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Abstract: The marine environment is a rich source of biologically active molecules for the treatment
of human diseases, especially cancer. The adaptation to unique environmental conditions led
marine organisms to evolve different pathways than their terrestrial counterparts, thus producing
unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds
have been isolated from marine micro- and macro-organisms including but not limited to fungi,
bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new
marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have
started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds
have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G),
fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin,
polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin.
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This review focuses on the bioactive molecules derived from the marine environment with anticancer
activity, discussing their families, origin, structural features and therapeutic use.

Keywords: marine natural products; marine drugs; anticancer; drug discovery; clinical pipeline

1. Introduction

Present in cells/tissues of microorganisms, fungi, plants or animals from both aquatic and
terrestrial environments, natural products (NP, also called secondary or specialized metabolites)
have been used for therapeutic purposes since ancient times and are important pillars of modern
pharmacology [1–8]. Although the term secondary metabolite originates from the initial observation
that their presence is not necessary for the vegetative growth, reproduction and development of
organisms, they increase competitiveness with other species and play a fundamental role in the stress
response, the defense against predators, the prevention of overgrowth by fouling organisms as well as
the protection against bacterial, viral or fungal invasion, and UV radiation [1,7,8]. NPs are considered
essential to overcoming stress conditions caused by fluctuating or changing environmental factors
such as light intensity, temperature, humidity, salinity or mechanical wounding [1,7–9]. NPs play
a crucial role in the survival of the organisms, functioning as modulators of complex interspecies
interaction, where the boundaries between different types of interactions are not well defined nor
always quite clear (e.g., different forms of symbiosis: parasitism, mutualism and commensalism) [10].
Thus, the mechanisms of survival and adaptation to environmental factors promote the production
of highly complex and heterogeneous chemicals that have enormous potential to become drugs and
cannot be matched by synthetic small molecules. In marine habitats, the high frequency of bioactive
metabolites with toxic or deterrent effect is found in complex habitats such as coral reefs characterized
by intense competition for space and by feeding pressure. Understanding cooperative and synergistic
interactions, rather than competitive, has been significantly attenuated by studies of quorum sensing,
cross-talk and electron transfer in microbial communities such as biofilms, which ensure more efficient
survival strategies, particularly in extreme habitats [11,12]. Quorum sensing has been recognized as
an important regulatory mechanism of secondary metabolite biosynthesis and/or cell differentiation
in many bacteria, particularly streptomycetes. Finally, combined transcriptomic and metabolomics
analyses highlighted the importance of exploring microbial species interactions to discover novel
secondary metabolites with a wide range of biological properties [13].

Examples of terrestrial natural products that profoundly impacted drug discovery are: the salicylic
acid from the bark of the willow tree used by ancient Egyptians and Greeks as a pain reliever [14] and
precursor of aspirin, the most used nonsteroidal anti-inflammatory drug (NSAID) whose therapeutic
effect is due to inhibition of the enzyme cyclo-oxygenase COX-2 [15]; the highly potent analgesic
morphine, isolated from opium [16], that acts as an agonist of mu-opioid receptors inhibiting presynaptic
and postsynaptic processes in the ascending pain transmission system [17]; the cardiotonic digitoxin,
a secondary glycoside extracted from Digitalis purpurea [18], whose inhibition of the Na+/K+ ATPase
membrane pump increases intracellular sodium and calcium concentrations and promotes the activation
of contractile proteins of the heart [19]; penicillin, obtained from green mold Penicillium notatum in
1928, still one of the most widely used antibiotic agents [20], which binds through its four-membered
beta-lactam ring the bacterial DD-transpeptidase enzyme, interfering with the peptidoglycan cell wall
synthesis [21]. More recent examples of natural products that have impacted medicine, and in particular
oncology, are the taxane paclitaxel, first isolated from the bark of the Pacific yew tree Taxus brevifolia,
and the vinca alkaloids (vincristine and vinblastine), obtained from the Madagascar periwinkle plant
Catharanthus roseus. They alter the dynamic equilibrium of polymerization or depolymerization of
microtubules, compromising the mitotic spindle apparatus and causing apoptosis after metaphase
arrest [22]. Camptothecin, extracted from the Camptotheca acuminata tree [23], is effective against a



Mar. Drugs 2020, 18, 619 3 of 28

broad spectrum of tumors by blocking DNA topoisomerase I (topo I) [24]. To date, more than half of
all drugs in clinical use have natural origin, and the percentage is higher for anti-cancer drugs [25–27].
The major classes of drugs developed from natural sources and used in clinics, along with the organism
of origin, are reported in Figure 1.Mar. Drugs 2020, 18, x FOR PEER REVIEW 4 of 30 
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Figure 1. Drugs developed from natural sources, their biological sources, chemical structures and
treatment usage.

The advances in technologies including “omics” tools for improved biodiscovery and the
uncovering of metabolic pipelines, robotics, microfluidics, quantum computing, profiling, analytical and
computational biology techniques for fractionation and isolation of secondary metabolites from crude
extracts have considerably increased the exploration of natural sources. The integration of “omics”
approaches with focus on genomics, transcriptomics and metabolomics, elucidates the complexity of
gene regulatory networks and significantly helps our understanding of complex mechanisms involved
in the expression of biosynthetic gene clusters encoding secondary metabolites [28].

Despite the success of terrestrial sources for the development of new drugs, our review emphasizes
on those of marine origin due to their promising development.

Marine natural products are the result of enzymatic processes, and they are endowed by structural
three-dimensional features which facilitate the binding to active sites, giving great specificity and
unique bioactivity. Compared to synthetic drugs, they have more sp3-hybridized carbons, chiral centers,
condensed aliphatic rings, fewer aromatic rings, higher number of carbon, hydrogen and oxygen atoms and
more nitrogen content [3,29]. In addition, the presence of halogen atoms in their structures, mainly chlorine
and bromine, is a result of their concentration in the surrounding seawater and specialized halogenating
enzymes in organisms [30,31]. Natural products are usually distributed among different structural classes
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such as nucleosides, polyphenols, polysaccharides, peptides, alkaloids, polyketides (including macrolides),
diketopiperazines, terpenoids (including steroids) and mixed biogenesis metabolites.

So far, the marine environment has been less investigated than the terrestrial one, but considering the
differences of light, temperature, pressure and salinity of both environments and the vast biodiversity of the
oceans, it is estimated that there will be a significant increase in the number of new molecules from marine
origin added to the anticancer clinical pipeline. Indeed, recent decades saw a confirmation of this trend:
today, there are already over 10 approved drugs for the treatment of patients affected by different types of
cancer that derived from molecules available in the marine environment: cytarabine, nelarabin (prodrug of
ara-G), fludarabine phosphate (pro-drug of ara-A), plitidepsin, midostaurin, eribulin mesylate,
brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, trabectedin and
lurbinectedin (Table 1). Moreover, others have moved through the early clinical evaluation and are now
being evaluated in phase III of clinical trials for oncological indications (Table 2).

