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Abstract
We propose a new regularisation strategy for the classical ensemble Kalman
inversion (EKI) framework. The strategy consists of: (i) an adaptive choice for
the regularisation parameter in the update formula in EKI, and (ii) criteria for the
early stopping of the scheme. In contrast to existing approaches, our parameter
choice does not rely on additional tuning parameters which often have severe
effects on the efficiency of EKI. We motivate our approach using the interpre-
tation of EKI as a Gaussian approximation in the Bayesian tempering setting
for inverse problems. We show that our parameter choice controls the sym-
metrised Kullback–Leibler divergence between consecutive tempering mea-
sures. We further motivate our choice using a heuristic statistical discrepancy
principle. We test our framework using electrical impedance tomography with
the complete electrode model. Parameterisations of the unknown conductivity
are employed which enable us to characterise both smooth or a discontinuous
(piecewise-constant) fields. We show numerically that the proposed regularisa-
tion of EKI can produce efficient, robust and accurate estimates, even for the
discontinuous case which tends to require larger ensembles and more iterations
to converge. We compare the proposed technique with a standard method of
choice and demonstrate that the proposed method is a viable choice to address
computational efficiency of EKI in practical/operational settings.
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1. Introduction

Ensemble Kalman inversion (EKI) [1–5] is a collection of algorithms that import ideas from
the ensemble Kalman filter (EnKF) developed in [6]. While EnKF was devised for assim-
ilating data into models for numerical weather prediction and oceanography, EKI has been
applied to solve parameter identification problems arising from multiple disciplines. The initial
versions of EKI were proposed for the calibration of oil-reservoir models [7, 8], and then trans-
ferred in [1, 2] to more generic PDE-constrained inverse problems settings. The development
of EKI as an iterative solver for parameter identification problems has lead to numerous appli-
cation including the calibration of climate [9], turbulent flow [10], finance [11] and biomedical
[12] models. EKI has been used for imaging and non-destructive testing including electrical
impedance tomography (EIT) [13], seismic inversion [14], characterisation of thermophysical
properties of walls [15] and composite materials [16]. More recently, EKI has also been applied
for the solution of machine learning tasks [17].

There is clear promise for the potential use of EKI as a practical and operational tool for
PDE-constrained calibration and imaging arising from multiple applications in science and
engineering. However, most EKI algorithms still rely on the appropriate selection of user-
defined parameters that control the stability, accuracy and computational efficiency of EKI.
Unfortunately, the lack of a general theory for the convergence of EKI means that there is
no principled approach to select these parameter in an optimal fashion. The seamless ver-
sion of EKI proposed in [18] and further developed in [19–22] has provided enormous the-
oretical advances for understanding EKI within the more general frameworks of stochastic
differential equations (SDEs). However, to the best of our knowledge, the selection of those
crucial EKI parameters are still chosen empirically. Among those parameters, the choice of
the regularisation (inflation) parameter in EKI, or alternatively, the step size from the discreti-
sation of the SDE formulation of EKI often depends on additional tuning parameters which
can only be informed after problem-specific numerical testing which maybe computationally
intensive.

The aim of this work is to introduce a simple, yet computationally efficient, regularisa-
tion strategy for EKI that does not rely on further tuning parameters. Our main focus is
large-scale/high resolution imaging/identification settings in which there are two fundamen-
tal challenges: (i) the forward model is computationally costly and (ii) the unknown must be
parameterised in a highly-complex manner so that key features from the truth can be extracted
via EKI. Both challenges are intertwined since the latter means that EKI requires large ensem-
bles and more iterations to achieve accurate identifications; thus the total computational cost
of EKI can become unfeasible. An efficient and robust regularisation strategy within EKI is a
key requirement in these practical settings.

1.1. The inverse problem framework with ensemble Kalman inversion

We work on a generic setting where the properties that we wish to identify are functions which,
in turn, play the role of inputs (e.g. coefficients) of partial different equations (PDEs) describ-
ing the underlying experiment/process. The observable variables in these experiment/processes
are functionals of the solution of these PDEs. Under this inverse problem setting, the for-
ward problem can be written in terms of a nonlinear operator F : X → R

M that maps physical
properties from an admissible space X to the space of observable quantities RM . Our work is
focussed on using EKI for solving the classical (deterministic) inverse problem that consists of
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estimating the underlying physical property of the medium, denoted by κ†, given noisy
measurements of F (κ†), which we assume are given by

y = F (κ†) + η, (1)

where η is the unknown measurement error. We further assume η is drawn from a centred
Gaussian measure with known covarianceΓ. In order to address this inverse problem, we define
a class of suitable parameterisations P : H→X that enable us to characterise our estimate of
the unknown as κ = P(u), i.e. in terms of an input (function) u ∈ H which we calibrate within
the EKI framework. We pose the parameterised (in terms of u) inversion via

u∗ = arg min
u∈S0

Φ(u; y), (2)

where S0 ⊂ H is a user-defined subspace of admissible solutions and Φ(u; y) is the functional
defined by

Φ(u; y) ≡ 1
2
‖Γ−1/2(y − G(u))‖2, (3)

whereG = F ◦ P is the forward (parameter-to-output)map and ‖·‖ denotes the M-dimensional
Euclidean norm. We use EKI to approximate (2) and to provide an estimate of κ† via κ∗ =
P(u∗).

For the PDE-constrained identification problems that we wish to address, G is often a com-
pact operator which leads to the ill-posedness of (2) in the sense of stability [23, 24]. Although
numerous regularisation techniques [23, 25] can be used to address ill-posedness, most of them
require the computation of the Frechét derivative of the forward map, as well as the correspond-
ing adjoint operator. This constitutes a substantial limitation in many practical applications
where the map F is only accessible via commercial software simulations with no adjoint built-
in functionalities. Such a practical limitation has given rise to a large body of work on EKI
techniques that stem from EnKF [6] and which, in turn, do not require derivatives of the forward
map.

While there are several versions of EKI algorithms to approximate (2), here we focus on
the classical, perturbed-observation EKI displayed in algorithm 1. This generic version of
EKI involves selecting an initial ensemble of J particles {u( j)

0 }J
j=1 ⊂ H. Then, each particle

is iteratively updated according to the following formula

u( j)
n+1 = u( j)

n + CuG
n (CGG

n + αnΓ)−1(y +
√
αnξn − G(u( j)

n )), (4)

where αn is a tuning (regularisation) parameter, ξn ∼ N(0,Γ) is perturbation of the data, and
CuG

n and CGG
n are empirical covariances defined in (16) and (17). The running estimate of the

unknown is obtained via the ensemble mean

un+1 ≡
1
J

J∑
j=1

u( j)
n+1. (5)

Using informal arguments, it can be shown (see appendix A and the work in [2]) that the
ensemble mean un+1 can be seen as an ensemble approximation of

mn+1 =, arg min
u∈S0

{
1
2

∥∥∥Γ−1/2 (y − G(mn) − DG(mn)(u − mn)
∥∥∥2

+
αn

2

∥∥∥C−1/2
n (u − mn)

∥∥∥2

H

}
(6)
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where DG denotes the Frechét derivative of G, Cn is a covariance operator that we define in
appendix A, and S0 ≡ span{u( j)

0 }J
j=1 is the subspace generated by the initial ensemble. If Cn is

the identity operator, (6) is the standard Levenberg–Marquardt (LM) scheme [26] applied for
the computation of (2). Note that (6) can also be interpreted as iterative Tikhonov regularisation
applied to the linearisation of G.

The link between EKI and (6) is very useful because (i) it motivates EKI as a derivative-free
solver for (2) and (ii) it reveals the role of αn in (4) as a Tikhonov regularisation parameter.
According to the theory in [27], αn must be carefully selected, together with the stopping
criteria, in order to ensure the stability of the LM scheme. The approach for selecting αn in
the LM proposed in [27] has been adapted to the EKI framework in [2, 16], and subsequently
used in [3, 12, 14, 28–30]. As we discuss in the next section, this approach relies on tuning
parameters that, unless carefully chosen, can lead to unnecessary large number of iterations
n∗. Since the main computational cost of algorithm 1 is n∗ × J, it is clear that a large n∗ is
detrimental to the computational efficiency of EKI.

1.2. EKI as a Gaussian approximation in the Bayesian tempering setting

Although the goal of most of the existing applications of EKI is to solve the deterministic
problem in (2), the role of EKI within the Bayesian setting for parameter identification can
be useful for identifying suitable choices of the regularisation parameter αn. In the Bayesian
setting we put a prior measure, μ0(u) = P(u), on the unknown u that we wish to infer. Given
measurements, y, the Bayesian inverse problem consists of approximating the posterior μ(u) ≡
P(u|y) which, from Bayes’ rule [31] is given by

μ(du) ∝ μ0(du) exp

[
−1

2

∥∥∥Γ−1/2(y − G(u))
∥∥∥2
]

, (7)

where we have made the standard assumption that y = G(u) + η with η ∼ N(0,Γ). Modern
computational approaches [28, 32–35] for high-dimensional Bayesian inverse problems use
the tempering approach that consists of introducing N intermediate measures {μtn}N

n=1 between
the prior and the posterior. These measures are defined by

μtn(du) ∝ μt0 (du) exp

[
− tn

2

∥∥∥Γ−1/2(y − G(u))
∥∥∥2
]

, (8)

where {tn}N
n=1 are tempering parameters that satisfy:

t0 ≡ 0 < t1 < t2 < · · · < tN < tN+1 ≡ 1. (9)

Note that n = 0 and n = N + 1 in (8) yields the prior (μt0 = μ0) and posterior (μtN+1 = μ),
respectively. From expression (8) we obtain the following recursive formula for the interme-
diate measures:

μtn+1 (du)

μtn(du)
∝ exp

[
−1

2

∥∥∥(αnΓ)−1/2(y − G(u))
∥∥∥2
]

, (10)

where

α−1
n = tn+1 − tn. (11)
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From (9) it follows that

N∑
n=0

α−1
n = 1. (12)

In (11) we employ the same notation that we use for the regularisation parameter in EKI
(see equation (4)), because the ensemble computed at the nth iteration of EKI, is an ensemble
approximation of a Gaussian measure that, in turn, approximates1 the intermediate distribu-
tion μtn in (8) (see [16] and appendix A.2). Therefore, in the Bayesian setting, controlling the
regularisation parameter αn in EKI means to gradually transition between prior and posterior
in order to facilitate more accurate sampling of the intermediate measures.

The link between EKI and the Bayesian tempering setting has been recently explored in
[16], where the selection of αn is borrowed from the adaptive-tempering sequential Monte
Carlo (SMC) method of [33]. In this approach,αn is selected based on user-defined threshold to
the effective sample size (ESS) which, in SMC methods, is used to determine the quality in the
population of particles that approximate each intermediate measureμtn . However, this selection
of αn involves the computation of the likelihood between consecutive measures (10). When
the number of observations is large and/or a the measurement noise is small, this likelihood
can take very small values unless large αn’s are chosen. Consequently, many iterations may be
needed to satisfy condition (12). Furthermore, the approach of [16] requires the aforementioned
user-defined threshold on the ESS which may substantially affect the efficiency of EKI.

1.3. Our contribution

In this work we propose a novel adaptive choice of αn in EKI that does not require any tuning
parameters. This new selection of αn depends on the number of observations, M, as well as the
values of the least-squares functional (3) for the ensemble of particles, i.e.

