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Abstract: The meiotic recombination 11 protein (MRE11) plays a key role in DNA damage response
and maintenance of genome stability. However, little is known about its function during development
of the malaria parasite Plasmodium. Here, we present a functional, ultrastructural and transcriptomic
analysis of Plasmodium parasites lacking MRE11 during its life cycle in both mammalian and
mosquito vector hosts. Genetic disruption of Plasmodium berghei mre11 (PbMRE11) results in
significant retardation of oocyst development in the mosquito midgut associated with cytoplasmic
and nuclear degeneration, along with concomitant ablation of sporogony and subsequent parasite
transmission. Further, absence of PbMRE11 results in significant transcriptional downregulation
of genes involved in key interconnected biological processes that are fundamental to all eukaryotic
life including ribonucleoprotein biogenesis, spliceosome function and iron–sulfur cluster assembly.
Overall, our study provides a comprehensive functional analysis of MRE11′s role in Plasmodium
development during the mosquito stages and offers a potential target for therapeutic intervention
during malaria parasite transmission.
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1. Introduction

Malaria is one of the deadliest infectious diseases worldwide, and there were over 229 million
clinical infections and 409,000 malaria deaths in 2019 [1]. Caused by infection with the apicomplexan
parasite Plasmodium spp., malaria is transmitted by the Anopheles mosquito. The parasite life cycle
has several morphologically distinct developmental stages in the mammalian host and mosquito
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vector [2]. The host is infected by sporozoites, which migrate in the blood to the liver, where the
parasite replicates asexually multiple times in a hepatocyte to produce merozoites. Each merozoite
infects a red blood cell, followed by the cycles of intraerythrocytic multiplication and merozoite
release, which are responsible for the clinical symptoms. Some intraerythrocytic parasites become
developmentally-arrested gametocytes, which initiate the sexual development of the parasite when
ingested by the vector. Gametogenesis and fertilization produce a motile ookinete that invades the
mosquito gut wall and forms an oocyst where sporozoites develop and, once mature, migrate to the
mosquito’s salivary glands for transmission to the host during feeding.

Maintenance of genome stability is fundamental for all organisms and damage to DNA triggers
robust DNA damage response (DDR) mechanisms, well studied in mammalian systems. A signaling
pathway is initiated when DNA lesions are identified, which then recruits different DNA repair
pathways to repair the damage and preserve genomic integrity. Depending on the level of damage,
the DDR pathway can also initiate apoptosis or cell senescence, leading to cell death and limiting further
DNA damage due to high genomic instability [3]. Although the unique molecular aspects of Plasmodium
DNA replication and cell multiplication are beginning to emerge [4], little is known of the key molecular
players used to maintain genome stability, especially during DDR. The haploid parasite genome is
highly susceptible to extensive DNA damage, such as double-strand breaks (DSBs) resulting from innate
DNA replication errors or exposure to radiation and chemical mutagens [5]. DSBs activate the DSB
repair (DSBR) pathway, facilitating repair via two distinct mechanisms: “error-prone” non-homologous
end-joining (NHEJ) and “error-free” homologous recombination (HR). In Plasmodium, HR appears to
be the predominant DDR pathway [6], with homologues of many key players of mammalian HR [5].

A key initiator of the HR pathway is meiotic recombination 11 protein (MRE11) [7], which in
mammals is part of the MRN/X complex that includes MRE11, RAD50 and NBS1 (Nijmegen breakage
syndrome 1, a homologue of Saccharomyces cerevisae Xrs2). This complex has a crucial role in DDR
during mitosis, promoting HR between sister chromatids to repair mutations arising during DNA
replication [8]. It acts in two ways: first as an upstream DNA damage sensor [9], which activates the
ataxia-telangiectasia-mutated (ATM) pathway [10], and second to activate DNA repair by promoting
bridge formation to allow resection of DSBs [11]. In parasitic protozoa, MRE11 is not essential in
Trypanosoma brucei bloodstream forms, but its deletion results in impaired HR, reduced growth and
increased sensitivity to DNA double-strand breaks [12]. Numerous proteins potentially involved in HR
have been identified in P. falciparum [5], although NBS1 is not encoded in the genome. In a recent study,
a single mre11 orthologue containing two incomplete but catalytically active MPP_MRE11 domains was
identified in P. falciparum (Gene ID: PF3D7_0107800) [13], and complementation experiments confirmed
DDR activity in response to DNA damage [14]. A role in DDR was confirmed when P. falciparum mre11
(along with its MRN partner rad50) was shown to be significantly upregulated in response to treatment
to induce DNA damage with the alkylating agent, methyl methanesulfonate (MMS) [15].

