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Abstract: In indoor target tracking based on wireless sensor networks, the particle filtering algo-
rithm has been widely used because of its outstanding performance in coping with highly non-
linear problems. Resampling is generally required to address the inherent particle degeneracy prob-
lem in the particle filter. However, traditional resampling methods cause the problem of particle 
impoverishment. This problem degrades positioning accuracy and robustness and sometimes may 
even result in filtering divergence and tracking failure. In order to mitigate the particle impoverish-
ment and improve positioning accuracy, this paper proposes an improved genetic optimization 
based resampling method. This resampling method optimizes the distribution of resampled parti-
cles by the five operators, i.e., selection, roughening, classification, crossover, and mutation. The 
proposed resampling method is then integrated into the particle filtering framework to form a ge-
netic optimization resampling based particle filtering (GORPF) algorithm. The performance of the 
GORPF algorithm is tested by a one-dimensional tracking simulation and a three-dimensional in-
door tracking experiment. Both test results show that with the aid of the proposed resampling 
method, the GORPF has better robustness against particle impoverishment and achieves better po-
sitioning accuracy than several existing target tracking algorithms. Moreover, the GORPF algorithm 
owns an affordable computation load for real-time applications. 

Keywords: genetic algorithm; indoor positioning; particle filter; particle impoverishment; 
resampling; target tracking 
 

1. Introduction 
Indoor target tracking (i.e., dynamic positioning) based on wireless sensor networks 

(WSN) has received considerable attention in engineering and industrial fields in recent 
years [1]. The applications include product tracking in logistics, automated guided vehi-
cles (AGV) tracking in indoor industrial scenarios, and process monitoring in car smart-
manufacturing factories, etc. As one of the mathematical methods used in indoor target 
tracking, the Bayesian filter (a.k.a. Bayesian estimation) estimates the target position by 
combining the position estimation at the previous time step with the known specific sys-
tem motion model and the latest measurements. Kalman filter (KF) is a well-known esti-
mation method in the Bayesian framework, but it can only deal with the linear problems 
with Gaussian models. For the tracking problems, which are generally with non-linear 
state-space models, two variants of KF called extended Kalman filter (EKF) [2] and un-
scented Kalman filter (UKF) [3] are used instead. Some research on using EKF and UKF 
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in target tracking is described in [4–6]. However, these two estimation methods have some 
limitations. For example, both of them have difficulties in dealing with the problems with 
non-Gaussian models. Moreover, they require known prior information of the initial po-
sition, which is usually difficult to obtain in practice [6]. 

Another effective estimation method in the Bayesian framework is particle filter [7]. 
Its key idea is to approximate the required posterior distribution of target position by a 
set of discrete independent random particles (samples) with associated weights [6]. Simi-
lar to the other estimation methods in the Bayesian framework (including EKF and UKF), 
particle filter recursively performs position estimation through two important phases, i.e., 
prediction and update. In the prediction phase, the particles are propagated to the next 
time step using the specific system motion model, and a set of predicted particles are gen-
erated. Then in the update phase, each predicted particle is evaluated by the latest meas-
urements and assigned with importance weight. A particle filter is widely used for target 
tracking since it can perform global positioning (i.e., positioning when the initial position 
is unknown). Compared to the EKF and UKF, a particle filter can provide position esti-
mations with higher accuracy in the highly non-linear problems with arbitrary distribu-
tion [8]. However, the particle filter still suffers from some problems. There are two main 
problems that significantly affect the performance of a particle filter in indoor target track-
ing, namely, the inaccuracy of the measurements and the particle impoverishment. The 
former problem generally results from the non-line-of-sight (NLOS) and multipath sig-
nals. A lot of research on this problem has been done in the past two decades and a series 
of solutions have been proposed [9–13]. In contrast, the research on particle impoverish-
ment is still relatively limited. Comprehensive and exhaustive research on this problem is 
required. 

Resampling is generally performed after the state estimation to tackle the inherent 
particle degeneracy problem in particle filtering algorithm [6]. Resampling aims to select 
and copy the particles with high weights and replace the ones with low weights. However, 
this operation will lead to the loss of particle diversity, also known as particle impover-
ishment. When the number of particles (i.e., sample size) used in the filter or the measure-
ment noise of a dynamic system is small, this particle impoverishment becomes more se-
rious [6,8]. The particle impoverishment degrades the positioning accuracy and robust-
ness, sometimes it may even cause filtering divergence and tracking failure. In this sense, 
mitigating particle impoverishment in a particle filtering algorithm is crucial for accurate 
and robust indoor target tracking.  

To date, some solutions to the particle impoverishment problem have been proposed. 
A simple solution is adding Gaussian jitter noise to the over-centralized resampled parti-
cles [14]. Besides, the regularized particle filter (RPF) proposed in [15] constructs a diffu-
sion kernel density function for each particle before resampling to prevent particle impov-
erishment. However, both solutions above are ineffective in situations where the meas-
urement noise or the number of particles is very small. In the resample-move sequential 
Markov chain Monte Carlo (RM-SMCMC) algorithm proposed in [16], the particle diver-
sity is maintained by moving a resampled particle to a neighboring region according to a 
given acceptance probability. The drawback of this solution is that it requires substantial 
computation to run the algorithm until convergence. Moreover, the risk sensitive particle 
filter (RSPF) in [17] mitigates particle impoverishment by constructing explicit risk func-
tions. Li et al. [18] propose a deterministic resampling method that can strictly keep the 
original state density and maintain particle diversity. In the recent decade, solutions based 
on genetic algorithms are widely used for improving the particle filter-based target track-
ing performance. Since it is indicated that the particle filter has similar implementation 
characteristics to that of a genetic algorithm [19], [20], the evolutionary ideas can be intro-
duced to the particle filter by treating the filtering problem as a sequential optimization 
problem. Park et al. [21] propose an evolutionary particle filter that uses the genetic algo-
rithm-inspired proposal distribution for particle sampling. Zhang et al. [22] propose an 
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evolutionary particle filter based on self-adaptive multi-features fusion. The genetic algo-
rithm can be specifically used in the resampling phase and increases the diversity of par-
ticles [23]. Wang et al. [24] propose a genetic algorithm-based resampling method, in 
which the crossover and mutation probabilities used in the genetic operation are both de-
termined adaptively according to the degree of particle degeneracy. Zhao and Li [25] use 
a particle swarm optimization (PSO) strategy in the resampling phase to shift the particles 
to the higher likelihood region. Moghaddasi and Faraji [26] propose an algorithm called 
reduced particle filter based upon genetic algorithm (RPFGA), where the particles with 
the highest weights are selected to perform evolution using a genetic algorithm in the 
resampling phase. Test results of the above solutions show that they can mitigate particle 
impoverishment and improve state estimation performance to some extent. However, 
most of these solutions have more complexity and suffer from higher computation load, 
which is a challenge for real-time applications. Moreover, few of these solutions take into 
account the quality of resampled particles and their effects on state estimation. Therefore, 
it is difficult to guarantee these solutions are still effective when the number of particles 
used in the filter is very small.  