Φn ≡
{
Φ(u( j)

n ; y)
}J

j=1
=

{
1
2

∥∥∥Γ−1/2(y − G(u( j)
n ))

∥∥∥2
}J

j=1

. (13)

More specifically, we select α−1
n via

α−1
n = min

{
max

{
M

2〈Φ〉n
,

√
M

2〈Φ,Φ〉n

}
, 1 − tn

}
, (14)

where 〈Φ〉n and 〈Φ,Φ〉n denote the empirical mean and variance of Φn, and

tn =

⎧⎪⎪⎨⎪⎪⎩
n−1∑
j=0

α−1
j if n � 1,

0 if n = 0.

(15)

Note that in (14) we require that α−1
n � 1 − tn in order to enforce constraint (12) from the tem-

pering/annealing setting using N = n∗ intermediate measures. More specifically, we propose
to stop the EKI algorithm at the iteration, n∗, such that

α−1
n∗ = 1 − tn∗

1 Even when J is large, these approximations are only exact in the linear-Gaussian case (i.e. G linear and μ0 Gaussian).
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which, from (15), yields constraint (12). Noting that the selection of α−1
n in (14) is determined

by the data misfit of the particles, we refer to our regularisation strategy as the data misfit
controller (DMC).

We motivate our DMC from the Bayesian perspective of EKI in which α−1
n is the dif-

ference between consecutive tempering/annealing parameters (see equation (11)). We show
that the selection of α−1

n in (14) can be obtained by controlling, via imposing a threshold,
the symmetrised Kullback–Leibler divergence (or Jeffreys’ divergence) between two con-
secutive tempering measures. We then use a statistical discrepancy principle to select this
threshold.

Jeffreys’ divergence has been employed to design efficient selection of the step size between
tempering measures when using MCMC to approximate the target posterior. For example, in
the context of the tempered transitions method, the work of [36] uses Jeffreys’ divergence
to select step sizes that increase acceptance rates. Jeffreys’ divergence has also been used for
path sampling: a method commonly used to estimate normalisation constants (e.g. for Bayesian
model selection). The work of [37], for example, shows that by controlling the Jeffreys’ diver-
gence between tempering measures, the error in the path sampling estimator can be minimised.
Both the works in [36, 37], as well as various references therein, employ continuous tempering
in the finite-dimensional setting in order to characterise Jeffreys’ divergence. Here we extend
some of those results to our infinite-dimensional framework for EKI.

We encode our regularisation strategy for EKI in an algorithm (EKI-DMC) that we test
via EIT with the complete electrode model (CEM). We show that the choice of αn via the
DMC that we import from the Bayesian formulation, leads to a stable, robust and computa-
tionally efficient EKI algorithm for solving classical (deterministic) inverse problems posed via
(2). We demonstrate the computational and practical advantages of EKI-DMC over existing
approaches in which αn is borrowed from the theory for the LM scheme. We conduct test with
two parameterisations of the unknown conductivity that allows to consider both continuous and
piece-wise constant conductivities. In particular, we investigate the performance EKI-DMC
to infer regions characterised via a level-set function which is, in turn, parameterised with an
anisotropic Whittle–Matern (WM) field.

In section 2 we further review the literature on existing approaches for the selection of αn

for the classical EKI framework. The proposed DMC (14) is motivated in section 3, where we
use continuous tempering to derive approximations to Jeffreys’ divergence between tempering
measures (subsection 3.2), as well as a statistical discrepancy principle to (subsection 3.3) for
selecting the threshold on Jeffreys’ divergence. In section 4 we provide a numerical investiga-
tion of the performance of the proposed EKI-DMC algorithm for EIT. In section 5 we discuss
final remarks and conclusions. For completeness in appendix A we motivate the classical EKI
from the Bayesian tempering scheme, and from which we also draw links between the LM
algorithm and EKI. Some technical proofs are included in appendix B.

2. Literature review

We discuss some existing regularisation strategies for EKI within the inversion setting posed in
terms of the unregularised least-squares formulation of (2), and which leads to the classical EKI
formulation in (4). We highlight that there is a new alternative EKI methodology and algorithms
proposed in [4, 5] that arise from regularising (2) with a Tikhonov-like term. In addition, the
review is focussed on PDE-constrained inversion; for a review of modern Kalman methods in
the context of the data assimilation framework we refer the reader to the recent work on [38]
and references therein.

6
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Algorithm 1. Generic EKI (with perturbed observations).

2.1. EKI as an iterative solver for identification problems

The initial versions of EKI [1] for generic identification problems proposed to use the classical
EnKF [6] update formula2 as an iterative solver for (2) by introducing an artificial dynam-
ical system. For various PDE-constrained identification problems, the work of [1] numer-
ically showed that this early version of EKI approximated well the solutions of (2) (with
S0 = span{u( j)

0 }J
j=1) within the first few iterations. However, they noted the algorithm became

unstable if it was allowed to iterate after the data misfit (2) had reached the noise level δ defined
by

δ =
∥∥∥Γ−1/2 (y − G(u†)

∥∥∥ , (18)

where u† is the truth. This lack of stability led to the work of [2] where links between EKI and
the regularising LM scheme of [27] were first established and used to develop a regularising
version of EKI. For the LM scheme, the work of [27] ensures that, under certain assumptions
of the forward map G, the scheme in (6) converges to the solution of (2) (as δ → 0) provided
that (i) the regularisation parameter αn satisfies

2 The classical EnKF consists of equation (4) with αn = 1 fixed throughout the iterations.
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ρ
∥∥∥Γ−1/2(y − G(mn))

∥∥∥ � αn

∥∥∥Γ1/2(DG(mn)CnDG∗(mn) + αnΓ)(y − G(mn))
∥∥∥ ,

(19)

where ρ < 1 is a tuning parameter, and (ii) that the algorithm is terminated at an iteration level
n∗ determined by the following discrepancy principle∥∥∥Γ−1/2(y − G(mn∗))

∥∥∥ � τδ <
∥∥∥Γ−1/2(y − G(mn))

∥∥∥ 0 � n < n∗, (20)

where τ is another tuning parameter that must satisfy τ > 1/ρ. In [2], these regularisation
strategies from LM were adapted for the selection of αn in EKI via using derivative-free Gaus-
sian approximations in (19) and (20). We refer to the approach from [2] as EKI-LM (see
algorithm 2).

The numerical results of [2] showed that EKI-LM enabled stability and accuracy for suffi-
ciently large ensembles. Further work that has explored EKI-LM can be found in [3, 28, 29]
as well as some practical applications including seismic tomography [14], modelling of
intracraneal pressure [12] and time fractional diffusion inverse problems [30].

Despite of addressing stability in EKI, the approach EKI-LM suffers from a potential prac-
tical limitation that arises from the fact that it relies on the tuning parameters ρ and τ in (21).
Larger ρ’s yield larger αn and in turn more iterations to converge. Smaller ρ’s, while desir-
able for computational efficiency, result in larger τ ’s which can lead to larger data misfit and
possible loss of accuracy from stopping too early (via (22)). Selecting these parameters in a
computationally optimal fashion becomes more crucial when EKI is combined with complex
parameterisations of the unknown. As we discuss in subsection 4.2, there are cases for which,
instead of using EKI directly on the physical property that we wish to infer, we need to param-
eterise the unknown to be able to capture properties that are not necessarily encoded in the
initial ensemble. For example, in [2] the LM approach for EKI was applied with a level-set
parameterisation of the unknown in order to characterise discontinuous properties (i.e. discon-
tinuous conductivity in the context of EIT). In comparison to the simpler case in which EKI
directly estimates a physical property of interest, [2] found that not only they needed a larger
ensemble to achieve converge, but also more EKI iterations. The application of EKI-LM with
level-set parameterisations for seismic imaging in [14] reported up to 40 iterations to achieve
convergence. The numerical results of [3] also show that when EKI is combined with various
others parameterisations of the unknown, the number of iterations of EKI can become large
even for simple 1D and 2D forward modelling settings. We aim at addressing these very same
issues with the selection of αn that we propose in (14) and that we motivate in section 3 using
the Bayesian perspective of EKI discussed earlier.

2.2. EKI as Gaussian approximation in linearised Bayesian tempering

Although the Bayesian perspective of EKI as a Gaussian approximation within the tempering
setting was initially mentioned in [18] and further developed in [16], the early work of [7, 39]
established a strong link between EKI and the Bayesian setting which led exactly to the same
EKI scheme from algorithm 1. However, instead of using tempering, they used a heuristic
approach in which the data was inverted multiple times with noise inflated by

√
αn. From

algebraic manipulations they figured out that, in order to accurately sample from the posterior
in the linear-Gaussian case, their inflation parameter αn must satisfy (12) with N = n∗, where
n∗ is the total number of EKI iterations. Note that, in the tempering setting, (12) is simply
a consequence of the definition of αn in (11) as well as the definitions of t0 and tN+1 in (9).
Moreover, in the general Bayesian tempering settings, expression (12) holds for the general

8
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Algorithm 2. (EKI-LM) EKI with LM selection of αn and stopping criteria.

nonlinear case and without any assumptions on the prior. Nonetheless, those considerations for
the linear-Gaussian case from [39] enabled them to (i) justify the use of (12) in the nonlinear
case and (ii) to propose a simple selection of αn given by αn = n∗ with n∗ selected a priori
(which trivially satisfies (12)). This approach, referred to as ensemble smoother with multiple
data assimilation, has been popularised in petroleum engineering applications (see [40] and
references therein). However, from the insight gained from the link between EKI and the LM
scheme, this selection of αn was discouraged in [41] since the stability of EKI, as shown in
[2, 41], requires αn to be large at the beginning of the iterations, and gradually decrease as the
data misfit approaches the noise level. Further versions of ES-MDA [42] adopted selections of
αn similar to those initially proposed in [2] based on the LM scheme.

As discussed in the previous section, a selection of αn based on the adaptive-tempering
SMC method of [33] is proposed in [16]. More specifically, αn is selected so that⎡⎣ J∑

j=1

(W ( j)
n [αn])2

⎤⎦−1

= J∗, (23)

where J∗ is a tuning user-defined parameter and

W ( j)
n [αn] =

exp
[
− 1

2

∥∥(αnΓ)−1/2(y − G(u( j)
n ))

∥∥2
]

∑J
s=1 exp

[
− 1

2

∥∥∥(αnΓ)−1/2(y − G(u(s)
n ))

∥∥∥2
] . (24)

The left-hand side of (23) is the ESS of the ensemble approximation of μtn . For further details
we refer the reader to [16], where the selection of αn according to (23) was implemented in a
batch-sequential EKI framework to sequentially solve an inverse problem that arises in resin
transfer moulding. The same EKI methodology was applied in [15] for parameter identifica-
tion of the heat equation, including identification of thermal conductivity and heat capacitance
given boundary measurement of heat flux. Both time-dependent applications tackled in [15, 16]

9
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involved the inversion of small number of measurements (e.g. <30) at each observation time,
and with relatively large noise informed by measurement protocols. However, as discussed in
the previous section, the selection of αn via solving (23) becomes problematic for large num-
ber of observations and/or small observational noise, since (24) requires the computation of
the likelihood (10). Another limitation is that the efficiency of the approach used in [15, 16]
relies on the tuning parameter J∗ in (23).

2.2.1. EKI as a discretisation of stochastic differential equations. The pioneering work of
[18] has shown that EKI can be derived as a discretisation of an SDE system for the ensem-
ble of particles in EKI. This so-called continuous-time limit or seamless formulation of EKI
has led to further theoretical understanding of the EKI framework [19, 20, 22]. In addition,
using alternative discretisation schemes of the seamless formulation of EKI, leads to new
EKI algorithms in both the context of optimisation [17, 19] and sampling within the Bayesian
approach [21].

