rewritten as

Lf(x, θ) =

∫
R2

Ψ(R−θ(y − x))f(y) dy

=
[
f ∗ (Ψ∗ ◦R−θ)

]
(x), ∀(x, θ) ∈ SE(2).

(29)

where f∗g denotes the standard convolution on L2(R2).

Neuro-physiological evidence shows that a good fit

for the RFs is given by Gabor filters, whose Fourier

transform is simply the product of a Gaussian with an

oriented plane wave [22]. However, these filters are quite

challenging to invert, and are parametrised on a big-

ger space than M, which takes into account also the

frequency of the plane wave and not only its orienta-

tion. For this reason, in this work we chose to consider

as wavelets the cake wavelets introduced in [23], see

also [5]. These are obtained via a mother wavelet Ψ cake

whose support in the Fourier domain is concentrated on

a fixed slice, which depends on the number of orienta-

tions one aims to consider in the numerical implemen-

tation. To recover integrability properties, the Fourier

transform of this mother wavelet is then smoothly cut

off via a low-pass filtering, see [5, Section 2.3] for de-

tails. Observe, however, that in order to lift to M and

not to SE(2), we consider a non-oriented version of the

mother wavelet, given by ψ̃cake(ω)+ψ̃cake(eiπω), in the

notations of [5].

An important feature of cake wavelets is that, in or-

der to recover the original image, it suffices to consider

the projection operator defined by

P : L2(M)→ L2(R2), (30)

PF (x) :=

∫
P1

F (x, θ) dθ, F ∈ L2(M) (31)

Indeed, by construction of cake wavelets, Fubini’s The-

orem shows that (P ◦ L)f = f for all f ∈ I.

References

1. Atick, J.J.: Could information theory provide an ecologi-
cal theory of sensory processing? Network: Computation
in neural systems 3(2), 213–251 (1992)

2. Attneave, F.: Some informational aspects of visual per-
ception. Psychological review 61(3), 183 (1954)

3. Barbieri, D., Citti, G., Cocci, G., Sarti, A.: A cortical-
inspired geometry for contour perception and motion in-
tegration. J. Math. Imaging Vis. 49(3), 511–529 (2014).
DOI 10.1007/s10851-013-0482-z

4. Barlow, H.B., et al.: Possible principles underlying the
transformation of sensory messages. Sensory communi-
cation 1, 217–234 (1961)

5. Bekkers, E., Duits, R., Berendschot, T., ter
Haar Romeny, B.: A multi-orientation analysis approach
to retinal vessel tracking. Journal of Mathematical
Imaging and Vision 49(3), 583–610 (2014)

6. Bertalmı́o, M.: From image processing to computational
neuroscience: a neural model based on histogram equal-
ization. Frontiers in Computational Neuroscience 8, 71
(2014)

7. Bertalmı́o, M., Calatroni, L., Franceschi, V.,
Franceschiello, B., Gomez-Villa, A., Prandi, D.: Vi-
sual illusions via neural dynamics: Wilson-Cowan-type
models and the efficient representation principle (2019).
ArXiv preprint: https://arxiv.org/abs/1907.13004

8. Bertalmı́o, M., Calatroni, L., Franceschi, V.,
Franceschiello, B., Prandi, D.: A cortical-inspired
model for orientation-dependent contrast perception:
A link with wilson-Cowan equations. In: J. Lellmann,
M. Burger, J. Modersitzki (eds.) Scale Space and
Variational Methods in Computer Vision, pp. 472–484.
Springer International Publishing, Cham (2019)

9. Bertalmı́o, M., Caselles, V., Provenzi, E., Rizzi, A.: Per-
ceptual color correction through variational techniques.
IEEE Transactions on Image Processing 16(4), 1058–
1072 (2007)

10. Bertalmı́o, M., Cowan, J.D.: Implementing the retinex
algorithm with Wilson-Cowan equations. Journal of
Physiology-Paris 103(1), 69 – 72 (2009)

11. Blakeslee, B., Cope, D., McCourt, M.E.: The oriented dif-
ference of gaussians (ODOG) model of brightness percep-
tion: Overview and executable Mathematica notebooks.
Behavior Research Methods 48(1), 306–312 (2016)

https://arxiv.org/abs/1907.13004


Cortical-inspired Wilson-Cowan modelling for orientation-dependent contrast perception 15