Table 1. Drugs approved as anti-cancer compounds and derived from marine compounds.
Approved indications as assessed using http://adisinsight.springer.com/ in October 2020.

Compound Marine Organism Chemical Classes Therapeutic Use Reference

Lurbinectedin Tunicate Alkaloid Solid tumors [32]

Trabectedin Tunicate Alkaloid Solid tumors [33]

Midostaurin Tunicate/Actinobacteria Indolocarbazole Leukemias [34]

Plitidepsin ˆ Tunicate Peptide Multiple myeloma [35]

Belantamab mafodotin Mollusk/Cyanobacteria ADC/Peptide ** Multiple myeloma [36]

Enfortumab vedotin Mollusk/Cyanobacteria ADC/Peptide * Solid tumors [37]

Polatuzumab vedotin Mollusk/Cyanobacteria ADC/Peptide * Lymphomas [38]

Brentuximab vedotin Mollusk/Cyanobacteria ADC/Peptide * Lymphomas [39]

Eribulin mesylate Sponge Macrolide polyketide Solid tumors [40]

Fludarabine phosphate Sponge Nucleoside Leukemias, lymphomas [41]

Cytarabine Sponge Nucleoside Leukemias, lymphomas [42]

Nelarabine Sponge Nucleoside Leukemias, lymphomas [43]

ADC, antibody drug conjugate; ˆ, approved by the Australian Therapeutic Goods Administration; *, monomethyl auristatin
E (MMAE) as payload; **, monomethyl auristatin F (MMAF).

Table 2. ADCs containing MMAE or MMAF as payloads in clinical trials. Data assessed on https:
//clinicaltrials.gov (recruiting or active/not recruiting) in October 2020. Sorted by payload and by clinical status.

Clinical
Status Compound Target Payload Marine Organism Therapeutic Use FDA Orphan

Drug Designation Reference

Phase I ALT-P7 HER2 MMAE Mollusk/Cyanobacteria Solid tumors Gastric cancer [44]

Phase I RC88 Mesothelin MMAE Mollusk/Cyanobacteria Solid tumors - *

Phase I SGN-CD228A CD228 MMAE Mollusk/Cyanobacteria Solid tumors - [45]

Phase II CX-2029 CD71 MMAE Mollusk/Cyanobacteria Solid tumors,
lymphomas - [46]

Phase II Disitamab vedotin HER2 MMAE Mollusk/Cyanobacteria Solid tumors Gastric cancer [47]

Phase II Enapotamab
vedotin AXL MMAE Mollusk/Cyanobacteria Solid tumors - [48]

Phase II Ladiratuzumab
vedotin LIV-1 A MMAE Mollusk/Cyanobacteria Solid tumors - [49]

Phase II Telisotuzumab
vedotin MET MMAE Mollusk/Cyanobacteria Solid tumors - [50]

Phase II Tisotumab vedotin TF MMAE Mollusk/Cyanobacteria Solid tumors - [51]

Phase I FS-1502 HER2 MMAF Mollusk/Cyanobacteria Solid tumors [52]

Phase II AGS 16C3F ENPP3 MMAF Mollusk/Cyanobacteria Solid tumors - [53]

Phase III Depatuxizumab
mafodotin EGFR MMAF Mollusk/Cyanobacteria Solid tumors Glioblastoma [54]

FDA, Food and Drug Administration; MMAE monomethyl auristatin E; MMAF, monomethyl auristatin F;
*, www.cancer.gov.

http://adisinsight.springer.com/
https://clinicaltrials.gov
https://clinicaltrials.gov
www.cancer.gov
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Marine Environnent

The biological and chemical diversity of the marine environment is immeasurable and
therefore represents an extraordinary resource for the discovery of new bioactive substances,
drugs, toxins, pigments and enzymes, as well as biopolymers, bioadhesives, bioelastomers and
hierarchically structured biocomposites [55]. Oceans represent 95% of the earth’s biosphere
and over 70% of the planet’s surface [56]. Despite having numerous ecosystems and harboring
the majority of the planet’s biodiversity, they are still largely unexplored. Less than 5% of
the deep-sea has been investigated and an even lower percentage (0.01%) of the deep-sea floor
has been sampled and studied [56]. In the marine environment thrive microorganisms
(bacteria, actinobacteria, cyanobacteria, autotrophic flagellates, and diatoms, microalgae and fungi etc.),
macroalgae (seaweeds), invertebrates (sponges, corals, worms, mollusks, echinoderms etc.) and flowering
plants (seagrasses, mangroves and other halophytes etc.), for a total of species that may approach one to
two million, with nearly 250,000 already described [57–59]. An overview of the species discovery rate
through the decades is reported in Figure 2. Advances in the biodiscovery process have significantly
increased the number of known marine species and their compounds. Accordingly, since 2008,
more than 1000 new marine-derived compounds have been discovered each year [60].

The high marine biodiversity is the consequence of the wide range of unique conditions in which
organisms survive. Temperatures fluctuate from −1.5 ◦C in the Antarctic waters to 350 ◦C in the
hydrothermal systems. In the ocean, pressure increases by about one atmosphere for every 10 m, hence it
can be 1000 times higher than the pressure at sea level [61]. Nutrient variations range from oligotrophic
(low nutrient content) to eutrophic (nutrient-rich zones). Light intensity rapidly dissipates as depth
increases, and there is no significant luminosity beyond 200 m. The near-surface photic zones receive
sufficient sunlight to allow photosynthesis by marine plants and plankton. The deepest and more
extensive non-photic zones are not illuminated enough to perform photosynthesis, hence other physical,
chemical and biological processes such as bioluminescence have been developed to compensate for
the lack of light. Similarly, the amount of free oxygen that is dissolved in the water varies from
7 mg/L at the surface to less than 0.1 mg/L in oxygen depleted zones depending on temperature,
latitude, salinity, and depth [62,63]. The pH is generally around 8 and the salinity around 35 g/kg [64].
This extraordinary variety of conditions in marine habitats has induced species to develop mechanisms
of evolution and adaptation not necessary in the terrestrial organisms. Therefore, marine-derived
chemicals usually have unique structural scaffolds, biological modes of actions and have an important
role as hit or lead compounds in drug discovery [7,65].