In the seamless formulation of EKI, the regularisation parameter αn from the classical EKI
becomes the inverse of the mesh-size/discretisation step. The work of [17] proposes to choose
this parameter according to

α−1
n =

α−1
0

‖U‖F + ε
, (25)

where α0 and ε are user defined parameters, ‖·‖F denotes the Frobenius norm and U is a matrix
with entries U j,k = (G(u(k)

n ) − Gn)TΓ−1(G(u( j)
n ) − y). To the best of our knowledge, this selec-

tion of αn has only been used for new different EKI algorithms including the ones arising
from forward-Euler [17] and the implicit split-step method [21]. While (25) is also a perfectly
valid choice of αn for classical EKI, we emphasise that it relies on the choice of the tuning
parameters α0 and ε.

3. The proposed regularisation framework for EKI

The aim of this section is to motivate the new approach (DMC) that we propose via (14) to
select α−1

n for the classical EKI setting given in (4). We motivate our approach using tempering
within the Bayesian setting for inverse problems in whichα−1

n is the step size between consecu-
tive tempering measures. After introducing some notation and assumptions in subsection 3.1, in
subsection 3.2 we define tempering in the continuous setting which we require in order to com-
pute an approximation of Jeffreys’ divergence between two consecutive measures. Under this
approximation, we further show that our selection of α−1

n (14) controls Jeffreys’ divergence.
The control parameter is then selected following a heuristic approach based on a discrepancy
principle that we introduced in subsection 3.3.

3.1. Notation, definitions and assumptions

We assume that the space of inputs, H, is a real-valued separable Hilbert space. The Borel-
sigma algebra overH is denoted byB(H). In this section we assume that the prior is a Gaussian
measure μ0 = N (m, C) : B(H) → [0, 1] on (H,B(H)), satisfying μ0(H) = 1. Given two prob-
ability measures μ̂ and μ on a measurable space (Y ,Σ), if μ̂ is absolutely continuous with
respect to μ, we define the Kullback–Leibler divergence of μ̂ with respect to μ by [43],

DKL(μ̂‖μ) :=
∫
Y

log

(
dμ̂
dμ

)
dμ̂,

10
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where dμ̂
dμ denotes the Radon–Nikodym derivative of μ̂ with respect to μ. For two equiva-

lent probability measures μ̂ and μ (i.e. μ̂ � μ and μ � μ̂) we define the symmetrized KL
divergence or Jeffrey’s divergence:

DKL,2(μ, μ̂) :=DKL(μ̂‖μ) + DKL(μ‖μ̂). (26)

We consider the following assumption on the forward operator:

Assumption 1. Assume that the forward map G : H→ R
M satisfies the following two

conditions:

(a) For every ε > 0 there is an β = β(ε) ∈ R such that, for all u ∈ H,∥∥∥Γ−1/2G(u)
∥∥∥ � exp(ε‖u‖2

H + β)

(b) For every r > 0 there is an K = K(r) > 0 such that,∥∥∥Γ−1/2(G(u1) − G(u2))
∥∥∥ � K‖u1 − u2‖H

for all u1, u2 ∈ H with max {‖u1‖H, ‖u2‖H} < r.

This assumption was used in [[31], theorem 4.1] to establish well-posedness of the
posterior in the infinite-dimensional framework. Let us recall the least-square functional
Φ(u; y) defined in (3). For any y ∈ R

M , Fernique’s theorem and condition (a) in assumption
1 implies that Φ(·; y)m is square integrable, for any m � 1, with respect to the prior
μ0 = N (m, C). Integrability ofΦ(·; y)m is used through the rest of this section and for the proofs
in appendix B.

3.2. Controlling Jeffreys’ divergence between successive tempering measures

In this section we show that the data-misfit controller (14) ensures that the level of information
between any two consecutive tempering measures is approximately bounded by a user-defined
threshold θ > 0. We measure the level of information between these measures via Jeffreys’
divergence defined in (26). Our aim is to show that the selection of α−1

n = tn+1 − tn via (14)
yields

DKL,2(μtn+1 ,μtn) � θ, n ∈ {1, . . . , N} (27)

In subsection 3.3 we give heuristic motivations for the choice of θ based on a statistical
discrepancy principle.

Our first step is the explicit characterisation of DKL,2(μtn+1 ,μtn) which we latter approximate
in order to propose our adaptive selection of α−1

n . This approximation, require us to work on
the continuous tempering setting which we now introduce.

3.2.1. Continuous tempering. For t ∈ [0, 1], we define measure μt such that the
Radon–Nikodym derivative of μt with respect to the prior μ0 = N (m, C) satisfies, for
almost every u ∈ H,

dμt

dμ0
(u) = N−1

t exp (−tΦ(u; y)) , (28)

11
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where Nt is the normalising constant defined by

Nt =

∫
H

exp(−tΦ(u; y))μ0(du). (29)

The following lemma establishes the well-posedness of {μt|t ∈ [0, 1]}. The proof can be found
in appendix B.1.

Lemma 1. The probability measure μt from (28) exists on the probability space
(H,B(H),μ0) and is equivalent to μ0, i.e. μt � μ0 and μ0 � μt.

Using integrability of the data misfit with respect to the prior, and the equivalence proven
in the previous lemma, let us define the mean and variance of the data misfit:

〈Φ〉t :=
∫
H
Φ(w; y)μt(dw) 〈Φ,Φ〉t :=

∫
H

(
Φ(w; y) − 〈Φ〉t

)2
μt(dw) (30)

for all t ∈ [0, 1].
It is not difficult to see that, given 0 = t0 < t1 < · · · < tN+1 = 1, lemma 1 also establishes

the equivalence of the probability measures {μtn : n = 0, 1, . . . , N + 1}. Furthermore, from the
integrability of the data misfit, it follows that the Jeffreys’ divergence between consecutive
measures is well-defined and, using its definition in (26), it can be written as

DKL,2(μtn ,μtn+1) = α−1
n

(
〈Φ〉tn − 〈Φ〉tn+1

)
. (31)

The finite-dimensional version of (31) was proven in [[37], proposition 3.2] in the context of
path sampling.

Let us note that, since Φ � 0,

DKL,2(μtn ,μtn+1) � α−1
n 〈Φ〉tn

. (32)

3.2.2. Approximating DKL,2(μtn ,μtn+1). In practice, the expression for DKL,2(μtn ,μtn+1) pro-
vided in (31) cannot be used in (27) to find α−1

n since, at time tn, measure μtn+1 is unknown.
Moreover, since tn+1 = tn + α−1

n , measure μtn+1 depends on the choice of αn. In order to pro-
pose a practical choice of α−1

n via (31), let us now discuss some approximations. Note that if
〈Φ〉tn+1

� 〈Φ〉tn
, then the term 〈Φ〉tn

� 0 in the right-hand side of (31) can be neglected and
hence

DKL,2(μtn ,μtn+1) ≈ α−1
n 〈Φ〉tn � θ ⇒ α−1

n � θ

〈Φ〉tn
. (33)

However, approximating DKL,2(μtn ,μtn+1) with its upper bound in (32) may not be accurate
when 〈Φ〉tn+1

≈ 〈Φ〉tn
which is likely to happen when α−1

n is small. We address this case
via a first order approximation of 〈Φ〉t (as a function of t), around t = tn. We first need
the following proposition that we prove in appendix B.2 and which extends, to the present
infinite-dimensional setting, the results from [[36], section 2] for tuning tempered transitions.

Proposition 1. For any bounded t � 0, let ut ∼ μt be anH-valued random variable, where
μt is the probability measure determined via formula (28). For any square integrable functional
g : H→ R, the expected value E {g(ut)}, as a function of t, is differentiable and its derivative
d
dtE {g(ut)} satisfies:

d
dt
E {g(ut)} = −Cov {g(ut),Φ(ut; y)} , (34)

12
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where Cov denotes covariance between two random variables.

The following corollary is a simple consequence of theorem 1 with g(·) = Φ(·, y).
Corollary 1. For any t ∈ [0, 1], letμt denote the probability measure determined via the tem-
pering setting (28). The mean 〈Φ〉t defined in (30), as a function of t ∈ [0, 1], is differentiable.
Moreover, its derivative is given by

d
dt
〈Φ〉t = −〈Φ,Φ〉t.

We now come back to the case in which α−1
n = tn+1 − tn needs to be small so that (27) can

be satisfied for a given threshold θ > 0. Using corollary 1 we have

〈Φ〉tn+1
≈ 〈Φ〉tn

+ α−1
n

d
dt〈Φ〉tn

= 〈Φ〉tn
− αn

−1

〈Φ,Φ〉tn
.

Thus,

DKL,2(μtn ,μtn+1) ≈ α−2
n 〈Φ,Φ〉tn � θ ⇒ α−1

n �
√

θ

〈Φ,Φ〉tn
. (35)

We postulate that the approximation used in (35) is reasonable provided that it honours
inequality (32), i.e.

DKL,2(μtn ,μtn+1) ≈ α−2
n 〈Φ,Φ〉tn � α−1

n 〈Φ〉tn .

Whenever this condition is not satisfied, we approximate DKL,2(μtn ,μtn+1 ) via its upper bound
as in (33). In summary, we propose the following approximation

DKL,2(μtn ,μtn+1) ≈ min
{
α−1

n 〈Φ〉tn ,α−2
n 〈Φ,Φ〉tn

}
. (36)

We define α−1
n :

α−1
n = min

{
max

{
θ

〈Φ〉tn
,

√
θ

〈Φ,Φ〉tn

}
, 1 − tn

}
, (37)

which satisfies (27) using the approximation (36), while we ensure that α−1
n � 1 − tn in order

to satisfy (12) with n∗ = N; hence n∗ defines the natural stopping iteration level.
Expression (37) has the same form as the DMC in (14) with (i) 〈Φ〉tn

and 〈Φ,Φ〉tn
approxi-

mated with empirical mean and variance from the ensemble of particles (recall u( j)
n are approxi-

mate samples of μtn), and (ii) the choice θ = M/2 which we motivate from heuristic arguments
in the next subsection.

3.3. A statistical discrepancy principle

According to Morozov’s discrepancy principle [44], if u ∈ H satisfies∥∥∥Γ−1/2(y − G(u))
∥∥∥ � δ, (38)

where δ is the noise level defined in (18), then u is an acceptable estimate of the classical
(deterministic) inverse problem (1). In the context of iterative regularisation [25], a form of the
discrepancy principle is often used as an early stopping rule (e.g. see expression (20)) to avoid

13
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instabilities. In the Bayesian setting, however, the noise level is a random variable. In fact,
under the assumption of additive centred Gaussian noise (1), the squared noise level δ2 (see
(18)) is a realisation of a chi-square random variable with M degrees of freedom. Therefore,
its mean and variance are:

E
{
δ2
}
= M, Var

{
δ2
}
= 2M.

Inspired by the classical discrepancy principle, we then postulate that an acceptable estimate,
u, must satisfy either one of the following criteria

C1 (accuracy)

E

{∥∥∥Γ−1/2 (y − G (u))
∥∥∥2
}

� E
{
δ2
}
≡ M. (39)

C2 (uncertainty)

Var

{∥∥∥Γ−1/2 (y − G (u))
∥∥∥2
}

� Var
{
δ2
}
≡ 2M. (40)

We invoke this statistical discrepancy principle to determine the step size α−1
n of the nth

Bayesian sub-problem (41) that arises from transition between tempering measures μtn and
μtn . More specifically, let us consider the following remark.

