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Abstract

Damage detection of civil engineering structures during the past decade has focused on eliminating the effects of
the changing environmental and operational conditions, from the effects of damage. In the literature, a regression
analysis has been adopted to construct a model between the vibration properties of structures, and the environmental
and operational parameters to represent the undamaged state of the structures, for damage detection. However, using
the environmental and operational parameters in the analysis has several limitations. For example, these parameters
are not always available which may affect the performances of the damage detection methods. Regression between the
vibration properties only has also been proposed in the literature where multivariate statistical tools have been adopted
to extract the relationships among the properties. However, these methods have the problem that it is more difficult to
detect damage in the multivariate situations and a regression target is usually needed, which is difficult to determine.
Therefore, a damage detection method which uses the simple regression analysis, is developed in this paper. The vibration
properties of structures are used as both the independent and dependent variables in the developed method. This has
the advantages that the environmental and operational conditions are not needed and the multivariate statistical tools
are not required for data processing. The developed method is applied to a beam structure model and the Z24 Bridge,
in Switzerland, and the results obtained demonstrate that the method can successfully classify between undamaged and
damaged states. The traditional regression analysis method is also applied to the two structures and it was found that
better results are obtained using the method developed in this paper.

Keywords: Damage detection, regression analysis, natural frequencies, environmental and operational conditions,
temperature conditions, outlier analysis

1. Introduction

Damage detection of civil engineering structures dur-
ing the past decade has focused on eliminating/separating
the effects of the changing environmental and operational
conditions (e.g. temperature) the structures face, from5

the effects of damage. This is because the changing envi-
ronmental and operational conditions affect the vibration
properties (e.g. natural frequencies) of structures which
are commonly analysed to detect the presence of damage.
False alerts may occur if these conditions are not taken10

into account [1, 2].
In the literature, it was found that the vibration prop-

erties of structures are affected by multiple environmental
and operational conditions (e.g. temperature [3, 4, 5, 6, 7,
8, 9], traffic loading [8, 10, 11, 12], wind loading [11, 13]15

and humidity [14]). For example, it was reported that the
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natural frequencies of the Z24 Bridge, in Switzerland fluc-
tuated due to the changing temperature conditions, and a
nonlinear relationship existed between the frequencies and
the temperature [3]. Jin et al. [6] also reported similar re-20

lationship between the natural frequencies of the Meriden
Bridge and the temperature condition. It was also found
that traffic loading causes variations in the natural fre-
quencies of structures. For example, the natural frequen-
cies of the Tamar Bridge [11] and the Forth Road Bridge25

[12], in the United Kingdom, and the Sutong Cable-Stayed
Bridge [8], in China were found to vary due to the traffic
loading on the bridges. Some studies also reported that
wind loading [11, 13] and humidity [14] altered the natu-
ral frequencies of civil engineering structures. Therefore,30

all these effects need to be considered while developing
damage detection methods.

To take these environmental and operational condi-
tions into account for damage detection, researchers have
adopted several approaches. These approaches use the fact35

that damage, which is a local phenomenon, affects the vi-
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bration properties locally. In other words, the modes of vi-
bration are affected by structural damage and each mode
of vibration is affected to a different degree [15]. There-
fore, damage can be detected in two ways; the first is by40

analysing the changes in vibration properties due to struc-
tural damage, and the second is by analysing the difference
in changes among the modes of vibration which is created
by damage.

One popular approach proposed for damage detection45

which analyses the changes in vibration properties, is the
regression analysis approach. In this approach, a regres-
sion analysis is adopted to create a model between the
vibration properties of structures, and the environmental
and operational parameters, to represent the normal (un-50

damaged) conditions of the structures [3, 16, 17, 18, 19,
20, 21, 22]. When damage occurs, the vibration properties
will be affected and for the same environmental and opera-
tional conditions, the structures will have two different sets
of vibration properties; one for each structural state (un-55

damaged and damaged). Therefore, new measurements
can be compared to the model created and a large devia-
tion from the model can then be attributed to an abnormal
condition. In this paper, the abnormal condition is due to
damage of structural components. In the regression analy-60

sis, the independent variable(s) are the environmental and
operational parameters, while the dependent variable(s)
are the vibration properties of structures. This regression
analysis approach proposed in the literature will be re-
ferred to as the traditional regression analysis approach65

throughout the paper.
Although conceptually simple, this approach carries

several limitations. For example, this traditional regres-
sion approach relies on the availability of the measure-
ments of the environmental and operational conditions70

[22]. These measurements are not always available, which
may affect the performances of the damage detection meth-
ods. Moreover, the optimal locations to place the sensors
to record the environmental and operational conditions
may be difficult to determine or to reach [23]. Also, once75

the regression models have been created, the sensors need
to stay at their original locations. Failure in any of the
sensors may affect the models and hence the damage de-
tection methods. Large-scale structures such as long-span
bridges and tall buildings are also subjected to different80

environmental and operational conditions at different lo-
cations [2]. For example, gradient temperature conditions
along the structures may exist which makes the analysis
more difficult and requires more sensors to be placed on the
structures. Generally, a large number of sensors are used85

for monitoring, however, only a few of the sensors are suit-
able to construct the regression model. For example, for
the Ting Kau Bridge, in Hong Kong, Ko et al. [24] used
20 sensors out of 83 sensors installed permanently on the
structure to construct a natural frequencies-temperature90

model of the bridge. Due to all these aforementioned prob-
lems, it is desired to develop a damage detection method
that does not require the environmental and operational

parameters, for analysis.
To eliminate the use of the environmental and oper-95

ational parameters, researchers have proposed to analyse
the relationships among the vibration properties only us-
ing multivariate statistical tools (e.g. Principal Compo-
nent Analysis and Cointegration) [9, 23, 25, 26, 27, 28, 29].
This approach is similar to the regression analysis ap-100

proach, however, instead of analysing the relationships
between the vibration properties and the environmental
and operational parameters, this approach analyses the
relationships among the vibration properties only. When
damage occurs, each mode of vibration will be affected to a105

different degree. This will change the relationships among
the vibration properties which can then be analysed using
the multivariate statistical tools. For example, Cointe-
gration was adopted to find a linear combination of the
vibration properties (or other damage sensitive features)110

to construct a stationary model error to represent the un-
damaged state of the structures [25, 26, 30]. When dam-
age occurs, the model error will become nonstationary and
damage can be alerted. Principal Component Analysis was
also adopted to extract new features from the vibration115

properties data set that are sensitive to damage but less
sensitive to the changing environments [9, 23, 26, 27, 28].
Selected features can then be analysed to detect damage.