The geographic origin of the marine compounds reported since 2008 shows that almost a quarter
of these are from Australia (24%), followed by a marked increase in metabolites discovered from the
South China Sea (18%) and from the Pacific Ocean (17%). However, these data are not an indication of
the geographical distribution of bioactive compounds in the seas but a mere consequence of funding
investment in marine natural product chemistry research from Australia, China, South Korea, Japan and
USA, and the accessibility level of deeper water to submersibles and remotely operated vehicles [66].
In Europe, marine biodiscovery has been stimulated since the fourth Framework Programme in 1994,
but more intensively since 2007, based on the CORDIS database, the European Commission’s primary
source of information on the projects funded by the EU Framework Programmes. While initially,
projects focused on uncovering the marine biodiversity and function, in recent years the trend of
funded projects has shifted to link marine bioprospecting with biotechnological applications.



Mar. Drugs 2020, 18, 619 6 of 28
Mar. Drugs 2020, 18, x FOR PEER REVIEW 6 of 30 

 

 
Figure 2. New species discovery rate, according to data available in the World Register of Marine 
Species. Orange and right Y-axis, number of discovered species; blue dots and left Y-axis, cumulative 
number of discovered species; X-axis, years. Data extracted from http://www.marinespecies.org, 
accessed in June 2020. 

The high marine biodiversity is the consequence of the wide range of unique conditions in which 
organisms survive. Temperatures fluctuate from −1.5 °C in the Antarctic waters to 350 °C in the 
hydrothermal systems. In the ocean, pressure increases by about one atmosphere for every 10 m, 
hence it can be 1000 times higher than the pressure at sea level [61]. Nutrient variations range from 
oligotrophic (low nutrient content) to eutrophic (nutrient-rich zones). Light intensity rapidly 
dissipates as depth increases, and there is no significant luminosity beyond 200 m. The near-surface 
photic zones receive sufficient sunlight to allow photosynthesis by marine plants and plankton. The 
deepest and more extensive non-photic zones are not illuminated enough to perform photosynthesis, 
hence other physical, chemical and biological processes such as bioluminescence have been 
developed to compensate for the lack of light. Similarly, the amount of free oxygen that is dissolved 
in the water varies from 7 mg/L at the surface to less than 0.1 mg/L in oxygen depleted zones 
depending on temperature, latitude, salinity, and depth [62,63]. The pH is generally around 8 and 
the salinity around 35 g/kg [64]. This extraordinary variety of conditions in marine habitats has 
induced species to develop mechanisms of evolution and adaptation not necessary in the terrestrial 
organisms. Therefore, marine-derived chemicals usually have unique structural scaffolds, biological 
modes of actions and have an important role as hit or lead compounds in drug discovery [7,65]. 

The geographic origin of the marine compounds reported since 2008 shows that almost a quarter 
of these are from Australia (24%), followed by a marked increase in metabolites discovered from the 
South China Sea (18%) and from the Pacific Ocean (17%). However, these data are not an indication 
of the geographical distribution of bioactive compounds in the seas but a mere consequence of 
funding investment in marine natural product chemistry research from Australia, China, South 
Korea, Japan and USA, and the accessibility level of deeper water to submersibles and remotely 
operated vehicles [66]. In Europe, marine biodiscovery has been stimulated since the fourth 
Framework Programme in 1994, but more intensively since 2007, based on the CORDIS database, the 
European Commission’s primary source of information on the projects funded by the EU Framework 
Programmes. While initially, projects focused on uncovering the marine biodiversity and function, 

Figure 2. New species discovery rate, according to data available in the World Register of Marine Species.
Orange and right Y-axis, number of discovered species; blue dots and left Y-axis, cumulative number
of discovered species; X-axis, years. Data extracted from http://www.marinespecies.org, accessed in
June 2020.

2. Natural Product Classes of Marine-Derived Anticancer Agents

The natural product structural classes of the anti-cancer drugs coming from the marine environment
(Tables 1–3) are varied, and we will report the principal structural features of each class together with
their most representative compounds, approved or in clinical evaluation.

2.1. Nucleoside Derivatives

The first contribution to the study of marine and marine-inspired products as biologically active
compounds that served as leads for drug discovery was published in the early 1950s by Bergmann et
al., who described the arabinonucleoside spongothymidine (ara-T), isolated from the Caribbean sponge
Tectitethya crypta (a.k.a. Cryptotethya crypta de Laubenfels, 1949) [67,68]. The chemical structure of
ara-T, together with the other sponge-derived nucleosides spongosine and spongouridine, inspired the
synthesis of the first two marketed drugs from marine origin: cytarabine (anticancer cytosine arabinoside
or arabinosyl cytosine, ara-C) approved by the U.S. Food and Drug Administration (FDA) in 1969
and vidarabine (antiviral adenine arabinoside or arabinofuranosyladenine, ara-A) approved in 1976
(Figure 3). Therefore, nucleosides had a pivotal role in the history of marine-derived drugs. It is
interesting to note that cytarabine and vidarabine were synthesized in laboratory prior to their extraction
from natural sources Streptomyces gryseus, the gorgonian Eunicella cavolini and the fermentation broth
of Streptomyces antibioticus strains [69].

Table 3. Marine compounds in clinical trials as anticancer agents. Data assessed on https://clinicaltrials.
gov (recruiting or active/not recruiting) in October 2020.

Clinical Status Compound Marine
Organism

Chemical
Classes Therapeutic Use FDA Orphan

Drug Designation Reference

Phase III Plinabulin Fungus Alkaloid Solid tumors - [70]

Phase III Marizomib Actinobacteria Beta-lactone
Solid tumors,
lymphomas,

multiple myeloma

Multiple myeloma,
glioblastoma [71]

Phase II Oligo-fucoidan Brown seaweed Polysaccharide Solid tumors - [72]

FDA, Food and Drug Administration.

http://www.marinespecies.org
https://clinicaltrials.gov
https://clinicaltrials.gov
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Marine nucleosides are glycosylamines composed of a nitrogen-containing heterocyclic nucleobase
(purine or pyrimidine) and a modified 5-carbon sugar (arabinose rather than ribose or deoxyribose)
bounded through a β-glycosidic linkage. The compounds inspired by the sponge Tectitethya crypta are
called ara-nucleoside to emphasize the presence of the arabinose moiety. Their discovery led to the
new therapeutic principle that nucleosides could be used as chemotherapeutics. Arabinonucleosides
ara-A and ara-G inspired the anticancer pro-drugs fludarabine phosphate and nelarabine, both FDA
approved in 2005.

