
A Heuristic-Based Decision Tree for Connected
Components Labeling of 3D Volumes:

Implementation and Reproducibility Notes

Federico Bolelli, Stefano Allegretti, and Costantino Grana

Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia

{name.surname}@unimore.it

Abstract. This paper provides a detailed description of how to install,
setup, and use the YACCLAB benchmark to test the algorithms pub-
lished in “A Heuristic-Based Decision Tree for Connected Components
Labeling of 3D Volumes,” underlying how the parameters affect and in-
fluence experimental results.

1 Introduction

Although introduced many decades ago [31], the task of labeling objects inside
binary images is still employed in several scenarios, whenever an identification
of segmented visual objects or image regions is required. This procedure, usually
identified as Connected Components Labeling or CCL in short, has a unique and
exact solution which provides a description of the objects inside binary images,
represented by an output symbolic image where pixels of a connected component
are assigned the same integer identifier.

As a matter of fact, many state-of-the-art image processing and computer
vision pipelines exploit CCL as a fundamental pre- or post-processing step. The
fields of application of such an algorithm range from Object Tracking [18] to Doc-
ument Restoration [10,25], including Image Segmentation [1,29], Medical Imag-
ing [13,19,30] and many others [6,17]. For this reason, having a fast and efficient
algorithm, able to minimize its impact on image analysis tasks, is undoubtedly
very advantageous. This is why the research efforts in labeling techniques have
such a very long story, full of different strategies and improvements targeting
both sequential [8,9,20,22,23,34] and parallel architectures [2,3,5,24,28,32,35].
Among them, some of the most promising techniques that led to major break-
throughs in the field consist in the usage of Decision Trees (DTrees), combined
with the 2 × 2 block-based approach. A detailed description of the algorithms
based on these paradigms is provided in [7]. Moreover, algorithmic solutions re-
lying on DTrees have demonstrated their effectiveness even when applied, with
the necessary variations, to parallel architectures [4,12].

Unfortunately, existing techniques for the generation of DTrees become quickly
unfeasible when the size of the mask used to scan the input image increases. This



II

prevented the application of block-based trees to 3D scenarios. In order to com-
pensate for this limitation a novel heuristic algorithm, based on decision tree
learning and named Entropy Partitioning Decision Tree (EPDT), has been pre-
sented in [33]. This algorithm allows to compute near-optimal decision trees for
large scan masks, overtaking the limitations of existing approaches.

This paper describes the benchmark used to evaluate the performance of
EPDT-generated algorithms, focusing on how to configure it to reproduce the
experiments reported in [33].

2 The Evaluation Framework

YACCLAB, Yet Another Connected Components Labeling Benchmark, has been
originally released in [21] with the aim of providing a fair comparison and evalua-
tion of CCL algorithms. The benchmark has been later improved with additional
datasets, tests and with an extension to 3D and GPU algorithms [5,11]. After its
first appearance in 2016, it has been used by many authors [14,15,36] to compare
the performance of novel proposals with state-of-the-art solutions, thus setting
a de-facto standard.

When measuring the performance of an algorithm several details should be
taken into account, as they could significantly influence the performance. How-
ever, CCL is a well-defined problem and the burden of evaluation can be reduced
to the measure of execution “speed”.

The main elements that affect execution speed can be resumed as follows:
data on which tests are performed, implementation details, hardware capabili-
ties, and code optimization provided by the compiler. YACCLAB takes all these
aspects into account; the benchmark is open-source and provides an implemen-
tation of state-of-the-art algorithms, directly including the source code released
together with the scientific papers whenever available. Given its open-source
nature, anyone can verify literature claims testing the algorithms with any com-
bination of hardware architecture, operating system and build tools.

The public dataset provided with the benchmark covers most of CCL fields
of application, including 2D images and 3D volumes of both real world and syn-
thetically generated domains. A detailed description of the YACCLAB dataset is
available in [5]. Because experimental results reported in [33] concern 3D EPDT-
generated algorithms, the general properties of 3D datasets are summarized in
Table 1 and a brief description follows:

– OASIS is a dataset of medical MRI data taken from the OASIS project [27],
binarized with the Otsu threshold;

– Mitochondria is the Electron Microscopy Dataset [26], which contains binary
sections taken from the CA1 hippocampus;

– Hilbert consists of the 3D Hilbert curve, which is a fractal space-filling curve,
obtained at different iterations (1 to 6) of the construction method.