The DSBR pathway is a target of intense investigation for the development of cancer therapies [16].
However, despite the initial studies in Apicomplexa, the function of MRE11 throughout the Plasmodium
life cycle is still unclear and genome-wide studies have not investigated its role at the different
stages [17,18]. Here we use the rodent malaria parasite Plasmodium berghei (Pb) to provide a functional,
ultrastructural and transcriptomic analysis of Pbmre11. By gene deletion, we show that MRE11 has
an essential role during oocyst maturation and sporogony, which is contributed through the female
gamete. We also show by RNA-seq analysis that MRE11′s absence results in significant downregulation
of transcription of essential genes that play key roles in ribonucleoprotein biogenesis, spliceosome
function and iron–sulfur cluster assembly. These findings suggest that MRE11 has a crucial role during
parasite transmission, and may affect vital biological processes through reduced activation of the DNA
damage repair response. Overall, our study offers a potential target for therapeutic intervention of a
parasite that still has a huge socioeconomic impact.
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2. Materials and Methods

2.1. Ethics

All animal work has passed an ethical review process in accordance with the United Kingdom
‘Animals (Scientific Procedures) Act 1986′ and in compliance with ‘European Directive 86/609/EEC’ for
the protection of animals used for experimental purposes. The project license number is 40/3344.

2.2. Animals

Six- to eight-week-old female Tuck-Ordinary (TO) outbred mice (Harlan) were used for
all experiments.

2.3. Generation of Transgenic Parasites

For C-terminal GFP tagging of MRE11 by single homologous recombination, a 1657 bp
region of mre11 (PBANKA_020560) starting 1494 bp downstream of the ATG start codon
and omitting the stop codon was amplified using primers T0751 (5′-CCCCGGTACCCGAAAT
GAAAGAAATAGAAGGATTCC-3′) and T0752 (5′-CCCCGGGCCCTTTATTCATTTCTGAAATTG
TCGAATTTATA-3′). The DNA fragment was inserted using KpnI and ApaI restriction sites
upstream of the gfp sequence in the pOB277 plasmid containing a human dhfr cassette to confer
resistance to pyrimethamine. The vector was linearized with BglII before transfection. The ∆mre11
gene knockout targeting vector was constructed using the pBS-DHFR plasmid, which contains
polylinker sites flanking a Toxoplasma gondii dhfr/ts expression cassette, as described previously [19].
A 611 bp fragment at the 5′ end of the mre11 sequence was generated from genomic DNA
using PCR primers P0141 (5′-CCCCGGGCCCTTGTGCATACACATCAACAGATAA-3′) and P0142
(5′-GGGGAAGCTTATCCAAATCTGATAAGTAATTATCCA-3′) and inserted into pBS-DHFR using
ApaI and HindIII restriction sites upstream of the dhfr/ts cassette. A 575 bp fragment generated with
primers P0143 (5′-CCCCGAATTCGAATGAATTGAAGGATATCCCAG-3′) and P0144 (5′-GGGGTC
TAGACTGTATTGGAGATGAATATTATGGA-3′) from the 3′ region of mre11 was then inserted
downstream of the dhfr/ts cassette using EcoRI and XbaI restriction sites. The linear targeting sequence
was released using ApaI/XbaI digestion of the plasmid.

P. berghei ANKA line 2.34 (for GFP tagging) or ANKA line 507cl1 (for gene deletion) were
transfected by electroporation [20]. Briefly, electroporated parasites were mixed immediately with
100 µL of reticulocyte-rich blood from a naïve mouse treated with phenylhydrazine (6 mg/mL)
(Sigma-Aldrich, St. Louis, MO, USA), incubated at 37 ◦C for 20 min and then injected intraperitoneally
into another mouse. From day 1 post-infection, 70 µg/mL pyrimethamine (Sigma-Aldrich, St. Louis,
MO, USA) was supplied in the drinking water for 4 days. Mice were monitored for the appearance
of parasites for fifteen days, then drug-resistant parasites were passaged into a second mouse with
continuing drug selection. Parasites were cloned by limiting dilution and genotyped.

