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ABSTRACT 

 

Bridges are one of the most important assets of transportation networks. A closure of a bridge can 

increase the vulnerability of the geographic area served by such networks, as it reduces the number of 

available routes. Condition monitoring and deterioration detection methods can be used to monitor the 

health state of a bridge and enable detection of early signs of deterioration. In this paper, a novel 

Bayesian Belief Network (BBN) methodology for bridge deterioration detection is proposed. A method 

to build a BBN structure and to define the Conditional Probability Tables (CPTs) is presented first. Then 

evidence of the bridge behaviour (such as bridge displacement or acceleration due to traffic) is used as 

an input to the BBN model, the probability of the health state of whole bridge and its elements is updated 

and the levels of deterioration are detected. The methodology is illustrated using a Finite Element Model 

(FEM) of a steel truss bridge, and for an in-field post-tensioned concrete bridge. 
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1. Introduction 

The European transportation network has more than one million of bridges [European Commission, 

2012]. These assets are continuously deteriorating due to traffic loading and environmental effects. 

Time-consuming and expensive visual inspection techniques are widely adopted to assess the health 

state of bridges  ranging from one to six years [Moughty and Casas, 2017]. Detailed visual examinations 

of the bridge critical elements require interruption of service, and the knowledge about the location of 

the deteriorated bridge element [Fan and Qiao, 2011]. Conversely, Structural Health Monitoring (SHM) 

methods are used to assess the health state of bridges, remotely and continuously, by relying on the 

analysis of static and dynamic responses of bridges [Rice et al., 2011]. Therefore, SHM methods can 

support bridge owners to detect ongoing degradation promptly, and optimize the maintenance schedule 

accordingly, by minimizing the whole life cycle cost of the asset [Frangopol et al., 2012].  

In recent years, SHM and condition monitoring methods have been developed widely to monitor and 

evaluate the health state of bridge elements. Particularly, model-based and non-model-based methods 

have been introduced. The former methods assess the health state of a bridge, by comparing the 

behaviour of the in-field bridge with a Finite Element Model (FEM) of the bridge; the latter methods 

assess the health state of the bridge by analysing the measured behaviour of the in-field bridge directly.  

In this respect, several SHM methods for condition monitoring and damage detection of bridges are 

presented in literature, as reviewed in [Fan and Qiao, 2011; Moughty and Casas, 2017; Vagnoli et al., 

2018], with several challenges to be addressed. For example, model-based methods, such as FEM 

updating methods [Sanayei et al., 2015], require a complex and time-consuming procedure to develop 

a reliable FEM. Therefore, continuous condition monitoring might not be achieved. Model-based 

methods can detect damage existence and its location, but they show difficulties in diagnosing the 

causes [Vagnoli et al., 2018]. In contrast, non-model-based methods, such as Artificial Neural Networks 

[Arangio and Beck, 2012], Principal Component Analysis [Hsu and Loh, 2010], supervised and 

unsupervised clustering techniques [Alves et al., 2015], show promising results for continuous condition 

monitoring of bridges. However, the performance of non-model-based methods strongly depends on 

the quality of available data. For instance, when modal parameters of the bridge are used as an input 

to a non-model-based SHM method, false alarms and misleading results can be obtained, due to the 

noise in data which affects a reliable extraction of the bridge modal parameters [Moughty and Casas, 

2017]. In fact, low frequency modal parameters of the bridge, which can be extracted from the measured 
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data reliably, are of low sensitivity to damage [Kim et al., 2015]. Conversely, high frequency modal 

parameters of the bridge, which are more sensitive to damage, are difficult to extract from the measured 

data in a reliable manner [Casas and Moughty, 2017]. Furthermore, non-model-based methods usually 

do not consider the knowledge of structural engineers that design and maintain bridges, and the 

influence of degradation of individual elements on the health state of the whole bridge. Finally, it is worth 

mentioning that both model-based and non-model-based methods need a supply of reliable data about 

the behaviour of the structure, in order to monitor the condition of the structure [Lédeczi et al., 2009]. 

Necessary data come from a measurement system, which can be based on: i) a traditional approach 

with one type of sensors, such as strain gauges, accelerometers, tiltmeters, vision systems, optometers, 

fibre optic, piezoelectric sensors or GPS; or ii) a hybrid and integrated sensors system, consisting of 

multiple types of sensors (i.e. fiber optics, GPS, accelerometers, etc.). The measurement system is 

chosen by bridge manager based on the requirements of the monitoring: indeed, the health state of the 

bridge can be monitored with different level of accuracy by different type of sensors, e.g. accelerometers 

allow to monitor the health state of a bridge accurately, but they have been recently outperformed by 

fiber optics in terms of accuracy [Psimoulis and Stiros, 2013; Bao et al., 2017; Vagnoli et al., 2018]. 

In this paper, a Bayesian Belief Network (BBN) method for deterioration detection of bridges is 

presented. Although BBN methods are well known in literature, they are commonly used for reliability 

assessment of bridges [Holický et al., 2013; Franchin et al., 2016; Martínez-Martínez et al., 2017]. In 

addition, Bayesian approaches have been used to assess the health state of bridges [Mustafa and 

Matsumoto, 2017; Ni et al., 2019; Zheng and Yu, 2015]. However, these approaches mainly focus on 

updating the estimation of the bridge materials property (e.g. the values of the bridge stiffness)  and 

behaviour (e.g. updating the mode shapes), and consequently, the influence of each bridge element on 

the health state of the whole bridge is not assessed.   

Therefore, a BBN-based approach is proposed in this paper, which is used for evaluating and updating 

the bridge health state. This approach is based on the analysis of data provided by sensors installed 

on the bridge, and it is also based on the assessment of the influence of each bridge element on the 

health state of the bridge. Indeed, the proposed BBN method allows to update the health state of the 

whole bridge and its elements, by taking account of the health state of bridge elements. Furthermore, 

different sources of information can be used in combination as inputs to the BBN model, such as 

(continuous) sensor data and state evaluations from visual inspections of the bridge. The BBN model 
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is developed by identifying major (such as the deck, the chords, etc.) and minor (such as the diagonals, 

verticals, etc.) elements of the bridge, represented by a node. Nodes are connected from minor to major 

elements. The Conditional Probability Tables (CPTs) are built by adopting a Fuzzy Analytic Hierarchy 

Process (FAHP) of bridge expert judgements [Loughney and Wang, 2017]. The model is then used to 

update the health state of the whole bridge and its elements, by introducing the evidence about bridge 

behaviour into the model. First of all, this process is illustrated for a steel truss bridge, which is modelled 

using a FEM model, representing effects of different levels of degradation to the behaviour of the bridge. 

The displacement of the bridge joints is modelled to simulate the formation and propagation of micro-

cracks at the joint location(s) [Mehrjoo et al., 2008]. Secondly, the method is also illustrated for an in-

field post-tensioned concrete bridge. Bridge acceleration data for a number of different states of 

degradation are used when the bridge is excited by environmental factors (such as wind). Overall, the 

proposed BBN method is used to detect the time when the health state of the bridge degrades, by 

diagnosing the location and magnitude of the minor element(s) of the bridge that are affecting the health 

state of the bridge. Some good performance of the method is illustrated in both case studies. 

The paper is organised as follows: the steps to build a BBN model are given in Section 2; Section 3 

presents the application of the proposed method in the two case studies; conclusions and future 

challenges are discussed in Section 4. 