Remark 1. We can view (10) as an iterative application of Bayes rule, where at the nth
iteration level we have a prior μtn(u) and a likelihood defined by the observational model

y = G(u) +
√
αnη, η ∼ N(0,Γ). (41)

In other words, (10) defines a sequence of Bayesian inverse problems similar to the original
one3 but with a Gaussian error

√
αnη that has a covariance matrix Γ inflated by αn. We can

then think of μtn+1 given by (10) as the distribution of u|y under the observational model (41)
and prior μtn .

We apply (39) and (40) to the sub-problem in remark 1. To this end, we useαnΓ and un ∼ μtn

instead of Γ and u in formulas (39) and (40) to obtain

2α−1
n 〈Φ〉tn

= E

{∥∥∥(αnΓ)−1/2 (y − G(un))
∥∥∥2
}

� M (42)

4α−2
n 〈Φ,Φ〉tn

= Var

{∥∥∥(αnΓ)−1/2 (y − G(un))
∥∥∥2
}

� 2M, (43)

where we have used the definition of Φ in (3) as well as (30). By choosing α−1
n via (37) with

θ = M/2, we enforce that one of the above criteria (42) or (43) are satisfied, while ensuring
that tn+1 = tn + α−1

n � 1 as required. In other words, the proposed statistical discrepancy prin-
ciple applied to each intermediate Bayesian sub-problem arising from tempering, yields the
DMC (14) which, from the previous subsection, controls Jeffreys’ divergence with threshold
θ = M/2. We incorporate the data-misfit controller for the selection of α−1

n in EKI; we
summarise the scheme in algorithm 3 (EKI-DMC).

3 Recall the observational model for original problem is y = G(u) + η with η ∼ N(0,Γ)).
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Algorithm 3. EKI with DMC (EKI-DMC).

Remark 2. For the applications that we discuss in section 4, we have find that the mean of
the data misfit 〈Φ〉tn

is considerably smaller than the standard deviation 〈Φ,Φ〉tn
. Therefore,

〈Φ〉2
tn

〈Φ,Φ〉tn
� 1 <

M
2

,⇒ M
2〈Φ〉tn

>

√
M

2〈Φ,Φ〉tn
. (44)

Hence, in this case, α−1
n is given by condition (42) rather than condition (43). Intuitively, (44)

is likely to occur in problems where the prior is sufficiently wide so that it comprises the truth.
However, for a prior that is centred too far from the truth and with small variance, we would
then expect for 〈Φ〉tn

to be larger than 〈Φ,Φ〉tn
. In this case, DMC selects α−1

n according to
(43) in order to allow for larger steps in the tempering settings.

Remark 3. It is not difficult to see that, except for the case in which 〈Φ,Φ〉tn
θ = 〈Φ〉2

tn
, the

selection ofα−1
n via (37) satisfies only one of the criteria (42) and (43) while violating the other

one. As pointed by one of the anonymous referees, if we instead select α−1
n via

α−1
n = min

{
θ

〈Φ〉tn
,

√
θ

〈Φ,Φ〉tn
, 1 − tn

}
, (45)

then both criteria (42) and (43) will be satisfied. While (45) is indeed a valid choice of α−1
n , this

is a suboptimal choice for the numerical experiments that we discuss in section 4. From the
observations we made in remark 2, using (45) will lead to smaller α−1

n ’s than those obtained
by (37) and, thus, to many more iterations which makes the EKI algorithm more costly.

4. Numerical testing

In this section we test the performance of EKI-DMC in the context of EIT with the CEM that
we introduce in subsection 4.1. We use two parameterisations of the unknown that we intro-
duce in subsection 4.2. Implementation aspects and measures of performance are discussed in
subsections 4.3 and 4.4. In subsection 4.5 and 4.6 we discuss numerical results which includes
comparing the performance of EKI-DMC and EKI-LM.
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4.1. Complete electrode model

Given electric currents {Ik}me
k=1 injected through a set of surface electrodes {ek}me

k=1 placed on
the boundary, ∂D, of D, the CEM consist of finding [v, {Vk}me

k=1] where v is the voltage in D
and {Vk}me

k=1 are the voltages on the electrodes. The dependent variables [v, {Vk}me
k=1] are given

by the solution to [45]:

∇ · κ∇v = 0 in D, (46)

v + zkκ∇v · n = Vk on ek, k = 1, . . . , me, (47)

∇v · n = 0 on ∂D\∪me
k=1ek, (48)∫

ek

κ∇v · n ds = Ik k = 1, . . . , me, (49)

where κ is the electric conductivity of D and {zk}me
k=1 are the electrodes’ contact impedances.

We consider an experimental setting consisting of np current patterns I1 = {I1,k}me
k=1, . . . Inp =

{Inp,k}me
k=1. For each of these patters {I j,k}me

k=1, we denote by {V j,k}me
k=1 the prediction of voltages

at the electrodes defined by the CEM (46)–(49). For simplicity we assume that the contact
impedances of the electrodes are known. We define the map

F (κ) = V ≡
[
{V1,k}me

k=1, . . . , {Vnp,k}me
k=1

]
,

that for every conductivity, produces voltage measurements. EIT consist of finding the conduc-
tivity κ† of D given measurements of V† = F (κ†). For a review of the EIT problem we refer
the reader to [46].

4.2. Parameterisations of EKI

In this subsection we introduce two maps, P1 and P2, that we use to parameterise the unknown
physical property κ† that we wish to estimate using the EKI framework introduced earlier.

4.2.1. Parameterisation P1. Smooth properties. Let us first discuss the case in which prior
knowledge suggest that the unknown physical property κ† is a smooth function. For simplicity
we only consider the 2D case that we use in the numerical experiments of subsection 4.5 and
4.6 but we emphasise that the approach can be used for 1D and 3D settings. Let us introduce a
WM parameterisation of the unknown κ(x) that we wish to infer via EKI. The WM parameter-
isation involves a positive smoothness parameter denoted by ν, an amplitude scale σ, and two
intrinsic length scales, L1 and L2, along the horizontal and vertical direction, respectively. Given
Θ = (ν, σ, L1, L2) ∈ R+ × R× R

2
+, we define an operatorWΘ that maps everyω ∈ H−1−ε(D)

(with ε > 0 arbitrary) to Ψ = WΘω, that satisfies the following fractional PDE in the domain
D

(
I−∇ · diag(L2

1, L2
2)∇

)(ν+1)/2
Ψ = 4σ2π

Γ(ν + 1)
Γ(ν)

√
L1L2ω, (50)

with Robin boundary conditions (BCs) on ∂D:

Ψ− ζR diag(L2
1, L2

2)∇Ψ · n = 0. (51)
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where ζR is a tuning parameter. In (50)Γ denotes the gamma function, I is the identity operator,
and

diag(L2
1, L2

2) ≡
(

L2
1 0

0 L2
2

)
.

The proposed WM parameterisation of κ is defined by

κ = P1(λ,Θ,ω) ≡ λ exp (WΘω) , (52)

where λ a positive scaling factor for κ. Note that (52) enforces that the electrical conductivity
is positive. We can succinctly write (52) as,

κ = P1(u), where u = (λ,Θ,ω) = (λ, ν, σ, L1, L2,ω). (53)

The motivation behind this parameterisation comes from the theory of Gaussian random fields
(GRFs). In particular, the work of [47] that shows that if ω ∈ H−1+ε is Gaussian white noise
(i.e. ω ∼ N(0, I)) then

log κ = log(λ) +WΘω ∼ N(log λ, CΘ),

where CΘ is the covariance operator induced by the Matern autocorrelation function defined
by

ACFΘ(x) = σ2 1
2ν−1Γ(ν)

‖x‖νL1,L2
Kν

(
‖x‖L1,L2

)
,

where Kν is the modified Bessel function of the second kind of order ν, and

‖x‖L1,L2
≡

√
x2

1

L2
1

+
x2

2

L2
2

It can also be shown that if logκ ∼ N(logλ, CΘ), then almost surely logκ ∈ Hν−ε(D) [48]
which further shows the role of the smoothness parameter ν.

Our choice for the BCs in (51) follows from the work of [49] that shows that Robin BCs are
better suited, compared to Neumman and Dirichlet, to alleviate (via the appropriate choice of
ζR) undesirable boundary effects which arise from the discretisation of GRFs. Let us reiterate
that our goal here is to introduce parameterisations for EKI and then suitable initial ensembles
on the parameters. Whether the initial ensemble yields Gaussian (or log-Gaussian) properties
is not our main concern. However, it would not be advisable to select parameterisations that,
for example, restrict the values of the physical property near the boundary which is something
that we would expect if ζR = 0 in (51).

The WM parameterisation in (52) allows us to incorporate the smoothness and lengthscales
of the underlying field as part of the unknown that we can estimate with EKI. In contrast to the
work of [3] where the lengthscales are estimated under isotropic assumptions, here we consider
the anisotropic case. We focus on vertical/horizontal anisotropy but a rotation matrix can be
further introduced in (50) to characterise properties with an arbitrary (and unknown) direction
of anisotropy [49]

A straightforward approach to generate the initial ensemble for EKI with the parameter-
isation from (52) is to specify (hyper prior) densities, πλ, πL1 , πL2 , πσ and πν , and produce
samples:

u( j)
0 ≡ (λ( j), ν( j), σ( j), L( j)

1 , L( j)
2 ,ω( j)),∼ πλ ⊗ πν ⊗ πσ ⊗ πL1 ⊗ πL2 ⊗ N(0, I) (54)
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Remark 4 (KL expansion). For some geometries of D, the eigenfunctions and eigenval-
ues of a Matern covariance CΘ are available in closed form [48]. In this case, an equivalent
formulation of the WM parameterisations can be defined in terms of the spectral decomposi-
tion of CΘ (i.e. KL expansion under the prior). Of course, for computational purposes WM
parameterisations can be defined on a larger (simple) domain that encloses D and simply
restrict the physical property to the domain of interest. While the spectral/KL approach is more
standard, the approach we use here based on the work of [47] allows to naturally define the
parametrisation in (53) via (50).

Remark 5 (smoothness parameter and amplitude scales). For simplicity, in this
work the smoothness parameter ν and the amplitude scales σ in the WM are fixed, i.e. we leave
these parameters our of the inversion. For the experiments that we discuss in the subsequent
sections, the spatial variability in the unknown can be captured quite effectively only via ω(x).
However, we recognise that including a variable σ can be beneficial in some cases as reported
in [49]. Similarly, in the context of the experiments reported later, where the aim is mainly to
recover medium anomalies, we find that sensible (fixed) choices of ν are sufficient, provided
that the lengthscales are properly estimated via EKI. Nevertheless, as shown in [3], EKI can
be used to estimate the smoothness parameter ν.

4.2.2. ParameterisationP2.Piecewise-constant functions. In order to characterise piecewise-
smooth functions we use the level-set approach initially proposed in [50] for deterministic
inverse problems and, more recently, for fully Bayesian [48, 51] and EKI [2] settings. Our
main modelling assumptions is that the unknown property has a background value potentially
heterogeneous, and that possible anomalies/defects consist of regions with (also possibly het-
erogeneous) higher/lower values than those in the background field. More specifically, let us
first define the parameterisation

κ(x) = H({κι}ι∈{l,b,h}, f ) ≡

⎧⎪⎪⎨⎪⎪⎩
κl f (x) � ζ1

κb ζ1 < f (x) � ζ2

κh f (x) > ζ2,

(55)

where κb, κl and κh denote the background, low-value and high-value fields that characterise
the unknown physical property. For simplicity we assume these variables take only constant
values. The level-set function denoted by f(x) determines the background Ωb ≡ {x : ζ1 <
f(x) � ζ2} as well as the region of low Ωl ≡ {x : f(x) � ζ1} and high Ωh ≡ {x ∈ f(x) > ζ2}
values. We assume that f is a smooth fields with some variability that we enforce via a second
level of parameterisation in terms of P1 introduced earlier. More specifically, we consider

f = log λ f +WΘ f ω f = log(P1(u f )), (56)

where P1 is defined according to (52) and

u f = (λ f , ν f , σ f , L1, f , L2, f ,ω f ).