Cytarabine is a pyrimidine nucleoside containing a cytosine base. It is made from
1-β-d-arabinofuranosyluracil by acylation of its hydroxyl groups and conversion of the carbonyl
group in position 4 of the pyrimidine ring into a thiocarbonyl group. The subsequent replacement
of the mercaptan group with an amino group and the contemporary hydrolysis of the acetyl groups
gives the final pyrimidine structure, also known with the chemical name of 1-arabinofuranosylcytosine
(Figure 3) [73]. Cytarabine is a prodrug, intracellularly converted by deoxycytidine and pyrimidine
kinases to the corresponding triphosphate activated metabolite (arabinosylcytosine triphosphate,
ara-CTP), which competes with the physiological building block of nucleic acids 2′-deoxycytidine for
incorporation into DNA [74]. Cytarabine differs from its naturally occurring counterpart by a hydroxyl
group in the 2′-β configuration of the sugar moiety. The resulting arabinose binds to the replicating
DNA strands and inhibits chain initiation and elongation, leading to the fabrication of faulty DNA.
Additionally, the interference with DNA/RNA polymerases and nucleotide reductase enzymes blocks
the cell cycle in S phase (DNA synthesis) [75–77]. Hence, rapidly dividing cells, which require more
DNA replication for mitosis, are the most affected. Since the mechanism of action of cytarabine mimics
the structure of a natural metabolite but not its function, causing cellular damage, it is an antimetabolite
agent. It was the first marine-derived drug used for the treatment of leukemia and it has been
widely used for hematological cancers since 1969. A liposomal formulation of cytarabine allows the
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improvement the stability and rapid deamination of the compound, cytarabine, increasing the half-life,
and providing a prolonged drug exposure to tumor cells also in the central nervous system [78–80].

Efforts in producing new bioactive ara-nucleosides led to the synthesis of two additional
antineoplastic antimetabolites: nelarabine and fludarabine phosphate. The marine-inspired nelarabine
is a water-soluble prodrug of the cytotoxic deoxyguanosine analogue 9-β-d-arabinofuranosyl guanine
(ara-G) that shares the same mechanism of action of cytarabine. Nelarabine is initially demethoxylated
by endogenous adenosine deaminase to ara-G, whose phosphorylation into arabinosylguanine
nucleotide triphosphate (ara-GTP) by deoxyguanosine and deoxycytidine kinases creates the cytotoxic
metabolite responsible for blocking DNA synthesis. In 2005, it was approved by the FDA for the
treatment of patients with relapsed or refractory T-cell lymphoblastic leukemia and T-cell lymphoblastic
lymphoma following at least two prior chemotherapy regimens [81]. Ongoing clinical studies are
currently defining its role in combination with other chemotherapy agents in the front-line setting of
leukemias and lymphomas.

Fludarabine phosphate is the phosphate salt of a purine arabino-nucleoside that has
2-fluoroadenine as a nucleobase. Like the previous analogues, it is a prodrug that must be intracellularly
converted in the active form. It is initially dephosphorylated to 2-fluoro-ara-A in plasma and then
transported into the cell where it is phosphorylated by deoxycytidine kinase to 2-fluoro-ara-ATP.
The latter, once incorporated into DNA, acts as a DNA chain terminator [82–84]. Its therapeutic uses
include the treatment of adult patients with chronic lymphocytic leukemia who have not responded
to at least one standard alkylating-agent containing regimens and since 2010, in combination with
cyclophosphamide and rituximab [85]. More than 500 clinical trials are currently ongoing with
fludarabine in multidrug regimens for treating hematological malignancies.

2.2. Macrolide Derivatives

Another prominent class of marine-derived natural products for therapeutic use are macrolides,
polyketides featuring a macrocyclic lactone ring (Figure 4). Furthermore, one or more sugars may
be attached via glycosidic bonds to the macrocycle. The complexity of macrolides often implies a
difficult structural elucidation, especially the determination of the absolute configuration at each chiral
center, and the chemical synthesis of their intricate chemical features is a challenging area of research
in medicinal chemistry [86].
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Several marine macrolides have been isolated from sponges, algae and other marine invertebrates,
characterized by diverse and interesting biological properties but they have usually been proven to
be produced by their associated microbiota. Among them, the analogue of the marine polyether
macrolide halichondrin B, eribulin mesylate, was approved in 2010 for the treatment of metastatic
breast cancer [87]. The approval was based on the phase III EMBRACE trial that demonstrated
an improved overall survival versus physician’s choice in patients with previously treated with
anthracyclines and taxanes [88]. Since 2016, eribulin is also FDA-approved for the treatment of
unresectable and metastatic liposarcoma, based on the results of phase III trials by comparing the
compound against dacarbazine [89,90].

The natural product halichondrin B was initially isolated in 1986 from the Japanese marine
sponge Halichondria okadai [91]. It was later identified in extracts of the other poriferan species of
genera Axinella, Phakellia and Lissodendoryx but it remained difficult to secure sufficient amounts of
sample, which hampered its clinical development [92–94]. During the completion of the synthesis
of halichondrin B in 1992 [95], through a long linear sequence requiring 47 steps, an intermediate
C1-C38 was identified as the main fragment exhibiting cytotoxic activity. Maintaining the right-hand
macrolactone and omitting the side chain, a potent and simplified analogue of halichondrin B was
therefore obtained (Halichondrin B analogue E7389). A primary amine was inserted in place of the
removed half of the original molecule. Just like its natural precursor, eribulin has been found to
be a strong microtubule inhibitor. It binds, with high affinity, the plus ends of each protofilament,
preventing microtubule growth and resulting in G2/M phase arrest and apoptosis. Eribulin-induced
mitotic blockade is irreversible [96]. However, its mechanism is distinct from other antitubulin agents
because it does not affect either the shortening phase inducing disassembly such as vinca alkaloids
or the growing phases, such as taxanes. Such a mechanism of action can be attributed to a different
interaction with the target. Eribulin binds microtubules in a high affinity binding site, different from
those of other antitubulin agents. Unlike vinca alkaloids or the inner lumen of microtubules, such as
taxanes, that bind to both α- and β-subunits, eribulin binds to a single site of interdimer interface or to
the β-tubulin subunit [97]. These variations in site and mode of action make eribulin a mechanistically
unique inhibitor of microtubule dynamics, hence it is extensively studied for the treatment of patients
with taxane-resistant cancers, and with other solid tumors.

Marine fauna is also a source of another class of polyoxygenated macrolide lactones named
bryostatins. The base structure of all bryostatins is the bryopyran ring system, a 20-membered
macrolactone ring with three tetrahydropyran rings (A, B and C). Each ring is connected to the other
with a different chain: a methylene bridge between A and B rings, a propenyl chain between B and C
rings and a lactone substructure (ethylbutanoate) between C and A rings. Geminal methyl groups
are also linked to the propenyl portion and the pyran ring A. Most bryostatins have an exocyclic
methyl enoate in their B and C rings, others, instead, have a butenolide bound to the C-ring or
glycals in place of hydroxyl moieties [98]. These compounds are produced by the proteobacterium
Candidatus Endobugula sertula that lives in association with the marine bryozoan Bugula neritina.
These compounds were found to protect the larvae of Bugula neritina from predation [99,100]. A direct
evidence of this symbiosis is the reduction in the amount of bryostatins in the B. neritina colonies after
antibiotic treatment [101,102].