2.4. Parasite Genotyping and Western Blotting

Diagnostic PCR was used with primer 1 (IntP14tag, 5′-CAGATTCACAGATGCATACATA-3′) and
primer 2 (ol492) [21] to confirm integration of the mre11 GFP targeting construct. For the gene deletion,
diagnostic PCR with primer 3 (IntP14KO, 5′-CCTACGCACCAACTACTCGTTA-3′) and primer 4
(ol248) [19] was used to confirm integration of the targeting construct; whereas primer 5 (P014KO1,
5′-AAGATGCAGGAAAAATGAGA-3′) and primer 6 (P014KO2, 5′-GGTTTTGAATTATGCTCGTG-3′)
were used to confirm deletion of the mre11 gene. For Southern blotting, genomic DNA from WT-GFP
and mutant parasites was digested with HindIII and fractionated on a 0.8% agarose gel before blotting
onto a nylon membrane (GE Healthcare, Chicago, IL, USA). A probe was generated from a PCR
fragment homologous to the 3′ sequence just outside of the targeted region using the AlkPhos
direct labelling kit (GE Healthcare, Chicago, IL, USA) according to the manufacturer’s instructions.
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Expected sizes post-digestion with HindIII were 3 and 5 kb for WT-GFP and ∆mre11 lines, respectively.
For confirmation of MRE11-GFP expression, Western blot was performed as previously described [21].

2.5. RNA-Seq Transcriptome Sequencing

For RNA extraction, parasite samples were passed through a plasmodipur column to remove host
DNA contamination prior to RNA isolation. Total RNA was isolated from purified parasites using
an RNeasy purification kit (Qiagen, Chicago, IL, USA). RNA was vacuum concentrated (SpeedVac,
ThermoFisher, Waltham, MA, USA) and transported using RNA stable tubes (Biomatrica, San Diego,
CA, USA). Total RNA was extracted from schizonts and activated gametocytes of WT-GFP and mutant
parasites (three biological replicates each). Strand-specific mRNA sequencing was performed of
total RNA and using TruSeq stranded mRNA sample prep kit LT (Illumina, San Diego, CA, USA),
as previously described [22]. Libraries were sequenced using an Illumina Hiseq with paired-end
100 bp read chemistry. Strand-specific RNA-seq paired-end reads were mapped onto the P. berghei
ANKA genome (PlasmoDB v9.2) using TopHat version 2.0.8, quantified and compared across different
samples using Cuffdiff version 2.1.1 and statistical analysis performed using cummeRbund package
in R. The STRING database version 11 [23] was searched for known and predicted protein-protein
interactions among the differentially expressed genes. The interaction network was visualized in Gephi
(https://gephi.org/) using Fruchterman Reingold layout. Life stage-specific gene expression of certain
genes was further explored in the single-cell RNA-seq datasets for P. berghei published as part of the
Malaria Cell Atlas [24].

2.6. Phenotypic Analysis

Phenotypic analyses were performed as described previously [25]. Asexual proliferation
and gametocytogenesis were analyzed by microscopy of blood smears. Gametocyte activation,
zygote formation and ookinete conversion rates were assessed by microscopy using in vitro cultures and
antibody staining for the surface antigen P28. For ookinete DNA content assays, nuclear fluorescence
intensity of WT-GFP or mutant parasites from 24 h cultures stained with Hoechst dye was measured
using ImageJ software. Values were expressed relative to the average fluorescence intensity of haploid
ring-stage parasites on the same slide and corrected for background fluorescence. Ookinete motility
assays used Matrigel (Corning, Corning, NY, USA): in brief, ookinete cultures were added to an equal
volume of Matrigel on ice, mixed thoroughly, dropped onto a slide, covered with a cover slip, and sealed
with nail polish. The Matrigel was then allowed to set at 20 ◦C for 30 min. After identifying a field
containing ookinetes, time-lapse videos were recorded at every 5 s for 100 cycles on a Zeiss AxioImager
M2 microscope fitted with an AxioCam ICc1 digital camera (Carl Zeiss, Inc, Oberkochen, Germany).
For mosquito transmission, triplicate sets of 20–60 Anopheles stephensi were used. Genetic cross
experiments were performed as previously described [22].