However, using the multivariate statistical tools to anal-
yse the relationships among the vibration properties has120

the problem that it is more difficult to detect damage in a
data set containing multiple variables than the univariate
case as the damage effect may be hidden in the data mass
[31]. Also, some methods require the use of a regression
target during analysis. To reduce false alerts, the least125

affected and most affected modes of vibration need to be
compared to each other in these methods to maximise the
model error, hence, one of these modes need to be the
regression target. However, it is difficult to choose this
regression target as different damage scenarios (different130

damage locations and extent) affect the vibration proper-
ties differently. To limit this problem, several multivariate
models were analysed using Cointegration in the literature
where a model was created for each mode of vibration [30].
Moreover, this multivariate statistical tools approach has135

the problem that the new features extracted are assumed
to represent the damage effect and the environmental and
operational effects, separately. In reality, the features may
represent a combination of both effects. Furthermore, if
too many or too few features are extracted and analysed,140

the effects of the environments may be underestimated or
overestimated, which may lead to false alerts. Due to
all these aforementioned problems, it is ideal to develop
a method that does not require complicated multivariate
statistical tools to analyse the relationships among the vi-145

bration properties.
Therefore, a damage detection method which analy-

ses the changes between the natural frequencies of differ-
ent modes of vibration, is developed in this paper. The
method adopts the simple regression analysis approach for150
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data processing. However, compared to the traditional re-
gression analysis approach, the method developed in this
paper uses the natural frequencies of structures as both
the independent and dependent variables. This removes
the need to use the environmental and operational param-155

eters in the analysis. Using the regression analysis method
also removes the need to extract new features and also does
not require the analysis of multiple modes of vibration in
a single data set. This reduces the occurrence of false
alerts. Moreover, to increase the sensitivity to damage,160

the method analyses the relationship between the least af-
fected and the most affected modes of vibration.

To test the method developed in this paper, a numer-
ical beam model and the Z24 Bridge, in Switzerland are
analysed. Since the method developed uses the regression165

approach, it is also compared with the traditional regres-
sion analysis method. The results obtained demonstrate
that the cases are well classified (between damaged and
undamaged) even though the natural frequencies of struc-
tures are used as both the independent and dependent vari-170

ables. Moreover, the method developed in this paper has
better performances than the traditional method, while
also eliminating the limitations of the methods proposed
in the literature.

The rest of the paper starts with the methodology sec-175

tion where an introduction on regression analysis is given,
followed by a detailed description of the damage detec-
tion method developed in this paper. The numerical beam
model and the Z24 Bridge are then analysed using the
damage detection methods. The paper then closes by180

drawing a set of conclusions.

2. Methodology

The damage detection method developed in this paper
is described in this section. The method uses the regression
analysis, therefore, a general overview of the regression185

analysis method in the context of damage detection is first
given. Outlier analysis, which is commonly used to classify
between undamaged and damaged for damage detection,
is also briefly described in this section for completeness.
Finally, the damage detection method developed in this190

paper is described in details.

2.1. Regression analysis

Regression analysis is the study of the relationship be-
tween a set of independent and dependent variables [32].
The independent variables are characteristics that can be195

measured directly (e.g. temperature conditions) and these
variables are used to predict the values of the dependent
variables (e.g. natural frequency). Two general types of
regression model exist; the simple regression model and the
multiple regression model. In the simple regression model,200

there is only one independent variable and one dependent
variable, while for the multiple regression model, several
independent variables are used to obtain the dependent
variable.

In the context of damage detection, the independent205

variables used in the literature are usually the environ-
mental and operational conditions (e.g. temperature and
traffic loading), while the dependent variables are usually
the vibration properties (e.g. natural frequencies) of struc-
tures. In this paper, it is proposed to use the natural fre-210

quencies of structures as both the independent and depen-
dent variables, and to look for changes between the two
sets of frequencies for damage detection. As mentioned
previously, damage is a local phenomenon which affects
each mode of vibration differently. By analysing the rela-215

tionship between a pair of frequencies, damage alert can be
raised when new observations do not follow the model of
the undamaged structure. Therefore, the simple regression
model is adopted in this paper to characterise the relation-
ship between the frequencies of the undamaged structure,220

and is described below.
Consider the case where y is the dependent variable and

x is the independent variable. In the regression analysis,
a model is used to represent y in terms of x. This means
that, given a new value of x and using the regression model,225

the value of y can be predicted. The model of the simple
linear regression is given below.

y(x) = α0 + α1x (1)

Where,
α0 is a coefficient, and
α1 is a coefficient defining the rate of change of y based230

on x.
Eq. (1) is for the case where the relationship between

x and y is linear (e.g. linear relationship between tempera-
ture and natural frequency). However, natural frequencies
of civil engineering structures are subjected to both linear235

and nonlinear effects from the environmental and oper-
ational conditions [3, 6, 33]. Therefore, the polynomial
regression analysis has been adopted in the literature to
better characterise the relationships between the environ-
mental and operational conditions, and the natural fre-240

quencies of structures [33]. For example, Ding and Li [33]
adopted several polynomial regression models to quantify
the relationships between the natural frequencies of the
Runyang Suspension Bridge and the temperature condi-
tions. The polynomial regression is an extension of the245

linear regression and is given below [32].

