

Remote Sens. 2021, 13, 132. https://doi.org/10.3390/rs13010132 www.mdpi.com/journal/remotesensing

Article

A Genetic Optimization Resampling Based Particle Filtering
Algorithm for Indoor Target Tracking
Ning Zhou 1, Lawrence Lau 2,*, Ruibin Bai 3 and Terry Moore 4

1 International Doctoral Innovation Center, University of Nottingham Ningbo, Ningbo 315100, China;
ning.zhou@ nottingham.edu.cn

2 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom,
Hong Kong

3 School of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, China;
ruibin.bai@nottingham.edu.cn

4 Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7 2RD, UK; terry.moore@not-
tingham.ac.uk

* Correspondence: lsgi-lawrence.lau@polyu.edu.hk

Abstract: In indoor target tracking based on wireless sensor networks, the particle filtering algo-
rithm has been widely used because of its outstanding performance in coping with highly non-
linear problems. Resampling is generally required to address the inherent particle degeneracy prob-
lem in the particle filter. However, traditional resampling methods cause the problem of particle
impoverishment. This problem degrades positioning accuracy and robustness and sometimes may
even result in filtering divergence and tracking failure. In order to mitigate the particle impoverish-
ment and improve positioning accuracy, this paper proposes an improved genetic optimization
based resampling method. This resampling method optimizes the distribution of resampled parti-
cles by the five operators, i.e., selection, roughening, classification, crossover, and mutation. The
proposed resampling method is then integrated into the particle filtering framework to form a ge-
netic optimization resampling based particle filtering (GORPF) algorithm. The performance of the
GORPF algorithm is tested by a one-dimensional tracking simulation and a three-dimensional in-
door tracking experiment. Both test results show that with the aid of the proposed resampling
method, the GORPF has better robustness against particle impoverishment and achieves better po-
sitioning accuracy than several existing target tracking algorithms. Moreover, the GORPF algorithm
owns an affordable computation load for real-time applications.

Keywords: genetic algorithm; indoor positioning; particle filter; particle impoverishment;
resampling; target tracking

1. Introduction
Indoor target tracking (i.e., dynamic positioning) based on wireless sensor networks

(WSN) has received considerable attention in engineering and industrial fields in recent
years [1]. The applications include product tracking in logistics, automated guided vehi-
cles (AGV) tracking in indoor industrial scenarios, and process monitoring in car smart-
manufacturing factories, etc. As one of the mathematical methods used in indoor target
tracking, the Bayesian filter (a.k.a. Bayesian estimation) estimates the target position by
combining the position estimation at the previous time step with the known specific sys-
tem motion model and the latest measurements. Kalman filter (KF) is a well-known esti-
mation method in the Bayesian framework, but it can only deal with the linear problems
with Gaussian models. For the tracking problems, which are generally with non-linear
state-space models, two variants of KF called extended Kalman filter (EKF) [2] and un-
scented Kalman filter (UKF) [3] are used instead. Some research on using EKF and UKF

Citation: Lastname, F.; Lastname, F.;

Lastname, F. A Genetic Optimiza-

tion Resampling Based Particle Fil-

tering Algorithm for Indoor Target

Tracking. Remote Sens. 2021, 13, 132.

https://doi.org/10.3390/rs13010132

Received: 30 November 2020

Accepted: 30 December 2020

Published: 2 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/369425347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Remote Sens. 2021, 13, 132 2 of 22

in target tracking is described in [4–6]. However, these two estimation methods have some
limitations. For example, both of them have difficulties in dealing with the problems with
non-Gaussian models. Moreover, they require known prior information of the initial po-
sition, which is usually difficult to obtain in practice [6].

Another effective estimation method in the Bayesian framework is particle filter [7].
Its key idea is to approximate the required posterior distribution of target position by a
set of discrete independent random particles (samples) with associated weights [6]. Simi-
lar to the other estimation methods in the Bayesian framework (including EKF and UKF),
particle filter recursively performs position estimation through two important phases, i.e.,
prediction and update. In the prediction phase, the particles are propagated to the next
time step using the specific system motion model, and a set of predicted particles are gen-
erated. Then in the update phase, each predicted particle is evaluated by the latest meas-
urements and assigned with importance weight. A particle filter is widely used for target
tracking since it can perform global positioning (i.e., positioning when the initial position
is unknown). Compared to the EKF and UKF, a particle filter can provide position esti-
mations with higher accuracy in the highly non-linear problems with arbitrary distribu-
tion [8]. However, the particle filter still suffers from some problems. There are two main
problems that significantly affect the performance of a particle filter in indoor target track-
ing, namely, the inaccuracy of the measurements and the particle impoverishment. The
former problem generally results from the non-line-of-sight (NLOS) and multipath sig-
nals. A lot of research on this problem has been done in the past two decades and a series
of solutions have been proposed [9–13]. In contrast, the research on particle impoverish-
ment is still relatively limited. Comprehensive and exhaustive research on this problem is
required.

Resampling is generally performed after the state estimation to tackle the inherent
particle degeneracy problem in particle filtering algorithm [6]. Resampling aims to select
and copy the particles with high weights and replace the ones with low weights. However,
this operation will lead to the loss of particle diversity, also known as particle impover-
ishment. When the number of particles (i.e., sample size) used in the filter or the measure-
ment noise of a dynamic system is small, this particle impoverishment becomes more se-
rious [6,8]. The particle impoverishment degrades the positioning accuracy and robust-
ness, sometimes it may even cause filtering divergence and tracking failure. In this sense,
mitigating particle impoverishment in a particle filtering algorithm is crucial for accurate
and robust indoor target tracking.

To date, some solutions to the particle impoverishment problem have been proposed.
A simple solution is adding Gaussian jitter noise to the over-centralized resampled parti-
cles [14]. Besides, the regularized particle filter (RPF) proposed in [15] constructs a diffu-
sion kernel density function for each particle before resampling to prevent particle impov-
erishment. However, both solutions above are ineffective in situations where the meas-
urement noise or the number of particles is very small. In the resample-move sequential
Markov chain Monte Carlo (RM-SMCMC) algorithm proposed in [16], the particle diver-
sity is maintained by moving a resampled particle to a neighboring region according to a
given acceptance probability. The drawback of this solution is that it requires substantial
computation to run the algorithm until convergence. Moreover, the risk sensitive particle
filter (RSPF) in [17] mitigates particle impoverishment by constructing explicit risk func-
tions. Li et al. [18] propose a deterministic resampling method that can strictly keep the
original state density and maintain particle diversity. In the recent decade, solutions based
on genetic algorithms are widely used for improving the particle filter-based target track-
ing performance. Since it is indicated that the particle filter has similar implementation
characteristics to that of a genetic algorithm [19], [20], the evolutionary ideas can be intro-
duced to the particle filter by treating the filtering problem as a sequential optimization
problem. Park et al. [21] propose an evolutionary particle filter that uses the genetic algo-
rithm-inspired proposal distribution for particle sampling. Zhang et al. [22] propose an

Remote Sens. 2021, 13, 132 3 of 22

evolutionary particle filter based on self-adaptive multi-features fusion. The genetic algo-
rithm can be specifically used in the resampling phase and increases the diversity of par-
ticles [23]. Wang et al. [24] propose a genetic algorithm-based resampling method, in
which the crossover and mutation probabilities used in the genetic operation are both de-
termined adaptively according to the degree of particle degeneracy. Zhao and Li [25] use
a particle swarm optimization (PSO) strategy in the resampling phase to shift the particles
to the higher likelihood region. Moghaddasi and Faraji [26] propose an algorithm called
reduced particle filter based upon genetic algorithm (RPFGA), where the particles with
the highest weights are selected to perform evolution using a genetic algorithm in the
resampling phase. Test results of the above solutions show that they can mitigate particle
impoverishment and improve state estimation performance to some extent. However,
most of these solutions have more complexity and suffer from higher computation load,
which is a challenge for real-time applications. Moreover, few of these solutions take into
account the quality of resampled particles and their effects on state estimation. Therefore,
it is difficult to guarantee these solutions are still effective when the number of particles
used in the filter is very small.

Aiming at mitigating the effect of particle impoverishment on positioning and im-
prove the positioning accuracy, this paper proposes an improved genetic optimization
based resampling method. The proposed resampling method consists of five operators,
i.e., selection, roughening, classification, crossover, and mutation. This resampling
method is then integrated into the particle filtering framework to form a genetic optimi-
zation resampling based particle filtering (GORPF) algorithm. The results of two different
tracking tests show that with the aid of the proposed resampling method, the GORPF
achieves significantly better positioning accuracy than several existing indoor target track-
ing algorithms with an affordable computation load for real-time applications. The con-
tributions of this paper are listed as follows.

(1) The proposed improved genetic optimization based resampling method is able to
optimize the distribution and maintain the diversity of the resampled particles, which is
generally unavailable for the traditional resampling methods.