The source code of the EPDT-generated algorithms as well as the bench-
marking suite is available at https://github.com/prittt/YACCLAB.

https://github.com/prittt/YACCLAB


III

Table 1. Properties of 3D datasets in terms of foreground pixel density, number of
connected components (objects), number of volumes, and resolution.

Density Objects
Volumes Resolution

µ σ µ σ

Hilbert 0.055 0.087 1 0 373 256× 256× 128
Mitochondria 0.059 0.006 40 5 3 1024× 768× 165
OASIS 0.198 0.025 3199 1028 6 128× 128× 128

3 How to Test EPDT-Generated Algorithms

In order to correctly install and run the current version of the YACCLAB bench-
mark, the following packages, libraries and utilities are required:

– CMake 3.13 or higher (https://cmake.org);
– OpenCV 3.0 or higher (http://opencv.org);
– Gnuplot (http://www.gnuplot.info);
– A C++ compiler supporting C++14.

The installation procedure is well detailed in the aforementioned GitHub repos-
itory; the main steps can be resumed as follows:

– Clone the repository;
– Generate the YACCLAB project using CMake;
– Set the configuration file config.yaml placed in the installation folder;
– Open the project folder, build and run.

When configuring the project through CMake the flags YACCLAB ENABLE 3D

and YACCLAB ENABLE EPDT * must be enabled in order to set-up the benchmark
for 3D algorithms and to include EPDT implementations. The CMake file should
automatically find the OpenCV installation path, otherwise it must be manually
specified. The flag YACCLAB DOWNLOAD DATASET 3D must be enabled if the user
wants CMake to automatically download the YACCLAB 3D dataset. CMake
will automatically generate the C++ project for the selected compiler.

YACCLAB allows to perform multiple tests: correctness is an initial valida-
tion of the algorithms; average runs algorithms on every image of a dataset, mea-
suring the average run-time; average with steps measures separated run-times for
the different steps each algorithm is composed of, including multiple scans over
the input image and allocation/deallocation of data structures; granularity uses
synthetic images to evaluate the performance of different approaches in terms
of scalability on the number of pixels, foreground density and pattern granular-
ity; memory reports the expected number of memory accesses required by an
algorithm on a reference dataset.

YACCLAB stores experimental results in the output path specified by the
configuration file. Multiple output formats including plain text, bar chart and
LATEX table will be produced.

https://cmake.org
http://opencv.org
http://www.gnuplot.info


IV

CCL algorithms are independent of the Union-Find strategy employed. For
this reason YACCLAB provides a Union-Find templated implementation for
most of the algorithms, thus being able to compare each algorithm (but those for
which the label solver is built-in) with different label solving strategies: standard
Union-Find (UF), Union-Find with Path Compression (UFPC) [34], Interleaved
Rem’s algorithm with splicing (RemSP) [16] and Three Table Array (TTA) [22].
This standardization reduces code variability, allowing to separate label solving
data structures from CCL strategies, and provides fair comparisons without
negatively impacting execution time.

4 Experiments Reproducibility

1 CPU 3D 26-way connectivity:

2 execute: true

3 perform:

4 correctness: true

5 average: true

6 average_with_steps: true

7 density: false

8 granularity: false

9 memory: true

10 algorithms:

11 - EPDT_3D_19c_RemSP

12 - EPDT_3D_22c_RemSP

13 - EPDT_3D_26c_RemSP

14 - LEB_3D_TTA

15 - RBTS_3D_TTA

Listing 1. Excerpt of the YAML
configuration file.

The EDPT algorithms were tested on
an Intel(R) Core(TM) i7-4790 CPU @
3.60GHz with Windows 10.0.17134 (64
bit) OS and the MSVC 19.15.26730 com-
piler. The benchmark was compiled for
x64 architecture with optimizations en-
abled. It is worth noticing that most com-
pilers need several minutes to build EPDT
algorithms; in particular, some of them
actually fail to compile EDPT 26c. For
these reasons, aforementioned algorithms
are optional and must be singularly en-
abled with CMake, as described in Sec-
tion 3.