y(x, n) = α0 + α1x
1 + α2x

2 + ...+ αnx
n (2)

where,
y is the dependent variable,
x is the independent variable,
α are coefficients of the model, and250

n is the nth degree of the polynomial.
The polynomial regression fits a nonlinear model to

the independent and the dependent variables data set. As
can be seen in Eq. (2), to fit the nonlinear model, the
polynomial regression uses an nth degree of polynomial in255

x. It is an addition of terms (degree of polynomial) to the
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linear model. If a linear regression is adopted, only the
first two terms on the right hand-side of Eq. (2) are kept.
In this paper, the coefficients of the model are obtained
using the least squares.260

To prevent over-fitting the regression model, the poly-
nomial order of the model is determined using the change
in R-Squared (R2). The R-Squared is a statistic that ex-
plains the amount of variance accounted for in the rela-
tionship between two (or more) variables [34]. Therefore,265

the R-Squared gives an indication of the goodness of the
model to represent the data.

In this paper, only when the change in R-Squared be-
tween two consecutive polynomial orders is less than 2 %
of the value of the R-Squared of the previous polynomial270

order that the increase in order should stop.

2.2. Outlier analysis

For damage detection, an outlier analysis is commonly
used to classify between undamaged and damaged cases.
Outlier analysis consists of comparing measurements to a275

set of control limits (usually an upper and a lower con-
trol limits) that define the range of variations of vibration
properties (e.g. natural frequency) due to normal condi-
tions (e.g. undamaged structure with normal environmen-
tal and operational conditions). Any future observation280

outside the control limits can then be labeled as an obser-
vation obtained from the damaged state.

To compute the control limits, the mean plus/minus
three standard deviations approach, which is commonly
used for damage detection [23, 31], is adopted in this pa-285

per. The control limits are given in Eq. (3).

UCL = µ+ 3σ

LCL = µ− 3σ
(3)

Where,
UCL is the upper control limit calculated using a train-

ing database,
LCL is the lower control limit calculated using a train-290

ing database,
µ is the mean of the training database, and
σ is the standard deviation of the training database.
It should be noted that the training database needs

to be obtained from the normal (undamaged) condition of295

the structure.

2.3. Graphical representation of damage detection meth-
ods

Graphical representations of the traditional regression
analysis approach and the multivariate statistical tools ap-300

proach for damage detection adopted in the literature are
given in Fig. 1. In the traditional regression analysis ap-
proach, the environmental and operational parameters are
required and are used as the independent variables. In
Fig. 1(a), the environmental and operational parameter305

adopted is the temperature conditions while the vibration
property is the natural frequency. When damage occurs,

the natural frequency will change, therefore, the deviation
between the predicted value of natural frequency based on
the temperature condition and the one obtained from field310

measurements for the same temperature condition, is used
to indicate the presence of damage as shown in Fig. 1(a).

For the multivariate statistical tools approach (e.g. the
use of Principal Component Analysis), the environmental
and operational parameters are not required. The vibra-315

tion properties are the only parameters required and in
this example, the first two natural frequencies are used
(Fig. 1(b)). It should be noted that this is only a graphi-
cal representation and usually more modes of vibration are
analysed simultaneously, which creates more dimensions to320

the data set. In this approach, the multivariate statisti-
cal tools extract new features to represent the similarities
and differences in the natural frequencies data set. For
example, the similarity is the change in frequencies due
to temperature effects as shown in Fig. 1(b), while the325

difference in the data set is the deviation of the damaged
cases from the undamaged cases. Analysing the feature
that represents the direction of the difference between the
undamaged and damaged observations, damage detection
can be achieved. It should be noted that the direction330

of the feature that represents the difference between the
undamaged and damaged observations is perpendicular to
the direction of the feature that represents the similarity
in the data set.

In this paper, the regression analysis approach is com-335

bined with the principle behind the multivariate statistical
tools approach for damage detection. The similarities and
differences in the vibration properties data set can be ex-
tracted using the regression analysis in a more simple way
as shown in Fig. 2. The change in natural frequency of the340

dependent variable due to damage for the same value of
natural frequency of the independent variable, is analysed
for damage detection. More information on the damage
detection method developed in this paper is given in the
next section.345

2.4. Damage detection method

As mentioned previously, natural frequencies of struc-
tures are usually affected by the changing environmental
and operational conditions, and usually a correlation (lin-
ear or nonlinear) exists between the frequencies and the350

different environmental and operational parameters. Since
the values of the natural frequencies depend on the envi-
ronmental and operational parameters, in the traditional
regression damage detection methods, the frequencies are
used as the dependent variables while the environmental355

and operational conditions are used as the independent
variables. Consider the case where temperature is the en-
vironmental effect affecting the natural frequencies of a
structure. The relationships between temperature (inde-
pendent variable) and the first two natural frequencies (de-360

pendent variables) are assumed to be linear and are given
in Eq. (4). It should be noted that Eq. (4) is for the case
where the structure is not subjected to damage, therefore,
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Figure 1: Graphical representation of (a) traditional regression analysis approach and (b) traditional multivariate statistical tools approach
for damage detection.

Figure 2: Graphical representation of the damage detection method
proposed in this paper.

the natural frequencies are the frequencies of the healthy
state of the structure.365

f1,p = f1 + αTp

f2,p = f2 + βTp
(4)

Where,
f1 represents the base value of the first natural fre-

quency (e.g. value of natural frequency at 0 ◦C),
f2 represents the base value of the second natural fre-

quency (e.g. value of natural frequency at 0 ◦C),370

f1,p represents the value of the first natural frequency
of the pth observation,

f2,p represents the value of the second natural frequency
of the pth observation,

Tp represents the temperature condition of the pth ob-375

servation,

α is a coefficient which defines the relationship between
the first natural frequency and temperature, and

β is a coefficient which defines the relationship between
the second natural frequency and temperature.380

From Eq. (4), it can be seen that both frequencies are
dependent upon the same independent variable, the tem-
perature condition. These two frequencies can therefore
be related to each other as follows.

f2,p = f2 + β
(f1,p − f1)

α
(5)

Eq. (5) is the model representing the relationship be-385

tween the first and second natural frequencies. In Eq.
(5), the first natural frequency is the independent variable
while the second natural frequency is the dependent vari-
able. Therefore, the value of the second natural frequency
can be predicted based on the value of the first natural fre-390

quency. As mentioned previously, when damage occurs in
a structure, each mode of vibration will be affected differ-
ently, which will create a different model (different model
to the model of the undamaged structure) of the frequen-
cies. Thus, this difference can be used for damage detec-395

tion, similar to the multivariate statistical tools approach
(Fig. 1(b)) proposed in the literature.