2. The proposed Bayesian Belief Network method for bridge degradation detection  

The theoretical background of the BBN is out of scope of this paper, and an interested reader can find 

details in [Jensen and Nilsen, 2007]. Briefly, a BBN consists of a structure that is formed of a set of 

variables (called nodes), and a set of directed links (called arcs) between system variables of interest. 

In addition to its structure, BBNs contain a quantitative part, which is represented using Conditional 

Probability Tables (CPTs) associated with each node. In this paper, conditional probabilistic 

relationships between connected nodes of the BBN are described by discrete conditional probability 

distributions, as proposed by [Morales-Nápoles et al., 2014]. This is due to the fact that the health state 

of a bridge is usually described by discrete states, for example, good, degraded and failed condition, 

[Rafiq et al., 2015]. 

 Overview of the proposed methodology 

A BBN approach for bridge deterioration detection is developed by following the procedure, presented 

in Figure 1. Firstly, a BBN model for a bridge is built using bridge information (Section 2.2); then the 
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CPTs can be defined through an expert knowledge elicitation process (Section 2.3) [Loughney and 

Wang, 2017]. Once the BBN model is developed, the condition of the bridge can be evaluated. 

Information about bridge behaviour, such as data provided by sensors installed on the bridge or visual 

inspection reports, as well as modelling results of deterioration scenarios, can be used as an input to 

the BBN model. The levels of deterioration of the bridge and its elements are obtained using the BBN 

approach, after the evidence about bridge behaviour is introduced in the model and the updated 

probabilities of being in each state are calculated.  

It is intended, that such an approach can be used by a bridge manager to monitor the evolution of the 

health state of the bridge over time, and detect which elements are degrading, so that appropriate 

maintenance actions can be initiated. Hence, Section 2.2 shows a detailed step-by-step description of 

how to define and build the BBN structure to represent the bridge structure. Similarly, Section 2.3 

presents a detailed description of the process for the CPTs definition, by showing how a bridge manager 

can develop CPTs using the information obtained from bridge expert questionnaires. Finally, Section 3 

shows two case studies of the proposed method, in order to illustrate how to adopt the BBN method for 

monitoring the health state of a bridge. 

 

Figure 1. A BBN method for bridge degradation detection 

 Building the BBN model 

A step-by-step process to develop a BBN model for a bridge is hereafter described. The following steps 

are proposed in order to develop the structure of the BBN: 

1. Identify the type of the bridge and its major and minor elements. The identification and 

analysis of the bridge structure, such as a truss, arch or suspension [Gentile and Saisi, 2015]), 
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helps to define its major and minor elements. The level of detail depends on the requirements 

of a bridge manager. For example, each minor element is made of relatively small elements, 

such as smaller beams and joints, therefore, further detail beyond minor elements (e.g., 

bearings, bridge anchors, rivets, etc) can be included. The size of the BBN depends on the 

identification of the major and minor elements of interest, and thus major and minor elements 

should be selected by guaranteeing a manageable size of the BBN [Rafiq et al., 2015]. Indeed, 

if an analysis beyond the minor elements is needed to assess the health state of each bridge 

component (e.g. rivets, bearing, small beams, etc.), the size of the traditional BBN can increase 

significantly. As a consequence, the bridge manager would need to consider developing an 

Object-Oriented BBN (OOBN), in order to have a manageable BBN structure for each minor 

element of the bridge. In that case the health state of a minor element would be assessed by 

evaluating the influence between the different OOBNs, each representing the detailed analysis 

of the minor elements of the bridge.   

2. Define the BBN structure. After the bridge elements are identified, the structure of the BBN is 

developed. The nodes of the BBN represent the major and minor elements, whereas the arcs 

represent the interdependencies between the elements. The arcs are drawn, assuming that the 

health state of a major element of the bridge is influenced by the condition of its minor elements. 

In addition, the health state of a major (minor) element also depends on the health state of other 

neighbouring major (minor) elements, so more arcs are added, as shown in section 3.1.3 and 

3.2.3. As a consequence, the nodes representing the minor elements are called parent nodes, 

whereas those representing the major elements are called child nodes. This is due to the fact 

that they are influenced by the health state of their parents (i.e. minor elements). Finally, the 

health state of the whole bridge is represented by a child node to the bridge major elements 

[Attoh-Okine and Bowers, 2006].  

3. Describe the health states for each node. An element of the bridge goes through a number 

of states over time, from a healthy to a degraded state and also to a severely degraded 

condition. Therefore, each BBN node is described by a set of mutually exclusive discrete states, 

usually well known by bridge owners. For example, Network Rail, which is the owner of the UK 

railway network, evaluates the bridge condition by three states: i) good condition (maintenance 

actions are not required); ii) partially degraded (maintenance actions are required, but they can 
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be postponed, without compromising the safety of the asset); iii) severely degraded, (essential 

maintenance actions, i.e. that cannot be postponed, are required) [Rafiq et al., 2015]. 

4. Add BBN nodes of evidence for a sensor system on the bridge. If a sensor system is 

installed on the bridge, the data provided by the sensors can be used as evidence of the bridge 

behaviour. Hence, a node for each sensor is added to the BBN. A sensor node is a parent node 

of the bridge element(s) where the sensor is installed, and the states of the sensor nodes are 

defined based on the monitored bridge behaviour. For example, when the bridge vibration is 

measured by the measurement system of the bridge, the states of the sensor nodes are defined 

by considering that, given a defined and constant external excitation to the bridge, the higher 

the vibration of the bridge, the more degraded the bridge. However, if there are no sensors on 

the bridge, nodes of evidence are added to represent other sources of information, such as 

visual inspection reports. The nodes of evidence can also represent bridge behaviour, obtained 

from a FEM model. In this way, the bridge manager can use the available evidence of the bridge 

behaviour as an input to the BBN nodes of evidence, and thus update the health state of the 

whole bridge and its elements. 

After the BBN structure is completed, the CPTs need to be defined in order to describe the 

relationships between the nodes in the BBN.  

 Developing CPTs 

CPTs are used to define the dependencies between the nodes of the BBN using conditional 

probabilities. The strategy of defining the CPTs depends on the nature of the available information: i) if 

a database of information about the past behaviour of the system is available, the CPTs can be defined 

by adopting a learning technique, e.g. expectation maximization [Sun et al., 2006]; ii) if such a database 

is unavailable, the CPTs can be defined by using an expert knowledge elicitation process [Loughney 

and Wang, 2017], also used in this paper: 

a) Identify the experts. The accuracy of the elicitation process strongly depends on the 

knowledge of experts. Selecting several experts with different levels of expertise can lead to a 

more complex analysis of their answers. However, a result that is retrieved by aggregating the 

analysis from a heterogenic group of experts is usually more reliable than each individual 

analysis [Kabir et al., 2016]. 
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b) Define the degradation scenarios. The uniformity and consistency of the elicitation process 

can be improved by providing the expert with a small set of highly informative and consistent 

questions [Elmasry et al., 2017]. For instance, if an expert is asked to assess the degradation 

of a minor element, the major element, which contains that minor element, is also expected to 

be in a similar health state [Rafiq et al., 2015].  

c) Present the scenarios to the experts. The set of scenarios is given to the experts using 

interviews and online surveys. Each scenario needs to be described accurately, by explaining 

the health state of the element and its influence on the health state of the elements, represented 

by the connected nodes.  

d) Provide a scale for answers. A linguistic scale for answering the questions is needed [Torfi et 

al., 2010], an example is shown in Table 1. In fact, experts can be more comfortable in providing 

a linguistic answer rather than numerical values of the probability, and thus a linguistic scale 

can be arbitrarily defined depending on the case study of interest, in order to have some clear 

and concise response options for the questionnaire.  