2.7. Electron Microscopy

Mosquito midguts at 14 days post-infection (dpi) were fixed in 4% glutaraldehyde in 0.1 M
phosphate buffer and processed for electron microscopy as previously described [21]. Briefly, samples
were post-fixed in osmium tetroxide, treated en bloc with uranyl acetate, dehydrated and then
embedded in Spurr’s epoxy resin. Thin sections were stained with uranyl acetate and lead citrate prior
to examination in a JEOL1200EX electron microscope (Jeol UK Ltd., Welwyn Garden City, UK).

2.8. Statistical Analyses

Statistical analyses were performed using GraphPad Prism 7 (GraphPad Software, San Diego, CA,
USA). For ookinete development, two-way ANOVA was used. For oocyst development, Student’s
t-test was used.

https://gephi.org/
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2.9. Data Availability

The raw RNA sequencing data has been deposited in the European Nucleotide Archive (https:
//www.ebi.ac.uk/ena) through accession numbers ERR409988, ERR409989, ERR409990, ERR409994,
ERR409995 and ERR409996.

3. Results

3.1. MRE11-GFP Has a Nuclear Location and Is Female Cell Lineage Specific

We first examined the expression and subcellular location of MRE11. mre11 mRNA is present in
cells throughout the P. berghei life cycle (except merozoites) based on single-cell RNA-seq data [24],
with the highest abundance in ookinetes/oocysts (Supplementary Materials Figure S1A). To investigate
MRE11 protein expression and location throughout the life cycle, we generated a fusion protein
with a C-terminal GFP tag by single-crossover recombination at the endogenous mre11 locus
(PBANKA_020560) (Supplementary Materials Figure S1B). Successful integration was confirmed
using diagnostic PCR (Supplementary Materials Figure S1C) and protein expression confirmed
by Western blot using an anti-GFP antibody (Supplementary Materials Figure S1D). A~154 kDa
MRE11-GFP was detected in lysates from activated gametocytes, compared with the 29 kDa GFP
extracted from a parasite line constitutively expressing GFP (GFPcon 507 cl1—henceforth called
WT-GFP) [20].

Using live-cell imaging, MRE11-GFP fluorescence was not observed in the asexual blood-stage
parasites, but was observed in the first sexual stages, more specifically in the nucleus of female but
not male gametocytes (Figure 1). Following gametocyte activation, female, but not male, gametocytes
continued to express the protein. After fertilization the protein remained associated with the nucleus
throughout zygote/ookinete development; whereas in oocysts the expression was diffuse and in
sporozoites it was focused at a single point adjacent to the nuclear DNA.

3.2. MRE11 Is Required for Oocyst Maturation and Sporogony in the Mosquito

To determine the function of MRE11 throughout the parasite’s life cycle, we analyzed the
asexual blood stages in mice and the sexual stages in the mosquito. Using the asexual blood-stage
parasites (where the protein was not detectable by live-cell imaging), we utilized double-crossover
homologous recombination at the endogenous mre11 locus to replace the gene with the T. gondii dhfr/ts
gene that confers pyrimethamine resistance. Diagnostic PCR and Southern blotting confirmed
successful integration of the targeting construct at the mre11 locus (Supplementary Materials Figure S2).
Two independent parasite clones with the mre11 gene deleted (mre11 clone 2 and mre11 clone
9—henceforward called ∆mre11) were analyzed.

WT-GFP control and ∆mre11 parasites were indistinguishable in asexual blood stage proliferation,
microgametocyte exflagellation (Figure 2A) or ookinete conversion in vitro (Figure 2B), with no
significant differences. Similarly, neither ookinete DNA content nor ookinete motility differed in
∆mre11 lines from WT-GFP controls (Figure 2C,D and Supplementary Materials Video S1 and S2).
We then investigated whether PbMRE11 is essential for oocyst development in the mosquito gut. We fed
female A. stephensi mosquitoes either ∆mre11 or WT-GFP parasites and analyzed oocyst development
and sporogony in the mosquito gut wall at 14 days post-infection. There were significantly fewer
oocysts in ∆mre11 lines (Figure 2E), and the vast majority of these oocysts were significantly smaller
than WT-GFP oocysts (Figure 2F). In none of the ∆mre11 oocysts was there any evidence of sporozoite
development (Figure 2G), and those of similar size to WT-GFP oocysts had patterns of fragmented
GFP expression and reduced Hoechst DNA-staining. Investigation of the sex cell lineage of this defect
revealed that it could be rescued by crossing ∆mre11 parasites with ∆map2 (male-defective) cells [26],
suggesting that the function of PbMRE11 is inherited through the female (Figure 2H).