In this paper, it is proposed to use the natural frequen-
cies as both the independent and dependent variables. It is
then proposed to use the difference between the predicted400

value of natural frequency of the dependent variable and
the value of the dependent variable obtained from field
measurements, as a deviation index for damage detection
(Fig. 2).

Deviation Index = f2,p − f2,p,f (6)

Where, f2,p,f is the value of the second natural fre-405

quency of the pth observation obtained from field mea-
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surements. If the structure is in healthy condition and
subjected to temperature effect only, the deviation index
will be zero, while if the structure is subjected to damage,
the deviation index will not be zero. For real-life struc-410

tures, the deviation index of the undamaged state of the
structures is usually not zero because other environmental
and operational conditions (e.g. traffic loading), noise and
processing errors will deviate the values of the frequencies
from the ideal values (ideal values due to temperature ef-415

fect only). These cases will have a deviation index with
small magnitude while the damaged cases will have larger
magnitudes.

To classify whether the cases are from the healthy or
damaged state of the structure, it is proposed to perform420

an outlier analysis on the deviation index. Any future ob-
servation outside the control limits can then be attributed
to damage.

Usually, several modes of vibration are extracted, there-
fore, several pairs of natural frequencies can be used to425

create the regression model for damage detection. The re-
sults of each pair of natural frequencies can be combined
together and the damage alert is raised when the obser-
vation is outside the control limits in at least one of the
pairs of frequencies. In this paper, the first four natural430

frequencies will be analysed since usually a minimum of
the first four natural frequencies are extracted from real-
life structures and analysed [3, 8, 11].

A multiple regression model could have been adopted
for damage detection instead of several simple regression435

models. However, the problem with using only one multi-
ple regression model is that, it is difficult to determine the
dependent variable. As mentioned previously, each mode
of vibration is affected to a different degree by damage. To
maximise the performance of the method developed and to440

avoid false alerts, it is ideal to create a model between the
least affected and the most affected modes of vibration,
thus, one of these modes need to be the dependent vari-
able. However, this is difficult to determine because dif-
ferent damage scenarios (different damage locations and445

extent) affect the modes of vibration differently. There-
fore, creating a model for each pair of natural frequencies
will maximise the performance of the method developed
in this paper while also reducing false alerts.

To summarise, it is proposed to first capture natu-450

ral frequencies from the undamaged state of the structure
that needs to be monitored, followed by creating regression
models (linear or nonlinear models) between pairs of natu-
ral frequencies. To choose the polynomial model order, the
change in R-Squared between two consecutive polynomial455

orders is used. In the regression model, one mode of vi-
bration is used as the independent variable while the other
mode of vibration is used as the dependent variable. New
measurements can then be compared to the model cre-
ated. The value of the natural frequency of the dependent460

variable can be predicted based on the value of the inde-
pendent variable obtained from field measurements. The
difference between the predicted value of the dependent

variable and the value of the dependent variable obtained
from field measurements can then be used as a deviation465

index and analysed using an outlier analysis. If the devi-
ation index is larger than the normal situation, then the
damage alert is raised. Since several regression models are
created for different pairs of frequencies, the damage alert
is raised when the new monitored observation is outside470

the control limits in at least one of the model. To com-
pute the control limits for the oulier analysis, the training
database adopted is from the measurements used to cre-
ate the regression models. A flow chart summarising the
procedures to follow for damage detection is also given in475

Fig. 3.

Obtain natural frequencies from the undamaged state of the
structure under consideration to create the regression models.

Create a regression model for each pair of natural frequencies
to be used for damage detection. The natural frequency of
each mode of vibration needs to be paired with each other.
Use the difference in R-Squared between two consecutive

polynomial orders to determine the model order.

Collect new measurements and use the value of the independent
variable to predict the natural frequency of the dependent variable.

Calculate the difference between the predicted value of the
dependent variable and the value of the dependent variable

obtained from field measurements using equation (6) to be used as
a deviation index.

Analyse the deviation index using an outlier analysis. Calculate
the UCL and LCL using equation (3). If the monitored observation

is outside the control limits in at least one of the model, then
the damage alert is raised.

Figure 3: Procedures to follow for damage detection.

3. Case studies

To illustrate the application of the method developed
in this paper, two case studies are examined in this section.
The first is a numerical beam model which is subjected to480

changing temperature conditions and to varying mass dis-
tribution. The second is a real-life bridge structure, the
Z24 Bridge, in Switzerland, which was subjected to com-
plicated environmental and operational conditions. The
traditional regression analysis method is also applied to485

the numerical beam model and the Z24 Bridge for com-
parison with the method developed in this paper.

3.1. Beam structure model

The beam structure model under consideration is pre-
sented in Fig. 4 and is subjected to changing temperature490
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conditions and to varying mass distribution. The structure
is 10 m long and consists of ten beam elements of 1 m each.
The cross-sectional area and second moment of area of the
structure are 0.08 m2 and 0.0006 m4, respectively. To
simulate a varying environmental condition, the Young’s495

modulus of the material is assumed to be temperature de-
pendent. The relationship between the Young’s modulus
of the material and temperature is given in Fig. 5 and is
the same as the one assumed by Kullaa [35]. It should be
noted that in reality, such a Young’s modulus-temperature500

relationship may not exist. It is adopted here to simulate
the changes in natural frequencies due to the effects of
temperature and the nonlinear relationships between the
frequencies and temperature that are commonly found for
real-life structures such as the Z24 Bridge [3] and the Meri-505

den Bridge [6]. For real-life structures, a combination of
effects such as the change in boundary conditions due to
thermal effects and the different materials that the struc-
tures are composed of will define the vibration properties
due to temperature effects. The density of the material is510

assumed to be 7850 kg/m3.