Lingustic 

scale 
Meaning 

very unlikely The described degradation scenario is highly unlikely  

unlikely The described degradation scenario is unlikely but possible  

even chance The described degradation scenario might happen or not 

likely The described degradation scenario is likely  

very likely The described degradation scenario is highly likely 

Table 1. Linguistic scale for assessing the interdependencies between bridge elements 

e) Merge the individual analyses. The linguistic answers from the experts needs to be converted 

to a numerical description, using a fuzzy membership function, as shown in Figure 2. In this 

way, the vagueness and subjectivity of the expert judgment is addressed mathematically, by 

allowing the user to quantify the answers of the experts (see Section 3.1.4 for a detailed 

example). The individual membership functions are merged together, by weighing the 

experience of the experts. In this paper, a weighing factor (Wl) is used to weigh the expert 

analysis with respect to the level of experience [Kabir et al., 2016]: 
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where El is the number of years of experience of the expert l; β is a parameter employed to 

adequately weigh the analysis of each expert, and needs to be optimized to guarantee a group 

judgment [Vagnoli et al., 2017]. 

f) Assess the influence of each parent node on its child. The influence of a parent node on 

its child nodes is evaluated by using a Fuzzy Analytics Analytic Hierarchy Process (FAHP) of 

the experts’ analyses. In what follows, only the main output of the FAHP is described; an 

interested reader can find further details in [Wang and Elhag, 2006; Loughney and Wang, 

2017]. The FAHP aims to assess the importance weight vector (wh) of each parent node on its 

child nodes, i.e. the influence of each parent node on the health state of its child node:  

1

h
h D

h

h

I
w

I
=

=


 

(2) 

where h
I  is an integral value that evaluates the influence of a parent node on each of its D 

child nodes [Wang and Elhag, 2006]. wh is then used to define the CPTs. 

g)  Assess the consistency of the expert analysis. The consistency of the expert analysis 

needs to be verified by assessing a Consistency Ratio (CR). Therefore, the Consistency Index 

(CI) is computed as follows:  

1

max D
CI

D

 −
=

−
 (3) 

where max  is the maximum eigenvalue of the defuzzified pairwise comparison matrix, i.e. the 

matrix that groups the merged experts judgment about the influence between different bridge 

elements. CR is evaluated by dividing CI by a Random Index (RI), which is provided in literature 

and depends on the size D of the pairwise comparison matrix: 

CI
CR

RI
=  (4) 

Generally, the FAHP is considered consistent, if the CR is lower than 0.1 [Daǧdeviren and 

Yüksel, 2008]. 
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Figure 2. Triangular fuzzy membership function to represent the linguistic scale.  

 

h) Compute the interdependencies between bridge elements. The CPTs are hereafter defined 

by considering that the degradation of a bridge can be modelled by adopting a linear model 

[Kreislova and Geiplova, 2012; Attema et al., 2017; Rao et al., 2017]. Assume that a bridge 

element, described by node X, is in state xi. There are N parent nodes of this element, denoted 

as a set Yk. The conditional probability is calculated using a linear function shown in Eq. (5): 

11 1 1

1 1( ) ( ) ( )
m m

N N NM
k k k

i k i k i k h p i
mk k k
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where  

• 

1

( )
N

k
i k

k

P x Y y
=

=  is the probability of the child node in state xi, with a condition that the 

health states of the parent nodes are known, denoted as yk;  

• 

1

1( )
N

k
i k

k

P x Y y

=

= =  is the probability of the child node x in state xi, with a condition 

that all parent nodes are in the healthy state, yk=1, i.e. the parent nodes show no 

degradation;  

• M is the number of degraded parent nodes;  

• 
mhw  is the importance weight vector used to assess the influence of each degraded 

parent node on the state of the child node, note that 
mhw  is calculated using Eq. (2);  
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• 
mpf  is a penalty factor that increases as the condition of the bridge element(s) 

deteriorates; 1−=  if the child node is in the healthy state, xi=1, and 1= if the child 

node is in the degraded state;  

• ip  is a vector used to normalise the respective column of probabilities in the CPT and 

it depends on the state of the child node.  

Overall, Eq. (5) shows that the probability of the child node being in state xi, with a condition 

that M parent nodes are degraded, is computed as the total 
1

m m

M

h p

m

w f
=

  decrease or increase 

of 

1

1( )
N

k
i k

k

P x Y y

=

= = , caused by the influence of M parent nodes that are degraded. M can 

be between 0 to N, i.e. if M=0 (there are no degraded parent nodes), then 

1

1( )
N

k
i k

k

P x Y y

=

= =  

does not change; if M=N (all parent nodes are degraded), then 

1

1( )
N

k
i k

k

P x Y y

=

= =  

experiences its maximum variation.  

Finally, after the CPTs are defined, the BBN model can be used to detect bridge deterioration.  

3. Application of the BBN method to detection of bridge degradation 

The proposed BBN method is illustrated using two case studies, in order to analyse the performance of 

the BBN method in detecting and bridge deterioration and diagnosing causes of the change in behaviour 

and the bridge health state: 

1. In Section 3.1, an FEM model of a steel truss bridge is used to simulate a large number of 

scenarios with bridge degradation, results of which are used as inputs to the BBN. 

2. In Section 3.2, vibration data of an in-field post-tensioned concrete bridge, which is subjected 

to a progressive damage test, is used as an input to the BBN.  

The following sections show two detailed applications of the proposed method. First the method is 

applied using an FEM model to represent bridge response due to deterioration. Then, the method is 

applied to a post-tensioned in-field bridge, and it is illustrated how the evolution of the health state of 

an in-field bridge can be monitored by a bridge manager, relying on bridge acceleration data. 
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 Application to a steel truss bridge, using an FEM model  

3.1.1 The FEM of a steel truss bridge  

A warren steel truss bridge is modelled using SAP2000, as shown in Figure 3(a). A steel truss bridge 

is selected since the degradation mechanisms of steel, such as corrosion and cracks, can develop 

rapidly after they have been initiated. Hence, an early detection and management of such degraded 

conditions can improve the safety and availability of the bridge [Ahmadi and Anvari, 2018]. Figure 3(b) 

shows the top chords of the bridge, which are 24 m long. Figure 3(c) illustrates the side view of the 

bridge, where the diagonals elements are 8.55m long. Figure 3(d) shows the bridge bottom chords, 

which are composed of 5 beams. The elements of the bridge are modelled by considering grade S355 

steel, as this steel is commonly used in Europe to build steel railway bridges [Vagnoli et al., 2017]. The 

reference system, depicted in Figure 3, is defined as follows: the right-hand side of the bridge is 

considered as the side of the bridge at y = 0m, the left-hand side is considered to be at y = 7m.  