(2) The proposed GORPF algorithm can improve the positioning accuracy by about
25% when comparing with the state-of-the-art positioning algorithms. Moreover, it has
strong robustness to the particle impoverishment resulted from a small number of parti-
cles and small measurement noise.

The remaining paper is structured as follows. In Section 2, the materials and methods
are described. In Section 3, the test results of the proposed algorithm are presented. In
Section 4, discussions of the test results are made. Finally, the conclusions are drawn in
Section 5.

2. Materials and Methods
This section first briefly introduces the basics of the particle filter and genetic algo-

rithm that were used in the algorithm development in this work. Inspired by the idea of a
genetic algorithm, an improved genetic optimization resampling method was proposed.
This proposed resampling method was integrated into the particle filtering framework to
form a GORPF algorithm. The description of the proposed resampling method, as well as
the full procedure of the GORPF algorithm, were presented. Finally, the performance as-
sessment of the proposed GORPF algorithm in target tracking was carried out. Two dif-
ferent and independent tracking tests were described.

2.1. Basics of a Generic Particle Filter and Genetic Algorithm
This subsection first introduces the principle of a generic particle filter. Then, the con-

cept of a genetic algorithm is briefly described.

Remote Sens. 2021, 13, 132 4 of 22

2.1.1. Generic Particle Filter
A particle filter is a sequential Monte Carlo method in the framework of a Bayesian

filter. Before the brief introduction of a generic particle filter, the state-space model of the
dynamic system should be defined first. The state-space model aimed to find out the op-
timal state estimate given the observed data. A general form of the dynamic state-space
model was defined as follows [6] 𝒙 = 𝒇(𝒙) + 𝒘 (1)𝒚 = 𝒉(𝒙) + 𝒗 (2)

where 𝒙 and 𝒚 were the state vector and measurement vector at time step 𝑘, respec-
tively. 𝒘 and 𝒗 were the additive white process and measurement noise, respectively.
The covariance of process noise and measurement noise denoted 𝑸 and 𝑹, respectively. 𝒇(∙) and 𝒉(∙) were the two known transition and measurement functions, respectively,
and they were probably non-linear. The particle filter assumed that the states 𝒙 subject
to the first-order Markov process, and 𝒚 were conditionally independent given the
states.

The particle filter approximated the posterior distribution of state 𝑝(𝒙 |𝒚 :) by a
set of particles 𝒙 that were randomly sampled from a known proposal distribution 𝑞(𝒙 |𝒚 :), given by 𝑝(𝒙 |𝒚 :) = 𝑤 𝛿(𝒙 − 𝒙) (3)

in which 𝛿(∙) was the Dirac delta function, 𝑁 was the number of particles, and 𝑤 was
the normalized importance weight (also called weight in the following) of the 𝑖th particle.
The weight (unnormalized) of the 𝑖th particle at time step 𝑘 (i.e., 𝑤) could be updated
by 𝑤 = 𝑤 𝑝 𝒚 |𝒙 𝑝 𝒙 |𝒙𝑞 𝒙 |𝒙 , 𝒚 (4)

The choice of the proposal distribution affected the state estimation performance. In prac-
tical applications, the transition distribution 𝑝(𝒙 |𝒙) was usually used as the proposal
distribution, i.e., 𝑞(𝒙 |𝒚 :) = 𝑝(𝒙 |𝒙). In this case, the weight update in Equation (4)
was simplified as 𝑤𝑘𝑖 = 𝑤𝑘−1𝑖 𝑝 𝒚 |𝒙 (5)

The weights obtained from Equation (5) needed to be normalized before resampling. The
weight normalization was given by 𝑤𝑘𝑖 = 𝑤𝑘𝑖 / 𝑤 (6)

After a few of the iterations, all but a small number of particles would have negligible
weights, this was the so-called particle degeneracy problem. This problem resulted in a
lot of computation being wasted on updating the particles that had negligible contribu-
tions to the approximation of posterior distribution. The approximated effective sample
size 𝑁 is usually used to measure the degree of particle degeneracy, which was given
by 𝑁 = 1∑ (𝑤𝑘𝑖) (7)

A small 𝑁 value indicated a severe particle degeneracy and vice versa. When a severe
particle degeneracy was observed (i.e., 𝑁 was less than a manually predefined thresh-
old 𝑁), resampling was implemented, otherwise, the posterior particles were directly

Remote Sens. 2021, 13, 132 5 of 22

used for the state prediction at the next time step. The above 𝑁 calculation was specif-
ically designed for the generic particle filter. It was also available to perform resampling
in every iteration without calculating 𝑁 , such as the sequential importance resampling
(SIR) algorithm (a.k.a. bootstrap filter) [6]. SIR is the most widely used particle filter in
practice.

2.1.2. Genetic Algorithm
The genetic algorithm is a population-based optimization method that simulates the

natural biological evolution process. Every candidate solution in the solution space of the
optimization problem corresponds to every individual in nature, and they are updated in
every generation.

The traditional genetic algorithm requires an encoding operation before the update
of the candidate solutions. Encoding is the process of representing a candidate solution in
the form of a string that conveys the information, this process is similar to the formation
of chromosomes in biology. Each bit in the string represents a piece of information in the
candidate solution. One of the most widely used encoding methods is binary encoding,
which represents a candidate solution with the strings of 0 and 1 [27]. This encoding
method is usually used in knapsack problems [28]. Another more simple and straightfor-
ward encoding method is real-value encoding. It represents the candidate solution with a
vector of real numbers. More details of the real-value encoding method can be found in
[29].

The update of candidate solutions in the standard genetic algorithm is generally per-
formed through three important operators, i.e., selection, crossover, and mutation. The
selection operator selects the candidate solutions based on the law of “the survival of the
fittest”—selecting good solutions and eliminating bad solutions while keeping the popu-
lation size constant. The quality of a candidate solution is evaluated by the fitness function
and quantified by the fitness value. This fitness value reflects how close the candidate
solution is to the optimal solution. Some common selection methods in the genetic algo-
rithm are introduced in [30]. The selected solutions are then inputted into the mating pool
(i.e., a collection of the selected solutions), and they will be used in the following crossover
operator. The crossover operator randomly selects two candidate solutions (i.e., parents)
from the mating pool and exchanges part of their information to create new solutions (i.e.,
offspring). Some common crossover methods are introduced in [31]. Similar to individuals
in nature, the mutation may happen on the offspring solutions in the genetic algorithm.
The mutation operator is to change part of the information in the offspring solutions, this
is important for maintaining population diversity and preventing the genetic algorithm
trapping into local optimal solutions.

This paper introduced the idea of a genetic algorithm to the resampling phase. An
improved genetic optimization resampling method was proposed. The introduction of
this proposed resampling method is described in the next subsection.

2.2. Genetic Optimization Resampling-Based Particle Filter (GORPF)
In this subsection, the proposed improved genetic optimization resampling method

is described first. Then, the procedure of the GORPF algorithm is presented.

2.2.1. Improved Genetic Optimization Resampling Method
The improved genetic optimization resampling method was designed to mitigate the

particle impoverishment problem and improve positioning accuracy. Before describing
the proposed resampling method, the encoding method needed to be determined first. As
aforementioned, binary encoding is widely used. However, this encoding method may
not be appropriate for particle filter-based tracking problems. The particles used in the
tracking problem consisted of a string of real numbers. When using the binary encoding
method, each component in the particle (such as the position and velocity in this work)

Remote Sens. 2021, 13, 132 6 of 22

needs to be coded as a binary string to enable the selection, crossover, and mutation, and
then each binary string requires to be decoded as a real number to calculate the goal func-
tion [32]. This process requires a high computation load, especially when the solution
space of the problem is large. Besides, binary encoding is often not natural for many prob-
lems and sometimes corrections must be made after crossover and/or mutation [33]. In the
target tracking problems based on a particle filter, each particle is essentially a candidate
solution of the state estimation that contains a vector of real numbers. These real numbers
can be the coordinates, velocity, acceleration, heading angle, etc. of the target. Compared
to the binary encoding method, the real-value encoding method can characterize these
particles more accurately and has a lower computation load. Therefore, the real-value en-
coding method was used directly in the proposed genetic optimization resampling
method. A flowchart of the proposed resampling method is given in Figure 1. The pro-
posed resampling method contained five operators, i.e., selection, roughening, classifica-
tion, crossover, and mutation. Each operator in the method is described as follows.

Figure 1. The flowchart of the improved genetic optimization resampling method.

A set of weighted posterior particles

Particles obtained after selection 𝒙 , 1/𝑁
Particles obtained after roughening 𝒙 , 𝑤

𝑁 𝑁 ?