Aiming at mitigating the effect of particle impoverishment on positioning and im-
prove the positioning accuracy, this paper proposes an improved genetic optimization 
based resampling method. The proposed resampling method consists of five operators, 
i.e., selection, roughening, classification, crossover, and mutation. This resampling 
method is then integrated into the particle filtering framework to form a genetic optimi-
zation resampling based particle filtering (GORPF) algorithm. The results of two different 
tracking tests show that with the aid of the proposed resampling method, the GORPF 
achieves significantly better positioning accuracy than several existing indoor target track-
ing algorithms with an affordable computation load for real-time applications. The con-
tributions of this paper are listed as follows. 

(1) The proposed improved genetic optimization based resampling method is able to 
optimize the distribution and maintain the diversity of the resampled particles, which is 
generally unavailable for the traditional resampling methods. 

(2) The proposed GORPF algorithm can improve the positioning accuracy by about 
25% when comparing with the state-of-the-art positioning algorithms. Moreover, it has 
strong robustness to the particle impoverishment resulted from a small number of parti-
cles and small measurement noise. 

The remaining paper is structured as follows. In Section 2, the materials and methods 
are described. In Section 3, the test results of the proposed algorithm are presented. In 
Section 4, discussions of the test results are made. Finally, the conclusions are drawn in 
Section 5. 

2. Materials and Methods  
This section first briefly introduces the basics of the particle filter and genetic algo-

rithm that were used in the algorithm development in this work. Inspired by the idea of a 
genetic algorithm, an improved genetic optimization resampling method was proposed. 
This proposed resampling method was integrated into the particle filtering framework to 
form a GORPF algorithm. The description of the proposed resampling method, as well as 
the full procedure of the GORPF algorithm, were presented. Finally, the performance as-
sessment of the proposed GORPF algorithm in target tracking was carried out. Two dif-
ferent and independent tracking tests were described. 

2.1. Basics of a Generic Particle Filter and Genetic Algorithm 
This subsection first introduces the principle of a generic particle filter. Then, the con-

cept of a genetic algorithm is briefly described. 
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2.1.1. Generic Particle Filter 
A particle filter is a sequential Monte Carlo method in the framework of a Bayesian 

filter. Before the brief introduction of a generic particle filter, the state-space model of the 
dynamic system should be defined first. The state-space model aimed to find out the op-
timal state estimate given the observed data. A general form of the dynamic state-space 
model was defined as follows [6] 𝒙 = 𝒇(𝒙 ) + 𝒘  (1)𝒚 = 𝒉(𝒙 ) + 𝒗  (2)

where 𝒙  and 𝒚  were the state vector and measurement vector at time step 𝑘, respec-
tively. 𝒘  and 𝒗  were the additive white process and measurement noise, respectively. 
The covariance of process noise and measurement noise denoted 𝑸 and 𝑹, respectively. 𝒇(∙) and 𝒉(∙) were the two known transition and measurement functions, respectively, 
and they were probably non-linear. The particle filter assumed that the states 𝒙  subject 
to the first-order Markov process, and 𝒚  were conditionally independent given the 
states. 

The particle filter approximated the posterior distribution of state 𝑝(𝒙 |𝒚 : ) by a 
set of particles 𝒙  that were randomly sampled from a known proposal distribution 𝑞(𝒙 |𝒚 : ), given by 𝑝(𝒙 |𝒚 : ) = 𝑤 𝛿(𝒙 − 𝒙 ) (3)

in which 𝛿(∙) was the Dirac delta function, 𝑁  was the number of particles, and 𝑤  was 
the normalized importance weight (also called weight in the following) of the 𝑖th particle. 
The weight (unnormalized) of the 𝑖th particle at time step 𝑘 (i.e., 𝑤 ) could be updated 
by 𝑤 = 𝑤 𝑝 𝒚 |𝒙 𝑝 𝒙 |𝒙𝑞 𝒙 |𝒙 , 𝒚  (4)

The choice of the proposal distribution affected the state estimation performance. In prac-
tical applications, the transition distribution 𝑝(𝒙 |𝒙 ) was usually used as the proposal 
distribution, i.e., 𝑞(𝒙 |𝒚 : ) = 𝑝(𝒙 |𝒙 ). In this case, the weight update in Equation (4) 
was simplified as  𝑤𝑘𝑖 = 𝑤𝑘−1𝑖 𝑝 𝒚 |𝒙  (5)

The weights obtained from Equation (5) needed to be normalized before resampling. The 
weight normalization was given by 𝑤𝑘𝑖 = 𝑤𝑘𝑖 / 𝑤  (6)

After a few of the iterations, all but a small number of particles would have negligible 
weights, this was the so-called particle degeneracy problem. This problem resulted in a 
lot of computation being wasted on updating the particles that had negligible contribu-
tions to the approximation of posterior distribution. The approximated effective sample 
size 𝑁  is usually used to measure the degree of particle degeneracy, which was given 
by 𝑁 = 1∑ (𝑤𝑘𝑖 )  (7)

A small 𝑁  value indicated a severe particle degeneracy and vice versa. When a severe 
particle degeneracy was observed (i.e., 𝑁  was less than a manually predefined thresh-
old 𝑁 ), resampling was implemented, otherwise, the posterior particles were directly 
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used for the state prediction at the next time step. The above 𝑁  calculation was specif-
ically designed for the generic particle filter. It was also available to perform resampling 
in every iteration without calculating 𝑁 , such as the sequential importance resampling 
(SIR) algorithm (a.k.a. bootstrap filter) [6]. SIR is the most widely used particle filter in 
practice. 

2.1.2. Genetic Algorithm 
The genetic algorithm is a population-based optimization method that simulates the 

natural biological evolution process. Every candidate solution in the solution space of the 
optimization problem corresponds to every individual in nature, and they are updated in 
every generation.  

The traditional genetic algorithm requires an encoding operation before the update 
of the candidate solutions. Encoding is the process of representing a candidate solution in 
the form of a string that conveys the information, this process is similar to the formation 
of chromosomes in biology. Each bit in the string represents a piece of information in the 
candidate solution. One of the most widely used encoding methods is binary encoding, 
which represents a candidate solution with the strings of 0 and 1 [27]. This encoding 
method is usually used in knapsack problems [28]. Another more simple and straightfor-
ward encoding method is real-value encoding. It represents the candidate solution with a 
vector of real numbers. More details of the real-value encoding method can be found in 
[29]. 

The update of candidate solutions in the standard genetic algorithm is generally per-
formed through three important operators, i.e., selection, crossover, and mutation. The 
selection operator selects the candidate solutions based on the law of “the survival of the 
fittest”—selecting good solutions and eliminating bad solutions while keeping the popu-
lation size constant. The quality of a candidate solution is evaluated by the fitness function 
and quantified by the fitness value. This fitness value reflects how close the candidate 
solution is to the optimal solution. Some common selection methods in the genetic algo-
rithm are introduced in [30]. The selected solutions are then inputted into the mating pool 
(i.e., a collection of the selected solutions), and they will be used in the following crossover 
operator. The crossover operator randomly selects two candidate solutions (i.e., parents) 
from the mating pool and exchanges part of their information to create new solutions (i.e., 
offspring). Some common crossover methods are introduced in [31]. Similar to individuals 
in nature, the mutation may happen on the offspring solutions in the genetic algorithm. 
The mutation operator is to change part of the information in the offspring solutions, this 
is important for maintaining population diversity and preventing the genetic algorithm 
trapping into local optimal solutions. 