Figure 4: Beam structure model.
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Figure 5: Variations of Young’s modulus with temperature for the
beam structure model.

The first four natural frequencies of the beam are anal-
ysed using the damage detection method developed in this
paper. The natural frequencies of 3000 observations from
the undamaged state of the structure are adopted to con-515

struct the regression model used for damage detection.
The temperature conditions of these 3000 observations are
uniformly distributed between -20 ◦C and 40 ◦C. Another
1000 observations obtained from the undamaged state of

the structure are used to validate the models created. For520

testing, another 600 observations from the undamaged state
of the structure are analysed along with 900 damaged
cases. For the damaged cases, the stiffness of the 4th el-
ement is reduced. Three different damage levels are con-
sidered: 20 %, 25 % and 30 % reduction in stiffness. The525

range of temperature conditions of these cases (undam-
aged and damaged cases analysed for damage detection)
is also between -20 ◦C and 40 ◦C. It should be noted that
the distribution of the temperature conditions (uniformly
distributed) adopted in this case study is not that impor-530

tant because for this regression analysis damage detection
method, the deviation away from the regression model is
important, not the deviation in the direction parallel to the
model (direction of distribution of temperature conditions
is parallel to the model).535

In addition to the effect of temperature, the structure is
also subjected to variations in mass to simulate pedestrian
loading or traffic loading that can be present in a building
or on a bridge structure similar to Soo Lon Wah et al. [31].
To simulate the variations in mass, the beam elements540

are subjected to a ±5 % and a ±7.5 % range of uniform
variations in density. Two different range of variations are
used to create some outlier measurements (e.g. the ±7.5
% range creates larger variations which can be due to some
heavy weight vehicles or due to monitoring and processing545

errors while extracting the natural frequencies) in the data
set to create more realistic scenarios. Therefore, the 3000
observations data set is separated into two data sets. The
first set consists of 2000 observations with a ±5 % range of
variations in density while the second set consists of 1000550

observations with a ±7.5 % range of variations in density.
The cases analysed are also subjected to the two different
range of variations in density.

The plot of the first four natural frequencies of the
beam structure against temperature conditions is shown555

in Fig. 6 for the 3000 undamaged observations (black
dots) and the damaged observations (red dots) used for
testing. For the damaged observations, only observations
with temperature conditions between 10 ◦C and 20 ◦C,
and -5 ◦C and -15 ◦C are included in the figure. This is560

because, if all the damaged observations were included, the
undamaged observations would be hidden in some of the
plots similar to Fig. 6(c). It can be seen in Fig. 6 that a
bilinear relationship exists between the temperature con-
ditions and the natural frequencies of the undamaged cases565

of the structure. Moreover, it can be seen that the third
mode of vibration (Fig. 6(c)) is relatively unaffected by
the presence of damage, while the other modes of vibra-
tion are more affected. Therefore, this difference can be
used for damage detection. The third mode of vibration is570

relatively unaffected because the damage location is near
a node of the third mode.

The damage detection method developed in this pa-
per is applied to the data of this beam structure model.
Regression models of pairs of natural frequencies are first575

created. The first, second, third and fourth natural fre-
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Figure 6: Plot of temperature versus (a) 1st natural frequency, (b) 2nd natural frequency, (c) 3rd natural frequency and (d) 4th natural
frequency of the 3000 undamaged observations and the damaged observations (only for temperatures of 10 ◦C to 20 ◦C and -5 ◦C to -15 ◦C)
of the beam structure model.

quencies are used as the independent and dependent vari-
ables. Each natural frequency needs to be paired with
each other, therefore, six pairs of frequencies are created
(i.e. 1NF vs 2NF, 1NF vs 3NF, 1NF vs 4NF, 2NF vs580

3NF, 2NF vs 4NF and 3NF vs 4NF, where NF represents
natural frequency). Each natural frequency is paired with
each other so as maximise the performance of the method
by having a model containing the least affected and the
most affected modes of vibration for any damage state.585

The plot of each pair of natural frequencies is given in Fig.
7 for the 3000 undamaged observations (black dots) and
the damaged observations (red dots for temperature con-
ditions between 10 ◦C and 20 ◦C, and -5 ◦C and -15 ◦C
only) used for testing. From the plots, it can be seen that590

when the third natural frequency is present in the pair of
frequencies (Figs. 7(b, d and f)), the damaged observa-
tions cluster separately from the undamaged observations.
However, when the third natural frequency is not present
(Figs. 7(a, c and e)), the undamaged and damaged obser-595

vations cluster together. Although the natural frequencies
are used as both the independent and dependent variables,
a clear distinction can be seen between the undamaged and
damaged observations. This is because, as mentioned pre-

viously, each mode of vibration is affected differently by600

damage, hence, this creates a change in relationship be-
tween the frequencies, from the undamaged conditions.

After the natural frequencies have been paired with
each other, the regression models need to be created. To
determine the polynomial order for each model, the dif-605

ference in R-Squared between two consecutive polynomial
orders, is analysed. Only when the difference in R-Squared
between two consecutive polynomial orders is less than 2
% of the R-Squared value of the lower polynomial order
that the increase in order will stop. For this beam struc-610

ture, the linear regression model is adopted for all pairs of
frequencies because the percentage change in R-Squared
is almost 0 % between any two consecutive polynomial
orders.