Combining (55) with (56) we can write

κ = P2(u), with u ≡
{
{κι}ι∈{l,b,h}, u f

}
, (57)

where
P2(u) = H

(
{κι}ι∈{l,b,h}, log(P1(u f ))

)
= H

(
{κι}ι∈{l,b,h}, log

(
P1(λ f , ν f , σ f , L1, f , L2, f ,ω f )

))
. (58)
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Figure 1. True log conductivity log(κ†) for Exp_EIT1 (left) and Exp_EIT2 (middle).
Right: mesh for the generation with synthetic data for all EIT experiments.

The selection of the initial ensemble for uf can be done similarly to the one in (54). This
parameterisation can be extended for the case in which {κι}ι∈{l,b,h} are unknown functions via
using P1 to parameterise each of these functions.

4.3. Implementation

For the numerical experiments discussed in the following subsections, algorithms 2 and 3
are implemented in MATLAB. Let us recall that for these algorithms we need to construct
the forward map G = F ◦ P where F is the operator induced by the CEM and P is any of
the parameterisations defined earlier. The numerical implementation of the CEM from sub-
section 4.1 is conducted using MATLAB software EIDORS [52]. The experimental setting
consists of (i) a circular domain of unit radius centred at the origin, (ii) 16 surface electrodes
with contact impedances of values 0.01 Ohms, (iii) an adjacent injection pattern with an elec-
tric current of 0.1 Amps, and (iv) measurements at each electrode. All these parameters are
assumed known and fixed for the inversions of this section. Synthetic data are generated using
the mesh from figure 1 (right) with 9216 elements, while a coarser mesh of 7744 elements is
used for inversions. The total number of measurements is M = 162 = 256.

For the evaluation of the WM parameterisation κ = P1(u), we solve (50) and (51) using
the techniques from [47] and which restrict us to the cases in which ν ∈ N. The discretisation
of the operator I−∇ · diag(L1, L2)∇ with BCs from (51) is performed via cell-centred finite
differences. The PDE in (50) and (51) is solve in a square domain, equal to, or enclosing D (the
domain of definition for the PDE encoded inF ). The actual fieldκ(x) that we pass into the CEM
is an interpolation ofP(u) on D. ParameterisationsP2 is based on the truncation of the level-set
function, f(x) so the implementation is straightforward once all the fields κι (ι ∈ l, b, h) and
f(x) are computed. Given these construction of G, the rest of the steps in algorithms 2 and 3
are computed in a straightforward manner.

4.4. Measures of performance for EKI

Given the ensemble {u( j)
n } computed via EKI at the n iteration of the scheme (n = 0 cor-

responds to the prior ensemble), our estimate of the unknown property κ† is given by

κn ≡ P(un) = P

⎛⎝1
J

J∑
j=1

u( j)
n

⎞⎠ . (59)

19



Inverse Problems 37 (2021) 025008 M Iglesias and Y Yang

where P is either P1 or P2 defined above. We measure the accuracy in terms of the relative
error with respect to (w.r.t.) the truth defined by

En =

∥∥κn − κ†∥∥
L2(D)

‖κ†‖L2(D)

. (60)

We often visualise some transformed ensemble members (mainly for the initial ensemble
n = 0), i.e.

κ( j)
n ≡ P(u( j)

n ), j ∈ {1, . . . , J}, (61)

but note that our estimate κn in (59) does not involve taking the average of the particles in (61);
this would be particularly detrimental for P2 since averaging (61) will not preserve disconti-
nuities. For these two parameterisations we also visualise an estimate of the level-set function
given by

fn ≡ log P1(uf ,n) (62)

We additionally monitor the following data-misfit quantities

DM1,n =

∥∥∥∥∥∥Γ−1/2

⎡⎣y − 1
J

J∑
j=1

G(u( j)
n )

⎤⎦∥∥∥∥∥∥ (63)

DM2,n =
∥∥∥Γ−1/2(y − G(un))

∥∥∥ (64)

DM3,n =

⎡⎣1
J

J∑
j=1

∥∥∥Γ−1/2(y − G(u( j)
n ))

∥∥∥2

⎤⎦1/2

. (65)

4.5. Numerical experiment Exp_EIT1. Continuous conductivity

For the first series of experiments the true conductivity,κ†, is a C∞(D) function that we specify
analytically; the plot of κ† is displayed in figure 1 (left). Synthetic data are constructed via
y = V† + η where V† = F (κ†) is computed with the CEM and η is a realisation from N(0,Γ).
We chose Γ = diag(γ1, . . . , γM) where

γm =
(
10−2|V†

m|
)2

+
(
10−3 |max {V†

m}M
m=1 − min {V†

m}M
m=1 |

)2

m = 1, . . . , M.
(66)

The first term in the right-hand side of (66) corresponds to adding 1% Gaussian noise. The
second term is added simply to avoid small variances from very small voltage (noise-free)
measurements.

For this experiment we use the parameterisation of smooth functions, κ = P1(u), from (52)
with u = (λ, L1, L2,ω). Note that we have removed ν and σ from the inversion as we dis-
cussed in remark 5; we use fixed values ν = 3 and σ = 1.5. The unknown consist of 3 scalars
and 1 function, ω(x), that we discretise on a 100 × 100 grid. Upon discretisation, the dimen-
sion of the unknown is dim(U) = 10 003. We follow the discussion of subsection 4.2.1 (see
equation (54)) for the selection of the initial ensemble. More specifically, we select J particles
u( j)

0 = (λ( j), L( j)
1 , L( j)

2 ,ω( j)) ∼ μ0 where we define the following prior

μ0 ≡ U[5 × 10−3, 1] ⊗ U[0.15, 0.6] ⊗ U[0.15, 0.6] ⊗ N(0, I) (67)
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Figure 2. Exp_EIT1. Top row: logarithm of five members from the prior ensemble
{κ( j)

0 }J
j=1. Bottom row: logarithm of five realisations from the final (converged) ensemble

{κ( j)
n∗ }J

j=1.

Table 1. Number of iterations n∗ for EKI using the DMC (EKI-DMC) with various
choices of J.

Exp_EIT1 Exp_EIT2

DM J = 100 10.00 ± 0.53 13.20 ± 2.50
DM J = 200 10.00 ± 0.00 12.83 ± 0.59
DM J = 400 10.30 ± 0.47 14.53 ± 0.63
DM J = 800 11.03 ± 0.18 16.87 ± 0.51

where U[a, b] denotes the uniform distribution on the interval [a, b].
In figure 2 (top) we show plots for the logarithm of κ( j)

0 = P1(u( j)
0 ) for five of members of

the initial ensemble. Note that our choice of smoothness parameter ν = 3 produces an initial
ensemble that is quite smooth (recall from subsection 4.2.1 that the draws belong to H3−ε(D)).
We also observe substantial differences in the degree of anisotropy which arises from our selec-
tion of a reasonably wide distribution of intrinsic lengthscales that we use to produce the initial
ensemble.

4.5.1. Results from the inversion using EKI-DMC with various choices of J. Synthetic data and
initial ensembles produced as described earlier are used as inputs for EKI-DMC (algorithm 3)
with different choices of ensemble size J: 100, 200, 400, 800. For each choice of J, we conduct
30 experiments with different random selections of the initial ensemble. The plots of (log)
κn∗ = P1(un∗) (i.e. upon convergence) from one of these experiments, computed for each J, are
displayed in figure 3 together with the truth (right panel). In figure 4 (left) we show boxplots
of the relative error w.r.t. the truth En∗ (60), computed at the final iteration, from the set of 30
experiments conducted for each J. Boxplots of the data misfits defined in (63)–(65) are shown
in the right panel of figure 4 where the mean noise level, approximated via δ =

√
M, is indicated

via the horizontal dotted red line. The average (over the 30 experiments) number of iterations
to converge, n∗, is displayed in table 1. These experiments suggest that the choice of J =
200 provides a reasonable value of the data misfit (i.e. around the noise level). Furthermore,
the average relative error w.r.t. the truth for J = 200 (approximately 30%) does not improve
substantially as we increase J. Given these considerations, we select J = 200 for subsequent
runs of Exp_EIT1.
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Figure 3. Exp_EIT1. Logarithm of κn∗ ≡ P1(un∗ ) computed via the EKI-DMC with
ensemble size (from left to right) J = 100, 200, 400, 800. Right panel shows the log of
the truth.

Figure 4. Exp_EIT1. Error with respect to the truth (left), En∗ (see (60)), and data misfits
from (63)–(65) (right) computed at the final iteration n∗ via EKI-DMC. The noise level
estimated by δ =

√
M is indicated with the dotted red-line in the right panel.

4.5.2. Further results from one run of EKI-DMC with J = 200. In figure 2 (bottom) we dis-
played 5 members of the final (converged) ensemble of (log) κ( j)

n∗ corresponding to the initial
ensemble from figure 2 (top). Plots of the log of κn = P1(un) (see equation (59)), at some of the
intermediate iterations 1 � n < n∗ = 10 can be found in figure 5. In figure 6 (right) we plot, as
a function of n, the values of the means λ, L1, and L2, of the ensembles {λ( j)}J

j=1, {L( j)
1 }J

j=1 and

{L( j)
2 }J

j=1, respectively4. Note that EKI produces a larger lengthscale in the vertical direction.
This comes as no surprize since the truth κ† (see figure 1 (left)) has two inclusions of lower
conductivity with larger correlation along the vertical direction. Finally, in figure 6 (right and
middle) we display, for each of the 30 runs, the relative error w.r.t. the truth as well as the (log)
data misfit (63), as a function of the iteration number n. We note that EKI-DMC is very robust
and accurate across ensembles.

4.5.3. Comparison between EKI-DMC and EKI-LM. We compare the performance of algo-
rithms 2 and 3 using the same set of 30 initial ensembles for each algorithm using J = 200. In
[2, 3], this selection of J was sufficient to provide stable and accurate estimates for EIT. We con-
sider different choices of the input ρ in EKI-LM and, for simplicity, we set τ = 1/ρ+ 10−6.
In figure 7 we show boxplots of the error w.r.t. the truth (right) and the data misfit DM1,n∗

4 We call from (52) and (53) that λ, L1 and L2 are scalar components of the unknown parameter u that we estimate via
EKI. For ease in the notation we do not use the subscript n on these variables but we emphasise these are updated at
each iteration of EKI.
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Figure 5. Exp_EIT1. Logarithm of κn = P1(un) computed via the EKI-DMC at var-
ious intermediate iterations n (1 � n � n∗) computed using one ensemble of size
J = 200.

Figure 6. Exp_EIT1. Plots of the relative error w.r.t. the truth (left), data misfit DM1,n

(middle) and means L1, L2 and λ (right) as a function of n. The left and middle panels
show results from 30 runs.

Figure 7. Exp_EIT1. Error with respect to the truth (left), En∗ (see (60)), and data misfit
DM1,n∗ (63) (right) computed at the final iteration n∗ using EKI-DMC and EKI-LM
with various choices of ρ. The noise level estimated by δ =

√
M is indicated with the

dotted red-line in the right panel.