Particle set with
high-weight
particles 𝑿 Particle set with

low-weight
particles 𝑿

Particle set with the particles after
crossover operation 𝑿 = 𝑿 , 𝑿

Selection operator

Roughening operator

Crossover
operator

yes

Crossover
operator

no

Particle set with high-
weight particles after
crossover operation 𝑿 Particle set with low-

weight particles after
crossover operation 𝑿

Mutation operator

Particle set with the particles after
mutation operation 𝑿

Resampled particles used for the
state estimation at next time step

Classification operator

Remote Sens. 2021, 13, 132 7 of 22

Selection
Consider that a set of normalized weighed particles are obtained and formulated as 𝒙 , 𝑤𝑘𝑖 , where 𝒙 is the particle and 𝑤𝑘𝑖 is the weight. 𝑁 is the total number of par-

ticles. Taking the computation complexity and quality of the selected particles into con-
sideration, the Roulette wheel selection [34] method was used. The probability of a particle
to be selected was proportional to its weight in this method. The steps of the Roulette
wheel selection are described as follows.

(1) Sorting the particles in descending order according to the weights and create a
cumulative weight table as 𝑊(𝑖) = 𝑤𝑘𝑗 , 𝑖 = 1, … , 𝑁 (8)

(2) Randomly generate 𝑁 random numbers 𝑢 (𝑗 = 1, … 𝑁) from the standard
uniform distribution 𝑈~[0,1].

(3) For each random number 𝑢 , the 𝑖th particle is selected if 𝑊(𝑖 − 1) < 𝑢 < 𝑊(𝑖) (9)

The above selection operation is equivalent to the traditional simple random
resampling. The high-weight particles are selected and copied, and those low-weight ones
are eliminated. However, the particles obtained from Equation (9) suffered from particle
impoverishment due to the multiple copies of a few high-weight particles. Moreover, the
particles remained may trap into the local optimal regions. In our proposed resampling
method, these selected particles needed to be optimized (by the operators described in the
following) before they could be used for the state estimation at the next time step. This
was different from the traditional simple random resampling method which uses the
resampled particles for the state estimation at the next time step directly. The weights of
the selected particles were reset to 1/𝑁 .

Roughening
The diversity of the particles obtained from the selection operator were seriously re-

duced. In order to increase the diversity of these particles, a simple roughening operator
was implemented by adding a random zero-mean Gaussian jitter noise to each particle.
This jitter noise assumed that each component in the particle (i.e., state vector) was inde-
pendent, thus its covariance matrix was a diagonal matrix. For a particular component in
the particle, its standard deviation 𝜎 was given by 𝜎 = 𝐾𝐸𝑁 / (10)

where 𝐸 was the difference between the maximum and minimum values of this compo-
nent among all the particles (before roughening), 𝑑 was the dimension of the state vector, 𝐾 was a constant tuning parameter which affects the magnitude of jitter noise, and 𝑁
was the total number of particles. The magnitude of the jitter noise significantly affected
the particle distribution after roughening. A too-large jitter noise would result in very dis-
persive particles. This may cause particle degeneracy since some of the dispersed particles
may fall into the solution regions that have negligible contributions to the state estimation.
A too-small jitter noise would cause tight clusters of points to be distributed around the
original particles. As a result, the roughening operation tended to be ineffective for parti-
cle impoverishment mitigation. Therefore, the tuning parameter 𝐾 should be determined
carefully, and its determination method can be found in [14]. In order to improve the ro-
bustness of the resampling method, it was necessary to evaluate the quality of the particles
after roughening. The weight of each particle was recalculated by Equation (5). Since the
original particles (i.e., the particles obtained in selection operator) had the same weights
(i.e., 1/𝑁), the weights of the particles after the roughening operation were proportional

Remote Sens. 2021, 13, 132 8 of 22

to their measurement likelihood values, i.e., 𝑤 ∝ 𝑝(𝒚 |𝒙). These particles as well as
their normalized weights were then input to the mating pool.

Classification
As aforementioned, the particle degeneracy may happen when the tuning parameter 𝐾 was not set properly. For the purpose of evaluating the degeneracy degree of the par-

ticles obtained after roughening, the approximated effective sample size 𝑁 was calcu-
lated according to Equation (7). If 𝑁 was greater than the predefined threshold 𝑁 ,
these particles could be used in the state estimation at the next time step directly without
the additional operations. Otherwise, a particle classification was performed as follows.

(1) Sorting the particles in descending order according to their weights as 𝑿 = 𝒙 , 𝑤 , … , 𝒙 , 𝑤 (11)

where 𝑿 was the mating pool that contains 𝑁 particles obtained from roughening op-
eration. 𝒙 , 𝑤 (𝑖 = 1, … , 𝑁) denoted the sorted particle and its normalized weight.

(2) Finding out the integer 𝑚 which satisfies 𝑚 ≤ 𝑁 < 𝑚 + 1 (12)

(3) Classifying the sorted particles in 𝑿 into two disjoint particle sets as 𝑿 = 𝒙 , 𝑤 , … , 𝒙 , 𝑤𝑿 = 𝒙 , 𝑤 , … , 𝒙 , 𝑤 (13)

in which 𝑿 denoted the particle set containing high-weight particles, and 𝑿 denoted
the particle set containing low-weight particles. The integer 𝑚 was the boundary be-
tween the high-weight and low-weight particles. This classification reflected the quality
of each particle.

Crossover
Crossover is performed to increase the diversity of particles and avoid the particles

trapping into the local optimal solutions. In this paper, the parental particles in the two
different particle sets in Equation (13) implemented the crossover operation with different
rules. Note that the fitness of a particle is determined by the measurement likelihood func-
tion in this paper, i.e., 𝑓 = 𝑝 𝒚 𝒙 , where 𝑓 was the fitness of particle 𝒙 . 𝑓 meas-
ured the goodness of fit (i.e., the degree of similarity) of a particle to the measurement.
The crossover operations for the particles in the two different particle sets are described
as follows.

For the crossover operation of the particles in 𝑿 , particle pairs were generated by
randomly selecting two different parental particles 𝒙 , , and 𝒙 , , from 𝑿 first. Each
particle in 𝑿 could only be selected once. If 𝑚 in (12) was an even number, 𝑚/2 parti-
cle pairs could be generated. If 𝑚 was an odd number, (𝑚 − 1)/2 particle pairs could be
generated, the only one particle left did not implement a crossover operation and it re-
mained unchanged in 𝑿 . The fitness values of 𝒙 , , and 𝒙 , , were 𝑓 , , and 𝑓 , , , respectively. Each particle pair was applied to the arithmetic crossover [35] with a
probability 𝑝 . The arithmetic crossover was an interpolating linear combination of the
two particles. With the arithmetic crossover, two offspring particles, 𝒙 , , and 𝒙 , , ,
could be calculated by 𝒙 , , = 𝛼 𝒙 , , + (1 − 𝛼)𝒙 , ,𝒙 , , = 𝛼 𝒙 , , + (1 − 𝛼)𝒙 , , (14)

where 𝛼 and 𝛼 were the weighting factors determined by

Remote Sens. 2021, 13, 132 9 of 22

𝛼1 = 𝑓 , , /(𝑓 , , + 𝑓 , ,)𝛼2 = 𝑓 , , /(𝑓 , , + 𝑓 , ,) (15)

The fitness of the two offspring particles was calculated and denoted as fitness 𝑓 , , and 𝑓 , , , respectively. The crossover probability 𝑝 was determined adap-
tively using the Sigmoid function [36] in neural networks, which was given by [37]

𝑝 = ⎩⎪⎨
⎪⎧𝑝 , 𝑓′ < 𝑓𝑝 − 𝑝 − 𝑝1 + exp 𝜆 2 𝑓′ − 𝑓𝑓 − 𝑓 − 1 , 𝑓′ ≥ 𝑓 (16)

in which 𝑝 , 𝑝 were the predefined empirical upper and lower bounds of crossover
possibility. 𝜆 was a determined coefficient with the value of 9.903438. 𝑓 and 𝑓 are
the maximum and average fitness values of the parental particles in 𝑿 , respectively. 𝑓′ wais the larger fitness value of the two selected parental particles, i.e., 𝑓 =max 𝑓 , , , 𝑓 , , . The offspring particles 𝒙 , , and 𝒙 , , obtained by Equation (14)
were accepted based on the Metropolis rule [38]. This rule accepts the degraded offspring
particle with a certain probability. If 𝑓 , , was greater than 𝑓′, 𝒙 , , was accepted.
Otherwise, 𝒙 , , was accepted with the probability of 𝑓 , , /𝑓′ . This was imple-
mented by generating a random number 𝜀 from a standard uniform distribution and
comparing it with 𝑓 , , /𝑓′ . If 𝜀 < 𝑓 , , /𝑓′, 𝒙 , , was accepted, otherwise, it is re-
jected. The accepted 𝒙 , , replaced its parental particle 𝒙 , , in 𝑿 , otherwise 𝒙 , ,
remained unchanged in 𝑿 . This Metropolis rule was also applied for 𝒙 , , . The cross-
over operation above was repeated until all the particle pairs were implemented. After
the crossover operation, the particle set 𝑿 was re-denoted as 𝑿 . The fitness values of
the 𝑚 particles in the 𝑿 were recalculated. Different to the traditional genetic algo-
rithms, in which the crossover probability is a predefined constant, the crossover proba-
bility used here was adaptively determined according to the fitness of every particle in 𝑿 . When the particles had the risk of suffering from premature convergence to the local
optimal solution (i.e., 𝑓′ was close to 𝑓), it increased the values of crossover probabil-
ity; when the particles had the risk of suffering from divergency in the solution space (i.e., 𝑓′ was close to 𝑓), it decreased the values of crossover probability. This adaptive cross-
over probability could improve the robustness to against premature convergence and di-
vergence.