12. Blakeslee, B., McCourt, M.E.: A multiscale spatial filter-
ing account of the White effect, simultaneous brightness
contrast and grating induction. Vision Research 39(26),
4361 – 4377 (1999)

13. Bohi, A., Prandi, D., Guis, V., Bouchara, F., Gauthier,
J.P.: Fourier descriptors based on the structure of the
human primary visual cortex with applications to object
recognition. Journal of Mathematical Imaging and Vision
57(1), 117–133 (2017). DOI 10.1007/s10851-016-0669-1

14. Boscain, U.V., Chertovskih, R., Gauthier, J.P., Prandi,
D., Remizov, A.: Highly corrupted image inpainting
through hypoelliptic diffusion. Journal of Mathemati-
cal Imaging and Vision 60(8), 1231–1245 (2018). DOI
10.1007/s10851-018-0810-4

15. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.:
Orientation selectivity and the arrangement of horizon-
tal connections in tree shrew striate cortex. Journal of
neuroscience 17(6), 2112–2127 (1997)

16. Bressloff, P.C., Cowan, J.D.: An amplitude equation ap-
proach to contextual effects in visual cortex. Neural Com-
putation 14(3), 493–525 (2002)

17. Brucke, E.: uber erganzungs und contrasfarben. Wiener
Sitzungsber 51 (1865)

18. Carandini, M., Demb, J.B., Mante, V., Tolhurst, D.J.,
Dan, Y., Olshausen, B.A., Gallant, J.L., Rust, N.C.: Do
we know what the early visual system does? Journal of
Neuroscience 25(46), 10577–10597 (2005)

19. Chan, T., Shen, J.: Image Processing and Analysis. Soci-
ety for Industrial and Applied Mathematics (2005). DOI
10.1137/1.9780898717877

20. Citti, G., Sarti, A.: A cortical based model of percep-
tual completion in the roto-translation space. Journal of
Mathematical Imaging and Vision 24(3), 307–326 (2006)

21. Cowan, J.D., Neuman, J., van Drongelen, W.: Wilson–
cowan equations for neocortical dynamics. The Journal
of Mathematical Neuroscience 6(1), 1 (2016)

22. Daugman, J.G.: Uncertainty relation for resolution in
space, spatial frequency, and orientation optimized by
two-dimensional visual cortical filters. Journal of the Op-
tical Society of America. A, Optics and image science
2(7), 1160–1169 (1985)

23. Duits, R., Felsberg, M., Granlund, G., Haar Romenij, ter,
B.: Image analysis and reconstruction using a wavelet
transform constructed from a reducible representation
of the euclidean motion group. International Jour-
nal of Computer Vision 72(1), 79–102 (2007). DOI
10.1007/s11263-006-8894-5

24. Duits, R., Franken, E.: Left-invariant parabolic evolu-
tions on SE(2) and contour enhancement via invertible
orientation scores. Part I: linear left-invariant diffusion
equations on SE(2). Quarterly of Applied Mathematics
68(2), 255–292 (2010)

25. Faugeras, O., Touboul, J., Cessac, B.: A constructive
mean-field analysis of multi-population neural networks
with random synaptic weights and stochastic inputs.
Frontiers in computational neuroscience 3, 1 (2009). DOI
10.3389/neuro.10.001.2009

26. Franceschiello, B., Mashtakov, A., Citti, G., Sarti, A.:
Modelling of the poggendorff illusion via sub-riemannian
geodesics in the roto-translation group. In: International
Conference on Image Analysis and Processing, pp. 37–47.
Springer (2017)

27. Franceschiello, B., Mashtakov, A., Citti, G., Sarti, A.:
Geometrical optical illusion via sub-riemannian geodesics
in the roto-translation group. Differential Geometry and
its Applications 65, 55–77 (2019)

28. Franceschiello, B., Sarti, A., Citti, G.: A neuromathemat-
ical model for geometrical optical illusions. Journal of
Mathematical Imaging and Vision 60(1), 94–108 (2018)

29. Howe, C.Q., Yang, Z., Purves, D.: The poggendorff illu-
sion explained by natural scene geometry. Proceedings
of the National Academy of Sciences 102(21), 7707–7712
(2005)

30. Hubel, D.H., Wiesel, T.N.: Receptive fields and func-
tional architecture of monkey striate cortex. The Journal
of physiology 195(1), 215–243 (1968)