Displacements of the bridge elements at the joints are chosen as the variable to describe the 

performance of the bridge under load. In fact, displacements of steel bridge elements are a good 

indicator of the bridge condition, e.g. allowing to detect fatigue damage, and thus to ensure that the 

steel bridge can be effectively maintained. However, it is worth noting that, despite the recent 

technology advancement with GPS sensors, cameras and image recognition algorithms, the in-field 

monitoring of displacements can be challenging [Hester et al., 2017]. The displacement values are 

obtained at 5 locations on each top chord and 6 locations on each bottom chord, as shown by dark 

circles in Figure 3. Gaussian noise is added to the simulated displacements, as noisy data is 

unavoidable in in-field applications [Dowling et al., 2012]:  

( )pol FE p FEy y q N y= +  (6)  

where poly  is the displacement of a bridge element when the noise is added, 
FEy  is the displacement 

value provided by the FEM, pq  is the ratio of standard deviation between the noise and the FEM 

displacement 
FEy  and is equal to 5% [Attema et al., 2017]. N is a standard normal distribution of mean 

0 and standard deviation 1, and ( )
FE

y  is the standard deviation of the displacement of the FEM 

elements when the same health state of the bridge is simulated by modifying environmental factors, 

such as the load on the bridge. 
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Figure 3. The FEM model of the steel truss bridge: overview, top, lateral and bottom view, in (a), (b), 

(c) and (d), respectively. 

3.1.2 Degradation scenarios 

A degradation mechanism of the bridge element(s), considered in this case study, is the formation and 

propagation of micro-cracks at the joint location. Indeed, micro-cracks are difficult to spot during a visual 

inspection, and more than 40% of steel truss bridges are affected by the formation of micro-cracks at 

the joint location [Mehrjoo et al., 2008]. Bridge displacement is chosen as the variable to represent 

bridge behaviour. This choice is made due to the limitations of the vibration-based parameters, such as 

natural frequency and mode shapes, that are usually monitored for SHM purposes [Moughty and Casas, 

2017]. However, it should also be noted that some measurement methods for bridge displacement, 

such as displacement sensors, GPS, strain sensors and laser measurements, can have limitations in 

terms of precision [Zhao et al., 2015]; bridge displacement is chosen for illustration purposes. In the 

paper, the deterioration of the bridge element(s) is studied using 28 deterioration scenarios, including 

individual and multiple elements:  

- 22 individual element scenarios describe situations where each joint of the top chords (the first 

10 scenarios) and bottom chords (the remaining 12 scenarios) is degraded, by simulating a 

loss of 30% of the joint cross-sectional area. The loss of 30% of cross-section area is selected 

by considering the average of values for cross-sectional area reduction, studied in a similar 

truss bridge in [Mehrjoo et al., 2008]. 
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- 6 multiple element scenarios include situations, where two or three joints of the top/bottom 

chords are degraded.  

3.1.3 Building the BBN model for the steel truss bridge 

The development of the structure of the BBN is carried out by following the four steps proposed in 

Section 2.2: 

1. In this case study, the major elements are the top and bottom chords, and the minor elements 

are all individual beams that belong to a major element. In fact, these elements are usually 

subjected to the highest stress [Ni et al., 2012].  

2. Since each top chord is made of 4 beams, as shown in Figure 3(b), therefore, 4 nodes are used 

in the BBN model to represent these four elements. For example, each E_j_TCR node in Figure 

4 represents all minor elements j, where j=1, 2, 3, 4, of the top chord on the right-hand side of 

the bridge (TCR) (note that they are also parent nodes of TCR node in Figure 4). In the same 

way, elements on the left-hand side of the top chord, and on the right and left-hand side of the 

bottom chord are defined, E_j_TCL, E_j_BCR and E_j_BCL, respectively. Finally, we assume 

that the health state of the bridge (or the deck), represented by the BridgeHealthState node in 

Figure 4, is affected by these major elements.  

 

 

Figure 4. The BBN model for the example steel truss bridge. 

In addition, interdependencies among neighbouring major/minor elements are included and 

more nodes are added in the model. Examples are the nodes ending with “_1” in Figure 5. The 

nodes Top_chords and Bottom_chords are used in order to group the major elements. 



15 
 

 

Figure 5 The BBN model with additional interdependencies. 

3. As proposed in Section 2.2, three states are considered. These are: a) a healthy state, denoted 

as H, where the element is in a good condition; b) a partially degraded state, denoted as PD, 

where the element can require a maintenance action, which can be postponed; c) a severely 

degraded state, denoted as SD, where the element needs to be maintained urgently. 

4. Since in this case study no sensors were installed on the bridge, nodes of evidence are added 

which represent virtual displacement sensors at the joint locations, as shown by dark circles in 

Figure 3. 5 sensor nodes are related to each top chord and 6 – to each bottom chord. For 

example, TCR_J_i , where i=1, 2, 3, 4, and 5, represents the sensors on the right-hand side 

top chord, as shown in Figure 6. The states of the sensor nodes are related to the amplitude of 

the bridge behaviour, i.e. the displacement in this case study. For example, given a defined 

load on the bridge, the higher the displacements of the bridge element, the more degraded the 

bridge element. 
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Figure 6. The final BBN model.  

 

3.1.4 Developing CPTs for the steel truss bridge 

The CPTs are developed by adopting the expert knowledge elicitation process, as described in Section 

2.3:  

a) Three bridge experts were interviewed: i) Expert 1 is a principal engineer of an engineering firm 

with 8 years of experience in SHM; ii) Expert 2 is a director of an engineering consultancy group 

with over 28 years of experience in structural assessment of civil infrastructure; iii) Expert 3 is 

a professor of structural engineering in a top ranked UK university, with more than 25 years of 

experience in SHM.  

b) The experts were interviewed to evaluate four degradation scenarios: i) the influence of the 

degradation of a minor element on the health state of a neighbouring minor element; ii) the 

influence of the degradation of a minor element on the health state of a major element; iii) the 

influence of the degradation of a major element on the health state of a different major element; 

iv) the influence of the degradation of a major element on the health state of the whole bridge.  

c) The four scenarios were presented to the experts. Without loss of generality, the degradation 

scenario iii) is hereafter presented. The influence of the top chord on the right-hand side on the 

health state of other major elements can be analysed by the means of three questions: Let us 

consider a truss steel bridge, given in Figure 3.  
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1. Referring to your expertise, if the top chord on the right-hand side requires essential 

maintenance, which cannot be postponed, how likely would the health state of the bottom 

chord on the right-hand side be influenced by this degraded state of the top chord on the 

right-hand side? 

2. How likely would the health state of top chord on the left-hand side be influenced by the 

degraded state of the top chord on the right-hand side? 

3. How likely would the health state of the bottom chord on the left-hand side be influenced 

by the degraded state of the top chord on the right-hand side? 

d) The linguistic scale, given in Table 1, Is provided to the experts.  

e) The triangular fuzzy membership function, given in Figure 2, is used to estimate the linguistic 

analysis numerically. The answers to the three questions are given in Table 2. For example, to 

Question 1, the most experienced respondent, Expert 2, said unlikely, whilst Expert 1 and 3 

said likely and even chance, respectively. Table 2 also shows the triangular fuzzy membership 

value for each analysis of the experts (in square brackets). Finally, the individual answers are 

merged by taking account of the level of experience of the respondents, by using Eq. (1). Note 

that β is equal to 0.91, and β has been optimized by using the sensitivity analysis in order to 

avoid a single member judgment. Therefore, the aggregate result in Table 2 is based on the 

information retrieved by the whole group of experts, i.e. the analysis of the most experienced 

respondent is not dominant. 