For the crossover operation of the particles in 𝑿 , a modified arithmetic crossover
operator was designed. Each particle in 𝑿 implemented the crossover with another pa-
rental particle selected from 𝑿 , and their offspring particle 𝒙 , was calculated by 𝒙 , = 𝛽𝒙 , + (1 − 𝛽)𝒙 , (17)

in which 𝒙 , was the parental particle from 𝑿 , and 𝒙 , was the parental particle se-
lected (using the Roulette wheel selection method according to the fitness values) from 𝑿 . 𝛽 was a random weighting factor which was drawn from the uniform distribution
[0,�̅�], where �̅� was the upper bound of 𝛽. The value of �̅� at a certain time step could be
calculated as �̅� = 𝑁 − 𝑁𝑁 (18)

where 𝑁 was the total number of particles, and 𝑁 was the approximated effective
sample size calculated by Equation (7). 𝛽 characterized how much information from 𝒙 , was transmitted to the offspring particle 𝒙 , . The smaller the value of 𝛽, the more
information was transmitted. The offspring particle 𝒙 , replaced its parental particle

Remote Sens. 2021, 13, 132 10 of 22

𝒙 , in 𝑿 . After the crossover operation, the particle set 𝑿 was re-denoted as 𝑿 . The
fitness values of the 𝑁 − 𝑚 particles in the 𝑿 were recalculated. Different to the arith-
metic crossover operator used for the particles in 𝑿 , this modified arithmetic crossover
operator was only implemented on the low-weight particle from 𝑿 , and only one off-
spring particle was generated. For the parental particle from 𝑿 , it did not generate off-
spring particles. This modified arithmetic crossover operator could modify the low-
weight particles into high-weight ones while the modified particles would not overlap the
high-weight particles. This could shift the particles to the region of the global optimal
solution and maintain the diversity of particles.

Mutation
Redefine 𝑿 as the combination of 𝑿 and 𝑿 , i.e., 𝑿 = 𝑿 , 𝑿 . For each par-

ticle in 𝑿 , the mutation was performed with a probability 𝑝 , given by 𝒙 = 𝒙 + 𝜼, (19)

where 𝒙 was the particle obtained after mutation operation, and its fitness was calcu-
lated and denoted as 𝑓 . 𝒙 was the particle drawn from 𝑿 . 𝜼 was a zero-mean Gauss-
ian distributed random variable with the covariance 𝜮. The mutation probability 𝑝 was
determined adaptively using the Sigmoid function, which was given by [37]

𝑝 = ⎩⎪⎨
⎪⎧𝑝 , 𝑓 < 𝑓𝑝 − (𝑝 − 𝑝)1 + exp 𝜆 2 𝑓 − 𝑓𝑓 − 𝑓 − 1 , 𝑓 ≥ 𝑓 (20)

where 𝑝 , 𝑝 were the predefined empirical upper and lower bounds of mutation
possibility. 𝜆 was the coefficient whose value was 9.903438. 𝑓 was the fitness of the par-
ticle 𝒙 . 𝑓 and 𝑓 were the maximum fitness and average fitness of the parental
particles in 𝑿 , respectively. The particles 𝒙 obtained by Equation (19) was accepted
based on the Metropolis rule. If 𝑓 was greater than 𝑓, 𝒙 was accepted. Otherwise, 𝒙 was accepted with the probability of 𝑓 /𝑓. The accepted 𝒙 replaced its parental
particle 𝒙 in 𝑿 , otherwise 𝒙 remained unchanged in 𝑿 . The mutation operation
above was repeated until 𝑁 particles were obtained. After the mutation operation, the
particle set 𝑿 was re-denoted as 𝑿 . Similar to the characteristics of crossover probabil-
ity in Equation (16), the adaptive mutation probability here could maintain the diversity
of the particles while ensuring stable convergency. After performing the five operators in
the improved genetic optimization resampling, each particle was treated equally. The
weights of the particles were reset to 1/𝑁 .

2.2.2. Genetic Optimization Resampling-Based Particle Filter
The GORPF algorithm was proposed by integrating the improved genetic optimiza-

tion based resampling method into the particle filtering framework. In the proposed
GORPF, the transition distribution was used as the proposal distribution and hence the
weights of the particles could be updated according to Equations (5) and (6). Once the
weighted particles 𝒙 , 𝑤 were obtained, the state at the time step 𝑘 could be esti-
mated using the weighted sum of the particles, given by 𝒙 = 𝑤 𝒙 (21)

where 𝒙 denoted the state estimated by the GORPF algorithm, 𝒙 and 𝑤 denoted the
state and corresponding weight of the 𝑖th particle, respectively. After the state estimation,
the proposed resampling was performed. The resampled particles were then used in the
state estimation at the next time step. The full procedure of the proposed GORPF algo-
rithm is presented in Table 1.

Remote Sens. 2021, 13, 132 11 of 22

Table 1. The procedure of the genetic optimization resampling based particle filtering (GORPF)
algorithm.

GORPF Algorithm
Data: 𝑁 , 𝑇, 𝒚 , 𝑸, 𝑹
Result: 𝒙
1. begin
2. - Generate initial particles of the position estimate: 𝒙 , 1/𝑁
3. for 𝑘 = 1: 𝑇 do
4. for 𝑖 = 1: 𝑁 do
5. - 𝒙 = 𝒇 𝒙 + 𝒘

6. - 𝑤 = (𝑹) exp − 𝒚 − 𝒉 𝒙 𝑹 𝒚 − 𝒉 𝒙

7. end for
8. - Calculate the sum of weight: 𝑡 = ∑ 𝑤
9. for 𝑖 = 1: 𝑁 do
10. - Weight normalization: 𝑤 = 𝑡 𝑤
11. end for
12. - Calculate position estimate: 𝒙 = ∑ 𝑤 𝒙
13. - Implement improved genetic optimization resampling to get 𝒙 , 1/𝑁
14. end for
15. end
 † 𝒘 is the process noise generated based on 𝑸.

2.3. Assessment of the Proposed Method
This subsection describes the performance assessment of the proposed GORPF algo-

rithm in target tracking. Two different and independent tracking tests were carried out.
The first test was assessing the proposed algorithm in a one-dimensional tracking problem
with a univariate growth model [21] through a simulation, and the second test was as-
sessing the proposed algorithm in a three-dimensional tracking problem with a constant
velocity motion model [8] through an experiment. In both tests, the positioning perfor-
mance of the proposed GORPF algorithm was compared to the four state-of-the-art track-
ing algorithms in the literature, i.e., SIR [6], SIR with Gaussian jitter noise (SIR-GJN) [14],
IGPF [24], and RPFGA [26]. The five particle filter-based algorithms (including the GORPF
algorithm) use different strategies to mitigate the particle impoverishment and different
methods to determine the parameters needed in genetic operation. Among the five algo-
rithms, the SIR does not use any strategy for particle impoverishment mitigation. The SIR-
GJN uses the roughening strategy, the RPFGA, IGPF, and GORPF use strategies based on
genetic algorithms. The parameters needed in the genetic operation in the RPFGA algo-
rithm are predefined constants while these parameters are adaptively determined in the
IGPF and GORPF algorithms.

The data processing in both Test A (simulation) and Test B (experiment) were per-
formed in the same computer system and software. The system configuration and soft-
ware version are given in Table 2.

Table 2. The computer system and software used in the two tests.

Computer Lenovo ideapad 500S-13ISK
CPU Intel Core i5-6200U CPU @ 2.30GHz
RAM 4.00 GB

Operating System Windows 10 Home Version 1903, 64 bits
Software MATLAB 9.1.0.441655 (R2016b) 64 bits

Remote Sens. 2021, 13, 132 12 of 22

2.3.1. Test A: One-Dimensional Tracking
A one-dimensional target tracking problem with a univariate growth model was con-

sidered in this test. This model is highly non-linear, multimodal, and nonstationary, and
it is widely used to assess the performance of estimation methods. The state-space model
in this problem was formulated as 𝑥 = 𝑥 2 + 25𝑥1 + 𝑥 + 8 cos[1.2(𝑘 − 1)] + 𝑤 (22)

𝑦 = 𝑥20 + 𝑣 (23)

where 𝑤 ~𝒩(0, 𝜎) and 𝑣 ~𝒩(0, 𝜎) represented the mutually independent Gaussian
process and measurement noises, respectively. In the test, the variance of the process noise
was set to 𝜎 = 5. The particle impoverishment was related to the magnitude of meas-
urement noise and particle number used in the filter. In order to evaluate the robustness
of the algorithms to these two factors, the variance of the measurement noise in this test
was set to two different values (i.e., 𝜎 = 1 for normal measurement noise and 𝜎 = 0.04
for small measurement noise), and the particle number was set to two different values
(i.e., 100 and 20). 𝑥 (𝑘 = 1,2, …) was the position that needed to be estimated, the initial
position was 𝑥 = 0 and its variance was set to 1. The initial particles 𝑥 (𝑖 = 1, … , 𝑁)
were generated from the Gaussian distribution, i.e., 𝑥 ~𝒩(0,1). In this test, the true posi-
tion of the target, as well as the measurement at each time step, were simulated based on
the state-space model in Equations (22) and (23) beforehand. The units of position 𝑥 and
time step 𝑘 was meter and second, respectively.