(left) obtained with several choices of ρ for EKI-LM; the results from EKI-DMC for J = 200
are also included in these plots. Similar behaviour is observed for DM2,n∗ and DM3,n∗ and
so these plots are omitted. The number of iterations for EKI-LM to achieve convergence, n∗,
is displayed in table 2. For one of the 30 runs, in figure 8 we show the plots of the log of
κn∗ = P1(un∗) computed with both algorithms using the selections of parameters described
above.

While EKI-DMC does not depend on any tuning parameter, the results above show that
EKI-LM is highly dependent on the selection of ρ (which is specified a priori). From table 2
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Table 2. Number of iterations n∗ for EKI using the LM approach (EKI-LM) with
various choices of ρ.

Exp_EIT1 Exp_EIT2

LM ρ = 0.5 8.57 ± 0.50 10.30 ± 0.79
LM ρ = 0.6 10.53 ± 0.51 14.10 ± 1.79
LM ρ = 0.7 14.40 ± 0.56 20.03 ± 1.45
LM ρ = 0.8 21.80 ± 0.76 32.53 ± 2.65

Figure 8. Exp_EIT1. Logarithm of κn∗ = P1(un∗ ) computed using the same initial
ensemble (J = 200) with EKI-LM for several choices of ρ. In the top-right panel with
display the log of κn∗ that we obtain with EKI-DMC.

we see that, for ρ = 0.6, the computational cost of EKI-LM is similar to the cost of EKI-
DMC; i.e. convergence in approximately 10 iterations (in average). For this ρ, the average
error computed with EKI-LM (≈38%) is, however, larger than the error obtained via EKI-
DMC (≈30.5%). Although the improvement in accuracy of EKI-DMC over EKI-LM may
not be overly impressive, from figure 8 (computed from one run) we note that the area of high
conductivity is not accurately captured by EKI-LM with ρ < 0.8. For these experiments, if
instead of ρ = 0.6 we choose, say ρ = 0.8 (see table 2), the computational cost of EKI-LM
doubles without improving its accuracy with respect to EKI-DMC.

Furthermore, from figure 7 we also observe that both the data-misfit DM1,n∗ and the error
w.r.t. the truth obtained via EKI-LM decreases as we increase ρ. This behaviour is expected
since large ρ implies smaller τ and, hence, smaller data misfits upon convergence (see stopping
criteria for EKI-LM in equation (22)). Even though the measures of performance of EKI-LM
(see figure 7) seem to approach those of EKI-DMC for increasing ρ, experiments (not shown)
conducted with even larger ρ’s, (i.e. ρ � 0.9) do not yield the same level of accuracy that we
achieve with EKI-LM. This is due to the fact that the stopping criteria in EKI-LM does not
allow the algorithm to iterate onceDM1,n∗ is smaller than τδ = τ

√
M (recall τ > 1/ρ). Hover,

for this particular problem, it seems that iterating below this threshold yields more accurate
estimates. Indeed, we note that for the estimates obtained by EKI-DMC, the value of DM1,n∗

is smaller than the τδ for all the 30 runs. We conclude that, for this particular problem setting,
the stopping criteria in EKI-LM is not optimal.

In order to further understand the potential limitation of the stopping criteria in EKI-
LM as proposed in [2], in figure 9 we display the behaviour of logαn as a function of
n, computed from one run (with same initial ensemble) of EKI-DMC and EKI-LM with
ρ = 0.6. As mentioned above, for this particular selection of ρ, both EKI-LM and EKI-
DMC converged in 10 iterations so the cost of running both algorithms is the same. We
find that the selection of αn via EKI-LM yields quite large values of αn compared to those
obtained via EKI-DMC. Larger αn’s, as discussed in subsection 2.1, means slower conver-
gence. Although we can obtain smaller αn’s using EKI-LM with smaller ρ’s, this will result
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Figure 9. Logarithm of the regularisation parameter αn as a function of n computed with
EKI-DMC and EKI-LM for EIT experiments.

in larger τ ’s and, consequently, earlier termination with is detrimental to the accuracy of the
algorithm.

The aforementioned limitation of the stopping criteria in EKI-LM can be addressed, for
example, by adopting the same stopping rule that we use in EKI-DMC. In other words, we
may replace (22) by imposing that the αn’s in EKI-LM satisfy (12). Such an approach has
been used, for example, in [42] in the context of history matching of petroleum reservoirs. We
have repeated our experiments (not shown) using (12) as stopping rule for EKI-LM which
show that, indeed, using (12) enable us to run the algorithm beyond the noise level and,
hence, obtain more accurate estimates at a lower computational cost. However, the role of
ρ still determines the performance of EKI-LM and, while (12) allows us to use smaller ρ′s
(thus smaller αn’s and faster convergence), for some of these small values the algorithm loses
stability.

In summary, we may find problem-specific tuning parameters ρ and τ in EKI-LM, or mod-
ifications of EKI-LM by adopting (12) as stopping rule, that will yield comparable level of
accuracy and even similar computational cost to those achieved by EKI-DMC. However,
finding optimal stopping criteria and/or tuning parameters may require thorough numeri-
cal testing which is often computationally intensive and unsuitable for practical large-scale
applications.

4.6. Numerical experiment Exp_EIT2. Discontinuous (piecewise constant) conductivity

The true conductivity for the experiments of this section is the piecewise constant function
with plot displayed in figure 1 (middle). The background, low and high conductivity regions
have constant values:

κ†
b = 0.125, κ†

l = 0.025, κ†
h = 1.0, (68)
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Figure 10. Logarithm of κn∗ computed via EKI-DMC ensemble size (from left to right)
J = 100, 200, 400, 800. Right panel shows log(κ†). This results use the parameterisation
from Exp_EIT1.

respectively. Synthetic data are generated in the same way as described in the previous
subsection, and with noise covariance from (66).

In figure 10 we show the plots of (log)κn∗ computed from one run with EKI-DMC using the
same parameterisation (for continuous functions) and initial ensemble from Exp_EIT1. While
these results show that we can identify the three different regions of different conductivity, the
reconstruction of the interface between these regions is quite inaccurate because of smoothness
enforced by the parameterisation used within EKI. We overcome this limitation by means of a
level-set parameterisations within the EKI framework.

4.6.1. Level-set parameterisation and prior ensemble. For the series of experiment in this
subsection we test EKI with the level-set parameterisation κ = P2(u) from (57). As discussed
in remark 5 we remove σ f and ν f from the inversion. Here we use the values ν f = 2 and
σ f = 0.5. In addition, we also leave λ f out of the inversion; we take λ f = 1. This selection is
made for simplicity since we expect to capture all the variability of the level-set function via
the term WΘ f ω f in (56). The unknown reduces to

u = (κl,κb,κh, L1, f , L2, f ,ω f ),

which consists of 5 scalars and one function,ω f , which we discretise also on a 100 × 100 grid.
Hence, the dimension of the unknown u is dim(U) = 10 005. We select the initial ensemble
according to

u( j)
0 ∼U[0.015, 0.075] ⊗ U[0.1, 0.4] ⊗ U[0.65, 1.1]

⊗ U[0.15, 0.6] ⊗ U[0.15, 0.6] ⊗ N(0, I), (69)

From (56) we know that this selection produces a centred ensemble of initial level-set func-
tions. It is worth noticing from (69) that there is no overlapping among the support of the
distributions for the conductivity values (i.e. κl, κb and κh) on each region. Furthermore, each
of these intervals contain the true values form (68). Therefore, we work under the assumption
that (i) there is clear contrast between the unknown values on each region and (ii) we have
good knowledge of the range of possible values for the unknown conductivity in each of those
regions.

In figure 11 we show the plots of some log κ( j)
0 = log P2(u( j)

0 ) (top panels) and the corre-
sponding level-set functions f ( j)

0 = log(P1(u( j)
f ,0)) (bottom panels) from five ensemble mem-

bers. Our selection ν f = 2 imposes smoothness in the level-set function and, in turn, in the
interface between the three regions of low, high and background conductivity. From figure 11
(bottom) we notice that the ensemble of level-sets displays anisotropy induced by randomising
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Figure 11. Exp_EIT2. Five members of the initial ensemble of (log) {κ( j)
0 }J

j=1 (top row)

and their corresponding level-set set function { f ( j)
0 }J

j=1 (bottom row).

Figure 12. Exp_EIT2. Error with respect to the truth (left), En∗ (see (60)), and data
misfits from (63)–(65) (right) computed at the final iteration n∗ with EKI-DMC with
different choices of J. The noise level estimated by δ =

√
M is indicated with the dotted

red-line in the right panel.

the intrinsic lengthscales in the level-set function. This variability can be seen in the corre-
sponding interface between regions of different conductivities (top row figure 11). Note that
the values of conductivity within each region are variable across particles.

4.6.2. Results from several choices of J in EKI-DMC. In figure 12 we show boxplots of the
relative error w.r.t. the truth as well as data misfits (63)–(65). As before, these are results from
30 EKI-DMC runs using different initial ensembles for each choice of J. We can clearly see
a decrease in the error w.r.t. the truth as we increase J, while the data misfits DM1,n and
DM2,n achieve values close to the noise level (indicated via dotted red line) for J � 200. We
see that, again, J = 200 is a good compromise between accuracy and cost. Using J = 400 will
double the cost with a marginal improvement in accuracy. The choice of J = 200 also yields
reasonable visual results as we can verify from figure 13 where, for one run of EKI-DMC, we
display the log of κn∗ = P2(un∗) (top panels) and the level-set function fn∗ = log(P1(uf ,n∗))
(bottom panels).

Although we note that the average data misfit DM3,n∗ in figure 12 seems to increase with J,
experiments (not shown) with larger J suggest that DM3,n∗ eventually stabilises. The increase

27



Inverse Problems 37 (2021) 025008 M Iglesias and Y Yang

Figure 13. Exp_EIT2. Plots of (log) κn∗ (top row) and the corresponding level-set func-
tion fn∗ (bottom row) computed with EKI-DMC with different choice of ensemble
size J. Top-right panel shows log(κ†).

in DM3,n∗ can be attributed to the fact that larger J’s produces a better spread/coverage of
the distribution of particles; some of these particles yield a larger data misfit within EKI5.
The ensemble mean un, however, is quite accurate (see figure 13, for J = 200) and so the
corresponding κn = P2(un) yields reasonable values of the DM2,n∗ (i.e. close to the noise
level).

4.6.3. Results from one run of EKI-DMC with J = 200. Figure 14 shows some members
from the final (converged) ensemble corresponding to the initial ensemble from figure 11;
the top panels are log κ( j)

n∗ = P2(u( j)
n∗ ) while the bottom panels show the level-set functions

f ( j)
n∗ = log(P1(u( j)

f ,n∗)). This figure shows that there is, indeed, significant variability across par-

ticles of the converged ensemble κ( j)
n∗ and, in turn, possible large spread in the values of the data

misfit obtained using each of these conductivities (hence potentially large values of DM3,n).
The average error w.r.t. the truth and (log) data misfit DM1,n are shown in figure 15, as a func-
tion of the iteration number n (these are results from our 30 runs). Note that, in contrast to the
previous experiment, the error displays more variability across ensembles.