This paper introduced the idea of a genetic algorithm to the resampling phase. An 
improved genetic optimization resampling method was proposed. The introduction of 
this proposed resampling method is described in the next subsection. 

2.2. Genetic Optimization Resampling-Based Particle Filter (GORPF) 
In this subsection, the proposed improved genetic optimization resampling method 

is described first. Then, the procedure of the GORPF algorithm is presented. 

2.2.1. Improved Genetic Optimization Resampling Method 
The improved genetic optimization resampling method was designed to mitigate the 

particle impoverishment problem and improve positioning accuracy. Before describing 
the proposed resampling method, the encoding method needed to be determined first. As 
aforementioned, binary encoding is widely used. However, this encoding method may 
not be appropriate for particle filter-based tracking problems. The particles used in the 
tracking problem consisted of a string of real numbers. When using the binary encoding 
method, each component in the particle (such as the position and velocity in this work) 
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needs to be coded as a binary string to enable the selection, crossover, and mutation, and 
then each binary string requires to be decoded as a real number to calculate the goal func-
tion [32]. This process requires a high computation load, especially when the solution 
space of the problem is large. Besides, binary encoding is often not natural for many prob-
lems and sometimes corrections must be made after crossover and/or mutation [33]. In the 
target tracking problems based on a particle filter, each particle is essentially a candidate 
solution of the state estimation that contains a vector of real numbers. These real numbers 
can be the coordinates, velocity, acceleration, heading angle, etc. of the target. Compared 
to the binary encoding method, the real-value encoding method can characterize these 
particles more accurately and has a lower computation load. Therefore, the real-value en-
coding method was used directly in the proposed genetic optimization resampling 
method. A flowchart of the proposed resampling method is given in Figure 1. The pro-
posed resampling method contained five operators, i.e., selection, roughening, classifica-
tion, crossover, and mutation. Each operator in the method is described as follows. 

 
Figure 1. The flowchart of the improved genetic optimization resampling method. 
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Selection 
Consider that a set of normalized weighed particles are obtained and formulated as 𝒙 , 𝑤𝑘𝑖 , where 𝒙  is the particle and 𝑤𝑘𝑖  is the weight. 𝑁  is the total number of par-

ticles. Taking the computation complexity and quality of the selected particles into con-
sideration, the Roulette wheel selection [34] method was used. The probability of a particle 
to be selected was proportional to its weight in this method. The steps of the Roulette 
wheel selection are described as follows. 

(1) Sorting the particles in descending order according to the weights and create a 
cumulative weight table as 𝑊(𝑖) = 𝑤𝑘𝑗 , 𝑖 = 1, … , 𝑁  (8)

(2) Randomly generate 𝑁  random numbers 𝑢  (𝑗 = 1, … 𝑁 )  from the standard 
uniform distribution 𝑈~[0,1].  

(3) For each random number 𝑢 , the 𝑖th particle is selected if 𝑊(𝑖 − 1) < 𝑢 < 𝑊(𝑖) (9)

The above selection operation is equivalent to the traditional simple random 
resampling. The high-weight particles are selected and copied, and those low-weight ones 
are eliminated. However, the particles obtained from Equation (9) suffered from particle 
impoverishment due to the multiple copies of a few high-weight particles. Moreover, the 
particles remained may trap into the local optimal regions. In our proposed resampling 
method, these selected particles needed to be optimized (by the operators described in the 
following) before they could be used for the state estimation at the next time step. This 
was different from the traditional simple random resampling method which uses the 
resampled particles for the state estimation at the next time step directly. The weights of 
the selected particles were reset to 1/𝑁 . 

Roughening 
The diversity of the particles obtained from the selection operator were seriously re-

duced. In order to increase the diversity of these particles, a simple roughening operator 
was implemented by adding a random zero-mean Gaussian jitter noise to each particle. 
This jitter noise assumed that each component in the particle (i.e., state vector) was inde-
pendent, thus its covariance matrix was a diagonal matrix. For a particular component in 
the particle, its standard deviation 𝜎  was given by 𝜎 = 𝐾𝐸𝑁 /  (10)

where 𝐸 was the difference between the maximum and minimum values of this compo-
nent among all the particles (before roughening), 𝑑 was the dimension of the state vector, 𝐾 was a constant tuning parameter which affects the magnitude of jitter noise, and 𝑁  
was the total number of particles. The magnitude of the jitter noise significantly affected 
the particle distribution after roughening. A too-large jitter noise would result in very dis-
persive particles. This may cause particle degeneracy since some of the dispersed particles 
may fall into the solution regions that have negligible contributions to the state estimation. 
A too-small jitter noise would cause tight clusters of points to be distributed around the 
original particles. As a result, the roughening operation tended to be ineffective for parti-
cle impoverishment mitigation. Therefore, the tuning parameter 𝐾 should be determined 
carefully, and its determination method can be found in [14]. In order to improve the ro-
bustness of the resampling method, it was necessary to evaluate the quality of the particles 
after roughening. The weight of each particle was recalculated by Equation (5). Since the 
original particles (i.e., the particles obtained in selection operator) had the same weights 
(i.e., 1/𝑁 ), the weights of the particles after the roughening operation were proportional 
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to their measurement likelihood values, i.e., 𝑤 ∝ 𝑝(𝒚 |𝒙 ). These particles as well as 
their normalized weights were then input to the mating pool. 

Classification 
As aforementioned, the particle degeneracy may happen when the tuning parameter 𝐾 was not set properly. For the purpose of evaluating the degeneracy degree of the par-

ticles obtained after roughening, the approximated effective sample size 𝑁  was calcu-
lated according to Equation (7). If 𝑁  was greater than the predefined threshold 𝑁 , 
these particles could be used in the state estimation at the next time step directly without 
the additional operations. Otherwise, a particle classification was performed as follows. 

(1) Sorting the particles in descending order according to their weights as 𝑿 = 𝒙 , 𝑤 , … , 𝒙 , 𝑤  (11)

where 𝑿 was the mating pool that contains 𝑁  particles obtained from roughening op-
eration. 𝒙 , 𝑤 (𝑖 = 1, … , 𝑁 ) denoted the sorted particle and its normalized weight. 

(2) Finding out the integer 𝑚 which satisfies 𝑚 ≤ 𝑁 < 𝑚 + 1 (12)

(3) Classifying the sorted particles in 𝑿 into two disjoint particle sets as 𝑿 = 𝒙 , 𝑤 , … , 𝒙 , 𝑤𝑿 = 𝒙 , 𝑤 , … , 𝒙 , 𝑤  (13)

in which 𝑿  denoted the particle set containing high-weight particles, and 𝑿  denoted 
the particle set containing low-weight particles. The integer 𝑚 was the boundary be-
tween the high-weight and low-weight particles. This classification reflected the quality 
of each particle. 

Crossover 
Crossover is performed to increase the diversity of particles and avoid the particles 

trapping into the local optimal solutions. In this paper, the parental particles in the two 
different particle sets in Equation (13) implemented the crossover operation with different 
rules. Note that the fitness of a particle is determined by the measurement likelihood func-
tion in this paper, i.e., 𝑓 = 𝑝 𝒚 𝒙 , where 𝑓  was the fitness of particle 𝒙 . 𝑓  meas-
ured the goodness of fit (i.e., the degree of similarity) of a particle to the measurement. 
The crossover operations for the particles in the two different particle sets are described 
as follows. 