The performance of EPDT-generated
algorithms have been compared to state-
of-the-art solutions over the collection of

3D datasets included in YACCLAB and described in Section 2. In order to repro-
duce the same experiments reported in [33], the CPU 3D 26-way connectivity

section of the configuration file must have its execute, perform and algorithms

fields set as in Listing 1. The other fields can remain as default. Finally, 2D tests
can be disabled to avoid useless experiments.

5 Conclusion

We described how to reproduce the experimental results reported in [33]. The
environment employed for testing the algorithms can significantly affect perfor-
mance. Cache size and RAM speed can change absolute results while preserving
relative performance. Operative System and compiler are likely to heavily influ-
ence the outcome.



V

References

1. Abramov, A., Kulvicius, T., Wörgötter, F., Dellen, B.: Real-Time Image Segmen-
tation on a GPU. In: Facing the multicore-challenge, pp. 131–142. Springer (2010)

2. Allegretti, S., Bolelli, F., Cancilla, M., Grana, C.: Optimizing GPU-Based Con-
nected Components Labeling Algorithms. In: 2018 IEEE International Conference
on Image Processing, Applications and Systems (IPAS). pp. 175–180. IEEE (2018)

3. Allegretti, S., Bolelli, F., Cancilla, M., Grana, C.: A Block-Based Union-Find Al-
gorithm to Label Connected Components on GPUs. In: Image Analysis and Pro-
cessing - ICIAP 2019. pp. 271–281. Springer (2019)

4. Allegretti, S., Bolelli, F., Cancilla, M., Pollastri, F., Canalini, L., Grana, C.: How
does Connected Components Labeling with Decision Trees perform on GPUs? In:
18th International Conference on Computer Analysis of Images and Patterns. pp.
39–51. Springer (2019)

5. Allegretti, S., Bolelli, F., Grana, C.: Optimized Block-Based Algorithms to Label
Connected Components on GPUs. IEEE Transactions on Parallel and Distributed
Systems pp. 423–438 (2019)

6. Berka, T.: The Generalized Feed-forward Loop Motif: Definition, Detection and
Statistical Significance. Procedia Computer Science 11, 75–87 (2012)

7. Bolelli, F., Allegretti, S., Baraldi, L., Grana, C.: Spaghetti Labeling: Directed
Acyclic Graphs for Block-Based Connected Components Labeling. IEEE Trans-
actions on Image Processing 29(1), 1999–2012 (2019)

8. Bolelli, F., Allegretti, S., Grana, C.: One DAG to Rule Them All. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence pp. 1–12 (2021)

9. Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected Components Label-
ing on DRAGs. In: International Conference on Pattern Recognition. pp. 121–126
(2018)

10. Bolelli, F., Borghi, G., Grana, C.: XDOCS: an Application to Index Historical
Documents. In: Digital Libraries and Multimedia Archives. pp. 151–162 (2018)

11. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Toward reliable experiments on the
performance of Connected Components Labeling algorithms. Journal of Real-Time
Image Processing pp. 229–244 (2018)

12. Bolelli, F., Cancilla, M., Grana, C.: Two More Strategies to Speed Up Connected
Components Labeling Algorithms. In: International Conference on Image Analysis
and Processing. pp. 48–58. Springer (2017)

13. Canalini, L., Pollastri, F., Bolelli, F., Cancilla, M., Allegretti, S., Grana, C.: Skin
Lesion Segmentation Ensemble with Diverse Training Strategies. In: Computer
Analysis of Images and Patterns. pp. 89–101. Springer (2019)

14. Chabardès, T., Dokládal, P., Bilodeau, M.: A labeling algorithm based on a forest
of decision trees. Journal of Real-Time Image Processing pp. 1527–1545 (2019)

15. Chen, J., Nonaka, K., Sankoh, H., Watanabe, R., Sabirin, H., Naito, S.: Efficient
Parallel Connected Component Labeling with a Coarse-to-fine Strategy. IEEE Ac-
cess 6, 55731–55740 (2018)

