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Motivation for Fog computing

● New paradigm: Smart cities, large scale sensing applications
● Several fields of application:

– Urban applications
– Industrial
– Automotive
– Healthcare
– ...

● New scenarios: Cyber-physical systems
– Geographically distributed sensors
– Huge amount of data produced
– Data processing (aggregation, filtering, …) close to sensors



MSWIM 2020, 16-20 Nov, 2020 3

Fog architecture overview

● Sensors: data production
● Fog: data processing

– Aggregation, filtering
– Latency-critical tasks

● Cloud: complex applications
● Performance factors:

– Network delay 
– Processing time @ fog node

● Addressing delay: optimize 
infrastructure topology

● Still need to manage the 
infrastructure 
– → Load balancing
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Load balancing in Fog

● Two reasons for load balancing
– Unbalanced incoming load
– Transient load fluctuations 

in the infrastructure
● Forward jobs 

– From overloaded nodes
– To underloaded nodes

● Requires:
– Knowledge of local load
– Interaction with other nodes
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Detail of a fog node

● Fog node:
– Load balancer (LB – implements balancing algorithm)
– Processing unit (PU – server with queue)

● Load: jobs in processing unit
● Finite queue size: PU can drop jobs
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Load-blind approach

● Limited knowledge of load 
– Local load: OK
– Remote load: NO

● Algorithm:
– Use of threshold to 

determine load overload
– If overloaded randomly 

forwards to neighbor
– Up to M hops

● Potentially inefficient
● Extremely fast and simple
● Needs parameter tuning (Thr)
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Load-aware approach

● Knows of local and remote load
● Algorithm:

– If local overload 
– Probe load from neighbors

● Query message
● Response message

– Select least loaded
– Forwards to selected 

neighbor 
(or process locally)

● Potentially more efficient
● Risk from inaccurate info
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Stale load information

● Stale load:
– @t2 we know L(N1, t1)
– @t4 we know L(N2, t3)
– we select N1 based on 

stale load information
– @t5 L(N1, t5) ≠ L(N1, t1)

● Load changes over time
● Communication delay grows

– Inaccurate information
– Probing less useful
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Herding effect

● Two neighbors probe node N
– N is underloaded
– All neighbors select N
– N → overload

● Delay in information 
propagation
– Effect of stale load
– Can cause oscillations
– Occurs when a node 

receives multiple 
concurrent probes
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Stale information model

● Queuing model
– Processing unit
– Message queue for data exchange among nodes

●  Model loss of correlation between: 
– Actual load 
– Advertised load

● Perfect correlation → ideal case
● Complete loss of correlation → random load information
● Correlation depends on:

– Network delay 
– Network load (affects delay)
– Load evolution dynamic
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Numerical results

● Drop rate vs. Delay
● Scenario

– Incoming load 
– Threshold

● Delay grows:
– Increase of drop rate

● Effects of scenario
– High load → faster 

degradation
– High threshold → more 

aggressive probing
– Detrimental effect for high delay
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Simulation setup

● Traffic monitoring application, OMNET++ sim
– Processing images from camera
– Object identification (cars/humans/bikes)
– Limited queue (K=10, RT application)
– Proc. time ≈ Network delay (10 ms)

● Two scenarios:
– Uniform mesh

● Same load for fog nodes
● Same BW in communication

– Geographic scenario (Modena)
● Highly variable load
● Based on real topography
● BW ∝ 1/distance (LoRaWAN)
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Simulation results

● Mesh scenario
– Times vs. Threshold Θ

● Queuing time
– Increases with Θ
– Less balancing 

→ longer queues
● Balancer time

– Decreases with time
– Less invocations
– Less network load

● Response time
– Sweet point for Θ=2
– Probe faster (and more stable) than Sequential
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Mesh scenario

● Strong correlation Drop rate / Probe delay (Balancer time)
● Cup shaped curve of drop rate vs. Θ
● Herding effect:

– High Fan out, many queries → Like load-blind (or worse!)
– Low fan out reduces this effect
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Mesh scenario

● Analysis for different Fan-Out
– FO grows → impact of higher drop rate (apparently faster)

● Impact of ηQ (rate between probe and job size)
– Large probe messages → high delay
– High Fan-Out → high delay
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Geographic scenario

● High variance of incoming load in fog nodes
– Reduced impact of herding effect 
– Only few nodes start probes

● Risk of network saturation in these nodes 
– Evident when probe message is large



MSWIM 2020, 16-20 Nov, 2020 17

Conclusions

● Challenges of Fog computing
– Load balancing in a distributed infrastructure
– Impact of communication overhead

● Contributions
– Probe-based load balancing algorithm
– Mathematical model of delay effects

● Experimental evaluation
– Numerical analysis on mathematical model
– Simulation (several parameters and a realistic scenario)

● Open issues
– Validations with prototypes
– Proactive probing (informed protocols)
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