For the crossover operation of the particles in 𝑿 , particle pairs were generated by 
randomly selecting two different parental particles 𝒙 , ,  and 𝒙 , ,  from 𝑿  first. Each 
particle in 𝑿  could only be selected once. If 𝑚 in (12) was an even number, 𝑚/2 parti-
cle pairs could be generated. If 𝑚 was an odd number, (𝑚 − 1)/2 particle pairs could be 
generated, the only one particle left did not implement a crossover operation and it re-
mained unchanged in 𝑿 . The fitness values of 𝒙 , ,  and 𝒙 , ,  were 𝑓 , ,  and 𝑓 , , , respectively. Each particle pair was applied to the arithmetic crossover [35] with a 
probability 𝑝 . The arithmetic crossover was an interpolating linear combination of the 
two particles. With the arithmetic crossover, two offspring particles, 𝒙 , ,  and 𝒙 , , , 
could be calculated by 𝒙 , , = 𝛼 𝒙 , , + (1 − 𝛼 )𝒙 , ,𝒙 , , = 𝛼 𝒙 , , + (1 − 𝛼 )𝒙 , ,  (14)

where 𝛼  and 𝛼  were the weighting factors determined by 
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𝛼1 = 𝑓 , , /(𝑓 , , + 𝑓 , , )𝛼2 = 𝑓 , , /(𝑓 , , + 𝑓 , , ) (15)

The fitness of the two offspring particles was calculated and denoted as fitness 𝑓 , ,  and 𝑓 , , , respectively. The crossover probability 𝑝  was determined adap-
tively using the Sigmoid function [36] in neural networks, which was given by [37] 

𝑝 = ⎩⎪⎨
⎪⎧𝑝 , 𝑓′ < 𝑓𝑝 − 𝑝 − 𝑝1 + exp 𝜆 2 𝑓′ − 𝑓𝑓 − 𝑓 − 1 , 𝑓′ ≥ 𝑓  (16)

in which 𝑝 , 𝑝  were the predefined empirical upper and lower bounds of crossover 
possibility. 𝜆 was a determined coefficient with the value of 9.903438. 𝑓  and 𝑓  are 
the maximum and average fitness values of the parental particles in 𝑿 , respectively.  𝑓′ wais the larger fitness value of the two selected parental particles, i.e., 𝑓 =max 𝑓 , , , 𝑓 , , . The offspring particles 𝒙 , ,  and 𝒙 , ,  obtained by Equation (14) 
were accepted based on the Metropolis rule [38]. This rule accepts the degraded offspring 
particle with a certain probability. If 𝑓 , ,  was greater than 𝑓′, 𝒙 , , was accepted. 
Otherwise, 𝒙 , ,  was accepted with the probability of 𝑓 , , /𝑓′ . This was imple-
mented by generating a random number 𝜀 from a standard uniform distribution and 
comparing it with 𝑓 , , /𝑓′ . If 𝜀 < 𝑓 , , /𝑓′, 𝒙 , ,  was accepted, otherwise, it is re-
jected. The accepted 𝒙 , ,  replaced its parental particle 𝒙 , ,  in 𝑿 , otherwise 𝒙 , ,  
remained unchanged in 𝑿 . This Metropolis rule was also applied for 𝒙 , , . The cross-
over operation above was repeated until all the particle pairs were implemented. After 
the crossover operation, the particle set 𝑿  was re-denoted as 𝑿 . The fitness values of 
the 𝑚 particles in the 𝑿  were recalculated. Different to the traditional genetic algo-
rithms, in which the crossover probability is a predefined constant, the crossover proba-
bility used here was adaptively determined according to the fitness of every particle in 𝑿 . When the particles had the risk of suffering from premature convergence to the local 
optimal solution (i.e., 𝑓′ was close to 𝑓 ), it increased the values of crossover probabil-
ity; when the particles had the risk of suffering from divergency in the solution space (i.e., 𝑓′ was close to 𝑓 ), it decreased the values of crossover probability. This adaptive cross-
over probability could improve the robustness to against premature convergence and di-
vergence. 

For the crossover operation of the particles in 𝑿 , a modified arithmetic crossover 
operator was designed. Each particle in 𝑿  implemented the crossover with another pa-
rental particle selected from 𝑿 , and their offspring particle 𝒙 ,  was calculated by  𝒙 , = 𝛽𝒙 , + (1 − 𝛽)𝒙 ,  (17)

in which 𝒙 ,  was the parental particle from 𝑿 , and 𝒙 ,  was the parental particle se-
lected (using the Roulette wheel selection method according to the fitness values) from 𝑿 . 𝛽 was a random weighting factor which was drawn from the uniform distribution 
[0,�̅�], where �̅� was the upper bound of 𝛽. The value of �̅� at a certain time step could be 
calculated as �̅� = 𝑁 − 𝑁𝑁  (18)

where 𝑁  was the total number of particles, and 𝑁  was the approximated effective 
sample size calculated by Equation (7). 𝛽  characterized how much information from 𝒙 ,  was transmitted to the offspring particle 𝒙 , . The smaller the value of 𝛽, the more 
information was transmitted. The offspring particle 𝒙 ,  replaced its parental particle 
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𝒙 ,  in 𝑿 . After the crossover operation, the particle set 𝑿  was re-denoted as 𝑿 . The 
fitness values of the 𝑁 − 𝑚 particles in the 𝑿  were recalculated. Different to the arith-
metic crossover operator used for the particles in 𝑿 , this modified arithmetic crossover 
operator was only implemented on the low-weight particle from 𝑿 , and only one off-
spring particle was generated. For the parental particle from 𝑿 , it did not generate off-
spring particles. This modified arithmetic crossover operator could modify the low-
weight particles into high-weight ones while the modified particles would not overlap the 
high-weight particles. This could shift the particles to the region of the global optimal 
solution and maintain the diversity of particles. 

Mutation 
Redefine 𝑿  as the combination of 𝑿  and 𝑿 , i.e., 𝑿 = 𝑿 , 𝑿 . For each par-

ticle in 𝑿 , the mutation was performed with a probability 𝑝 , given by  𝒙 = 𝒙 + 𝜼, (19)

where 𝒙  was the particle obtained after mutation operation, and its fitness was calcu-
lated and denoted as 𝑓 . 𝒙  was the particle drawn from 𝑿 . 𝜼 was a zero-mean Gauss-
ian distributed random variable with the covariance 𝜮. The mutation probability 𝑝  was 
determined adaptively using the Sigmoid function, which was given by [37] 

𝑝 = ⎩⎪⎨
⎪⎧𝑝 , 𝑓 < 𝑓𝑝 − (𝑝 − 𝑝 )1 + exp 𝜆 2 𝑓 − 𝑓𝑓 − 𝑓 − 1 , 𝑓 ≥ 𝑓  (20)

where 𝑝 , 𝑝  were the predefined empirical upper and lower bounds of mutation 
possibility. 𝜆 was the coefficient whose value was 9.903438. 𝑓 was the fitness of the par-
ticle 𝒙 . 𝑓  and 𝑓   were the maximum fitness and average fitness of the parental 
particles in 𝑿 , respectively. The particles 𝒙  obtained by Equation (19) was accepted 
based on the Metropolis rule. If 𝑓  was greater than 𝑓, 𝒙  was accepted. Otherwise, 𝒙  was accepted with the probability of 𝑓 /𝑓. The accepted 𝒙  replaced its parental 
particle 𝒙  in 𝑿 , otherwise 𝒙  remained unchanged in 𝑿 . The mutation operation 
above was repeated until 𝑁  particles were obtained. After the mutation operation, the 
particle set 𝑿  was re-denoted as 𝑿 . Similar to the characteristics of crossover probabil-
ity in Equation (16), the adaptive mutation probability here could maintain the diversity 
of the particles while ensuring stable convergency. After performing the five operators in 
the improved genetic optimization resampling, each particle was treated equally. The 
weights of the particles were reset to 1/𝑁 .  