Regarding the parameters (𝑝 , 𝑝 , 𝑝 , and 𝑝) in the GORPF algorithm, they
were determined by tuning the parameters around the values provided by [22]. The pa-
rameters 𝑝 and 𝑝 used for crossover probability determination in Equation (16) were
set to 0.9 and 0.6, respectively, and the parameters 𝑝 and 𝑝 used for mutation prob-
ability determination in Equation (20) were set to 0.1 and 0.01, respectively. Our proposed
method generally had optimal performance with the above parameter settings. The vari-
ance 𝜮 for generating the random number in the mutation operator was set to the same
value as the variance of process noise. The threshold 𝑁 was set to 0.7𝑁 . For an unbi-
assed assessment, the above parameters used for the genetic operation were also used in
the RPFGA and IGPF algorithms unless some parameters could be determined adap-
tively. The position estimation started at the time step 𝑘 = 1 and finished at the time step 𝑘 = 50. Each algorithm obtained 50 position estimations which corresponded to the 50
time steps. The test was repeatedly performed 20 times (different runs with different
seeds) and the mean values were used to represent the positioning results. Root mean
square error (RMSE) was used as the positioning accuracy assessment metric in this test,
given by 𝑅𝑀𝑆𝐸 = ∑ () , (24)

where 𝑛 was the total number of time steps (i.e., 50). 𝑘 was the time step from 1 to 𝑛. 𝑥
and 𝑥 were the estimated and “truth” positions at time step 𝑘, respectively.

2.3.2. Test B: Three-Dimensional Tracking
A three-dimensional target tracking problem with a constant velocity model was con-

sidered in this test. The test was performed in the atrium of the Sir Peter Mansfield Build-
ing at the University of Nottingham Ningbo China (UNNC). There were six ultrawide-
band (UWB) sensors installed on the wall of the building. Compared to the traditional
wireless positioning techniques (such as WiFi), UWB transmits information based on a
non-sinusoidal narrow pulse (nanosecond-level), but not carrier phase, over a wide por-
tion of the frequency spectrum [4]. Inherently, the extremely high time resolution, as well

Remote Sens. 2021, 13, 132 13 of 22

as the large bandwidth of UWB, enables it to have the advantages such as high ranging
accuracy, high penetrating power [39], less interference from multipath effect [40], high-
speed data transmission [41], etc. Therefore, UWB sensors were used to generate the meas-
urements required for target position estimation in this test.

A closed traverse survey was carried out before the test to obtain the coordinates of
the UWB sensors in the Universal Transverse Mercator (UTM) reference system. The
closed traverse involved four stations, and the total length was 104.697 m. The angular
misclosure and linear misclosure of the traverse were 17.5′′ and 4.48 mm, respectively. The
fractional linear misclosure was 1 in 23370. A leveling survey was carried out to determine
the normal heights of the traversing stations. The leveling involved three instrument
points. The misclosure of leveling was 1 mm. The coordinates of the two traversing sta-
tions in the atrium, i.e., C1 and C2 (see Figure 2), were determined through traverse and
leveling. To minimize the errors in traverse and leveling propagating into the coordinates
of UWB sensors, the coordinates of the six UWB sensors were determined through the
total station survey from C1 and C2. The calculations of the traverse were performed by a
MicroSurvey software called Star*Net. The basics of the traverse, leveling, and total sta-
tion survey can be found in [42].

A trolley was used in this test. As shown in Figure 3, two ranging rods were tightly
attached to the trolley, and a UWB tag was fixed on the top of a ranging rod. A rectangular
track with the size of 9.6 m×6.4 m was set in the middle of the atrium. The trolley and track
helped to obtain the well-controlled tag position and height for the algorithm validation.
Twenty test points with an interval of 1.6 m were distributed on the rectangular track (see
Figure 2). These test points were used for the positioning accuracy assessment. The hori-
zontal coordinates of all the test points were known by the total station survey from C1
and C2, and the heights of the test points were determined by the leveling survey. The
UWB measurements were collected by moving the trolley between the twenty test points
with a stop-and-go method. The stop-and-go method meant to start the trolley at rest at a
test point and move towards and stop at the next test point for five seconds. When the
trolley stopped, the measurements at that point could be used to estimate the position,
and this position estimate was compared with the “truth” for evaluation purposes. This
rigorous stop-and-go test allowed us to get the UWB measurements at each test point ac-
curately because it was free from the effect of residual in UWB time synchronization, dy-
namics of the moving trolley platform, and the accuracy of visiting test points at a partic-
ular time. In our measurement collection, the trolley started from the test point P1, it
moved steadily on the track in the clockwise direction and stopped (with the tip of the
ranging rod pointed at the known test point on the track) at each test point in turn. Finally,
the trolley moved back to P1.

The state-space model of the 3-D tracking problem in this test was defined as follows.
We defined the state vector of the target as 𝒙 = [𝑥 , 𝑦 , 𝑧 , 𝑥 , 𝑦 , 𝑧] , in which (𝑥 , 𝑦 , 𝑧) was the 3-D position and (𝑥 , 𝑦 , 𝑧) was the 3-D velocity. A random-walk
model was used as the state model without loss of generality, which was given by [8] 𝒙 = 𝑨𝒙 + 𝑮𝑤 , (25)

where

𝑨 = ⎣⎢⎢
⎢⎢⎡1 0 00 1 00 0 1 𝑇 0 00 𝑇 00 0 𝑇0 0 00 0 00 0 0 1 0 00 1 00 0 1⎦⎥⎥

⎥⎥⎤, 𝑮 = ⎣⎢⎢
⎢⎢⎡𝑇 /200𝑇00

0𝑇 /200𝑇0
00𝑇 /200𝑇 ⎦⎥⎥

⎥⎥⎤,
and 𝑇 was the sampling interval. 𝑤 was the zero-mean Gaussian random process noise
with known covariance 𝑸 . This state model assumed that the velocity was subject to an
unknown acceleration which was characterized by the motion process noise.

Remote Sens. 2021, 13, 132 14 of 22

Figure 2. Locations of the known UWB sensors and test points at the test site. The red dots are the
UWB sensors, and the green dots are the test points. The black dashed line is the rectangular track
which the trolley travels on.

Figure 3. The trolley used in the test.

The UWB system used in the test provided both time-of-arrival (TOA) and angle-of-
arrival (AOA) measurements. TOA was the signal travel time between tag and sensor, this
travel time could be converted to a range measurement by multiplying the travel time
with the speed of light. AOA was based on the direction of incidence from which the re-
ceived signal arrived. For 3-D positioning, the AOA measurements contained azimuth
and elevation measurements. It was indicated that the positioning method using both
range and angle measurements could improve the positioning accuracy and robustness
[43]. Therefore, both TOA and AOA measurements were used in the test. Since six UWB
sensors were used in the test, the measurement vector consisted of eighteen measure-
ments, i.e., 𝒛 = [𝑑 , , 𝛼 , , 𝜑 , , … , 𝑑 , , 𝛼 , , 𝜑 ,] , where (𝑑 , , 𝛼 , , 𝜑 ,) (𝑖 = 1, … ,6) was
the range (derived from TOA), azimuth, and elevation measurement of the 𝑖th sensor,
respectively. The UWB TOA and AOA measurement models can be found in [44]. The
measurement noises of TOA, azimuth, and elevation are mutually independent, their
standard deviations were denoted as 𝜎 , 𝜎 and 𝜎 , respectively.