Expert Question 1 Question 2 Question 3 

Expert 1 Likely [2, 5/2, 3] Likely [2, 5/2, 3] Likely [2, 5/2, 3] 

Expert 2 Unlikely [1, 3/2, 2] Unlikely [1, 3/2, 2] Very unlikely [1/2, 1, 3/2] 

Expert 3 Even chance [3/2, 2, 5/2] Even chance [3/2, 2, 5/2] Even chance [3/2, 2, 5/2] 

Aggregate Even chance [3/2, 2, 5/2] Even chance [3/2, 2, 5/2] Unlikely [1, 3/2, 2] 

Table 2. Individual and aggregate results. 

 

f) The aggregate answers can be expressed in a fuzzy pairwise comparison matrix. Table 3 

shows this matrix, with respect to the influences among the major elements of the bridge. The 

FAHP is then used to evaluate the weight of the major element on the health state of other 
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major elements of the bridge (Eq. (2)), and thus the influence of the parent node (TCR) on the 

health state of the other major elmenets of the bridge (TCR, TCL, BCR and BCL) is:  

( )0.2759,  0.2759,  0.2241,  0.2241
T

w =  (7) 

 TCR BCR TCL BCL 

TCR [1, 1, 1] [1, 1, 1] [1, 1, 1] [1, 3/2, 2] 

BCR [1,1,1] [1,1,1] [1, 3/2, 2] [1, 1, 1] 

TCL [1,1,1] [1/2, 2/3, 1] [1, 1, 1] [1, 1, 1] 

BCL [1/2, 2/3, 1] [1, 1, 1] [1, 1, 1] [1, 1, 1] 

Table 3. A fuzzy pairwise comparison matrix for major elements. 

g) The consistency of the expert analysis is verified by evaluating the CR:   

4.0414-4 1
0.0154

4 0.9000

CI
CR

RI
= =  =  (8) 

where max = 4.0414 is retrieved by using the maximum centroid of area method to defuzzify 

the pairwise matrix of Table 3. RI is equal to 0.9, and is obtained by using literature [Wang and 

Elhag, 2006]. Since CR is lower than 0.1, the analysis is consistent. 

h) In this final stage of the CPT development, the first step is to define the probability of having a 

child node in a state i, conditional on the knowledge that its parent nodes are in the healthy 

state (H), 

1

( 1)
N

k
i k

k

P x Y y

=

= = , with

 

i = H, PD, SD. In this paper, we assume that the health 

state of each element, when there is no degradation of an element in the parent node, is equal 

to:  

1

( 1)
N

k
i k

k

P x Y y

=

= = =[
1

( 1) 0.95
N

k

H k

k

P x Y y
=

= = = ,
1

( 1) 0.025
N

k

PD k

k

P x Y y
=

= = = ,

1

( 1) 0.025
N

k

SD k

k

P x Y y
=

= = = ]. For example, the CPT of the TCR_1 node of the BBN is 

shown in Table 4, which has two parent nodes, TCR and TCL. There are 27 entries in the CPT 

as each of the three elements has three states 3(3 ) . The first column gives the probabilities of 

TCR_1 states, conditional on the knowledge that both parents are in the healthy state.  
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Furthermore, the rest of entries are defined using Eq. (5), where i
p  and 

mpf  depend on the 

health state of the parent nodes k:  

[1,0.7,0.3]

[1,0.25,0.75]

T

i T

if k PD
p

if k SD

 =
= 

=

 (9) 

1

1.1mp

if k H or PD
f

if k SD

=
= 

=
 (10) 

For example, Eq. (9) shows that pi is equal to 0.7 if TCR_1 and the parent node are in the PD 

state. In this way, the decrease of 

1

( _1 1)
N

k
i k

k

P TCR Y y

=

= =  is shared between the states PD 

and SD, and the whole probability is normalized to 1; an example of this process is presented 

in Eq. (11) and Eq. (12). 

Note that the weight of the parent nodes on the child node are equal to 

( )0.2759, 0.2241w = , as shown in step f). For example, the two columns with text in bold 

in Table 4 are computed by using Eq. (5), resulting in Eq. (11) (where the number of degraded 

elements is equal to 1, M=1), and Eq. (12), (where the number of degraded elements is equal 

to 2, M=2): 

( )

( )

( )

( _1 , ) 0.95 0.95 0.2759 1 1 1  0.6879 0.69

( _1 , ) 0.025 0.95 0.2759 0.7 1 1  0.2085 0.21

( _1 , ) 0.025 0.95 0.2759 0.3 1 1  0.1036 0.10

TCR TCL

H k PD k H

TCR TCL

PD k PD k H

TCR TCL

SD k PD k H

P TCR Y Y

P TCR Y Y

P TCR Y Y

= =

= =

= =

 = +    −  = 



= +     = 


= +     = 

 (11) 

( )

( )

( _1 , ) 0.95 0.95 (0.2759 1.1 0.2241 1) 1 1  0.4480 0.45

( _1 , ) 0.025 0.95 (0.2759 1.1 0.2241 1) 0.25 1  0.1503 0.15

( _1 , ) 0.025 0.95 (0.27

TCR TCL

H k SD k PD

TCR TCL

PD k SD k PD

TCR TCL

SD k SD k PD

P TCR Y Y

P TCR Y Y

P TCR Y Y

= =

= =

= =

= +   +    − = 

= +   +    = 

= +  ( )59 1.1 0.2241 1) 0.75 1  0.4009 0.40







 +    = 

 (12) 

 

 TCL H PD SD 

 TCR H PD SD H PD SD H PD SD 

TCR_1 

H 0.95 0.69 0.63 0.73 0.47 0.45 0.69 0.43 0.38 

PD 0.025 0.21 0.11 0.16 0.36 0.15 0.08 0.16 0.17 

SD 0.025 0.10 0.26 0.01 0.17 0.40 0.21 0.41 0.45 

Table 4. The resulting CPT for the TCR_1 node 
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3.1.5 Results of the BBN method application to detect steel truss bridge degradation 

The performance of the proposed BBN method is evaluated by analysing the 28 degradation scenarios, 

presented in Section 3.1.1. In the method, the displacements of the bridge during the 28 degraded 

scenarios are used as an input to the BBN. The displacement of the bridge elements is used as an input 

to the sensor nodes of the BBN. In this way, the health state of the minor elements of the bridge is 

assessed based on the value of the displacement of the bridge elements. In fact, the displacement of 

the bridge is directly related to the health state of the bridge, i.e. a degradation of the bridge health state 

is expected to be reflected by a change of the bridge element displacement, which generally increases 

if a given load on the bridge is defined. When the health state of the minor elements is selected, the 

health state of all bridge elements is updated accordingly. The scenarios are chosen in a random order. 

The method is used to identify the deteriorated elements and the level of deterioration, i.e. the elements 

and their states are ranked in terms of their occurrence probabilities.  

Degradation 

scenarios 

Number 

of 

scenarios 

Number of correct 

identifications of 

the degraded major 

elements 

Number of correct 

identifications of 

the degraded minor 

elements 

Number of false 

identifications of the 

degraded minor 

elements 

A Single 

element 
22 18/22 17/22 10/22 

Multiple 

elements 
6 10/12 15/18 7/18 

Total 28 28/34 32/40 17/44 

Table 5. Deterioration detection on the steel truss bridge using the BBN method  

The results are presented in Table 5, and can be discussed as follows:  

- Major Elements. Good accuracy in detecting the degraded major element(s) of the bridge is 

demonstrated. When a single element is degraded, the BBN is able to correctly identify 18 out 

of 22 major elements, which contain a degraded minor element (accuracy of 82%). When 

multiple minor elements are degraded, the BBN correctly identifies 10 out of 12 major elements 

that contain degraded minor element(s). Note that 12 is the number of major elements that are 

degraded during the six scenarios with multiple elements. 