Plots of logκn and the level-set function fn, at some of the intermediate iterations
1 � n < n∗, are displayed in the top and bottom panels of figure 16, respectively. We can see
that EKI not only estimates the shape (via the level-set function) of the regions with different
conductivity but also the conductivity values on each region. In figure 17 (top) we plot, as a
function of n, the values of L1, f , L2, f , λl, λb and λh, i.e. the means of the ensembles {L( j)

1, f }J
j=1,

{L( j)
2, f }J

j=1, {λ( j)
l }J

j=1, {λ( j)
b }J

j=1, and {λ( j)
h }J

j=1 (we reiterate that these variables are updated at
each iteration of EKI). The ensemble mean for the intrinsic lengthscale of the level-set function
in the vertical direction is larger than the horizontal one. Again, this is due to the presence of
the regions of low conductivity which are longer in the vertical direction. From the middle-
right panel we can see that the true conductivity in the background region λ†

b is recovered quite
accurately. In contrast, the mean values λl and λh do not seem to vary much with respect to the
mean.

5 From the Bayesian perspective some of these particles have small (approximate) posterior probability.
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Figure 14. Exp_EIT2. Five members of the converged ensemble of (log) {κ( j)
n∗ }J

j=1 (top
row) and their corresponding level-set set function { f ( j)

n∗ }J
j=1 (bottom row).

Figure 15. Exp_EIT2. Plots of the relative error w.r.t. the truth (left) and data misfit
DM1,n (right) computed from 30 runs with EKI-DMC.

Figure 16. Exp_EIT2. Logarithm of κn ) (top) and the corresponding level-set fn (bot-
tom) computed with one run of EKI-DMC (with J = 200) at various intermediate
iterations n (1 � n � n∗).
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Figure 17. Exp_EIT2. Top: plots of the means L1, f and L2, f (left) as well as the mean
conductivity values λl (left-middle), λb (middle-right) and λh (right) corresponding to
the low, background and high conductivity regions. Bottom: densities from the initial
and final (converged) ensemble of L1, f , L2, f , λl, λb, λh.

Although we are mainly focus on the deterministic case here, to further appreciate the
accuracy of the inversion for these variables, in figure 17 (bottom) we show their probabil-
ity densities approximated from the initial and final (converged) ensembles. For most of these
variables we can see that the converged ensemble has a much smaller variance compared to
the initial one. For the conductivity values we note that the lower and background values are
identified accurately with the ensemble mean; the higher value is captured in the tail of the
final ensemble.

4.6.4. Comparison between EKI-DMC and EKI-LM. In figure 18 we compare the performance
of EKI-DMC and EKI-LM using 30 different initial ensembles. For EKI-LM we explore
different choices of ρ. We note that EKI-DMC outperforms EKI-LM for all our choices of ρ.
From table 2 note that for ρ > 0.7 the computational cost of EKI-LM is approximately twice
the cost of EKI-DMC and the cost even triple if we choose ρ = 0.8. The plots of logκn from
one run with the three algorithms (same initial ensemble) are shown in figure 19, where we see
that all these runs perform well. Similarly conclusions to those in Exp_EIT1 are also drawn for
this case. Namely, EKI-DMC is more accurate than EKI-LM in the chosen metrics although
visually we achieve good performance from both algorithms and inputs. Experiments (not
shown) indicate that substantial improvement in the performance of EKI-LM can be achieved
by using the same stopping rule given by (12) instead of (22). However, some choices of ρ can
result in inaccurate estimates in terms of error w.r.t. the truth. The main advantage of EKI-
DMC over EKI-LM is that the former does not rely on tuning parameters whose optimal
selection is crucial for the stability and accuracy of the scheme.

4.7. Further discussions

Let us recall that the proposed stopping criteria for EKI given by (12) comes naturally from
the Bayesian tempering scheme. The tempering parameter tN+1 = 1 in (8) corresponds to the
posteriorμN+1 = μ. From the deterministic perspective in which we at aim approximating (2),
this stopping criteria might seem rather arbitrary, and one may argue that further iterations of

30



Inverse Problems 37 (2021) 025008 M Iglesias and Y Yang

Figure 18. Exp_EIT2. Error with respect to the truth (left), En∗ (see (60)), and data misfit
DM1,n∗ (63) (right) computed at the final iteration n∗ using EKI-DMC and EKI-LM
with various choices of ρ. The noise level estimated by δ =

√
M is indicated with the

dotted red-line in the right panel.

Figure 19. Exp_EIT2. Logarithm of κn∗ computed using the same initial ensemble
(J = 200) with EKI-LM using different selections of the parameter ρ. In the right panel
with display the log of κn∗ that we obtain using EKI-DMC.

the EKI algorithm (i.e. for tN+1 > 1) may produce more accurate approximations of (2). Our
numerical examples show that the stopping criteria from (12) yields values of the data misfit
which are consistent with the discrepancy principle (38) where, as stated earlier, the noise
level δ is approximated by

√
M = 16. In particular, from the experiments with multiple runs

(figures 6 and 15) we see that the (log) data misfit approaches the (log) noise level log δ ≈ 2.77
as we reach the stopping criteria given by (12). In fact, for these experiments we note that the
error w.r.t. the truth, En, stabilises before we reach the stopping criteria. Hence, earlier stopping
(i.e. tN+1 < 1) could have avoided one or two unnecessary iterations. In contrast, experiments
(not shown) confirm that additional iterations (i.e. for tN+1 > 1) not only do not decrease En,
but they will eventually lead to an increase in En and hence loss of accuracy. These observations
align with existing work suggesting that the appropriate early stopping is crucial for the stability
of EKI. As discussed in subsection 2.1, the work in [1, 2] has shown that the error with respect
to the truth increase with the number of iterations once the data misfit takes values below the
noise level (i.e. the discrepancy principle is not satisfied).

Similarly, even though we motivate the selection of αn in the DMC by controlling (via
Jeffrey’s divergence) the transitions between consecutive tempering measuresμn+1 and μn, the
aforementioned results from figures 6 and 15 constitute numerical evidence that DMC leads
to a stable/regularised EKI algorithm that addresses the ill-posedness of the classical inverse
problem (2). Intuitively, controlling the transitions between consecutive measures yields sta-
ble transitions between the statistics of these measures which are, in turn, approximated with
Gaussians using EKI (see appendix A). Therefore, one may expect that, for sufficiently large
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ensemble size, EKI also leads to stable computation of the ensemble mean. Nonetheless, theo-
retical work beyond the scope of this manuscript is needed in order to deepen our understanding
of the link between the transition of tempering measures and the regularisation properties of
EKI-DMC that arises from the proposed selection of αn and the stopping criteria induced by
contraint (12).

5. Conclusions

We introduced the DMC: a new adaptive regularisation strategy within the classical EKI set-
ting. This led to an algorithm, EKI-DMC, that in contrast to existing EKI approaches, does
not require any tuning parameters. Although we focus on the solution of deterministic iden-
tification problem, the proposed DMC is motivated from the Bayesian perspective of EKI
within the tempering setting, where the inverse of the regularisation parameter, α−1

n , controls
the transition between two consecutive intermediate measures. The Bayesian tempering set-
ting provides us with a condition that these parameters must satisfy (

∑n∗
n=1 α

−1
n = 1) to bridge

the prior and posterior. We encode this condition for the termination of EKI-DMC together
with our new method for choosing αn. We show that the selection satisfies a heuristic sta-
tistical discrepancy principle which also controls Jeffreys’ divergence between consecutive
measures.

We applied EKI-DMC for the solution of EIT with the CEM in which the conductivity was
parameterised via different maps that enabled us, via the EKI framework applied to the appro-
priate parameters, to characterise both smooth and piece-wise constants conductivities. WM
fields were at the core of these parameterisations which included the intrinsic lengthscales as
inputs that we estimate within EKI. For the piece-wise constant case, we use a truncated WF
field (the level-set function) to characterise discontinuities between different regions. As with
any other EKI algorithms, our results show that the performance of EKI-DMC relies on rea-
sonable choices of ensemble size, J. For sufficiently large choices of J, our experiments show
that EKI-DMC is quite robust and capable of producing accurate identification of physical
properties suitably parameterised.

We conducted a performance comparison between EKI-DMC and the EKI-LM approach
of [2]. In most cases EKI-DMC outperforms the accuracy of EKI-LM in terms of error w.r.t.
the truth and data misfit, but we noted that suitable choices of tuning parameters and possible
modifications to the stopping rule can produce comparable performance to EKI-DMC. We
recognise that similar performance can also be achieved by using different choices of αn in
EKI including those discussed in section 2. We reiterate that, as with EKI-LM and its vari-
ants, most regularisation approaches for EKI rely on the choice of additional tuning parameters
which, of course, can be tuned to display comparable or even better performance to EKI-DMC.
However, there is no principled approach for the optimal selection of those parameters. Opti-
mal tuning parameters can only be informed via careful numerical investigations on the given
problem-specific setting. Our results show that EKI-DMC is a robust self-tuning regularisa-
tion strategy of EKI, ideally suited for practical and operational settings for which finding
optimal choices of tuning parameters in existing EKI approaches may not be computationally
feasible.
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Appendix A. Motivation of EKI from the Bayesian tempering approach

We introduce a series of approximations and Gaussian assumptions that lead to the EKI
algorithm (algorithm 1).

A.1. Linearisation and Gaussian approximations

Suppose that the collection of tempering parameters {tn}N
n=1 in (9) have been specified. Our

objective now is to construct a sequence of Gaussian approximations of each measure μn in
(8). To this end, let ν0 = N(m0, C0) be a Gaussian approximation of the prior μ0, and let us
denote by DG the Frechet derivative of G. We recursively construct a sequence of Gaussian
approximations {νn = N(mn, Cn)}N+1

n=1 of {μn}N+1
n=1 via the following expression

νn+1(du) ∝ νn(du) exp

[
−1

2

∥∥∥(αnΓ)−1/2(y − Gn − DGn(u − mn))
∥∥∥2
]

, (A.1)

where for ease in the notation we have defined Gn ≡ G(mn) and DGn ≡ DG(mn). We note the
right-hand side of (A.1) involves the linearisation of the forward map around the mean of
νn = N(mn, Cn).

Recursive formulas for the mean and covariance of νn = N(mn, Cn) can be obtained by com-
pleting the square in (A.1) (see theorem 6.20 in [31]). Indeed, since νn = N(mn, Cn) and the
model L(u) ≡ DGn(u − mn) is linear, then νn+1 = N(mn+1, Cn+1) with

mn+1 = mn + CnDG∗
n (DGnCnDG∗

n + αnΓ)−1(y − Gn) (A.2)

Cn+1 = Cn − CnDG∗
n (DGnCnDG∗

n + αnΓ)−1DGnCn, (A.3)

where DG∗
n denotes the adjoint of DG evaluated at mn.

Remark 6 (LM from linearised Bayesian tempering). Using standard arguments (see
for example lemma 3.1 in [2]) it can be shown that mn in (A.2) satisfies (6). In the case where Cn

is the identity operator, (6) yields the standard LM iterative scheme [26]. For the modified ver-
sion in (6), we note that the recursive formula for the mean involves introducing the precision
operator for u in the regularisation term in the right-hand side of (6).