The first bryostatin to be reported was bryostatin 3 in 1970 by Pettit et al. [103], followed by the
isolation and purification of bryostatin 1 in 1982 and many analogues over the years, reaching a current
total of around 20 bryostatin analogues [104–107]. Structure–activity relationship studies have shown
that C-1, C-19 and the oxygen in position C-26 are involved in the interaction with the target [108].
The mechanism of action of bryostatin 1 is linked to its ability to induce membrane translocation and
activation of protein kinase Cs (PKCs) through the regulatory C1 domains. The modulation of PKC
alters the expression of surface antigens in cancer cells thus increasing their susceptibility to immune or
other antigen-targeted treatment strategies [109,110]. Among the components of this class, bryostatin 1
has been the focus of many preclinical and clinical studies [111–121]. Unfortunately, the scarce supply
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of this molecule from the natural source made its clinical development difficult. Thirteen tons of
B. neritina were harvested to yield 18 g of bryostatin 1 and the proteobacterium seemed to be refractory
to in vitro culture, adding difficulty to production through direct fermentation. Recently, a method
for the total synthesis of bryostatin 1 has been developed [122], but it is not feasible for a large-scale
production, launching the design of simpler analogues of bryostatin, known as “bryologues”.

2.3. Peptide Derivatives

Several types of peptides have been isolated from a wide variety of marine organisms and have
been reported to have a broad range of bioactive properties, including antitumor [123,124]. Here also
most of the studies so far have demonstrated a microbial origin for the production of these compounds.
Extensive research has been conducted marine peptides and their potential applications continue to be
unceasingly investigated so that the most recently approved marine-derived drugs belong to this class.
It is estimated that in the last 10 years about 2500 new peptides with antitumor activity have been
identified from natural sources [125].

They vary considerably in size and structural complexity and can be classified as linear
depsipeptides, cyclic depsipeptides or linear peptides. Compared to linear peptides composed
of a linear chain of amino acids linked by amide bonds, depsipetides have a more complex structure
with one or more of the amide bonds replaced by the corresponding ester bonds (Figure 5) and a mode
of action usually different from most of common peptides. Many of them contain atypical amino acids
with post-translational modifications (carbamoylation, N- and O-methylations) or amino acids not
found in common proteins.Mar. Drugs 2020, 18, x FOR PEER REVIEW 12 of 30 

 

 
Figure 5. Marine peptides and their derivatives of pharmacological relevance. 

Brentuximab vedotin was the first commercially available ADC incorporating a payload 
derived from marine natural compounds: an average of four molecules of monomethyl auristatin E 
(MMAE) are linked to the anti-CD30 antibody cAC10 via the spacer para-aminobenzylcarbamate, a 
cathepsin cleavable linker (valine-citrulline) and an attachment group consisting of caproic acid and 
maleimide [39]. MMAE maintains the same structure of dolastatin 10 except for the C-terminal where 
the dolaphenine residue is substituted by (1S,2R)-(+)-norephedrine (Figure 5) [137]. Its high toxicity 
prevented MMAE from being used alone [138]. Therefore, the conjugation with an antibody is 
fundamental for its administration to combat cancer cells. Once internalized by clathrin-mediated 
endocytosis, lysosome proteases cleave the linker and releases MMAE into the cytosol. As its original 
molecule dolastatin 10, MMAE binds microtubules and potently inhibits polymerization, inducing 
G2/M phase cell cycle arrest and induce apoptosis. Compared to other antimitotic agents used for 
lymphomas such as vinblastine, this formulation shows potency of up to 200 times. Brentuximab 
vedotin is FDA-approved for different indications in Hodgkin’s lymphoma, systemic anaplastic large 
cell lymphoma, cutaneous and peripheral T-cell lymphomas [139–142]. 

Polatuzumab vedotin is another marketed ADC containing MMAE as payload [143], approved 
by the FDA in 2019 in combination with bendamustine and rituximab for the treatment of relapsed 
or refractory diffuse large B-cell lymphoma after at least two prior therapies [144]. An average of 3.5 
MMAE molecules are conjugated to a humanized anti-CD79B IgG1 antibody [38]. The antibody’s 
target is highly expressed in B cells of lymphoma patients, making the therapy highly specific. The 
approval was based on a multicenter phase Ib/II study in relapsed or refractory diffuse large B-cell 
lymphoma patients considered transplantation-ineligible and who experienced treatment failure 
with prior ASCT [145]. 

MMAE is also the payload in enfortumab vedotin, approved by the FDA in 2019 for the 
treatment of patients with locally advanced or metastatic urothelial cancer who had received a prior 
programmed cell death (PD-1) or programmed death ligand 1 (PD-L1) inhibitor and platinum-
containing chemotherapy regimen [146]. Here, the antibody targets Nectin-4, a cell surface protein 

Figure 5. Marine peptides and their derivatives of pharmacological relevance.

A turning point in the development of marine-derived peptides for cancer chemotherapy was
the discovery of dolastatin 10, a linear pentapeptide isolated in 1987 from the Indian Ocean sea hare
Dolabella auricularia. Later this natural product was identified in the cyanobacteria Symploca hynoides
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and Lyngbya majuscula involved in the hare’s diet. Dolastatin 10 is composed of four amino acid
building blocks, dolavaline (Dov), valine (Val), dolaisoleucine (Dil) and dolaproline (Dap) plus the
C-terminal amine dolaphenine (Doe). It is the most potent member of a larger class of related peptides
extracted from the sea hare, generically called dolastatins [126,127].

Preclinical studies reported that dolastatin 10 prevents tubulin polymerization similarly to
vinca alkaloids, thus strongly affecting the microtubule equilibrium and leading to apoptosis.
However, despite the encouraging in vitro activity, dolastatin 10 failed to progress to clinic trials due
to its non-appreciable therapeutic index and significant toxic side effects at the maximum tolerated
dose [128–131]. To exploit the potent antimitotic effect and improve the pharmacokinetic profile,
structural modifications of dolastatin 10 have been developed, resulting in the successful class of
auristatins, which present differences in the C-terminus, from dolaphenine (Doe) in dolastatin 10 to
phenylalanine in monomethyl auristatin-F (Phe). More importantly, auristatins appeared as great
payloads in antibody–drug conjugates (ADCs) [132]. The efficacy of ADCs to exploit antibodies to
target specific molecules on tumor cells and selectively deliver otherwise highly toxic molecules [133]
is evident by the fact that four compounds belonging to this class have recently been approved
for the treatment of patients with cancer (Table 1) and over 20 other compounds are in clinical
evaluation [134–136].