After the polynomial orders have been chosen and the615

models created, each model is used to predicted the natural
frequencies of the dependent variable of new observations
based on the natural frequencies of the independent vari-
able obtained from the structure. The difference between
the predicted value of the dependent variable and the value620

of the dependent variable obtained from the structure is
used as a deviation index. An outlier analysis is then ap-
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Figure 7: Plot of (a) 1st vs 2nd natural frequency, (b) 1st vs 3rd natural frequency (c) 1st vs 4th natural frequency, (d) 2nd vs 3rd natural
frequency, (e) 2nd vs 4th natural frequency and (f) 3rd vs 4th natural frequency of the 3000 undamaged observations and the damaged
observations (only for temperatures of 10 ◦C to 20 ◦C and -5 ◦C to -15 ◦C) of the beam structure model.

plied on the deviation index to classify between undam-
aged and damaged states. To calculate the control lim-
its for the outlier analysis, the deviation index obtained625

from the 3000 observations used to construct the regres-
sion models are used as the training database. Two con-
trol limits (upper and lower control limits) are created for
each pair of natural frequencies and are calculated using
Eq. (3). Before the 600 undamaged and 900 damaged630

cases are analysed, the models and control limits created
are first validated. 1000 observations (used as a database
for validation) obtained from the undamaged state of the
structure are analysed and the deviation index of these ob-
servations are compared to the control limits created. The635

deviation index of these observations lie within the con-
trol limits, indicating that the models created were able to
represent the undamaged state of the structure.
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The results of the outlier analysis for the 600 undam-
aged and 900 damaged cases analysed are presented in640

Fig. 8. In Fig. 8, the dots represent the observations be-
ing analysed while the two dotted horizontal lines are the
control limits (UCL and LCL). Three dotted vertical lines
are also included in the figure to separate the undamaged
and damaged cases (three levels of damage represented by645

D1, D2 and D3). From the plots it can be seen that most
of the undamaged cases lie within the control limits in-
dicating that the structure is in healthy condition. The
undamaged cases analysed lie within the control limits be-
cause, the fluctuation of the frequencies from the ideal650

values (ideal values due to temperature effects only) are
only due to the variations in mass of the beam elements,
which have a similar range of variations as the 3000 un-
damaged observations used to create the control limits. No
other external effects affect the structure and the natural655

frequencies.
For the damaged cases analysed, most of the observa-

tions lie outside the control limits when the third natural
frequency is present in the model of the pair of frequencies
(Figs. 8(b, d and f)). This indicates that the structure is660

damaged. These observations lie outside the control limits
because the third natural frequency is less affected by the
presence of damage than the first, second, and fourth fre-
quencies. This difference creates a change in relationship
between the pair of frequencies from the regression model665

of the undamaged state of the structure, hence, clustering
these damaged cases away from the undamaged observa-
tions (3000 undamaged observations). For the other mod-
els of pair of natural frequencies (that does not include
the third natural frequency), most of the damaged cases670

lie within the control limits (Figs. 8(a, c and e)). These re-
sults highlight the importance to analyse the relationship
between the least affected and the most affected modes of
vibration to avoid false alerts. It is important to create a
model for each pair of frequencies.675

To classify the cases, the results of the outlier analysis
using the six models are grouped together and the dam-
age alert is raised only when the monitored observation
is outside the control limits in at least one of the model.
The successful rates of alerting healthy condition for the680

undamaged cases and alerting damage for the damaged
cases using the method developed in this paper are 97.7 %
and 94.4 %, respectively.

The mean of the deviation index of the four scenarios
(undamaged and three levels of damage) analysed is also685

given in Fig. 8 using a bold horizontal line. In each sce-
nario, the deviation index does not lie exactly on the mean
value due to the effects of the variations of mass. The vari-
ations of mass fluctuates the natural frequencies from their
ideal values due to temperature effect only. For the un-690

damaged cases, it can be seen that the mean is around the
zero value. This is because, if the variations of mass was
not present, the natural frequencies of these cases would
have fallen along the regression model (regression model of
pair of natural frequencies). For the three damaged scenar-695

ios, it can be seen that when the third natural frequency
is present in the pair of frequencies (Figs. 8(b, d and f)),
almost all the mean values are outside the control limits.
Only in Fig. 8(d) that the mean value of the first damage
level is inside the limits. For these damaged scenarios, the700

fluctuation of the deviation index from the mean is also
due to the variations of mass of the beam elements. It can
also be seen from the figure that, the magnitude of the
mean value becomes larger with the increase in damage
extent. Therefore, in addition of detecting damage, the705

proposed method can also indicate damage progression.
The damage detection method proposed in this paper

is applied again on the data of the beam structure model,
but this time, the natural frequency of each mode of vi-
bration is used as the independent variable and is paired710

with each of the other modes of vibration (used as depen-
dent variable). Therefore, twelve regression models are
constructed for damage detection. In the previous case
study, only six regression models were used because six
pairs of natural frequencies are enough to match all four715

modes of vibration with each other. Similar to the previ-
ous case study, the 3000 undamaged observations are used
to create the regression models, and the 600 undamaged
and 900 damaged cases are analysed. The successful rates
of alerting healthy condition for the undamaged cases and720

alerting damage for the damaged cases are 97.7 % and 95
%, respectively. The successful rate for the undamaged
cases is the same as the previous case study while for the
damaged cases, an improvement of 0.6 % is obtained when
the twelve models are used. This can be attributed to the725

fact that all four modes of vibration are used as the de-
pendent variable, while in the previous case study, the first
natural frequency was not used as the dependent variable.
Using all four modes of vibration allow the change in natu-
ral frequencies due to damage to be obtained for all modes730

of vibration.
Since the method developed in this paper uses the re-

gression analysis, the data of this beam structure is also
analysed using the traditional regression damage detec-
tion method for comparison. The temperature condition is735

used as the independent variable while the four natural fre-
quencies are used as the dependent variables. Four regres-
sion models are created for damage detection, one for each
natural frequency. Similar to the method developed in this
paper, the polynomial order of each model is determined740

by analysing the difference in R-Squared between two con-
secutive polynomial order models. The percentage differ-
ence in R-Squared for the first six polynomial orders are
given in Table 1 for all four natural frequency-temperature
conditions models. The polynomial order adopted for each745

model is also highlighted in Table 1 using the symbol ‘*’.
For example, a cubic polynomial order is adopted for all
four models because the percentage change in R-Squared
between the third and fourth degrees of polynomial is al-
most zero. In this paper, only when the difference in R-750