The parameters used in this test are summarized in Table 3. Since the number of par-
ticles used affected the positioning accuracy of the particle filter-based algorithm, we per-
formed tuning and found that the accuracy tended to be stable when 2000 particles were
used in each algorithm. After that, an increase in the particle number did provide signifi-

Remote Sens. 2021, 13, 132 15 of 22

cant accuracy improvement in each algorithm. This was because the prior densities ena-
bled the predicted particles to be distributed closer to the mean of the posterior densities.
Therefore, 2000 particles were used in each particle filter-based algorithm in this test. The
crossover and mutation probabilities used in this test were the same as those in Test A.
The covariance of process noise (i.e., 𝑸) was determined by tuning. The variance of the
process noise in each direction was assumed to be the same in this test, i.e., 𝑸 =diag(𝜎 , 𝜎 , 𝜎), where 𝜎 was the variance of the process noise in the three directions.
The standard deviations of the measurement noise were determined by statistical method.
The parameter 𝜮 in the mutation operation in this test could be expressed as 𝜮 =diag 𝜎 , 𝜎 , 𝜎 , 𝜎 , 𝜎 , 𝜎 , where 𝜎 was the variance of the random variable
added to the position component and 𝜎 was the variance of the random variable
added to the velocity component. For an unbiased assessment, the above genetic param-
eters used in the GORPF algorithm were also used in the RPFGA and IGPF algorithms
unless some parameters could be determined adaptively. EKF is another positioning al-
gorithm in the Bayesian framework which is widely used for three-dimensional target
tracking problem because of its high positioning accuracy [4]. For the purpose of verifying
the three-dimensional positioning performance of EKF, it was included in the assessment
along with the five particle filter-based algorithms. The test was repeatedly performed 20
times (different runs with different seeds) and the mean values were used to represent the
positioning results. The positioning accuracy was assessed by comparing the coordinates
of the twenty test points determined by each algorithm with the “truth” that was deter-
mined by the total station survey. The mean radial spherical error (MRSE) was used as
the assessment metric for evaluating the positioning accuracy in 3-D space 𝑀𝑅𝑆𝐸 = ∑ () ∑ () ∑ () , (26)

where 𝑛 was the number of test points, 𝑖 was the samples from 1 to 𝑛. 𝑥 , 𝑦 and 𝑧
were the estimated easting, northing, and height, respectively of sample 𝑖. 𝑥, 𝑦, and 𝑧
were the “truth” coordinates determined by the total station survey. In addition to the
positioning accuracy, computation load is another important metric that requires to be
assessed in three-dimensional target tracking problems. The averaged computation time
required for positioning at a point was used as the assessment metric of computation load.
The computation time of the particle filter-based algorithm was dependent on the number
of particles used. Since the particle number was set to 2000 in each particle filter-based
algorithm, this computation load assessment was unbiased. The computation time was
determined through the function of “tic” and “toc” in MATLAB.

Table 3. The parameters used in Test B.

Parameter Value 𝑁 2000 (unitless) 𝜎 0.2 m/s2 𝜎 0.25 m 𝜎 3° 𝜎 5° 𝜎 0.2 m 𝜎 0.01 m/s 𝑝 0.9 (unitless) 𝑝 0.6 (unitless) 𝑝 0.1 (unitless) 𝑝 0.01 (unitless)

Remote Sens. 2021, 13, 132 16 of 22

3. Results
This section presents the results of the two tracking tests. The results of Test A and

Test B are presented in Subsections 3.1 and 3.2, respectively.

3.1. Results of Test A
The RMSEs of the five algorithms (i.e., SIR, SIR-GJN, RPFGA, IGPF, and GORPF) in the

different test conditions (different particle numbers and different magnitudes of measurement
noise) are presented in Table 4. Moreover, the tracking trajectories as well as the absolute er-
rors of the five algorithms in the different test conditions are shown in Figures 4–6.

Table 4. The RMSEs (m) of the five particle filter-based algorithms in different test conditions.

Test Number Test Conditions
Algorithms

SIR SIR-GJN RPFGA IGPF GORPF
Test 1 𝑁 = 100, 𝜎 = 1 3.0117 2.8601 2.7280 2.6625 2.1999
Test 2 𝑁 = 20, 𝜎 = 1 3.5766 3.4715 3.2275 3.1752 2.4809
Test 3 𝑁 = 100, 𝜎 = 0.04 4.2175 4.0914 3.6317 3.6546 2.9284

(a) (b)

Figure 4. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under normal meas-
urement noise condition (𝜎 = 1). (a) Tracking trajectories; (b) Absolute errors at each time step.

(a) (b)

0 10 20 30 40 50
Time (s)

-30

-20

-10

0

10

20

30

0 10 20 30 40 50
Time (s)

0

3

6

9

12

15

0 10 20 30 40 50
Time (s)

-30

-20

-10

0

10

20

30

0 10 20 30 40 50
Time (s)

0

3

6

9

12

15

Remote Sens. 2021, 13, 132 17 of 22

Figure 5. Target tracking performance of the five particle filter-based algorithms (with 20 particles) under normal meas-
urement noise condition (𝜎 = 1). (a) Tracking trajectories; (b) Absolute errors at each time step.

(a) (b)

Figure 6. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under small meas-
urement noise condition (𝜎 = 0.04). (a) Tracking trajectories; (b) Absolute errors at each time step.

3.2. Results of Test B
The MRSEs and computation time of the six algorithms (the five particle filter-based

algorithms and the EKF algorithm) are shown in Table 5. The positioning errors of each
algorithm at the twenty test points are presented in Figure 7. Note that the results in Table
5 are based on the condition that sufficient particles (i.e., 2000) are used. In order to eval-
uate the robustness of each algorithm on the particle number, we set the value of 𝑁 to
eight different numbers (i.e., 50, 100, 200, 500, 800, 1000, 1500, 2000). The MRSEs of each
algorithm with respect to the particle number are shown in Figure 8.

Table 5. The MRSEs (m) and computation time (s) of the six algorithms.

Performance Metric
Algorithms

SIR SIR-
GJN RPFGA IGPF GORPF EKF

MRSE (m) 0.2603 0.2436 0.2306 0.2234 0.2019 0.2677
Computation time (s) 0.1602 0.1766 0.2253 0.2805 0.3382 1.2861

0 10 20 30 40 50
Time (s)

-30

-20

-10

0

10

20

30

0 10 20 30 40 50
Time (s)

0

5

10

15

20

Remote Sens. 2021, 13, 132 18 of 22

Figure 7. The positioning errors at the twenty test points of the six algorithms.

Figure 8. The comparison of MRSE with different numbers of particles.

4. Discussion
This section discusses the test results presented in Section 3. The results of the two

tests are discussed separately first. The future research direction is then briefly discussed.
Regarding Test A, as the SIR algorithm does not use any strategy for particle impov-

erishment mitigation, it is used as the baseline for performance comparison. The results
in Table 4 show that with the same particle number and measurement noise magnitude,
the four algorithms with the strategies for particle impoverishment mitigation (called al-
gorithms with strategies in the following) outperform the SIR algorithm. Among these
four algorithms with strategies, the GORPF algorithm performs best. Compared to the SIR
algorithm, the GORPF algorithm improves the positioning accuracy by about 29.4% on
average while SIR-GJN, RPFGA, and IGPF improve the accuracy by about 3.65%, 11.02%,
and 12.05% on average, respectively. Considering the effect of particle number and meas-
urement noise magnitude on positioning, we found that decreasing the values of these
two parameters will lead to the positioning accuracy reduction. Specifically, by comparing
Test 1 with Test 2 (both tests use the same magnitude of measurement noise but a different
number of particles), it is found that decreasing the particle number from 100 to 20 results
in the positioning accuracy reductions of the five particle filter-based algorithms. This can

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

SIR

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

SIR-GJN

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

RPFGA

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

IGPF

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

GORPF

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Test point number

0

0.1

0.2

0.3

0.4

0.5

EKF

Remote Sens. 2021, 13, 132 19 of 22

be also reflected by comparing Figure 4 to Figure 5 which demonstrates that the position-
ing errors in Figure 5 are generally larger than those in Figure 4. Insufficient particles can-
not accurately represent the posterior distribution and also increase the degree of particle
impoverishment. Moreover, it increases the risk of suffering from premature convergence
to the local optimal solution. Table 4 shows that the four algorithms with strategies can
always outperform SIR even though the particle number used is decreased. This reveals
that the strategies used in these four algorithms are all effective in maintaining particle
diversity and improving positioning accuracy. However, when taking the extent of accu-
racy reduction into account, Table 4 shows the accuracy of SIR-GJN decreases by about
21.4%, which is the largest among the four algorithms with strategies. The comparison
between Figure 4 and Figure 5 shows that the SIR-GJN algorithm has significantly larger
errors at some time steps than those of the other three algorithms with strategies. This
implies that using roughening alone for the mitigation of particle impoverishment (caused
by a small number of particles) is less effective than the strategies used in the other three
algorithms (i.e., RPFGA, IGPF, and GORPF). Table 4 shows that the accuracy of the
GORPF is decreased by about 12.8%, which is the least among the four algorithms with
strategies. This implies the proposed resampling method used in the GORPF algorithm
has the best performance on maintaining particle diversity and improving positioning ac-
curacy. When comparing Test 1 with Test 3 (both tests use the same number of particles
but different measurement noise), it is found that decreasing the covariance of measure-
ment noise from 1.0 to 0.04 results in the positioning accuracy reduction of the five particle
filter-based algorithms. This can be also reflected by comparing Figure 4 to Figure 6 which
shows that the positioning errors in Figure 6 are significantly larger than those in Figure
4. The small measurement noise implies that the likelihood function 𝑝 𝒚 |𝒙 concen-
trates in a small region of the state space, the predicted particles obtained by the dynamic
model in the prediction phase tend to locate at the tail of likelihood function [45]. This can
cause particle impoverishment, and hence the position estimation accuracy will be signif-
icantly decreased. The four algorithms with strategies outperform SIR under the small
measurement noise condition, which reveals the effectiveness of the strategies used in
these four algorithms. Again, taking the extent of accuracy reduction into account, it
shows that both the accuracies of the GORPF and RPFGA algorithms are decreased by
about 33.1% while those of the other three algorithms are decreased by about 40%. This
implies that the strategies used in the GORPF and RPFGA algorithms have a better effect
on the mitigation of particle impoverishment (caused by small measurement noise) than
the strategies used in the other two algorithms (i.e., SIR-GJN and IGPF). Based on the
discussions above, comprehensively, the proposed GORPF algorithm has better robust-
ness against particle impoverishment (caused by small measurement noise and a small
number of particles) and achieves better positioning accuracy than the other four algo-
rithms.