Brentuximab vedotin was the first commercially available ADC incorporating a payload
derived from marine natural compounds: an average of four molecules of monomethyl auristatin
E (MMAE) are linked to the anti-CD30 antibody cAC10 via the spacer para-aminobenzylcarbamate,
a cathepsin cleavable linker (valine-citrulline) and an attachment group consisting of caproic acid
and maleimide [39]. MMAE maintains the same structure of dolastatin 10 except for the C-terminal
where the dolaphenine residue is substituted by (1S,2R)-(+)-norephedrine (Figure 5) [137]. Its high
toxicity prevented MMAE from being used alone [138]. Therefore, the conjugation with an antibody is
fundamental for its administration to combat cancer cells. Once internalized by clathrin-mediated
endocytosis, lysosome proteases cleave the linker and releases MMAE into the cytosol. As its original
molecule dolastatin 10, MMAE binds microtubules and potently inhibits polymerization, inducing G2/M
phase cell cycle arrest and induce apoptosis. Compared to other antimitotic agents used for lymphomas
such as vinblastine, this formulation shows potency of up to 200 times. Brentuximab vedotin
is FDA-approved for different indications in Hodgkin’s lymphoma, systemic anaplastic large cell
lymphoma, cutaneous and peripheral T-cell lymphomas [139–142].

Polatuzumab vedotin is another marketed ADC containing MMAE as payload [143], approved by
the FDA in 2019 in combination with bendamustine and rituximab for the treatment of relapsed
or refractory diffuse large B-cell lymphoma after at least two prior therapies [144]. An average of
3.5 MMAE molecules are conjugated to a humanized anti-CD79B IgG1 antibody [38]. The antibody’s
target is highly expressed in B cells of lymphoma patients, making the therapy highly specific.
The approval was based on a multicenter phase Ib/II study in relapsed or refractory diffuse large B-cell
lymphoma patients considered transplantation-ineligible and who experienced treatment failure with
prior ASCT [145].

MMAE is also the payload in enfortumab vedotin, approved by the FDA in 2019 for the
treatment of patients with locally advanced or metastatic urothelial cancer who had received a prior
programmed cell death (PD-1) or programmed death ligand 1 (PD-L1) inhibitor and platinum-containing
chemotherapy regimen [146]. Here, the antibody targets Nectin-4, a cell surface protein involved in
Ca2+-independent cellular adhesion, expressed in urothelial cancer cells [37]. The approval was based
on the results of a phase II trial using enfortumab vedotin as monotherapy [147].

Besides these already approved compounds, MMAE has been employed to develop further
compounds that have entered the clinical evaluation, including the anti-HER2 ALT-P7 [44] and
disitamab vedotin [47] that have received the FDA orphan drug designation for gastric cancer.

Another synthetic auristatin derivative used as payload is monomethyl auristatin F (MMAF)
that differs from MMAE for a phenylalanine at its C-terminus. This moiety attenuates the cytotoxic
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activity and contributes to membrane impermeability [148]. MMAF is incorporated in the anti-BCMA
belantamab mafodotin [36], and was FDA approved in August 2020 for the treatment of patients
with relapsed or refractory multiple myeloma based on a phase II study [149]. Other MMAF-based
ADCs are undergoing clinical evaluation, including the anti-EGFR depatuxizumab mafodotin [54],
which received the FDA orphan drug designation for glioblastoma.

In 2018, based on the randomized phase III ADMYRE trial, the new marine-derived anticancer
peptide plitidepsin was approved by the Australian Therapeutic Goods Administration for the
treatment of refractory multiple myeloma in combination with dexamethasone after at least
three prior regimens [150,151]. Plitidepsin (or dehydrodidemnin B) is a cyclic depsipeptide
isolated from the Mediterranean tunicate Aplidium albicans in 1991 and it belongs to the didemnin
family [152,153]. The first congener of this class, didemnin B, was isolated from the Caribbean tunicate
Trididemnum solidum in 1981. Because of poor efficacy and many severe side effects such as anaphylactic
reactions and neuromuscular toxicity in phase-I and II trials, its development was abandoned in favor
of the second generation didemnin, plitidepsin, more active and better tolerated in clinical studies [154].
Plitidepsin shows in vitro and in vivo anti-tumor activity [35,155,156]. Interestingly, the two marine
species that contained didemnin B and plitidepsin were found in distant and remote geographic
locations. The chemical structure of plitidespin closely resembles didemnin B but differs in the hydroxy
group of the 1-(2-hydroxypropanoyl)-l-prolinamide moiety that has been oxidized to the corresponding
ketone (Figure 5). The difficulties in harvesting Aplidium albicans and the lack of possible aquaculture
alternative limits the natural supply of plitidepsin. Today it is manufactured by multi-step total
synthesis, adding the three aminoacids (R)-N-Me-Leu linked to the Thr and piruvil-l-Pro to a backbone
of six aminoacid subunits [157]. Plitidepsin antitumor activity appears to be related to the interaction
with the eukaryotic Elongation Factor 1 (eEF1A2) protein [158], with induction of early oxidative stress,
activation of Rac1 GTPase and suppression of protein phosphatases, that contribute to a rapid and
persistent activation of both c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases
(p38/MAPK), and apoptosis induction [159]. In addition, it was demonstrated that protein kinase
C delta (PKC-delta) mediates the cytotoxic effect of plitidepsin and is involved in caspase cascade
activation and execution of apoptosis. In fact, cells deficient in PKC-delta have enhanced survival
compared to wild type counterparts after drug treatment [159].