2.2.2. Genetic Optimization Resampling-Based Particle Filter 
The GORPF algorithm was proposed by integrating the improved genetic optimiza-

tion based resampling method into the particle filtering framework. In the proposed 
GORPF, the transition distribution was used as the proposal distribution and hence the 
weights of the particles could be updated according to Equations (5) and (6). Once the 
weighted particles 𝒙 , 𝑤  were obtained, the state at the time step 𝑘 could be esti-
mated using the weighted sum of the particles, given by 𝒙 = 𝑤 𝒙  (21)

where 𝒙  denoted the state estimated by the GORPF algorithm, 𝒙  and 𝑤  denoted the 
state and corresponding weight of the 𝑖th particle, respectively. After the state estimation, 
the proposed resampling was performed. The resampled particles were then used in the 
state estimation at the next time step. The full procedure of the proposed GORPF algo-
rithm is presented in Table 1. 
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Table 1. The procedure of the genetic optimization resampling based particle filtering (GORPF) 
algorithm. 

GORPF Algorithm 
Data: 𝑁 , 𝑇, 𝒚 , 𝑸, 𝑹 
Result: 𝒙  
1. begin 
2. - Generate initial particles of the position estimate: 𝒙 , 1/𝑁  
3. for 𝑘 = 1: 𝑇 do 
4. for 𝑖 = 1: 𝑁  do 
5.         - 𝒙 = 𝒇 𝒙 + 𝒘  

6.         - 𝑤 =  (𝑹) exp − 𝒚 − 𝒉 𝒙 𝑹 𝒚 − 𝒉 𝒙  

7.     end for 
8. - Calculate the sum of weight: 𝑡 = ∑ 𝑤  
9. for 𝑖 = 1: 𝑁  do 
10.         - Weight normalization: 𝑤 = 𝑡 𝑤  
11. end for 
12.     - Calculate position estimate: 𝒙 = ∑ 𝑤 𝒙  
13.     - Implement improved genetic optimization resampling to get 𝒙 , 1/𝑁  
14. end for 
15. end 
 † 𝒘  is the process noise generated based on 𝑸.    

2.3. Assessment of the Proposed Method 
This subsection describes the performance assessment of the proposed GORPF algo-

rithm in target tracking. Two different and independent tracking tests were carried out. 
The first test was assessing the proposed algorithm in a one-dimensional tracking problem 
with a univariate growth model [21] through a simulation, and the second test was as-
sessing the proposed algorithm in a three-dimensional tracking problem with a constant 
velocity motion model [8] through an experiment. In both tests, the positioning perfor-
mance of the proposed GORPF algorithm was compared to the four state-of-the-art track-
ing algorithms in the literature, i.e., SIR [6], SIR with Gaussian jitter noise (SIR-GJN) [14], 
IGPF [24], and RPFGA [26]. The five particle filter-based algorithms (including the GORPF 
algorithm) use different strategies to mitigate the particle impoverishment and different 
methods to determine the parameters needed in genetic operation. Among the five algo-
rithms, the SIR does not use any strategy for particle impoverishment mitigation. The SIR-
GJN uses the roughening strategy, the RPFGA, IGPF, and GORPF use strategies based on 
genetic algorithms. The parameters needed in the genetic operation in the RPFGA algo-
rithm are predefined constants while these parameters are adaptively determined in the 
IGPF and GORPF algorithms. 

The data processing in both Test A (simulation) and Test B (experiment) were per-
formed in the same computer system and software. The system configuration and soft-
ware version are given in Table 2. 

Table 2. The computer system and software used in the two tests. 

Computer Lenovo ideapad 500S-13ISK 
CPU Intel Core i5-6200U CPU @ 2.30GHz 
RAM 4.00 GB 

Operating System Windows 10 Home Version 1903, 64 bits 
Software MATLAB 9.1.0.441655 (R2016b) 64 bits 
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2.3.1. Test A: One-Dimensional Tracking 
A one-dimensional target tracking problem with a univariate growth model was con-

sidered in this test. This model is highly non-linear, multimodal, and nonstationary, and 
it is widely used to assess the performance of estimation methods. The state-space model 
in this problem was formulated as  𝑥 = 𝑥 2 + 25𝑥1 + 𝑥 + 8 cos[1.2(𝑘 − 1)] + 𝑤  (22)

𝑦 = 𝑥20 + 𝑣  (23)

where 𝑤 ~𝒩(0, 𝜎 ) and 𝑣 ~𝒩(0, 𝜎 ) represented the mutually independent Gaussian 
process and measurement noises, respectively. In the test, the variance of the process noise 
was set to 𝜎 = 5. The particle impoverishment was related to the magnitude of meas-
urement noise and particle number used in the filter. In order to evaluate the robustness 
of the algorithms to these two factors, the variance of the measurement noise in this test 
was set to two different values (i.e., 𝜎 = 1 for normal measurement noise and 𝜎 = 0.04 
for small measurement noise), and the particle number was set to two different values 
(i.e., 100 and 20). 𝑥  (𝑘 = 1,2, … ) was the position that needed to be estimated, the initial 
position was 𝑥 = 0 and its variance was set to 1. The initial particles 𝑥  (𝑖 = 1, … , 𝑁 ) 
were generated from the Gaussian distribution, i.e., 𝑥 ~𝒩(0,1). In this test, the true posi-
tion of the target, as well as the measurement at each time step, were simulated based on 
the state-space model in Equations (22) and (23) beforehand. The units of position 𝑥  and 
time step 𝑘 was meter and second, respectively. 

Regarding the parameters (𝑝 , 𝑝 , 𝑝 , and 𝑝 ) in the GORPF algorithm, they 
were determined by tuning the parameters around the values provided by [22]. The pa-
rameters 𝑝  and 𝑝  used for crossover probability determination in Equation (16) were 
set to 0.9 and 0.6, respectively, and the parameters 𝑝  and 𝑝  used for mutation prob-
ability determination in Equation (20) were set to 0.1 and 0.01, respectively. Our proposed 
method generally had optimal performance with the above parameter settings. The vari-
ance 𝜮 for generating the random number in the mutation operator was set to the same 
value as the variance of process noise. The threshold 𝑁  was set to 0.7𝑁 . For an unbi-
assed assessment, the above parameters used for the genetic operation were also used in 
the RPFGA and IGPF algorithms unless some parameters could be determined adap-
tively. The position estimation started at the time step 𝑘 = 1 and finished at the time step 𝑘 = 50. Each algorithm obtained 50 position estimations which corresponded to the 50 
time steps. The test was repeatedly performed 20 times (different runs with different 
seeds) and the mean values were used to represent the positioning results. Root mean 
square error (RMSE) was used as the positioning accuracy assessment metric in this test, 
given by 𝑅𝑀𝑆𝐸 = ∑ ( ) , (24) 

where 𝑛 was the total number of time steps (i.e., 50). 𝑘 was the time step from 1 to 𝑛. 𝑥  
and 𝑥  were the estimated and “truth” positions at time step 𝑘, respectively.  