https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena
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Figure 1. PbMRE11-GFP protein expression throughout most stages of the life cycle. Expression of 
PbMRE11-GFP in gametocytes, zygotes, ookinetes, oocysts and sporozoites. No GFP expression was 
observed in the asexual ring, trophozoite or schizont stages. NAMG = non-activated male 
gametocytes; NAFG = non-activated female gametes; AGs = activated gametocytes. Scale bar = 5 μm. 
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Figure 1. PbMRE11-GFP protein expression throughout most stages of the life cycle. Expression of
PbMRE11-GFP in gametocytes, zygotes, ookinetes, oocysts and sporozoites. No GFP expression was
observed in the asexual ring, trophozoite or schizont stages. NAMG = non-activated male gametocytes;
NAFG = non-activated female gametes; AGs = activated gametocytes. Scale bar = 5 µm.
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Figure 2. PbMRE11 is dispensable in the asexual and the sexual stages but important for oocyst
development and sporogony. (A) Microgametogenesis of ∆mre11 lines compared with WT-GFP
controls measured as the number of exflagellation centres per field. Means ± SEM are shown. n = 20
from 3 independent experiments. (B) Ookinete conversion as a percentage in ∆mre11 and WT-GFP
lines. Ookinetes were identified using the marker P28 and defined as those cells that successfully
differentiated into elongated ‘banana shaped’, stage 6 ookinetes. Bar is the mean ±SEM. n = 3
independent experiments, with >200 cells counted in each. (C) DNA content of mature ookinetes.
Bar is the mean ± SD. n = 36 each for WT-GFP and ∆mre11 lines. Bar = 5 µm. (D) Representative
frames from time-lapse movies of WT (upper panels) and ∆mre11 (lower panels) ookinetes in Matrigel.
Arrow indicates the apical end of the ookinete. Bar = 10 µm. A number of individual WT or ∆mre11
ookinetes from 24 hr cultures was measured over 8 min. Bar is the mean ± SEM; n = 3 biological
replicates with 3 ookinetes measured in each as technical replicates. (E) Total number of GFP-positive
oocysts per infected mosquito, at 14 dpi for ∆mre11 and WT-GFP lines. Bar = arithmetic mean. n = 3
independent experiments (20 mosquitoes for each). (F) Comparison of oocyst size in ∆mre11 and
WT-GFP lines at 14 dpi. Bar is the mean ±SEM. n = 200 oocysts. (G) Example of relative oocyst size and
numbers at 10× and 63×magnification in ∆mre11 and WT-GFP lines. Images show DIC, Hoechst and
GFP at 14 dpi. Scale bar = 50 µm for 10× and 10 µm for 63×. (H) Genetic complementation of ∆mre11.
Mosquitoes were fed with a combination of WT-GFP, ∆mre11 or ∆mre11 with either male (∆map2)
or female (∆nek2) mutants. Shown is a representation of three independent experiments (at least 10
mosquitoes per line, per experiment).
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3.3. Ultrastructure Analysis Reveals Degenerative Cytoplasm and Complete Lack of Sporozoite Formation in
∆mre11 Parasites