Squared between two consecutive polynomial orders is less
than 2 % of the R-Squared value of the lower polynomial
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Figure 8: Results of outlier analysis of the beam structure model using the method developed in this paper. *NF represents natural frequency

order that the increase in order will stop. The models are
also validated by analysing the 1000 undamaged observa-
tions.755

After the regression models are created, the natural fre-
quencies of new observations are predicted based on their
temperature conditions. The difference between the pre-
dicted value of natural frequencies and the one obtained

from the structure for the same temperature condition is760

used as a deviation index. An outlier analysis is then
adopted to classify the cases and the results obtained are
presented in Fig. 9. From Fig. 9, it can be seen that
most of the undamaged cases lie within the control limits,
indicating that no damage is present in the beam struc-765

ture. From Fig. 9(c), it can also be seen that most of the
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Table 1: Percentage change in R-Squared from previous polynomial order. Chosen polynomial order highlighted with the symbol ‘*’.

Polynomial order 1st Natural Frequency 2nd Natural Frequency 3rd Natural Frequency 4th Natural Frequency

1 - - - -
2 13 13 12 13
3 2* 2* 2* 2*
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
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Figure 9: Results of outlier analysis of the beam structure model using the traditional regression damage detection method with the dependent
variable being the (a) 1st natural frequency, (b) 2nd natural frequency, (c) 3rd natural frequency and (d) 4th natural frequency.

damaged cases lie within the control limits indicating that
no damage is present in the structure. These damaged
observations lie within the control limits because as men-
tioned previously, the third mode of vibration of this struc-770

ture is relatively unaffected by the presence of damage.
Therefore, the fluctuation in the third natural frequency
is mainly attributed to the temperature effect and to the
variations in mass effect which is similar to the undamaged
cases. For the first, second and fourth natural frequencies,775

some of the damaged observations are outside the control
limits, indicating that damage is present. Similar to the

method developed in this paper, the damage alert is raised
only when the monitored observation is outside the control
limits in at least one of the model. The successful rates780

for the undamaged and damaged cases analysed are 98.3
% and 67.9 %, respectively.

From the results obtained using the two damage detec-
tion methods, it can be concluded that the method devel-
oped in this paper performs better than the traditional re-785

gression damage detection method for the damaged cases
with an improvement of almost 27 %. Even though the
natural frequencies are used as both the independent and
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dependent variables, the damaged cases are well classified.
For the undamaged cases, a slightly better result is ob-790

tained using the traditional regression damage detection
method. The undamaged observations that are alerted
as damage may be the observations that are subjected to
higher variations in mass (±7.5 %) to simulate the effects
of large noise and processing errors. To reduce alerting795

undamaged observations with high noise level and mea-
surements error as damage, a method will be introduced
in the next section where a real-life bridge structure, the
Z24 Bridge, will be analysed.

The damage detection method developed in this paper800

and the traditional regression damage detection method
are applied again to the data of the beam structure, but
this time, measurements from limited environmental con-
ditions are used to construct the regression models. Only
measurements with temperature conditions between -10805

◦C and 20 ◦C are used for the regression models. These
measurements are obtained from the database of the 3000
undamaged measurements. All the 600 undamaged and
900 damaged cases which were obtained under a range of
temperature conditions of -20 ◦C to 40 ◦C are used for test-810

ing. The successful rates of alerting healthy condition for
the undamaged cases and damage for the damaged cases
using the method developed in this paper are 96.7 % and
96.6 %, respectively. It should be noted that only six mod-
els are used for damage detection (same pairs of natural815

frequencies as the first case study). For the traditional
regression damage detection method, 59.7 % of the un-
damaged cases are correctly classified, while 82.3 % of the
damaged cases are identified as being damaged. From the
results obtained using the method developed in this pa-820

per, it can be seen that almost the same successful rates
are obtained when the full range and the limited range of
environmental conditions are used to create the regression
models. For the traditional regression damage detection
method, better results are obtained when the full range of825

environmental conditions is used. It should be noted that,
although similar results are obtained when a smaller range
of environmental conditions is used with the damage de-
tection method developed in this paper, it is ideal to use
measurements obtained from a wide range of environmen-830

tal and operational conditions to construct the regression
models. This will allow the models to represent all pos-
sible conditions the structure may encounter, which can
reduce false alerts.

3.2. Z24 Bridge835

The Z24 Bridge (Fig. 10), a post-tensioned concrete
box girder bridge, was located in Switzerland connecting
Koppigen and Utzenstorf and overpassing the A1 highway.
It was a three span bridge with a main span of 30 m and
two side spans of 14 m each. It was monitored for al-840

most a year to collect different environmental parameters
as well as acceleration measurements. The acceleration
measurements were recorded for almost every hour and an

automatic system identification system was in place to de-
rive the modal parameters of the bridge. The stochastic845

subspace identification method was used to obtained the
modal parameters of the structure [3]. The bridge was
gradually damaged near the end of the monitoring period
to create a benchmark structure for structural health mon-
itoring. The damaged cases that the bridge was subjected850

with are presented in Table 2 and a detailed description of
the cases can be found in Kramer et al. [36].

2.7 m 14.0 m 30.0 m 14.0 m 2.7 m

To Utzenstorf To Koppigen

To Bern To Zurich

Figure 10: Z24 Bridge (Adapted from Peeters and De Roeck[3]).

Table 2: Description of the progressive damage cases applied to the Z24
Bridge (Adapted from Reynders et al. [37]).