Regarding Test B, both the SIR algorithm and the EKF algorithm do not use any strat-
egy to mitigate particle impoverishment. The positioning accuracy of the two algorithms
is similar. The results in Table 5 shows that the RMSE difference is only 7.4 mm. Figure 7
shows the maximum error of the EKF algorithm (about 0.45 m) is slightly larger than that
of the SIR algorithm (about 0.4 m). However, the difference in computation time between
them is very large. EKF requires almost 8 times longer time than that of SIR for position
estimation at a point. This is because EKF requires calculation of the Jacobian matrix at
each time step. The Jacobian matrix calculation is very time-consuming in large dimen-
sional problems, such as the case in the tracking problem in Test B where the dimension
of the measurement vector was eighteen. Regarding the five particle filter-based algo-
rithms, when taking the SIR algorithm (without particle impoverishment mitigation strat-
egy) as a baseline, the other four algorithms all achieve improved positioning accuracies.
Table 5 shows that the GORPF algorithm performs best in terms of positioning accuracy
among them. Compared to the SIR algorithm, the GORPF algorithm improves positioning
accuracy by about 22.4%. Figure 7 shows that the maximum error of the GORPF algorithm

Remote Sens. 2021, 13, 132 20 of 22

is about 0.35 m and the minimum error is less than 0.1 m. Both values are less than those
in the other five algorithms. As shown in Figure 8, the number of particles does affect the
positioning accuracy of each particle filter-based algorithm. Increasing the particle num-
ber will improve the positioning accuracy of each algorithm. When insufficient particles
are used in the filtering (such as 𝑁 is less than 200), the positioning accuracy will reduce
significantly. Nevertheless, the SIR-GJN, RPFGA, IGPF, and GORPF algorithms can gen-
erally outperform the SIR algorithm because of their strategies used for particle impover-
ishment mitigation. This finding agrees with the finding in Test A. A very small number
of particles can cause a serious loss of particle diversity. Figure 8 shows that when only 50
particles are used in each algorithm, the positioning accuracy of the GORPF is much
higher than those of the other four algorithms (which are almost 0.4 m). This reveals the
GORPF has better robustness to particle impoverishment than the others. The outstanding
performance of the GORPF mainly owes to the improved genetic optimization resampling
method used. Different from the Gaussian jitter noise roughening operation which is used
alone in the SIR-GJN algorithm, our proposed resampling method implements a genetic
operation based on the particles obtained from the roughening operation. This genetic
operation can avoid the particles falling into the region of the local optimal solution and
make the particles distribute in the region of the global optimal solution. Moreover, with
the aid of the classification operation used in the proposed resampling method, the low-
weight particles can be modified into high-weight particles. This classification operation
improves the “quality” of the offspring particles and hence improve the positioning ro-
bustness. Therefore, the GORPF algorithm performs better in terms of positioning accu-
racy than the RPFGA and IGPF algorithm (both of them do not implement the classifica-
tion operation). As for the computation time, the differences between the five particle fil-
ter-based algorithms are large. SIR requires the shortest computation time. Since the SIR-
GJN, RPFGA, IGPF, and GORPF algorithms use different strategies (i.e., Gaussian jitter
noise or/and genetic operators) for particle impoverishment mitigation, these added extra
strategies directly result in a higher computation load than the SIR. Although the pro-
posed GORPF algorithm requires the longest computation time (0.3382 s), such computa-
tion time is affordable for most real-time indoor tracking applications.

As discussed above, the GORPF has a relatively high computation load because of
the added extra strategy for particle impoverishment mitigation. This is also the problem
in many other genetic algorithm based particle filters, such as [46] and [47]. Although im-
proving the computer system configuration is an effective way for improving computa-
tion efficiency, it will increase the cost. Therefore, decreasing the computation load by
optimizing the algorithm itself (such as reduce computation steps and optimize the logic)
may be a research direction for the genetic algorithm-based particle filter in the future.

5. Conclusion
This paper proposes an improved genetic optimization resampling method which

consists of five operators, i.e., selection, roughening, classification, crossover, and muta-
tion. The proposed resampling method is integrated into the particle filtering framework
to form a genetic optimization resampling based particle filtering (GORPF) algorithm. The
proposed algorithm is assessed by a one-dimensional tracking simulation test and a three-
dimensional tracking experiment. The results in both tests show that the GORPF algo-
rithm achieves better positioning accuracy than the state-of-the-art indoor positioning al-
gorithms in the literature, even if the particle number and measurement noise magnitude
are small. The proposed novel resampling method in the GORPF algorithm can effectively
address the particle degeneracy, maintain the particle diversity, and improve the posi-
tioning accuracy and robustness. Moreover, the computation time of the GORPF algo-
rithm is affordable for most real-time tracking applications. The improved positioning ac-
curacy and robustness as well as the relatively low computation load of the GORPF algo-
rithm make it possible to be used in people tracking in airports, object tracking in logistics,
and machine guidance in Industry 4.0.

Remote Sens. 2021, 13, 132 21 of 22

Author Contributions: Conceptualization: N.Z. and L.L.; Data curation: N.Z.; Formal analysis:
N.Z. and R.B.; Investigation: N.Z., R.B., and T.M.; Methodology: N.Z. and L.L.; Software: N.Z.;
Validation: N.Z. and T.M.; Visualization: N.Z.; Writing - Original draft: N.Z.; Writing - review and
editing: L.L., R.B., and T.M.; Supervision: L.L., R.B., and T.M.; Funding acquisition, project admin-
istration and resources: L.L. All authors have read and agreed to the published version of the man-
uscript.

Funding: This work is financially supported by the International Doctoral Innovation Centre,
Ningbo Education Bureau, Ningbo Science and Technology Bureau, and the University of Notting-
ham. This work was also supported by the UK Engineering and Physical Sciences Research Council
under grant EP/L015463/1, and the Zhejiang Natural Science Foundation (ZJNSF) General Pro-
gramme under grant LY17D040001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing
of the manuscript, and in the decision to publish the results.

References
1. Khan, D.; Ullah, S.; Nabi, S. A generic approach toward indoor navigation and pathfinding with robust marker tracking. Remote

Sens. 2019, 11, 3052, doi:10.3390/rs11243052.
2. Julier, S.; Uhlmann, J.K. A new extension of the Kalman filter to nonlinear systems. In Proceedings of the SPIE 3068, Signal

Processing, Sensor Fusion, and Target Recognition VI, Orlando, FL, USA, 28 July 1997; pp. 182–193, doi:10.1117/12.280797.
3. Merwe, R.V.D.; Doucet, A.; Freitas, N.D.; Wan, E.A. The unscented particle filter. In Proceedings of the International Conference

on Neural Information Processing Systems, Denver, CO, USA, 17 January 2000; pp. 563–569.
4. Kim, T.; Park, T.H. Extended Kalman filter (EKF) design for vehicle position tracking using reliability function of radar and

lidar. Sensors 2020, 20, 4126, doi:10.3390/s20154126.
5. Chen, Z. Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics 2003, 182, 1–69,

doi:10.1080/02331880309257.
6. Risfic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications; Artech House: Norwood,

MA, USA, 2004, doi:10.1109/MAES.2004.1346848.
7. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian

tracking. IEEE Trans. Signal Process. 2002, 50, 174–188, doi:10.1109/78.978374.
8. Pak, J.M.; Ahn, C.K.; Shmaliy, Y.S.; Shi, P.; Lim, M.T. Accurate and reliable human localization using composite particle/FIR

filtering. IEEE Trans. Hum. Mach. Syst. 2017, 47, 332–342, doi:10.1109/THMS.2016.2611826.
9. Guvenc, I.; Chong, C.C. A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv.