2.4. Alkaloids

Numerous amines and cyclic nitrogen-containing compounds named alkaloids are found in
natural sources and their anticancer activities have been widely studied, essentially in terrestrial plants.
Approximately two thousand alkaloids have been identified in terrestrial plants but more rarely in
marine organisms. Trabectedin is a tetrahydroisoquinoline alkaloid, extracted from the Caribbean sea
squirt Ecteinascidia turbinata during the extensive natural product isolation and screening program
at the National Cancer Institute (NCI) in the 1960s [160], and later identified as a product of the
bacterial symbiont Candidatus Endoecteinascidia frumentensis [161]. It is a very potent member of the
ecteinascidin family of biologically active compounds containing two to three tetrahydroisoquinoline
(THIQ) subunits and an active carbinolamine functional group. Trabectedin structure is characterized
by three fused THIQ rings (A, B and C). The A and B rings form a rigid pentacyclic skeleton linked
to ring C through a 10-membered lactone bridge (Figure 6). The intricacy of this structure took over
20 years from the detection of its activity to being fully elucidated [162]. Ring A and B promote
the alkylation to vicinal nucleotides in the same or opposite strands of the DNA minor groove
through hydrogen bonds and Van der Waals interactions, creating a drug–DNA adduct responsible for
trabectedin’s anticancer activity. The N2 of middle guanine in the 5′-CGG, TGG, GGC, AGC sequences
are the sites of alkylation [163]. In addition, the protonated amine acts as a catalyst in the generation of
the active iminium ion (N2) involved in the DNA binding [164]. The C ring protrudes from the DNA
backbone and interferes with the function of DNA-binding proteins such as transcription factors and
transcription-coupled nucleotide excision repair process, which in normal condition repairs the DNA
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damage caused by UV, cisplatin or other anticancer agents. This hypothesis is plausible since cell lines
deficient in nucleotide excision repair proteins were less sensitive to trabectedin [165,166].
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As for many others marine compounds, the low yield was a relevant problem in trabectedin
clinical development (1 g of trabectedin is isolated from 1 ton of sea squirt). This was solved by
exploiting a semisynthetic method from the microbial product cyanosafracin B, an antibiotic obtained
by fermentation of the bacterium Pseudomonas fluorescens [167]. The anticancer activity of trabectedin is
supported by data obtained in different tumor models, and its mechanism of action also involved an
effect on the tumor microenvironment, mainly on macrophages [3,168–178]. Since 2007, trabectedin is
approved by the EMEA for the treatment of patients with advanced soft tissue sarcoma, after failure of
anthracyclines and ifosfamide or for those who are unsuited to receive it. In October 2015, the FDA
approved trabectedin for the treatment of patients with unresectable or metastatic liposarcoma and
leiomyosarcoma who received a previous anthracycline-based regimen. This new indication was based
on a phase III study that showed a 45% reduction in the risk of disease progression or death compared
to dacarbazine and made trabectedin the first drug to receive FDA approval for the treatment of
liposarcoma [179]. Currently, trabectedin is in clinical evaluation for other cancer types, including breast,
bone, prostate and ovarian cancer, both alone or in multidrug regimens.

Lurbinectedin is a synthetic tetrahydropyrrolo [4, 3, 2-de]quinolin-8(1H)-one analogue of the
marine compound ET-736 isolated from E. turbinata in which the pentacyclic skeleton made of ring A
and B is maintained while the ring C is substituted by a tetrahydro-β-carboline (Figure 6).

In June 2020, lurbinectedin was FDA approved for adult patients with metastatic small cell
lung cancer with disease progression on or after platinum-based chemotherapy. This was based
on the results of a phase II study reporting an ORR of 35% with a median response duration of
5.3 months [180]. While, in the CORAIL phase III trial, lurbinectedin was not superior to pegylated
liposomal doxorubicin or topotecan in platinum resistant ovarian cancer patients [181], results are still
expected for a phase III trial comparing lurbinectedin plus doxorubicin versus cyclophosphamide,
doxorubicin and vincristine (CAV) or topotecan as treatment in small cell lung cancer patients who
failed one prior platinum-containing line (NCT02566993).

Trabectedin and lurbinectedin have multiple mechanisms of action [182–186]. They bind minor
groove CG-rich sequences located at promoters of protein-coding genes, interacting transcription
factors or DNA repair molecules, inducing cell cycle perturbations and cell death [184].
Both compounds also decrease the number of tumour-associated macrophages, thus modulating the
tumour micro-environment.

Staurosporine is an indolocarbazole alkaloid isolated in 1977 from Streptomyces staurosporeus,
a terrestrial bacterium but later on also from certain marine species such as the sea squirt Eudistoma toealensis
and the plathelminth Pseudoceros sp [187–189]. Although this molecule is very toxic, analogues were
developed, such as midostaurin [190]. The latter is an FDA approved kinase inhibitor for the treatment
of adult patients with newly diagnosed, FMS-like tyrosine kinase 3 (FLT3) mutation-positive acute
myeloid leukemia in combination with standard cytarabine and daunorubicin induction, and cytarabine
consolidation, or with aggressive systemic mastocytosis, systemic mastocytosis with associated
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hematological neoplasm or mast cell leukemia. Midostaurin targets several protein kinases such
as FLT3 (Fms-like tyrosine kinase 3), PKC (protein kinases C) and VEGFRs (vascular endothelial
growth factor receptors). Compared with the structure of staurosporine, the addition of a phenolic
group increases the capacity of the molecule to be absorbed and decreases the toxicity of the molecule.
Additional kinase inhibitors derived from marine compounds are the indolocarbazoles lestaurtinib
(multikinase inhibitor with activity against FLT3, JAK-2, TRK-A, TRK-B, TRK-C), enzastaurin (PKCβ and
GSK-3β inhibitor) and CEP-2563 (TRK-A/B/C inhibitor).

Plinabulin (Figure 6) is a synthetic dehydrodiketopiperazine, derivative of the diketopiperazine
alkaloid halimide, one of the most clinically successful metabolites originally isolated from the marine
fungi Aspergillus sp. and Aspergillus ustus. Plinabulin is a tubulin polymerization inhibitor interacting
with the colchicine-binding site of β-tubulin, thereby interrupting equilibrium of microtubule dynamics.
It inhibits the growth of proliferating vascular endothelial cells, disrupting the tumor vasculature
that contributes to neoplastic proliferation [70,191]. Plinabulin might also act as immunomodulator
and reduce chemotherapy-induced neutropenia and thrombocytopenia [192–194]. This compound is
currently being evaluated in multiple clinical trials.

The marine-alkaloid zalypsis has been evaluated in both phase I and phase II trials for the treatment
of solid tumors, lymphoma, multiple myeloma, Ewing’s sarcoma and primitive neuroectodermal
tumor [195–202]. It is a synthetic tetrahydroisoquinoline alkaloid (Figure 6) related to jorumycin,
a complex pentacyclic organic compound isolated from the mantle and mucus of the Pacific nudibranch
mollusk Jorunna funebris. Zalypsis has demonstrated significant in vitro and in vivo activity against
human solid and hematologic neoplasms [202,203]. Zalypis produces covalent modification of guanines
in the DNA minor groove that give rise to DNA double-strand breaks, S-phase arrest and apoptosis in
cancer cells [201].

2.5. β-Lactones

Actinobacteria and fungi are the major producers of β-lactone natural products, although they
can be also isolated from higher plants and animals. β-Lactones are four-membered heterocycles with
high reactivity. They are prone to react through nucleophilic attack with serine, threonine, or cysteine
residues, therefore enzymes with these activated catalytic nucleophiles are susceptible to inhibition
by the formation of stable covalent adducts with β-lactones. Relevant target of β-lactones are lipases
and proteases [204]. So far, orlistat, a synthetic derivative of the natural product lipstatin, is the only
β-lactone compound that has reached the pharmaceutical market. Lipstatin was isolated from extracts
of a terrestrial Streptomyces strain and showed a potent inhibition of pancreatic lipase. Orlistat is the
saturated derivative of lipstatin and is in the market under the name of Xenical as an anti-obesity drug.