To investigate further the defective maturation and sporozoite development of ∆mre11 parasites,
WT-GFP and ∆mre11 oocysts 14 days post-infection were examined by transmission electron microscopy.
In WT-GFP lines, numerous large (approximately 70 µm in diameter) oocysts were observed with
intact cytoplasm exhibiting various stages of sporozoite formation from early development (Figure 3A)
to some with numerous fully formed sporozoites (Figure 3B). In contrast, very few ∆mre11 oocysts
were observed and these were much smaller (approximately 20 µm in diameter) than the WT oocysts
(compare Figure 3A,B to Figure 3C,D). The ∆mre11 oocysts had a fully formed wall but the cytoplasm
exhibited evidence of degeneration (Figure 3C,D), with vacuolization and organelle breakdown,
while the nuclei showed marked swelling of the nuclear membranes (Figure 3C,D). The degeneration
appeared to occur prior to completion of the growth phase and there was no evidence sporozoite
formation being initiated.Cells 2020, 9, x 9 of 16 
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Low power view through the Δmre11 oocyst showing the oocyst wall (CW) enclosing the degenerate 
contents with vacuolated cytoplasm (V) and swollen nucleus (N). Bars represent 10 μm. 
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Figure 3. Ultrastructure images of the oocysts of WT and ∆mre11 parasites at 14 days post-infection.
(A) Mid-stage WT oocyst showing early stages of sporozoite formation (S) around the cytoplasmic mass.
(B) Late-stage WT oocyst showing the large numbers of fully developed sporozoites (S). (C,D) Low
power view through the ∆mre11 oocyst showing the oocyst wall (CW) enclosing the degenerate contents
with vacuolated cytoplasm (V) and swollen nucleus (N). Bars represent 10 µm.

3.4. Absence of PbMRE11 Results in Transcriptional Downregulation of Key Genes Essential to All Eukaryotic Life

To understand better the effect of mre11 deletion on the transcriptional footprint of genes across
various biological processes, we compared the transcriptomes of ∆mre11 and WT-GFP parasites
by performing RNA-seq on schizonts and a mixture of activated male and female gametocytes.
mre11 transcripts were significantly lowered at both stages in the mutant (by more than 16-fold)
compared to those of WT-GFP controls (Figure 4A), thus confirming loss of mre11 expression in



Cells 2020, 9, 2590 9 of 15

the knockout parasites. In the asexual blood-stage schizonts, there was no major perturbation
of global gene expression resulting from mre11 deletion, as deduced by comparing the ∆mre11
and WT-GFP profiles (Figure 4A and Supplementary Materials Table S1), which differed only in
changes in a small number of genes that mostly belong to highly variable subtelomeric multigene
families. In contrast, there was significant transcriptional dysregulation in activated gametocytes
with 418 transcripts (representing 8% of all genes) downregulated in ∆mre11 parasites (Figure 4A and
Supplementary Materials Table S1), several of which encode for ribosomal and associated proteins.
To define biological signatures within the data, we matched the differentially expressed genes to
protein–protein association networks in the STRING database [23], and identified major, interconnected
gene clusters representing four biological processes: mitochondrial iron–sulfur cluster biogenesis and
oxidative DNA damage, ribonucleoprotein (RNP) biogenesis, spliceosome machinery, and host-cell
adhesion antigens (Figure 4B). Of note, downregulated genes involved in mitochondrial iron–sulfur
cluster biogenesis and oxidative DNA damage included GLP3, the only glutaredoxin-like protein
located in the mitochondrion [27], NADP-reductase [28], the mitochondrial FAD-linked sulfhydryl
oxidase ERV1 [29], MMS19-like protein [30] and oxoguanine glycosylase 1 (OGG1) (Figure 4C).
Genes essential for RNP biogenesis included those coding for the nuclear chaperone BCP1, the ATPase
AKLP1 (an orthologue of hCINAP), nucleolar complex protein 2 (NOC2) and ribonuclease P Protein 1
(RPP1—depletion of which results in global defects in rRNA processing in Saccharomyces cerevisiae [31]).
Spliceosome-associated genes included those for debranching enzyme 1 (DBR1) and DBR1 associated
ribonuclease 1 (DRN1), microfibril-associated protein 1 (MFAP1) and the pre-mRNA-splicing factor
CWF7. Finally, genes downregulated in ∆mre11 gametocytes that are essential for host cell adhesion
and parasite transmission in the mosquito included those for secreted ookinete adhesive protein
(SOAP), GPI-anchored micronemal antigen (GAMA), gamete release protein (GAMER) and the oocyst
markers CAP380 and circumsporozoite protein (CSP) (Figure 4C). Analysis of single-cell RNAseq
data [24] showed that 85 out of the 99 genes in the four clusters have peak expression during the
ookinete or the oocyst stages (Supplementary Materials Data file S1), with most of the genes also
showing higher levels of transcription in female than male gametocytes (Supplementary Materials
Figure S1A), further indicating female lineage expression for these genes.
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Figure 4. Global transcriptome analysis of ∆mre11 mutants using RNA-seq. (A) Ratio–intensity
plots of quantified FPKM values for each gene in ∆mre11 and WT-GFP lines at two life stages:
schizonts and activated gametocytes. Significant differentially expressed genes (q value < 0.05) are in
red. Not much perturbation is observed among the ∆mre11 schizont stage but a significant number
of genes are downregulated in ∆mre11 activated gametocytes. (B) Protein interaction network of
differentially expressed genes in ∆mre11 activated gametocytes. Inset circle shows the complete
protein interaction network of 198 proteins (nodes) that had interaction evidence in STRING database
(edges). Thickness of the edge denotes confidence of prediction based on several lines of evidence.
Four well-interconnected clusters could be determined: ribosome biogenesis (red), spliceosome
biogenesis (gold), mitochondria-related iron–sulfur cluster biogenesis and oxidative damage (green)
and host cell adhesion molecules (violet). (C) Log2-fold change in genes present in the four main
biological processes that were affected in ∆mre11 lines compared to WT-GFP controls.
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4. Discussion