2.3.2. Test B: Three-Dimensional Tracking 
A three-dimensional target tracking problem with a constant velocity model was con-

sidered in this test. The test was performed in the atrium of the Sir Peter Mansfield Build-
ing at the University of Nottingham Ningbo China (UNNC). There were six ultrawide-
band (UWB) sensors installed on the wall of the building. Compared to the traditional 
wireless positioning techniques (such as WiFi), UWB transmits information based on a 
non-sinusoidal narrow pulse (nanosecond-level), but not carrier phase, over a wide por-
tion of the frequency spectrum [4]. Inherently, the extremely high time resolution, as well 
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as the large bandwidth of UWB, enables it to have the advantages such as high ranging 
accuracy, high penetrating power [39], less interference from multipath effect [40], high-
speed data transmission [41], etc. Therefore, UWB sensors were used to generate the meas-
urements required for target position estimation in this test. 

A closed traverse survey was carried out before the test to obtain the coordinates of 
the UWB sensors in the Universal Transverse Mercator (UTM) reference system. The 
closed traverse involved four stations, and the total length was 104.697 m. The angular 
misclosure and linear misclosure of the traverse were 17.5′′ and 4.48 mm, respectively. The 
fractional linear misclosure was 1 in 23370. A leveling survey was carried out to determine 
the normal heights of the traversing stations. The leveling involved three instrument 
points. The misclosure of leveling was 1 mm. The coordinates of the two traversing sta-
tions in the atrium, i.e., C1 and C2 (see Figure 2), were determined through traverse and 
leveling. To minimize the errors in traverse and leveling propagating into the coordinates 
of UWB sensors, the coordinates of the six UWB sensors were determined through the 
total station survey from C1 and C2. The calculations of the traverse were performed by a 
MicroSurvey software called Star*Net. The basics of the traverse, leveling, and total sta-
tion survey can be found in [42]. 

A trolley was used in this test. As shown in Figure 3, two ranging rods were tightly 
attached to the trolley, and a UWB tag was fixed on the top of a ranging rod. A rectangular 
track with the size of 9.6 m×6.4 m was set in the middle of the atrium. The trolley and track 
helped to obtain the well-controlled tag position and height for the algorithm validation. 
Twenty test points with an interval of 1.6 m were distributed on the rectangular track (see 
Figure 2). These test points were used for the positioning accuracy assessment. The hori-
zontal coordinates of all the test points were known by the total station survey from C1 
and C2, and the heights of the test points were determined by the leveling survey. The 
UWB measurements were collected by moving the trolley between the twenty test points 
with a stop-and-go method. The stop-and-go method meant to start the trolley at rest at a 
test point and move towards and stop at the next test point for five seconds. When the 
trolley stopped, the measurements at that point could be used to estimate the position, 
and this position estimate was compared with the “truth” for evaluation purposes. This 
rigorous stop-and-go test allowed us to get the UWB measurements at each test point ac-
curately because it was free from the effect of residual in UWB time synchronization, dy-
namics of the moving trolley platform, and the accuracy of visiting test points at a partic-
ular time. In our measurement collection, the trolley started from the test point P1, it 
moved steadily on the track in the clockwise direction and stopped (with the tip of the 
ranging rod pointed at the known test point on the track) at each test point in turn. Finally, 
the trolley moved back to P1. 

The state-space model of the 3-D tracking problem in this test was defined as follows. 
We defined the state vector of the target as 𝒙 = [𝑥 , 𝑦 , 𝑧 , 𝑥 , 𝑦 , 𝑧 ] , in which (𝑥 , 𝑦 , 𝑧 ) was the 3-D position and (𝑥 , 𝑦 , 𝑧 ) was the 3-D velocity. A random-walk 
model was used as the state model without loss of generality, which was given by [8] 𝒙 = 𝑨𝒙 + 𝑮𝑤 , (25) 

where 

𝑨 = ⎣⎢⎢
⎢⎢⎡1 0 00 1 00 0 1 𝑇 0 00 𝑇 00 0 𝑇0 0 00 0 00 0 0 1 0 00 1 00 0 1⎦⎥⎥

⎥⎥⎤, 𝑮 = ⎣⎢⎢
⎢⎢⎡𝑇 /200𝑇00

0𝑇 /200𝑇0
00𝑇 /200𝑇 ⎦⎥⎥

⎥⎥⎤, 
and 𝑇 was the sampling interval. 𝑤  was the zero-mean Gaussian random process noise 
with known covariance 𝑸 . This state model assumed that the velocity was subject to an 
unknown acceleration which was characterized by the motion process noise. 
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Figure 2. Locations of the known UWB sensors and test points at the test site. The red dots are the 
UWB sensors, and the green dots are the test points. The black dashed line is the rectangular track 
which the trolley travels on. 

 
Figure 3. The trolley used in the test. 

The UWB system used in the test provided both time-of-arrival (TOA) and angle-of-
arrival (AOA) measurements. TOA was the signal travel time between tag and sensor, this 
travel time could be converted to a range measurement by multiplying the travel time 
with the speed of light. AOA was based on the direction of incidence from which the re-
ceived signal arrived. For 3-D positioning, the AOA measurements contained azimuth 
and elevation measurements. It was indicated that the positioning method using both 
range and angle measurements could improve the positioning accuracy and robustness 
[43]. Therefore, both TOA and AOA measurements were used in the test. Since six UWB 
sensors were used in the test, the measurement vector consisted of eighteen measure-
ments, i.e., 𝒛 = [𝑑 , , 𝛼 , , 𝜑 , , … , 𝑑 , , 𝛼 , , 𝜑 , ] , where (𝑑 , , 𝛼 , , 𝜑 , ) (𝑖 = 1, … ,6)  was 
the range (derived from TOA), azimuth, and elevation measurement of the 𝑖th sensor, 
respectively. The UWB TOA and AOA measurement models can be found in [44]. The 
measurement noises of TOA, azimuth, and elevation are mutually independent, their 
standard deviations were denoted as 𝜎 , 𝜎  and 𝜎 , respectively. 