The marine environment has proved to be a valuable source of Actinobacteria, and some
of them are obligate marine bacteria due to their seawater requirement, such as members of the
Salinispora genus. The family of compounds known as salinosporamides was isolated from marine
Actinobacteria Salinispora tropica [205]. These compounds are characterized by the presence of a fused
γ-lactam-β-lactone densely functionalized (Figure 7). The first member of this family was marizomib
(salinosporamide A) and its structure presents a chloroethyl group at C-2, a methyl group at C-3
and a cyclohexene at C-5 [71,205]. This compound acts as a potent inhibitor of the 20S proteasome
by covalently modifying its active site threonine residues. Marizomib entered clinical trial for the
treatment of several types of cancer shortly after its publication in 2003 and at the present it is in phase
III for the treatment of glioblastoma. It is interesting to point out that the marizomib supply for the
clinical trials is obtained from the fermentation of Salinispora tropica after optimization of fermentation
conditions [206]. There is a growing number of salinosporamide derivatives that have been obtain
since the discovery of salinosporamide A. Most of them are natural products isolated from extracts of
strains of the genus Salinispora and others are the result of chemical transformations of marizomib
itself. However, so far, none of the new derivatives is able to improve the strong inhibition activity of
marizomib against the 20S proteasome [207].
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2.6. Polysaccharides

Besides phlorotannins, polysaccharides from marine macroalgae have been proposed as
relevant adjuvant supplements for cancer management or used directly for the treatment [208].
Polysaccharides or glycans are large polymers composed of tens to thousands of monosaccharides
like d-glucose, d-fructose, d-galactose, l-galactose, d-mannose, l-arabinose, and d-xylose joined
through glycosidic linkages. Amino sugars (d-glucosamine and d-galactosamine), their derivatives
(N-acetylneuraminic acid and N-acetylmuramic acid) or sugar acids (glucuronic and iduronic acids) are
also frequently present [209]. In addition, seaweed-derived polysaccharides include agar, alginate and
carrageenans as the main structural materials of cell walls and intercellular matrices. Agar is a complex
mixture of two major polysaccharides: agarose that is a linear, neutral and low sulphate/methoxyl
polymer constituting about 70% of the mixture plus agaropectin that is a charged, heterogeneous and
highly-substituted fraction. It is extracted from red algae, primarily from the genera Gelidium and
Gracilaria. Alginate is a linear polysaccharide composed of β-d-mannuronic acid (M) and α-l-guluronic
acid (G), which aggregate to form a backbone with sequences of mannuronic acid blocks (M-blocks)
or guluronic acid blocks (G-blocks) and regions of alternating residues. Alginates are structural
components of the brown macro-algae Phaeophyceae and Rhodophyta. Carrageenans are linear,
sulphated galactans made up of disaccharide repeating units: alternating 3-linked β-d-galactopyranose
and 4-linked α-d-galactopyranose or 4-linked 3,6-anhydro-α-d-galactopyranos. Carrageenans are
predominantly extracted from Kappaphycus alvarezii, Eucheuma denticulatum, Gigartina skottsbergi and
Sarcothalia crispate red algae. I-carrageenan is FDA-approved as a thickener, stabilizer, and emulsifier in
food manufacturing. Furthermore, it is currently in clinical trials for viral infections and allergic rhinitis.

The active macroalgal polysaccharides are principally the sulfated ones. Compared with other
sulfated polysaccharides, fucoidans have been extensively investigated in recent years for drug
development. The most therapeutically promising compound of this class is fucoidan (sulphated
l-fucose) derived from the cell wall of various brown algae such as Cladosiphon okamuranus,
Fucus vesiculosus, Undaria pinnatifida and Sargassum fulvellum (Figure 8). Many studies report its
anticancer effect in various tumor cells [210–215] and fucoidan is undergoing clinical evaluation in
phase II. The exact mechanism of action of fucoidan has not been defined yet, although data support
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both a direct and indirect anti-cancer activity, mediated at least in part by the inhibition of p38 MAPK
and PI3K/AKT signaling pathways [216–218].
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Among the sulfated polysaccharide that have shown anti-tumor activity in minor preclinical studies
are: B-1, isolated from the culture of marine Pseudomonas sp. [219]; H3-a1, isolated from the brown
seaweed Hydroclathrus clathratus [220]; the alkali-extracted polysaccharide DAEB from the green algae
Enteromorpha intestinalis [221]; SargA from the brown algae Sargassum stenophyllum [222] and calcium spirulan
(Ca-SP) from the blue-green alga Spirulina platensis [223]. Furthermore, sulfated glycosaminoglycans (GAGs)
interfered with transcription functionality, inducing apoptosis in murine melanoma cells [224].

3. Conclusions

The diversity of biological materials of marine origin is almost equivalent to the marine biodiversity
itself and the marine environment is an invaluable and underestimated source of anticancer compounds.
After cytarabine FDA-approval in 1969, other marine-derived drugs have been approved for cancer
treatment, with the past decade being the most productive in commercially exploiting marine-derived
compounds. Importantly, drug development from marine sources is a time-consuming, high risk
process and it requires high investment, entailing collaboration between scientific organizations,
small and medium R&D companies and the pharma industry. An efficient marine drugs clinical
pipeline thus necessarily involves the collaboration of (micro) biologists, chemists, toxicologists,
medical and “omics” experts that jointly collaborate in the first stages, i.e., the organisms’ source,
natural products discovery and preclinical trials. The initial stages of the pipeline are thus heavily
dependent on the national and international scientific funding resources as well as open access to data
from previous research activities. Medical, legal (including regulatory and intellectual property) as
well as ethics experts are then needed to efficiently progress in the clinical trials stage, ideally leading
to a development finalization and market entry in case of demonstrated potency, efficiency, safety and
return on investment. This is a lengthy process, with limitations due to lack of sustainable supply,
structural complexity, and poor pharmacokinetic properties that have been overcome by full synthetic
manufacture, new procurement technologies including the optimization of fermentation processes as in
the case of marizomib, the encapsulation of drugs in nanoparticles and, as a very successful approach,
their use as payloads in ADCs. Hence, marine-derived compounds have an important and increasing
role in the discovery of new anticancer drugs. With the advance of “omics” tools that, when combined
aid in dereplication, structure elucidation and production, such as genomics (which also can aid
absolute configuration assignment), metabolomics and enzymatic synthesis of bioactive metabolites,
and the development of integrated MS/MS and NMR databases, the next decade looks very promising
in terms of marine natural product discovery and drug development, advancing clinical pipeline with
decreased times from hit to lead, for lead optimization, and lead to drug candidate.
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