16. Dijkstra, E.W.: A discipline of programming. Prentice-Hall Englewood Cliffs, N.J
(1976)

17. Dinneen, M.J., Khosravani, M., Probert, A.: Using OpenCL for Implementing Sim-
ple Parallel Graph Algorithms. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA) (2011)

18. Dubois, A., Charpillet, F.: Tracking Mobile Objects with Several Kinects using
HMMs and Component Labelling. In: Workshop Assistance and Service Robotics in



VI

a human environment, International Conference on Intelligent Robots and Systems.
pp. 7–13 (2012)

19. Eklund, A., Dufort, P., Villani, M., LaConte, S.: BROCCOLI: Software for fast
fMRI analysis on many-core CPUs and GPUs. Frontiers in Neuroinformatics 8, 24
(2014)

20. Grana, C., Baraldi, L., Bolelli, F.: Optimized Connected Components Labeling
with Pixel Prediction. In: Advanced Concepts for Intelligent Vision Systems. pp.
431–440. Springer (2016)

21. Grana, C., Bolelli, F., Baraldi, L., Vezzani, R.: YACCLAB - Yet Another Con-
nected Components Labeling Benchmark. In: 2016 23rd International Conference
on Pattern Recognition (ICPR). pp. 3109–3114. Springer (2016)

22. He, L., Chao, Y., Suzuki, K.: A Linear-Time Two-Scan Labeling Algorithm. In:
International Conference on Image Processing. vol. 5, pp. 241–244 (2007)

23. He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-Transition-Based Connected-
Component Labeling. IEEE Transactions on Image Processing 23(2), 943–951
(2014)

24. Komura, Y.: GPU-based cluster-labeling algorithm without the use of conventional
iteration: Application to the Swendsen–Wang multi-cluster spin flip algorithm.
Computer Physics Communications 194, 54–58 (2015)

25. Lelore, T., Bouchara, F.: FAIR: A Fast Algorithm for Document Image Restora-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 2039–
2048 (2013)

26. Lucchi, A., Li, Y., Fua, P.: Learning for Structured Prediction Using Approximate
Subgradient Descent with Working Sets. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1987–1994. IEEE (2013)

27. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open
Access Series of Imaging Studies (OASIS): Longitudinal MRI Data in Nondemented
and Demented Older Adults. J. Cognitive Neurosci. 22(12), 2677–2684 (2010)

28. Perri, S., Spagnolo, F., Corsonello, P.: A Parallel Connected Component Labeling
Architecture for Heterogeneous Systems-on-Chip. Electronics 9(2), 292 (2020)

29. Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Improving Skin Lesion Segmen-
tation with Generative Adversarial Networks. In: IEEE 31st International Sympo-
sium on Computer-Based Medical Systems (CBMS). pp. 442–443. IEEE (2018)

30. Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Augmenting data with GANs
to segment melanomaskin lesions. In: Multimedia Tools and Applications. p.
15575–15592. Springer (2019)

31. Rosenfeld, A., Pfaltz, J.L.: Sequential Operations in Digital Picture Processing.
Journal of the ACM 13(4), 471–494 (1966)

32. Spagnolo, F., Frustaci, F., Perri, S., Corsonello, P.: An Efficient Connected Com-
ponent Labeling Architecture for Embedded Systems. Journal of Low Power Elec-
tronics and Applications 8(1), 7 (2018)

33. Söchting, M., Allegretti, S., Bolelli, F., Grana, C.: A Heuristic-Based Decision Tree
for Connected Components Labeling of 3D Volumes. In: 2020 25th International
Conference on Pattern Recognition (ICPR). IEEE (2021)

34. Wu, K., Otoo, E., Suzuki, K.: Two Strategies to Speed up Connected Compo-
nent Labeling Algorithms. Tech. Rep. LBNL-59102, Lawrence Berkeley National
Laboratory (2005)

35. Zavalishin, S., Safonov, I., Bekhtin, Y., Kurilin, I.: Block Equivalence Algorithm
for Labeling 2D and 3D Images on GPU. Electronic Imaging 2016(2), 1–7 (2016)

36. Zhang, D., Ma, H., Pan, L.: A Gamma-signal-regulated Connected Components
Labeling Algorithm. Pattern Recognition 91, 281–290 (2019)


	A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes: Implementation and Reproducibility Notes