Despite its well-known role in mammalian systems for maintenance of genome stability
and initiation of DNA damage repair, little is known about MRE11′s functions in Plasmodium.
Here, we provide a comprehensive functional analysis of its role during parasite sporogony in
developing oocysts. Overall, we have shown that MRE11 is a key regulator of malaria parasite
transmission and its deletion results in deregulated transcription of essential genes across various key
biological processes.

Transcriptional regulation and translational repression of hundreds of genes in female gametocytes
are key processes during malaria parasite transmission, occurring in two waves during sporozoite
maturation [32]. Based on MRE11-GFP expression and location, the protein is present only in female
gametocytes, and in all subsequent stages of parasite development in the mosquito. We did not
detect it in the asexual blood stages, which is in contrast to an earlier study showing MRE11 mRNA
and protein expression in the P. falciparum asexual intraerythrocytic stages [14], further confirmed by
single-cell RNA-seq data [24]. However, MRE11 protein was found at a very low level by Western
blot in [14], which may be undetectable using live-cell imaging. The essential role of translational
repression in female gametocytes during parasite transmission to the mosquito [33,34] has been
highlighted, but in contrast our MRE11 protein live imaging study suggests that MRE11′s translation
is repressed (or expressed at levels unobservable using live-cell imaging) until female gametocyte
development. This requirement for the protein in the female lineage is supported by our functional
and transcriptomic analyses, which showed that MRE11′s function can be rescued by genetic crossing
with a male-defective mutant, and with its enhanced expression in female gametocytes as detected by
single-cell RNA-seq [24].

Functional analysis showed that MRE11 is not required in the asexual blood stages, and its
crucial function is during parasite transmission, specifically during oocyst maturation and sporogony.
Even though the protein is expressed in the female gametocyte, zygote and ookinete, it is only
in the subsequent oocyst stage that a cellular phenotype is observed. Following fertilization,
meiosis commences in the ookinete with replication of the diploid DNA. Reductive division,
leading finally to haploid sporozoites, presumably occurs in the oocyst, and oocyst development is
characterized by 10 or more rounds of DNA replication by closed mitosis and without concomitant
cytokinesis to create a syncytial cell (sporoblast) with hundreds of genomes contained within the
same nuclear membrane [35]. MRE11 is known to regulate checkpoint signaling during meiosis [36],
and since a normal (4N) DNA content was observed in mature ookinetes it is possible that it functions
in the reductive division of meiosis in early oocyst development. A previous study analyzing the
Plasmodium meiotic recombinase Disrupted Meiotic cDNA 1 (DMC1) showed deletion of this gene
resulted in a similar phenotype to ∆mre11 mutants, with significant reduction (up to 80%) in oocyst
numbers, which were smaller compared to WT lines and transmission was completely ablated [37].
However, unlike ∆mre11 lines sporogony did occur but was slower and limited numbers of nuclei
were observed; whereas in ∆mre11 lines sporogony was completely ablated.