Tut. 2009, 11, 107–124, doi:10.1109/SURV.2009.090308.
10. Yu, K.; Dutkiewicz, E. NLOS identification and mitigation for mobile tracking. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1438–

1452, doi:10.1109/TAES.2013.6557997.
11. Yan, L.; Mao, Y. Wireless location technology of Gauss Particle filter under NLOS environment. In Proceedings of the 3rd In-

ternational Conference on Materials Engineering, Manufacturing Technology and Control, Taiyuan, China, 27 January 2016,
doi:10.2991/icmemtc-16.2016.48.

12. Yin, F.; Fritsche, C.; Gustafsson, F.; Zoubir, A.M. TOA-based robust wireless geolocation and Cramér-Rao lower bound analysis
in harsh LOS/NLOS environments. IEEE Trans. Signal Process. 2013, 61, 2243–2255, doi:10.1109/TSP.2013.2251341.

13. Nicoli, M.; Morelli, C.; Rampa, V. A jump Markov particle filter for localization of moving terminals in multipath indoor sce-
narios. IEEE Trans. Signal Process. 2008, 56, 3801–3809, doi:10.1109/TSP.2008.920145.

14. Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. F
Radar Signal Process. 1993, 140, 107–113, doi:10.1049/ip-f-2.1993.0015.

15. Oudjane, N.; Musso, C. Progressive correction for regularized particle filters. In Proceedings of the Third International Confer-
ence on Information Fusion, Paris, France, 10 August 2000, doi:10.1109/IFIC.2000.859873.

16. Gilks, W.R.; Berzuini, C. Following a moving target—Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B
(Stat. Methodol.) 2001, 63, 127–146, doi:10.1111/1467-9868.00280.

17. Orguner, U.; Gustafsson, F. Risk sensitive particle filters for mitigating sample impoverishment. IEEE Trans. Signal Process. 2008,
56, 5001–2012, doi:10.1109/SSP.2007.4301259.

18. Li, T.; Sattar, T.; Sun, S. Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters. Signal
Process. 2012, 92, 1637–1645, doi:10.1016/j.sigpro.2011.12.019.

Remote Sens. 2021, 13, 132 22 of 22

19. Goldberg, D.E. Genetic Algorithm in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989; Vol-
ume 3, doi:10.1111/j.1365-2486.2009.02080.x.

20. Higuchi, T. Monte carlo filter using the genetic algorithm operators. J. Stat. Comput. Sim. 1997, 59, 1–23.
21. Park, S.; Hwang, J.P.; Kim, E.; Kang, H. A new evolutionary particle filter for the prevention of sample impoverishment. IEEE

Trans. Evol. Comput. 2009, 13, 801–809, doi:10.1109/TEVC.2008.2011729.
22. Zhang, X.; Liu, H.; Sun, X. Object tracking with an evolutionary particle filter based on self-adaptive multi-features fusion. Int.

J. Adv. Robot. Syst. 2013, 10, 1, doi:10.5772/54869.
23. Gao, M.; Li, L.; Sun, X.; Yin, L.; Li, H.; Luo, D. Firefly Algorithm (FA) based particle filter method for visual tracking. Opt. Int. J.

Light Electron Optics. 2015, 126, 1705–1711, doi:10.1016/j.ijleo.2015.05.028.
24. Wang, W.; Tan, Q.K.; Chen, J.; Ren, Z. Particle filter based on improved genetic algorithm resampling. In Proceedings of the

2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; pp. 346–350,
doi:10.1109/CGNCC.2016.7828809.

25. Zhao, J.; Li, Z. Particle filter based on particle swarm optimization resampling for vision tracking. Expert Syst. Appl. 2010, 37,
8910–8914, doi:10.1016/j.eswa.2010.05.086.

26. Moghaddasi, S.S.; Faraji, N. A hybrid algorithm based on particle filter and genetic algorithm for target tracking. Expert Syst.
Appl. 2020, 147, 113188, doi:10.1016/j.eswa.2020.113188.

27. Gaffney, J.; Pearce, C.; Green, D. Binary versus real coding for genetic algorithms: A false dichotomy? ANZIAM J. 2010, 51, 347–
359, doi:10.21914/anziamj.v51i0.2776.

28. Hassanat, A.; Almohammadi, K.; Alkafaween, E.; Abunawas, E.; Hammouri, A.; Prasath, V. Choosing mutation and crossover
ratios for genetic algorithms—A review with a new dynamic approach. Information 2019, 10, 390, doi:10.3390/info10120390.

29. Bessaou, M.; Siarry, P. A genetic algorithm with real-value coding to optimize multimodal continuous functions. Struct. Multi-
discip. Optim. 2001, 23, 63–74, doi:10.1007/s00158-001-0166-y.

30. Sivaraj, R.; Ravichandran, T. A review of selection methods in genetic algorithm. Int. J. Eng. Sci. Technol. 2011, 3, 3792–3797.
31. Umbarkar, A.J.; Sheth, P. Crossover operators in genetic algorithms: A review. ICTACT J. Soft Comput. 2015, 6, 1083–1092,

doi:10.21917/ijsc.2015.0150.
32. Huang, M.S.; Lin, T.Y.; Fung, R.F. Key design parameters and optimal design of a five-point double-toggle clamping mecha-

nism. Appl. Math. Model. 2011, 35, 4304–4320, doi:10.1016/j.apm.2011.03.001.
33. Bautista, M.; Escalera, S.; Baró, X.; Radeva, P.; Vitrià, J.; Pujol, O. Minimal design of error-correcting output codes. Pattern Recogn.

Lett. 2012, 33, 693–702, doi:10.1016/j.patrec.2011.09.023.
34. Holland, J.H. Adaptation in Natural and Artificial Systems; MIT Press: Cambridge, MA, USA, 1992.
35. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003,

doi:10.1108/aa.2004.24.3.324.1.
36. Menon, A.; Mehrotra, K.; Mohan, C.; Ranka, S. Characterization of a class of sigmoid functions with applications to neural

networks. Neural. Netw. 1996, 9, 819–835, doi:10.1016/0893-6080(95)00107-7.
37. Zhang, Y.; Zhang, H.; Fang, Z.; Wang, Q. Study on the facility layout in workshop based on improved adaptive genetic algo-

rithm. In Proceedings of the 2009 International Conference on Computational Intelligence and Software Engineering, Wuhan,
China, 11–13 December 2009; pp. 1–4, doi:10.1109/CISE.2009.5363179.

38. Metropolis, N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E. Equation of state calculations by fast computing machines.
J. Chem. Phys. 1953, 21, 1087-1092, doi:10.1063/1.1699114.

39. Geng, S.; Ranvier, S.; Zhao, X.; Kivinen, J.; Vainikainen, P. Multipath propagation characterization of ultra-wide band indoor
radio channels. In Proceedings the of 2005 IEEE International Conference on Ultra-Wideband, Zurich, Switzerland, 5–8 Septem-
ber 2005; pp. 11–15, doi:10.1109/ICU.2005.1569948.

40. Sahinoglu, Z.; Gezici, S.; Guvenc, I. Ultra-Wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols; Cam-
bridge University Press: Cambridge, UK, 2008, doi:10.1017/CBO9780511541056.

41. Mitchell, C.; Kohno, R. High data rate transmissions using orthogonal modified Hermite pulses in UWB communications. In
Proceedings of the 10th International Conference on Telecommunications, Papeete, Tahiti, French Polynesia, 23 February–1
March 2003; pp. 1278–1283, doi:10.1109/ICTEL.2003.1191619.

42. Uren, J.; Price, B. Surveying for Engineers, 5th ed.; Palgrave Macmillan: Basingstoke, UK, 2010, doi:10.1057/978-1-137-05279-7.
43. Lau, L.; Quan, Y.; Wan, J.; Zhou, N.; Wen, C.; Nie, Q.; Jing, F. An autonomous ultra-wide band-based attitude and position

determination technique for indoor mobile laser scanning. ISPRS Int. J. Geo. Inf. 2018, 7, 155, doi:10.3390/ijgi7040155.
44. Muthukrishnan, K.; Hazas, M. Position estimation from UWB pseudorange and angle-of-arrival: A comparison of non-linear

regression and Kalman filtering. In Proceedings of the Location and Context Awareness, 4th International Symposium, LoCA
2009, Tokyo, Japan, 7–8 May 2009; pp. 222–239, doi:10.1007/978-3-642-01721-6_14.

45. Zuo, J.; Liang, Y.; Zhang, Y.; Pan, Q. Particle filter with multimode sampling strategy. Signal Process. 2013, 93, 3192–3201,
doi:10.1016/j.sigpro.2013.04.023.

46. Yin, S.; Zhu, X.; Qiu, J.; Gao, H. State estimation in nonlinear system using sequential evolutionary filter. IEEE Trans. Ind. Elec-
tron. 2016, 63, 3786–3794, doi:10.1109/TIE.2016.2522382.

47. Roberge, V.; Tarbouchi, M.; Labonte, G. Comparison of parallel genetic algorithm and particle swarm optimization for real-
time UAV path planning. IEEE Trans Ind. Informat. 2013, 9, 132–141, doi:10.1109/TII.2012.2198665.