31. Kim, J., Batard, T., Bertalmı́o, M.: Retinal processing
optimizes contrast coding. Journal of Vision 16(12),
1151–1151 (2016)

32. Kitaoka, A.: Adelsons checker-shadow illusion-like gra-
dation lightness illusion. http://www.psy.ritsumei.ac.jp/
∼akitaoka/gilchrist2006mytalke.html (2006). Accessed:
2018-11-03

33. Martinez-Garcia, M., Cyriac, P., Batard, T., Bertalmı́o,
M., Malo, J.: Derivatives and inverse of cascaded lin-
ear+nonlinear neural models. PLOS ONE 13(10), 1–49
(2018)

34. McCourt, M.E.: A spatial frequency dependent grating-
induction effect. Vision Research 22(1), 119 – 134 (1982)

35. Olshausen, B.A., Field, D.J.: Vision and the coding of
natural images: The human brain may hold the secrets
to the best image-compression algorithms. American Sci-
entist 88(3), 238–245 (2000)

36. Otazu, X., Vanrell, M., Parraga, C.A.: Multiresolution
wavelet framework models brightness induction effects.
Vision Research 48(5), 733 – 751 (2008)

37. Petitot, J.: Elements of Neurogeometry: Functional Ar-
chitectures of Vision. Lecture Notes in Morphogenesis.
Springer International Publishing (2017)

38. Prandi, D., Gauthier, J.P.: A semidiscrete version of the
Petitot model as a plausible model for anthropomorphic
image reconstruction and pattern recognition. Springer-
Briefs in Mathematics. Springer International Publish-
ing, Cham (2017)

39. Rucci, M., Victor, J.D.: The unsteady eye: an
information-processing stage, not a bug. Trends in neu-
rosciences 38(4), 195–206 (2015)

40. Sarti, A., Citti, G.: The constitution of visual percep-
tual units in the functional architecture of V1. J. Com-
put. Neurosci. 38(2), 285–300 (2015). DOI 10.1007/
s10827-014-0540-6

41. Self, M.W., Lorteije, J.A., Vangeneugden, J., van Beest,
E.H., Grigore, M.E., Levelt, C.N., Heimel, J.A., Roelf-
sema, P.R.: Orientation-tuned surround suppression in
mouse visual cortex. Journal of Neuroscience 34(28),
9290–9304 (2014)

42. Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N.: Relationships be-
tween horizontal interactions and functional architecture
in cat striate cortex as revealed by cross-correlation anal-
ysis. Journal of neuroscience 6(4), 1160–1170 (1986)

43. Veltz, R., Faugeras, O.: Local/global analysis of the sta-
tionary solutions of some neural field equations. SIAM
Journal on Applied Dynamical Systems 9 (2009). DOI
10.1137/090773611

44. Webster, M.A.: Visual adaptation. Annual Review of
Vision Science 1(1), 547–567 (2015). DOI 10.1146/
annurev-vision-082114-035509. PMID: 26858985

45. Weintraub, D.J., Krantz, D.H.: The Poggendorff illusion:
amputations, rotations, and other perturbations. Atten-
tion Perception & Psychophysics 10(4), 257–264 (1971)

46. Westheimer, G.: Illusions in the spatial sense of the eye:
geometrical-optical illusions and the neural representa-
tion of space. Vision Research 48(20), 212–2142 (2008)

http://www.psy.ritsumei.ac.jp/~akitaoka/gilchrist2006mytalke.html
http://www.psy.ritsumei.ac.jp/~akitaoka/gilchrist2006mytalke.html


16 Marcelo Bertalmı́o et al.

47. White, M.: A new effect of pattern on perceived lightness.
Perception 8(4), 413–416 (1979)

48. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory in-
teractions in localized populations of model neurons. Bio-
Physics Journal 12(1) (1972)

49. Yeonan-Kim, J., Bertalmı́o, M.: Retinal lateral inhibition
provides the biological basis of long-range spatial induc-
tion. PLOS ONE 11(12), 1–23 (2016)

50. Zhang, J., Duits, R., Sanguinetti, G., ter Haar Romeny,
B.M.: Numerical approaches for linear left-invariant dif-
fusions on se (2), their comparison to exact solutions, and
their applications in retinal imaging. Numerical Math-
ematics: Theory, Methods and Applications 9(1), 1–50
(2016)