Remark 7 (the linear-Gaussian case). Note that, if μ0 = ν0 (i.e. the prior is Gaussian)
and the forward map G is linear, then we have that DGn(u − mn) = G(u − mn) = G(u) − Gn.
Hence, (A.1) and (10) coincide and so μn = νn for all n = 0, . . . , N + 1. In particular, in the
linear-Gaussian case the final measure ν∗n coincides with the posterior (i.e. νN+1 = μN+1 = μ)

A.2. Derivative-free ensemble approximation

We now introduce further approximations that will lead to the EKI algorithm under consid-
eration. Let us denote by un a random variable such that un ∼ νn = N(mn, Cn). Denote by En

expectation with respect to νn. Let us consider the first order approximation

G(un) � Gn + DGn(un − mn) (A.4)
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that we used in (A.1) to define our Gaussian approximations for the tempering scheme
introduced in appendix A.1. From (A.4) it follows that

En[G(un)] � Gn, G(un) − En[G(un)] � DGn(un − mn). (A.5)

Hence,

Covn(un,G(un)) ≡ En[(un − mn) ⊗ (G(un) − En[G(un)])]

� CnDG∗
n , (A.6)

Covn(G(un)) ≡ En[(G(un) − En[G(un)]) ⊗ (G(un) − En[G(un)])]

� DGnCnDG∗
n , (A.7)

where we have used the fact that En[(un − mn) ⊗ (un − mn)] = Cn. If we use approximations
(A.5)–(A.7) in (A.2) and (A.3) we note that

mn+1 � m̃n+1 ≡ mn + Covn(un,G(un))(Covn(G(un)) + αnΓ)−1(y − En[G(un)])

(A.8)

Cn+1 � C̃n+1 ≡ Cn − Covn(un,G(un))(Covn(G(un)) + αnΓ)−1 Covn(G(un), un).

(A.9)

These approximations to the mean and covariance of the sequence of approximate measures
{νn}N+1

n=1 do not involve derivatives of the forward map. However, the covariance and cross-
covariance that appear in (A.8) and (A.9) cannot be computed in closed form. This issue is
overcome by using particle approximations of each approximate measure νn = N(mn, Cn). In
other words, we consider approximations

νJ
n (un) =

1
J

J∑
j=1

δ(un − u( j)
n ), (A.10)

where we assume that u( j)
n ∼ N(mn, Cn). The classical EKI update formula (4) for the ensemble

of particles {u( j)
n }J

j=1 is defined in such a way, that the corresponding ensemble mean and
covariance approximate those in (A.8) and (A.9) as J →∞. To see this more clearly, let us
note that the ensemble approximation of En[un] and En[G(un)] are un and Gn defined in (5).
The ensemble approximations of Covn(G(un)), Covn(un,G(un)) and Cn, denoted by CGG

n , CuG
n

and Cuu
n , are defined by (16), (17) and

Cuu
n ≡ 1

J − 1

J∑
j=1

(u( j)
n − un) ⊗ (u( j)

n − un), (A.11)

respectively. From (4) we note that

un+1 = un + CuG
n (CGG

n + αnΓ)−1(y +
√
αnξn − Gn). (A.12)

It can be shown (see for example [53] for a rigorous proof in finite dimensions) that

un+1 → m̃n+1 ≡ mn + Covn(un,G(un))(Covn(G(un)) + αnΓ)−1

× (y − En[G(un)]) � mn+1 (A.13)
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Cuu
n+1 → C̃n+1 ≡ Cn − Covn(un,G(un))(Covn(G(un)) + αnΓ)−1 Covn

× (G(un), un) � Cn+1. (A.14)

as J →∞. Moreover, for the particles in (4) we have

νJ
n+1(un+1) =

1
J

J∑
j=1

δ(un+1 − u( j)
n+1) → ν̃n+1 ≡ N(m̃n+1, C̃n+1).

The development above (informally) shows that if νJ
n � νn = N(mn, Cn), then

ν̃J
n+1 � ν̃n+1 = N(m̃n+1, C̃n+1). Furthermore, if (A.5)–(A.7) are accurate enough, then

N(m̃n+1, C̃n+1) � νn+1 = N(mn+1, Cn+1) and so the EKI ensemble ν̃J
n+1 approximates νn+1.

Recall that the νn’s are Gaussian approximations of the tempered distributions μn. Hence
the regularisation parameter αn in EKI is the inverse of the difference between consecutive
tempering parameters (see equation (11)) which is, in turn, a Gaussian approximation of μn+1.

Remark 8 (squared-root EKI). It is worth noticing that other approaches can be used to
approximate N(m̃n+1, C̃n+1) above. This includes the so-called ensemble square-root formula-
tions [54] in which the particles are cleverly updated so that their sample mean and covariance
coincide (exactly) with m̃n+1 and C̃n+1. While these has been shown to be beneficial for very
small samples (i.e. <50), we note that N(m̃n+1, C̃n+1) does not, in general, coincides with
νn+1 = N(mn+1, Cn+1) (unless G is linear).

Remark 9 (EKI as a derivative-free approximation of LM). For sufficiently large J,
the mean of the ensemble un+1 approximates m̃n+1 and so mn+1 which is, in turn, the iteration
of the LM scheme in (6) (see remark 9). Therefore, we can interpret EKI as a derivative-free
approximation of the LM scheme constrained to the subspace generated by the initial ensemble
{u( j)

0 }J
j=1. More specifically, the ensemble mean un define by the recursive formula (5) satisfies

the following subspace invariance property (see theorem 2.1 in [1])

un ∈ S0 ≡ span{u( j)
0 }J

j=1

for all n ∈ N. We expect EKI to produce approximate solutions to (4) within the sub-
space defined above. While the numerical experiments from [2] provides evidence of such
a claim, to the best of our knowledge, the convergence of EKI in this context is still an open
problem.

Appendix B. Lemmas, theorems, and proofs

Let y ∈ R
M fixed. We recall that from assumption 1 on the forward map G, the data misfit

Φ(·, y) : H→ [0,+∞) is a square integrable functional on the probability space (H,B(H),μ0),
i.e. ∫

H
|Φ(u; y)|2μ0(du) < ∞. (B.1)

This implies that Φ(·, y) : H→ [0,+∞) is absolutely integrable functional on the probability
space (H,B(H),μ0), i.e.∫

H
|Φ(u; y)|μ0(du) � M0 < ∞. (B.2)
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B.1. Proof of lemma 1

Proof. Assumption 1 allows us to use the techniques from [[31], theorems 4.1 and 4.2]
and [[55], theorem 3.4] to show that μt � μ0. We now prove μ0 � μt, i.e. ∀X ∈ B(H),
μt(X ) = 0 ⇒ μ0(X ) = 0. We prove this statement by contradiction. Assume that there exists
X ∈ B(H) such that μt(X ) = 0 and μ0(X ) > 0. Since μ0(X ) > 0, we can define an another
probability measure, νX , on the measurable space (X ,B(X )), such that for all S ∈ B(X ),

νX (S) :=
μ0(S)
μ0(X )

. (B.3)

Using μt � μ0 and expressions (28) and (B.3) we have

μt(X ) :=
∫
X
μt(du) =

∫
X

dμt

dμ0
(u)μ0(du)

=
1
Nt

∫
X

exp(−tΦ(u; y))μ0(du)

=
μ0(X )

Nt

(∫
X

exp(−tΦ(u; y))νX (du)

)
.

We use Jensen’s inequality, formula (B.3) as well as (B.2) to obtain

μt(X ) � μ0(X )
Nt

exp

(
−t
∫
X
Φ(u; y)νX (du)

)
=

μ0(X )
Nt

exp

(
− t
μ0(X )

∫
X
Φ(u; y)μ0(du)

)
� μ0(X )

Nt
exp

(
− tM0

μ0(X )

)
> 0

which contradicts our assumption that μt(X ) = 0. �

B.2. Proof of theorem 1

Let us first prove:

Theorem 1. For any bounded t � 0, the normalisation constant Nt defined in formula (29),
as a function of t, is differentiable and its derivative dNt

dt is given by

1
Nt

dNt

dt
= −

∫
H
Φ(u; y)μt(du), (B.4)

where μt is the probability measure determined via formula (28).

Proof. For any u ∈ H and for any bounded t � 0, let us define

fu(t) := exp(−tΦ(u; y)).

Then, Nt defined in formula (29) can be rewritten as

Nt =

∫
H

fu(t)μ0(du).
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Notice that the derivative of fu is bounded by Φ(u; y) for any t � 0, since∣∣∣∣d fu

dt
(t)

∣∣∣∣ = ∣∣∣∣− Φ(u; y) exp(−tΦ(u; y))

∣∣∣∣� Φ(u; y).

Recall that Φ(·; y) is absolutely integrable. Thus, according to the dominated convergence
theorem, the derivative of Nt can be calculated by

dNt

dt
=

d
dt

(∫
H

fu(t)μ0(du)

)
=

∫
H

d fu

dt
μ0(du)

= −
∫
H
Φ(u; y) exp(−tΦ(u; y))μ0(du).

From the proof of lemma 1 we know Nt is strictly greater than 0 for any bounded t � 0.
Therefore, N′

t can be divided by Nt,

1
Nt

dNt

dt
= − 1

Nt

∫
H
Φ(u; y) exp(−tΦ(u; y))μ0(du).

Expression (B.4) follows from lemma 1 which establishes the equivalence between μt

and μ0. �
Expression (B.4) can be used to characterise Nt by integrating on both sides, arriving at

log Nt − log N0 = −
∫ t

0
〈Φ〉tdt,

where we have used the notation introduced in (30). This extends, to the infinite-dimensional
setting, the characterisation of the normalising constant obtained, for example, in [36].

We now prove theorem 1:

Proof. E {g(ut)} can be rewritten by changing the measure from μt to μ0 (recall μt � μ0),

E {g(ut)} :=
∫
H

g(u)μt(du) =
∫
H

g(u)
dμt

dμ0
(u)μ0(du)

=
1
Nt

∫
H

g(u) exp(−tΦ(u; y))μ0(du) =
1
Nt

∫
H

fu(t)μ0(du),

where fu(t) is defined by

fu(t) := g(u) exp(−tΦ(u; y))

for any u ∈ H and any bounded t � 0. By applying the chain rule, the derivative of E {g(ut)}
is given by

d
dt
E {g(ut)} =

d
dt

(
1
Nt

∫
H

fu(t)μ0(du)

)

= −
dNt
dt

∫
H fu(t)μ0(du)

N2
t

+
d
dt

(∫
H fu(t)μ0(du)

)
Nt

. (B.5)

Notice that the derivative of fu is bounded by |g(u)Φ(u; y)| for any t � 0, since∣∣∣∣d fu

dt
(t)

∣∣∣∣= ∣∣∣∣− g(u)Φ(u; y) exp(−tΦ(u; y))

∣∣∣∣� ∣∣∣∣g(u)Φ(u; y)

∣∣∣∣.
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Since both g andΦ are square integrable, it follows from Cauchy–Schwarz inequality that g · Φ
is absolutely integrable. Thus, according to the dominated convergence theorem, we have

d
dt

(∫
H

fu(t)μ0(du)

)
=

∫
H

d fu

dt
(t)μ0(du)

= −
∫
H
Φ(u; y) fu(t)μ0(du). (B.6)

On the other hand, we note that the conditions of theorem 1 apply. Then, we substitute (B.6)
and (B.4) in (B.5) to arrive at

d
dt
E {g(ut)} =

∫
HΦ(u; y)μt(du)

∫
H fu(t)μ0(du)

Nt
−
∫
HΦ(u; y) fu(t)μ0(du)

Nt
.

According to lemma 1, μt and μ0 are equivalent for any bounded t � 0. Hence, we change
measure in the right-hand side of the equation above using formula (28). Thus,

d
dt
E {g(ut)} =

∫
H
Φ(u; y)μt(du)

∫
H

g(u)μt(du) −
∫
H
Φ(u; y)g(u)μt(du).

Since both Φ and g are square integrable, it is not difficult to see that the right-hand side in the
previous expression gives the desired result in (34). �
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