- Minor Elements. Good accuracy is also shown in detecting the degraded minor elements, i.e. 

32 out of 40 minor elements are correctly detected. When multiple minor elements are 

degraded, the BBN correctly identifies 15 out of 18 minor degrading elements. Note that 18 is 

the number of minor elements that are degraded during the six scenarios with multiple 

elements. 
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However, there are some misclassifications obtained:  

- Major elements. 5 scenarios (out of 28) are misclassified. These scenarios are situations when 

the element at the end of the bottom chord, i.e. at the joint, is degraded. These joints represent 

the support of the bridge, as shown in Figure 3, and thus the displacement of all bridge elements 

is slightly influenced by the degradation of these joints. Therefore, using the BBN method it is 

impossible to identify this degradation as it only results in small changes in behaviour. This is 

a commonly observed issue for some SHM analyses, when the degradation of the lateral parts 

of the bridge is hard to identify [Vagnoli et al., 2018]. There was also a misclassification case 

between the bottom and the top chords; this could be because, while developing the BBN 

model, high influence among minor (major) elements of the bridge was assumed. 

- Minor Elements. 3 minor elements were misclassified when multiple minor elements of both 

bottom chords have degraded; in this case the mid-span of the bridge as the element that has 

degraded has been identified by the method. In addition, 17 elements were erroneously 

identified as degraded; again, this could be because of the assumed influence between 

neighbouring elements.  

 

3.2.1 The post-tensioned concrete bridge and degradation scenarios  

In this case study, the focus is placed on illustrating how the BBN method can be applied for detecting 

degradation of bridge elements and for continuous monitoring of their health states, using in-field data 

of bridge acceleration. 

This in-field post-tensioned concrete bridge [Siringoringo et al., 2013] has a main span of 32 m and two 

side spans of 12 m, and its width is 6.6 m (Figure 7a). The bridge was subject to a progressive damage 

test before being demolished, i.e. the infrastructure of the bridge was intentionally damaged in order to 

study how the bridge behaves in different health states. The main excitation source of the bridge was 

changing environmental conditions.  

The acceleration of the bridge was monitored by a measurement system made of two reference 

sensors, which were kept fixed throughout the duration of the progressive damage test. The sampling 

rate of the sensors was 100 Hz, and they were installed at locations, shown by circles in Figure 7b. A 

progressive damage test was performed by cutting a pier of the bridge, as shown in Figure 7c. The 



22 
 

bridge acceleration of during five different situations, related to the state of the bridge, was monitored 

(Figure 7c):  

• Situation 0: the healthy state, i.e. the progressive damage test has not started yet. 

• Situation 1: the left pier was cut by 5cm and a steel column was installed to provide a temporary 

support of the bridge. 

• Situation 2: the steel column was lowered by 1 cm and the bridge deck settled at 1 cm lower 

than its starting position.  

• Situation 3: the steel column was further lowered by 1 cm and the bridge deck settled at 2 cm 

lower than its starting position.  

• Situation 4: the steel column was lowered by 3cm and the bridge deck settled at 2.7 cm lower 

than its starting position.  

It is worth mentioning that the health states of the bridge can be represented as follows: i) healthy state 

of the bridge, when the bridge is in situation 0 (healthy state in Figure 7c); ii) partially degraded state, 

when the bridge is in situation 1 and situation 2 (state 1 and state 2 in Figure 7c), due to the fact that 

the steel column holds the bridge or is slightly lowered; iii) severely degraded state, when the bridge is 

in situation 3 and situation 4 (state 3 and state 4 in Figure 7c), due to the fact that the steel column is 

significantly lowered, and the bridge deck position is modified accordingly.  
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(a) 

 
(b) 

 
(c) 

Figure 7. The post-tensioned concrete bridge 

 

 

3.2.2 Building the BBN for the concrete bridge  

1. In this case study, the major elements are the three spans of the bridge (i.e. the main span and 

left and right side spans) and the piers. The deck, which is made of these three spans, is of 

total of 56m long and is divided into 10 minor elements, of 5.6m. The condition of the deck 

represents the condition of the whole bridge.  

2. Since the deck is made of three spans, three nodes in the BBN model represent these major 

elements, and 10 nodes represent the minor elements, as shown in Figure 8. The minor 

elements are denoted as E_j, where j=1, 2, …, 10. In addition, the nodes E_2 and E_3 represent 

the minor elements at the left pier, and nodes E_8 and E_9 represent the minor elements at 

the right pier. The three major elements influence the health state of the whole deck, and, 

consequently, they are parents of the Deck node.   
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Figure 8. The BBN model for the post-tensioned concrete bridge 

In addition, interdependencies among neighbouring major/minor elements are also included, 

and further nodes, ending with “_1”, are introduced, as shown in Figure 9. 

 

 

Figure 9. The BBN model with additional interdependencies. 

3. The five states defined during the progressive damage test (described in 3.2.1) are grouped 

into three health states: i) a healthy state, situation 0 from the in-field test; ii) a partially degraded 

state, situations 1 and 2; iii) a severely degraded state, situations 3 and 4.   
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4. The measurement system of the bridge is represented by two accelerometers that are installed 

at 17.6m and 22.6m from the left end of the bridge, as shown in Figure 7. The two sensor nodes 

are added to the BBN model at respective minor elements, as depicted in Figure 10.  

Note that the CPTs are developed following the same approach as in the first case study, presented in 

Section 3.1.4. 

 

Figure 10. The final BBN model 

3.2.3 Results of the BBN method application to detect concrete bridge degradation 

and to monitor its health state 

The performance of the method is evaluated by analysing the five degradation scenarios, presented in 

Section 3.2.1. In the method, bridge acceleration data is used as an input to the BBN. Particularly, the 

acceleration data are firstly subjected to a pre-processing analysis with the aim of removing the noise 

from the acceleration data and lumping the data into a health indicator [Moughty and Casas, 2017]. 

Then, the post-processed acceleration data are used as an input to the sensor nodes. The health state 

of the minor bridge elements is then assessed by evaluating the magnitude of the health indicator of 

the bridge, which is related to the health state of the bridge subject to an external excitation: the higher 

the bridge acceleration, the higher the degradation of the bridge elements. The results show how the 

health state of the bridge and its elements changes over time, i.e. probability of being in the healthy 

state deceases and probabilities of being in the partially and severely degraded states increase when 

a progressive damage test is carried out.  
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Figure 11. Evolution of the health state of the deck over the duration of the damage test 

For example, Figure 11 shows the evolution of the health state of the deck over time. At the beginning, 

the bridge is in the healthy state before any damage occurs, represented as the grey area in Figure 11. 