The parameters used in this test are summarized in Table 3. Since the number of par-
ticles used affected the positioning accuracy of the particle filter-based algorithm, we per-
formed tuning and found that the accuracy tended to be stable when 2000 particles were 
used in each algorithm. After that, an increase in the particle number did provide signifi-
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cant accuracy improvement in each algorithm. This was because the prior densities ena-
bled the predicted particles to be distributed closer to the mean of the posterior densities. 
Therefore, 2000 particles were used in each particle filter-based algorithm in this test. The 
crossover and mutation probabilities used in this test were the same as those in Test A. 
The covariance of process noise (i.e., 𝑸 ) was determined by tuning. The variance of the 
process noise in each direction was assumed to be the same in this test, i.e., 𝑸 =diag(𝜎 , 𝜎 , 𝜎 ), where 𝜎  was the variance of the process noise in the three directions. 
The standard deviations of the measurement noise were determined by statistical method. 
The parameter 𝜮  in the mutation operation in this test could be expressed as 𝜮 =diag 𝜎 , 𝜎 , 𝜎 , 𝜎 , 𝜎 , 𝜎 , where 𝜎  was the variance of the random variable 
added to the position component and 𝜎  was the variance of the random variable 
added to the velocity component. For an unbiased assessment, the above genetic param-
eters used in the GORPF algorithm were also used in the RPFGA and IGPF algorithms 
unless some parameters could be determined adaptively. EKF is another positioning al-
gorithm in the Bayesian framework which is widely used for three-dimensional target 
tracking problem because of its high positioning accuracy [4]. For the purpose of verifying 
the three-dimensional positioning performance of EKF, it was included in the assessment 
along with the five particle filter-based algorithms. The test was repeatedly performed 20 
times (different runs with different seeds) and the mean values were used to represent the 
positioning results. The positioning accuracy was assessed by comparing the coordinates 
of the twenty test points determined by each algorithm with the “truth” that was deter-
mined by the total station survey. The mean radial spherical error (MRSE) was used as 
the assessment metric for evaluating the positioning accuracy in 3-D space 𝑀𝑅𝑆𝐸 = ∑ ( ) ∑ ( ) ∑ ( ) , (26) 

where 𝑛 was the number of test points, 𝑖 was the samples from 1 to 𝑛. 𝑥 , 𝑦  and 𝑧  
were the estimated easting, northing, and height, respectively of sample 𝑖. 𝑥, 𝑦, and 𝑧 
were the “truth” coordinates determined by the total station survey. In addition to the 
positioning accuracy, computation load is another important metric that requires to be 
assessed in three-dimensional target tracking problems. The averaged computation time 
required for positioning at a point was used as the assessment metric of computation load. 
The computation time of the particle filter-based algorithm was dependent on the number 
of particles used. Since the particle number was set to 2000 in each particle filter-based 
algorithm, this computation load assessment was unbiased. The computation time was 
determined through the function of “tic” and “toc” in MATLAB. 

Table 3. The parameters used in Test B. 

Parameter Value 𝑁  2000 (unitless) 𝜎  0.2 m/s2 𝜎  0.25 m 𝜎  3° 𝜎  5° 𝜎  0.2 m 𝜎  0.01 m/s 𝑝  0.9 (unitless) 𝑝  0.6 (unitless) 𝑝  0.1 (unitless) 𝑝  0.01 (unitless) 
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3. Results 
This section presents the results of the two tracking tests. The results of Test A and 

Test B are presented in Subsections 3.1 and 3.2, respectively.  

3.1. Results of Test A 
The RMSEs of the five algorithms (i.e., SIR, SIR-GJN, RPFGA, IGPF, and GORPF) in the 

different test conditions (different particle numbers and different magnitudes of measurement 
noise) are presented in Table 4. Moreover, the tracking trajectories as well as the absolute er-
rors of the five algorithms in the different test conditions are shown in Figures 4–6. 

Table 4. The RMSEs (m) of the five particle filter-based algorithms in different test conditions. 

Test Number Test Conditions 
Algorithms 

SIR SIR-GJN RPFGA IGPF GORPF 
Test 1 𝑁 = 100, 𝜎 = 1 3.0117 2.8601 2.7280 2.6625 2.1999 
Test 2 𝑁 = 20, 𝜎 = 1 3.5766 3.4715 3.2275 3.1752 2.4809 
Test 3 𝑁 = 100, 𝜎 = 0.04 4.2175 4.0914 3.6317 3.6546 2.9284 

 

  
(a) (b) 

Figure 4. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under normal meas-
urement noise condition (𝜎 = 1). (a) Tracking trajectories; (b) Absolute errors at each time step. 
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Figure 5. Target tracking performance of the five particle filter-based algorithms (with 20 particles) under normal meas-
urement noise condition (𝜎 = 1). (a) Tracking trajectories; (b) Absolute errors at each time step. 

 

  
(a) (b) 

Figure 6. Target tracking performance of the five particle filter-based algorithms (with 100 particles) under small meas-
urement noise condition (𝜎 = 0.04). (a) Tracking trajectories; (b) Absolute errors at each time step. 

3.2. Results of Test B 
The MRSEs and computation time of the six algorithms (the five particle filter-based 

algorithms and the EKF algorithm) are shown in Table 5. The positioning errors of each 
algorithm at the twenty test points are presented in Figure 7. Note that the results in Table 
5 are based on the condition that sufficient particles (i.e., 2000) are used. In order to eval-
uate the robustness of each algorithm on the particle number, we set the value of 𝑁  to 
eight different numbers (i.e., 50, 100, 200, 500, 800, 1000, 1500, 2000). The MRSEs of each 
algorithm with respect to the particle number are shown in Figure 8. 

Table 5. The MRSEs (m) and computation time (s) of the six algorithms. 

Performance Metric 
Algorithms 

SIR SIR-
GJN RPFGA IGPF GORPF EKF 

MRSE (m) 0.2603 0.2436 0.2306 0.2234 0.2019 0.2677 
Computation time (s) 0.1602 0.1766 0.2253 0.2805 0.3382 1.2861 
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Figure 7. The positioning errors at the twenty test points of the six algorithms. 

 
Figure 8. The comparison of MRSE with different numbers of particles. 

4. Discussion 
This section discusses the test results presented in Section 3. The results of the two 

tests are discussed separately first. The future research direction is then briefly discussed.  
Regarding Test A, as the SIR algorithm does not use any strategy for particle impov-