Our global transcriptomic study of ∆mre11 gametocytes showed that this deletion results in
reduced expression of hundreds of genes, many of which are vital for development in all eukaryotes.
Ribosome biogenesis is a fundamental component and the primary determinant of translational
capacity of the cell [38]. Formation of functional ribosomes is a complex process that involves
transcription, modification and processing of ribosomal RNA, production of ribosomal and auxiliary
proteins, and coordinated assembly of ribonucleoprotein (RNP) complexes. Previous ultrastructure
analyses of Plasmodium oocyst development has shown that the cytoplasm is full of ribosomes and
polysomes [39]; further, female gametocytes are also known to contain higher densities of ribosomes [40].
Hence, it is likely that the phenotype we observe regarding cytoplasmic degeneration in ∆mre11
oocysts is caused by reduced transcription of genes essential for RNP biogenesis during these stages.
In Arabidopsis thaliana, ribosome biogenesis is essential for gametophyte and embryo development
and most components are contributed through the female gametophyte lineage [41], mirroring our
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observation of female inheritance of the ∆mre11 phenotype. An additional key biological network
affected in oocysts of ∆mre11 lines involves spliceosome machinery. Nuclear pre-mRNA splicing is
catalyzed by the spliceosome [42] and recent findings show that it is a major contributor to genome
stability in mammalian cells [43,44]. Given that MRE11 is a key modulator of the DNA damage
response, our transcriptome data provides further evidence of possible crosstalk (and potential feedback
loop) between DNA damage responses, RNA processing/RNP biogenesis and spliceosomes [45–47]
and show that these complex interrelations are conserved in Plasmodium. We also observed significant
downregulation of genes associated with iron–sulfur cluster biogenesis and mitochondrial oxidative
DNA damage pointing to mitochondrial dysfunction that can contribute to genome instability [48].
The mitochondrion is the source of reactive oxidative species (ROS) that can cause endogenous
DNA damage [49] and the possibility of oxidative damage to DNA is shown by an upregulation of
OGG1 in ∆mre11 parasites. The predominant oxidative damage due to ROS is to guanine yielding
7,8-dihydro8-oxoguanine (8-oxoG) and is primarily repaired by OGG1 through the base-excision repair
(BER) pathway [50]. OGG1 is bifunctional and can both remove the damaged base to form an abasic
site and also cause a 3′-blocked single-strand break that is then repaired by either AP endonucleases
or RAD1/RAD10 mediated nucleotide excision repair (NER) [51]. It has also been shown previously
that OGG1-mediated single-strand breaks can exacerbate oxidative stress-mediated cell death when
DNA repair pathways are compromised [52,53]. Thus the increase in OGG1 expression coupled with
reduction in RAD10, RAD14 and MMS19-like protein gene expression (all playing key roles in the NER
pathway) could all contribute to accumulation of deleterious DNA damage that is usually regulated by
MRE11. Finally, several studies have highlighted a number of genes that are essential for Plasmodium
ookinete adhesion and invasion, and oocyst development [54], a number of which may be affected due
to MRE11′s absence. A previous genome-wide screening study did not analyze MRE11, but it did
suggest that RAD50, the MRN complex partner of MRE11, is essential for parasite transmission [18].
This suggests that MRE11 and RAD50 may form a complex that is essential for successful oocyst
development. MRE11 is important for spore wall formation and in mediating transcriptional regulation
during sporulation in S. cerevisiae [55], consistent with the idea that the crucial function of MRE11 may
affect transcriptional regulation during oocyst development. Complementing this, our ultrastructure
analysis was consistent with the reduced number of oocysts and, while the oocyst wall formed,
there was limited growth and rapid degeneration of the cytoplasm and nucleus. The changes are
similar to those exhibited by other mutants that result in oocyst degeneration, although this occurs at
an earlier stage before parasite growth [22].

While we did not analyze the genome for alterations due to MRE11′s absence, we have shown that
a specific downregulation of several vital biological processes interrelated with maintaining genome
stability occurs as a result. Taken together, our study provides molecular evidence of the crucial role
for MRE11 in regulating sexual stage development and mosquito transmission. Due to its essentiality
during mosquito infection, we provide a new potential target for therapeutic intervention against a
disease that still has a devastating socioeconomic impact. Further studies on the function of MRE11,
such as a role in DNA damage response, will highlight its potential as a therapeutic target.
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mre11 gene; Table S1: RNA-seq analysis of WT-GFP and ∆mre11 lines; Data file S1: Single-cell RNA-seq data from
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(S2) lines.
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