There is an increase in the probability of the partially degraded state and the severely degraded state 

at around time 15min, represented by light grey and dark grey areas, respectively. This is due to noise 

in the data. The dashed vertical lines represent the time when the bridge is damaged by cutting the left 

pier of the bridge. The first vertical dashed line at a time of 19min represents the occurrence of the 

partially degraded state (i.e. damage described by States 1 and 2), whereas the second dashed line at 

a time of 34min represents the occurrence of the severely degraded state (i.e. damage described by 

States 3 and 4). At a time of 19min, the probability of being in the partially and severely degraded states 

increases significantly, and it is higher than at the beginning of the damage test.  A further slight increase 

in these probabilities is observed at time of 34min when further damage is inflicted. This small example 

illustrates that the BBN method can be used to monitor the health state over time when unexpected 

bridge behaviour is detected as soon as it occurs. Figure 11 also shows that the largest area of the 

probability belongs to the healthy state of the bridge: this result can be due to both the definition of the 

CPTs and the structure of the BBN. In terms of the definition of the CPTs, such a result is possible if a 

low probability is assumed for the influence of minor components to the overall bridge health state, i.e.  

the degrading state of the bridge minor elements has a low impact on the health state of the whole 
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bridge. In terms of the structure of the BBN, the evidence about the degrading minor elements is 

combined with the evidence about healthy elements and due to the structure of the BBN the healthy 

state has more influence on the outcome. This outcome can be improved by using a more robust 

definition of the CPTs, e.g. merging the expert knowledge with the analysis of the bridge behaviour, and 

reducing the number of nodes in the BBN.   

As shown in the case study in Section 3.1, the BBN method can also be used to detect deterioration of 

the bridge and its elements, i.e. find the most likely location of the deterioration.  

 

Figure 12. Evolution of the health state of the deck and its parent nodes over the duration of the 

damage test 

For example, in addition to the evolution of the health state of the deck, Figure 12 shows the evolution 

of the health states for the parent nodes of the Deck node: the main span, the side span on the left and 

the side span on the right. It identifies that at a time of 19min the location of the degradation is the main 

span. It is more degraded than the other two major elements, because the light grey and dark grey 

areas of the main span are larger than those areas of the side span on the left and on the right. This 

illustrates that the BBN method can identify the location correctly. Note that the damaged left pier is 

represented by two nodes in the BBN, which influence the main span directly and have some influence 

to the side span on the left. Therefore, the light grey and dark grey of the side span on the left are larger 

than for the side span on the right, but not as large as for the main span.  
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Figure 13. Evolution of the health state of the minor elements over the duration of the damage test 

At the minor element level, it can be seen in Figure 13 that the elements E_4_1 and E_5_1 have been 

identified as the most likely location of the damage. These two nodes also represent the locations of 

the sensors. Since the left pier was damaged, its associated nodes are the elements E_3_1 and E_4_1. 

Therefore, this example illustrates that the location has been identified only partially, i.e. there are some 

changes in the light grey and dark grey areas for E_3_1 but they are not as large as for E_4_1 and 

E_5_1. At the same time, Figure 13 shows that different health states of the bridge are identified by the 

changing states of elements E_4_1 and E_5_1: when the bridge experiences situation 1 and 2 (partially 

degraded states at min 19) the health state of the bridge elements worsens; similarly, when the bridge 

experiences situation 3 and 4, i.e. the bridge enters into the severely degraded states, the health state 

of elements E_4_1 and E_5_1 worsens significantly. For the element E_6_1, some changes in the light 

grey and dark grey are also seen; this could be because of the assumed influence between the 

neighbouring elements.  

In terms of the accuracy of the method, demonstrated in the two case studies, it should be said, that 

better results could potentially be achieved by increasing the number of nodes, used to represent bridge 
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elements. This could improve the ability to locate the degradation on the bridge, but it would come with 

an expense of having to develop and analyse larger and more detailed BBN models. Furthermore, the 

accuracy of the CPTs could be enhanced by using data, collected by a bridge sensor system, in addition 

to, or instead of, expert knowledge.  

 

4. Conclusion  

In this paper, a novel BBN method has been proposed for bridge degradation detection and for 

evaluation of the bridge health state. The method has been applied in two case studies. In the first case 

study, a steel truss bridge was modelled using an FEM model, and effects of degradation scenarios of 

individual and multiple element deterioration have been obtained from the FEM model. Using the 

proposed method the degraded elements of the bridge have been identified correctly in most cases. In 

the second case study, instead of using the FEM model, acceleration data of an in-field post-tensioned 

concrete bridge has been used as an input to the BBN model. Again, bridge elements that were most 

likely to have deteriorated were identified. The method was also used to find the point in time when the 

change in the behaviour of the bridge has occurred. Overall, using the proposed BBN method, evolution 

of the health state of the bridge and its elements over the duration of the damage test has been obtained 

in a novel way.  

The BBN method has shown some good performance in both case studies. However, some 

misclassifications of deteriorated elements have occurred, potentially due to a number of factors, such 

as noisy in-field data, the level of detail in the BBN model and the method adopted for the CPT 

development. Better results could potentially be achieved by increasing the number of nodes, used to 

represent bridge elements in the BBN model. This could improve the ability to locate the degradation 

on the bridge but it would come with the expense of having to develop and analyse larger and more 

detailed BBN models. Furthermore, the accuracy of the CPTs could be enhanced by using data, 

collected by a bridge sensor system, instead of expert knowledge. Future work could include an 

exploration of the method application to different types of bridges and different deterioration 

mechanisms. This work should be further developed using other case studies of instrumented bridges.  

 

 

 



30 
 

Funding 

This project has received funding from the European Union’s Horizon 2020 research and innovation 

programme under the Marie Skłodowska-Curie grant agreement No. 642453. 

Disclosure statement 

No potential conflict of interest was reported by the authors. 

5. References  

Ahmadi, H.R., Anvari, D., “New damage index based on least squares distance for damage diagnosis 
in steel girder of bridge's deck”, Structural Control and Health Monitoring, 2018, 25 (10), art. no. 
e2232 
Alves, V., Cury, A., Roitman, N., Magluta, C., Cremona, C., “Structural modification assessment 
using supervised learning methods applied to vibration data”, Engineering Structures, 2015, 99, pp. 
439-448. 
Arangio, S., Beck, J.L., “Bayesian neural networks for bridge integrity assessment”, Structural Control 
and Health Monitoring, 2012, 19 (1), pp. 3-21. 
Attema, T., Kosgodagan Acharige, A., Morales-Nápoles, O., Maljaars, J., “Maintenance decision 
model for steel bridges: a case in the Netherlands”, Structure and Infrastructure Engineering, 2017, 
13 (2), pp. 242-253. 
Attoh-Okine, N.O., Bowers, S., “A Bayesian belief network model of bridge deterioration”, 
Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2006, 159 (2), pp. 69-76. 
Casas, J.R., Moughty, J. J., “Bridge Damage Detection Based on Vibration Data: Past and New 
Developments”, Front. Built Environ. 3:4., 2017, doi: 10.3389/fbuil.2017.00004. 
Bao, Y., Valipour, M., Meng, W., Khayat, K.H. and Chen, G., Distributed fiber optic sensor-enhanced 
detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete 
overlay. Smart Materials and Structures, 2017, 26(8), p.085009 
Daǧdeviren, M., Yüksel, I., “Developing a fuzzy analytic hierarchy process (AHP) model for behavior-
based safety management”, Information Sciences, 2008, 178 (6), pp. 1717-1733. 
Dowling, J., Obrien, E.J., González, A., “Adaptation of Cross Entropy optimisation to a dynamic 
Bridge WIM calibration problem”, Engineering Structures, 2012, 44, pp. 13-22. 
Elmasry, M., Hawari, A., Zayed, T., “Defect based deterioration model for sewer pipelines using 
bayesian belief networks”, Canadian Journal of Civil Engineering, 2017, 44 (9), pp. 675-690. 
European Commission, “EU transport in figures (statistical pocketbook)”, Brussels: European 
Commission, 2012 
Fan, W., Qiao, P., “Vibration-based damage identification methods: A review and comparative study”, 
Structural Health Monitoring, 2011, 10 (1), pp. 83-111. 
Franchin, P., Lupoi, A., Noto, F., Tesfamariam, S., “Seismic fragility of reinforced concrete girder 
bridges using Bayesian belief network”, Earthquake Engineering and Structural Dynamics, 2016, 45 
(1), pp. 29-44. 
Frangopol, D.M., Saydam, D., Kim, S., “Maintenance, management, life-cycle design and 
performance of structures and infrastructures: a brief review”, Structure and Infrastructure 
Engineering, 2012, 8 (1), pp. 1-25. 
Gentile, C., Saisi, A., “Continuous dynamic monitoring of a centenary iron bridge for structural 
modification assessment”, Frontiers of Structural and Civil Engineering, 2015, 9 (1), pp. 26-41. 
Holický, M., Marková, J., Sýkora, M., “Forensic assessment of a bridge downfall using Bayesian 
networks”, Engineering Failure Analysis, 2013, 30, pp. 1-9. 
Hester, D., J. Brownjohn, M. Bocian and Y. Xu. “Low Cost Bridge Load Test: Calculating Bridge 
Displacement from Acceleration for Load Assessment Calculations.” Engineering Structures 143 
(2017): 358-374. 
Hsu, T.-Y., Loh, C.-H., “Damage detection accommodating nonlinear environmental effects by 
nonlinear principal component analysis”, Structural Control and Health Monitoring, 2010, 17 (3), pp. 
338-354. 
Jensen, F.V., Nielsen, T. D., (2007). “Bayesian Networks and Decision Graphs”, Information Science 
and Statistics, Springer. 