erishment mitigation, it is used as the baseline for performance comparison. The results 
in Table 4 show that with the same particle number and measurement noise magnitude, 
the four algorithms with the strategies for particle impoverishment mitigation (called al-
gorithms with strategies in the following) outperform the SIR algorithm. Among these 
four algorithms with strategies, the GORPF algorithm performs best. Compared to the SIR 
algorithm, the GORPF algorithm improves the positioning accuracy by about 29.4% on 
average while SIR-GJN, RPFGA, and IGPF improve the accuracy by about 3.65%, 11.02%, 
and 12.05% on average, respectively. Considering the effect of particle number and meas-
urement noise magnitude on positioning, we found that decreasing the values of these 
two parameters will lead to the positioning accuracy reduction. Specifically, by comparing 
Test 1 with Test 2 (both tests use the same magnitude of measurement noise but a different 
number of particles), it is found that decreasing the particle number from 100 to 20 results 
in the positioning accuracy reductions of the five particle filter-based algorithms. This can 
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be also reflected by comparing Figure 4 to Figure 5 which demonstrates that the position-
ing errors in Figure 5 are generally larger than those in Figure 4. Insufficient particles can-
not accurately represent the posterior distribution and also increase the degree of particle 
impoverishment. Moreover, it increases the risk of suffering from premature convergence 
to the local optimal solution. Table 4 shows that the four algorithms with strategies can 
always outperform SIR even though the particle number used is decreased. This reveals 
that the strategies used in these four algorithms are all effective in maintaining particle 
diversity and improving positioning accuracy. However, when taking the extent of accu-
racy reduction into account, Table 4 shows the accuracy of SIR-GJN decreases by about 
21.4%, which is the largest among the four algorithms with strategies. The comparison 
between Figure 4 and Figure 5 shows that the SIR-GJN algorithm has significantly larger 
errors at some time steps than those of the other three algorithms with strategies. This 
implies that using roughening alone for the mitigation of particle impoverishment (caused 
by a small number of particles) is less effective than the strategies used in the other three 
algorithms (i.e., RPFGA, IGPF, and GORPF). Table 4 shows that the accuracy of the 
GORPF is decreased by about 12.8%, which is the least among the four algorithms with 
strategies. This implies the proposed resampling method used in the GORPF algorithm 
has the best performance on maintaining particle diversity and improving positioning ac-
curacy. When comparing Test 1 with Test 3 (both tests use the same number of particles 
but different measurement noise), it is found that decreasing the covariance of measure-
ment noise from 1.0 to 0.04 results in the positioning accuracy reduction of the five particle 
filter-based algorithms. This can be also reflected by comparing Figure 4 to Figure 6 which 
shows that the positioning errors in Figure 6 are significantly larger than those in Figure 
4. The small measurement noise implies that the likelihood function 𝑝 𝒚 |𝒙  concen-
trates in a small region of the state space, the predicted particles obtained by the dynamic 
model in the prediction phase tend to locate at the tail of likelihood function [45]. This can 
cause particle impoverishment, and hence the position estimation accuracy will be signif-
icantly decreased. The four algorithms with strategies outperform SIR under the small 
measurement noise condition, which reveals the effectiveness of the strategies used in 
these four algorithms. Again, taking the extent of accuracy reduction into account, it 
shows that both the accuracies of the GORPF and RPFGA algorithms are decreased by 
about 33.1% while those of the other three algorithms are decreased by about 40%. This 
implies that the strategies used in the GORPF and RPFGA algorithms have a better effect 
on the mitigation of particle impoverishment (caused by small measurement noise) than 
the strategies used in the other two algorithms (i.e., SIR-GJN and IGPF). Based on the 
discussions above, comprehensively, the proposed GORPF algorithm has better robust-
ness against particle impoverishment (caused by small measurement noise and a small 
number of particles) and achieves better positioning accuracy than the other four algo-
rithms.  

Regarding Test B, both the SIR algorithm and the EKF algorithm do not use any strat-
egy to mitigate particle impoverishment. The positioning accuracy of the two algorithms 
is similar. The results in Table 5 shows that the RMSE difference is only 7.4 mm. Figure 7 
shows the maximum error of the EKF algorithm (about 0.45 m) is slightly larger than that 
of the SIR algorithm (about 0.4 m). However, the difference in computation time between 
them is very large. EKF requires almost 8 times longer time than that of SIR for position 
estimation at a point. This is because EKF requires calculation of the Jacobian matrix at 
each time step. The Jacobian matrix calculation is very time-consuming in large dimen-
sional problems, such as the case in the tracking problem in Test B where the dimension 
of the measurement vector was eighteen. Regarding the five particle filter-based algo-
rithms, when taking the SIR algorithm (without particle impoverishment mitigation strat-
egy) as a baseline, the other four algorithms all achieve improved positioning accuracies. 
Table 5 shows that the GORPF algorithm performs best in terms of positioning accuracy 
among them. Compared to the SIR algorithm, the GORPF algorithm improves positioning 
accuracy by about 22.4%. Figure 7 shows that the maximum error of the GORPF algorithm 
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is about 0.35 m and the minimum error is less than 0.1 m. Both values are less than those 
in the other five algorithms. As shown in Figure 8, the number of particles does affect the 
positioning accuracy of each particle filter-based algorithm. Increasing the particle num-
ber will improve the positioning accuracy of each algorithm. When insufficient particles 
are used in the filtering (such as 𝑁  is less than 200), the positioning accuracy will reduce 
significantly. Nevertheless, the SIR-GJN, RPFGA, IGPF, and GORPF algorithms can gen-
erally outperform the SIR algorithm because of their strategies used for particle impover-
ishment mitigation. This finding agrees with the finding in Test A. A very small number 
of particles can cause a serious loss of particle diversity. Figure 8 shows that when only 50 
particles are used in each algorithm, the positioning accuracy of the GORPF is much 
higher than those of the other four algorithms (which are almost 0.4 m). This reveals the 
GORPF has better robustness to particle impoverishment than the others. The outstanding 
performance of the GORPF mainly owes to the improved genetic optimization resampling 
method used. Different from the Gaussian jitter noise roughening operation which is used 
alone in the SIR-GJN algorithm, our proposed resampling method implements a genetic 
operation based on the particles obtained from the roughening operation. This genetic 
operation can avoid the particles falling into the region of the local optimal solution and 
make the particles distribute in the region of the global optimal solution. Moreover, with 
the aid of the classification operation used in the proposed resampling method, the low-
weight particles can be modified into high-weight particles. This classification operation 
improves the “quality” of the offspring particles and hence improve the positioning ro-
bustness. Therefore, the GORPF algorithm performs better in terms of positioning accu-
racy than the RPFGA and IGPF algorithm (both of them do not implement the classifica-
tion operation). As for the computation time, the differences between the five particle fil-
ter-based algorithms are large. SIR requires the shortest computation time. Since the SIR-
GJN, RPFGA, IGPF, and GORPF algorithms use different strategies (i.e., Gaussian jitter 
noise or/and genetic operators) for particle impoverishment mitigation, these added extra 
strategies directly result in a higher computation load than the SIR. Although the pro-
posed GORPF algorithm requires the longest computation time (0.3382 s), such computa-
tion time is affordable for most real-time indoor tracking applications. 

As discussed above, the GORPF has a relatively high computation load because of 
the added extra strategy for particle impoverishment mitigation. This is also the problem 
in many other genetic algorithm based particle filters, such as [46] and [47]. Although im-
proving the computer system configuration is an effective way for improving computa-
tion efficiency, it will increase the cost. Therefore, decreasing the computation load by 
optimizing the algorithm itself (such as reduce computation steps and optimize the logic) 
may be a research direction for the genetic algorithm-based particle filter in the future. 

5. Conclusion 
This paper proposes an improved genetic optimization resampling method which 

consists of five operators, i.e., selection, roughening, classification, crossover, and muta-
tion. The proposed resampling method is integrated into the particle filtering framework 
to form a genetic optimization resampling based particle filtering (GORPF) algorithm. The 
proposed algorithm is assessed by a one-dimensional tracking simulation test and a three-
dimensional tracking experiment. The results in both tests show that the GORPF algo-
rithm achieves better positioning accuracy than the state-of-the-art indoor positioning al-
gorithms in the literature, even if the particle number and measurement noise magnitude 
are small. The proposed novel resampling method in the GORPF algorithm can effectively 
address the particle degeneracy, maintain the particle diversity, and improve the posi-
tioning accuracy and robustness. Moreover, the computation time of the GORPF algo-
rithm is affordable for most real-time tracking applications. The improved positioning ac-
curacy and robustness as well as the relatively low computation load of the GORPF algo-
rithm make it possible to be used in people tracking in airports, object tracking in logistics, 
and machine guidance in Industry 4.0. 
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