

Randomized load balancing under Loosely correlated state information In fog commuting

Roberto Beraldi "La Sapienza" University, Rome

Claudia Canali, <u>Riccardo Lancellotti</u> University of Modena and Reggio Emilia

> Gabriele Proietti Mattia "La Sapienza" University, Rome

Motivation for Fog computing

- New paradigm: Smart cities, large scale sensing applications
- Several fields of application:
 - Urban applications
 - Industrial
 - Automotive
 - Healthcare

- New scenarios: Cyber-physical systems
 - Geographically distributed sensors
 - Huge amount of data produced
 - Data processing (aggregation, filtering, ...) close to sensors

Fog: data processing

- Aggregation, filtering

Sensors: data production

- Latency-critical tasks
- Cloud: complex applications
- Performance factors:

•

- Network delay
- Processing time @ fog node
- Addressing delay: optimize infrastructure topology
- Still need to manage the infrastructure
 - \rightarrow Load balancing

Fog architecture overview

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Load balancing in Fog

- Two reasons for load balancing
 - Unbalanced incoming load
 - Transient load fluctuations in the infrastructure
- Forward jobs
 - From overloaded nodes
 - To underloaded nodes
- Requires:
 - Knowledge of local load
 - Interaction with other nodes

- Load balancer (LB implements balancing algorithm)
- Processing unit (PU server with queue)
- Load: jobs in processing unit
- Finite queue size: PU can drop jobs

Load-blind approach

- Limited knowledge of load
 - Local load: OK
 - Remote load: NO
- Algorithm:
 - Use of threshold to determine load overload
 - If overloaded randomly forwards to neighbor
 - Up to M hops
- Potentially inefficient
- Extremely fast and simple
- Needs parameter tuning (Thr)

1175

• Algorithm:

- If local overload
- Probe load from neighbors
 - Query message
 - Response message
- Select least loaded
- Forwards to selected neighbor (or process locally)
- Potentially more efficient
- Risk from inaccurate info

Load-aware approach

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Stale load information

- Stale load:
 - @t2 we know L(N1, t1)
 - @t4 we know L(N2, t3)
 - we select N1 based on stale load information
 - @t5 L(N1, t5) \neq L(N1, t1)
- Load changes over time
- Communication delay grows
 - Inaccurate information
 - Probing less useful

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Herding effect

- Two neighbors probe node N
 - N is underloaded
 - All neighbors select N
 - $N \rightarrow overload$
- Delay in information
 propagation
 - Effect of stale load
 - Can cause oscillations
 - Occurs when a node receives multiple concurrent probes

Stale information model

- Queuing model
 - Processing unit
 - Message queue for data exchange among nodes
- Model loss of correlation between:
 - Actual load
 - Advertised load
- Perfect correlation \rightarrow ideal case
- Complete loss of correlation \rightarrow random load information
- Correlation depends on:
 - Network delay
 - Network load (affects delay)
 - Load evolution dynamic

Numerical results

- Drop rate vs. Delay
- Scenario
 - Incoming load
 - Threshold
- Delay grows:
 - Increase of drop rate
- Effects of scenario
 - High load → faster degradation
 - High threshold → more aggressive probing
 - Detrimental effect for high delay

Simulation setup

- Traffic monitoring application, OMNET++ sim
 - Processing images from camera
 - Object identification (cars/humans/bikes)
 - Limited queue (K=10, RT application)
 - Proc. time ≈ Network delay (10 ms)
- Two scenarios:
 - Uniform mesh
 - Same load for fog nodes
 - Same BW in communication
 - Geographic scenario (Modena)
 - Highly variable load
 - Based on real topography
 - BW ∝ 1/distance (LoRaWAN)

Mesh scenario - Times vs. Threshold Θ

- Queuing time •
 - Increases with Θ
 - Less balancing \rightarrow longer queues
- **Balancer** time
 - Decreases with time
 - Less invocations
 - Less network load
- **Response** time ullet
 - Sweet point for $\Theta = 2$
 - Probe faster (and more stable) than Sequential

UNIVERSITÀ DEGLI STUDI DI

Mesh scenario

- Strong correlation Drop rate / Probe delay (Balancer time)
- Cup shaped curve of drop rate vs. Θ
- Herding effect:
 - High Fan out, many queries \rightarrow Like load-blind (or worse!)
 - Low fan out reduces this effect MSWIM 2020, 16-20 Nov, 2020

ET RECIENS

Mesh scenario

- Analysis for different Fan-Out
 - FO grows \rightarrow impact of higher drop rate (apparently faster)
- Impact of η_{Q} (rate between probe and job size)
 - Large probe messages \rightarrow high delay
 - High Fan-Out \rightarrow high delay

ET RECIENTS

MSWIM 2020, 16-20 Nov, 2020

- High variance of incoming load in fog nodes
 - Reduced impact of herding effect
 - Only few nodes start probes
- Risk of network saturation in these nodes
 - Evident when probe message is large

MSWIM 2020, 16-20 Nov, 2020

Conclusions

- Challenges of Fog computing
 - Load balancing in a distributed infrastructure
 - Impact of communication overhead
- Contributions
 - Probe-based load balancing algorithm
 - Mathematical model of delay effects
- Experimental evaluation
 - Numerical analysis on mathematical model
 - Simulation (several parameters and a realistic scenario)
- Open issues
 - Validations with prototypes
 - Proactive probing (informed protocols)

Randomized load balancing under Loosely correlated state information In fog commuting

Roberto Beraldi "La Sapienza" University, Rome

Claudia Canali, <u>Riccardo Lancellotti</u> University of Modena and Reggio Emilia

> Gabriele Proietti Mattia "La Sapienza" University, Rome