31 
 

Kabir, G., Sadiq, R., Tesfamariam, S., “A fuzzy Bayesian belief network for safety assessment of oil 
and gas pipelines”, Structure and Infrastructure Engineering, 2016, 12 (8), pp. 874-889. 
Kim, J.-T., Park, J.-H., Lee, B.-J., “Vibration-based damage monitoring in model plate-girder bridges 
under uncertain temperature conditions”, Engineering Structures, 2007, 29 (7), pp. 1354-1365. 
Kreislova, K., Geiplova, H., “Evaluation of corrosion protection of steel bridges”, Procedia 
Engineering, 2012, 40, pp. 229-234. 
Loughney, S., Wang, J., “Bayesian network modelling of an offshore electrical generation system for 
applications within an asset integrity case for normally unattended offshore installations”, 
Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the 
Maritime Environment, 2017, p.1475090217704787. 
Martínez-Martínez, L.H., Delgado-Hernández, D.J., de-León-Escobedo, D., Flores-Gomora, J., 
Arteaga-Arcos, J.C., “Woody debris trapping phenomena evaluation in bridge piers: A Bayesian 
perspective”, Reliability Engineering and System Safety, 2017, 161, pp. 38-52. 
Mehrjoo, M., Khaji, N., Moharrami, H., Bahreininejad, A., “Damage detection of truss bridge joints 
using Artificial Neural Networks”, Expert Systems with Applications, 2008, 35 (3), pp. 1122-1131. 
Morales-Nápoles, O., Delgado-Hernández, D.J., De-León-Escobedo, D. and Arteaga-Arcos, J.C., “A 
continuous Bayesian network for earth dams' risk assessment: methodology and quantification”, 
Structure and Infrastructure Engineering, 2014, 10(5), pp.589-603. 
Moughty, J.J., Casas, J.R., “A state of the art review of modal-based damage detection in bridges: 
Development, challenges, and solutions”, Applied Sciences (Switzerland), 2017, 7 (5), art. no. 5100. 
Mustafa, S., Matsumoto, Y., “Bayesian Model Updating and Its Limitations for Detecting Local 
Damage of an Existing Truss Bridge”, Journal of Bridge Engineering, 22 (7), art. no. 04017019. 
Ni, Y.-C., Zhang, Q.-W., Liu, J.-F., (2019). “Dynamic Property Evaluation of a Long-Span Cable-
Stayed Bridge (Sutong Bridge) by a Bayesian Method”, International Journal of Structural Stability 
and Dynamics, 2017, 19 (1), art. no. 1940010. 
Ni, Y.Q., Xia, H.W., Wong, K.Y., Ko, J.M., “In-service condition assessment of bridge deck using 
long-term monitoring data of strain response” Journal of Bridge Engineering, 2012, 17 (6), pp. 876-
885. 
Psimoulis, P.A., Stiros, S.C., “Measuring deflections of a short-span railway bridge using a robotic 
total station”, Journal of Bridge Engineering, 2013, 18 (2), pp. 182-185. 
Rafiq, M.I., Chryssanthopoulos, M.K., Sathananthan, S., “Bridge condition modelling and prediction 
using dynamic Bayesian belief networks”, Structure and Infrastructure Engineering, 2015, 11 (1), pp. 
38-50. 
Rao, A.S., Lepech, M.D., Kiremidjian, A., “Development of time-dependent fragility functions for 
deteriorating reinforced concrete bridge piers”, Structure and Infrastructure Engineering, 2017, 13 
(1), pp. 67-83. 
Rice, J.A., Mechitov, K.A., Sim, S.H., Spencer Jr., B.F., Agha, G.A., “Enabling framework for 
structural health monitoring using smart sensors”, Structural Control and Health Monitoring, 2011, 18 
(5), pp. 574-587, 2011. 
Sanayei, M., Khaloo, A., Gul, M., Necati Catbas, F., “Automated finite element model updating of a 
scale bridge model using measured static and modal test data”, Engineering Structures, 2015, 102, 
pp. 66-79. 
Siringoringo, D.M., Fujino, Y., Nagayama, T., “Dynamic characteristics of an overpass bridge in a 
full-scale destructive test”, Journal of Engineering Mechanics, 2013, 139 (6), pp. 691-701. 
Sun, S., Zhang, C., Yu, G., “A Bayesian network approach to traffic flow forecasting”, IEEE 
Transactions on Intelligent Transportation Systems, 2006, 7 (1), pp. 124-133. 
Torfi, F., Farahani, R.Z., Rezapour, S.,  “Fuzzy AHP to determine the relative weights of evaluation 
criteria and Fuzzy TOP-SIS to rank the alternatives”, Applied Soft Computing Journal, 2010, 10 (2), 
pp. 520-528. 
Vagnoli, M., Remenyte-Prescott, R., Andrews, J., “Railway bridge structural health monitoring and 
fault detection: State-of-the-art methods and future challenges”, Structural Health Monitoring, 2018, 
17(4), 971–1007. 
Vagnoli, M., Remenyte-Prescott, R., Andrews, J., “A fuzzy-based Bayesian Belief Network approach 
for railway bridge condition monitoring and fault detection”, European Safety and Reliability 
Conference (ESREL) 2017, Portoroz, Slovenia, 18-22 June. 
Wang, Y.-M., Elhag, T.M.S., “On the normalization of interval and fuzzy weights”, Fuzzy Sets and 
Systems, 2006, 157 (18), pp. 2456-2471. 
Zhao, X., Liu, H., Yu, Y., Xu, X., Hu, W., Li, M. and Ou, J., “Bridge displacement monitoring method 
based on laser projection-sensing technology”, Sensors, 2015, 15(4), pp.8444-8463. 



32 
 

Zheng, W., Yu, W., “Probabilistic approach to assessing scoured bridge performance and associated 
uncertainties based on vibration measurements”, Journal of Bridge Engineering, 2015, 20 (6), art. 
no. 04014089. 

 