Test No Case description

1 Reference state
2 System installation for pier settlement
3 20 mm settlement of pier
4 40 mm settlement of pier
5 80 mm settlement of pier
6 95 mm settlement of pier
7 Foundation tilt
8 New reference state
9 12 m2 chipping of concrete
10 24 m2 chipping of concrete
11 Landslide
12 Concrete hinges failure
13 2 anchor heads failure
14 4 anchor heads failure
15 Rupture of 2 tendons out of 16
16 Rupture of 4 tendons out of 16
17 Rupture of 6 tendons out of 16

The first four natural frequencies of the structure along
with several environmental and operational parameters that
were monitored were made available to researchers for struc-855

tural health monitoring. For damage detection, the first
four natural frequencies of the structure are analysed us-
ing the method developed in this paper. Plots of the first
four natural frequencies of the bridge versus the ambi-
ent temperature conditions are given in Fig. 11. It can860

be seen from the figure that the undamaged observations
(black dots) have a nonlinear relationship with the am-
bient temperature conditions. Peeters and De Roeck [3]
suggested that the nonlinear relationship was attributed to
the asphalt layer on the bridge, which at temperatures be-865

low zero degrees, contributed to the stiffness of the struc-
ture, while at warmer temperatures, it had less influence.
Therefore, the polynomial regression analysis is adopted
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in this paper to take into account this nonlinear effects.
From Fig. 11, it can also be seen that the second mode870

of vibration is more affected by the presence of damage
(damaged observations given by red dots) than the other
modes. Therefore, this difference can be analysed using
the method developed in this paper to detect damage.

To apply the damage detection method proposed in875

this paper, regression models representing the undamaged
state of the structure need to be created first. The first
3000 undamaged observations are used to create the re-
gression models, and these observations are used because
they cover the whole range of temperature conditions that880

the structure encountered. As mentioned previously, it is
ideal to use measurements obtained from a wide range of
environmental and operational conditions to construct the
regression models. Another 200 undamaged observations
are used to validate the models created. The rest of the885

undamaged cases and all the damaged cases are used for
testing.

Similar to the beam structure case study, six regres-
sion models are created using the first, second, third and
fourth natural frequencies as the independent and depen-890

dent variables. The difference in R-Squared between two
consecutive polynomial orders is also used to determine the
polynomial order of the regression models and the mod-
els are validated by analysing the 200 undamaged observa-
tions. The percentage change in R-Squared for the first six895

degrees of polynomial for all pairs of natural frequencies
are presented in Table 3. The polynomial order adopted
for each pair of natural frequencies is also highlighted us-
ing the symbol ‘*’ in Table 3. For example, a quadratic
polynomial is adopted for the model representing the rela-900

tionship between the first and second natural frequencies.
After the regression models have been constructed, the

natural frequencies of the dependent variable of new ob-
servations are predicted using the values of natural fre-
quencies of the independent variable obtained from field905

measurements. Then, the difference between the predicted
value of the dependent variable and the value of the depen-
dent variable obtained from field measurements is used as
a deviation index and is analysed using an outlier analy-
sis. The results of the outlier analysis are presented in Fig.910

12 for all the undamaged and damaged cases analysed. It
should be noted that prior to analysing the undamaged
and damaged cases used for testing, the models are vali-
dated using the 200 undamaged observations.

In Fig. 12, the dots are the observations being analysed915

while the two dotted horizontal lines are the control limits
defining the normal range of conditions. The vertical line
in each plot separates the undamaged and damaged cases.
From Fig. 12, it can be seen that most of the undamaged
cases are within the control limits in all six plots (six pairs920

of natural frequencies model), indicating that no damage
is present in the bridge structure. There is only a fluc-
tuation in the deviation index which is attributed to the
changing environmental and operational conditions (e.g.
wind loading).925

For the damaged cases, when the second natural fre-
quency is not included in the pair of frequencies (Figs.
12(b, c and e)), almost all of the observations are within
the control limits. There is only a small step change in
deviation index from the undamaged cases, and a fluc-930

tuation in deviation index due to the changing environ-
mental and operational conditions, similar to the undam-
aged cases. The step change exists because, the damaged
cases are not exactly in the center of the undamaged cases
database. They are in the space where the undamaged ob-935

servations have high noise levels and large data processing
errors (around the main cluster of undamaged observa-
tions) as can be seen in Figs. 11(a, c and d). When the
second natural frequency is included in the pair of frequen-
cies (Figs. 12(a, d and f)), most of the damaged cases940

are outside the control limits, indicating the presence of
damage. The second natural frequency was strongly af-
fected by the presence of damage while the other three
frequencies were less affected. This creates a change in
relationship between the pair of frequencies from the un-945

damaged condition, hence the damaged observations do
not follow the regression model (a new relationship is cre-
ated between the pair of frequencies due to the presence of
damage, and is different to the relationship of the undam-
aged condition). The deviation index also increases with950

the increase in damage extent. Therefore, in addition of
alerting damage, the method proposed in this paper can
also give the change in damaged scenarios.

For damage detection, the results obtained from each
regression model are grouped together and the damage955

alert is raised when the monitored observation is outside
the control limits in at least one of the model. The suc-
cessful rates of alerting healthy condition for the undam-
aged cases and alerting damage for the damaged cases are
95.6 % and 95.9 %, respectively. Some of the undamaged960

cases are alerted as damage and this may be attributed
to the effects of high noise level and large data process-
ing errors while extracting the natural frequencies. Soo
Lon Wah et al. [31] mentioned that a database of natural
frequencies usually contains some measurements that are965

subjected to high noise levels and large data processing
errors. These measurements are usually not in the range
of the normal conditions. Although some of the damaged
cases are not alerted as damage, the performance of the
method developed in this paper for damage detection is970

deemed satisfactory.
The damage detection method developed in this paper

analyses the difference between the most affected mode
of vibration and the least affected mode of vibration due
to the effects of damage, to raise the damage alert. For975

example, for the beam structure model, the first, second
and fourth natural frequencies were affected by damage
while the third natural frequency was relatively unaffected.
By analysing the difference between the third natural fre-
quency and the other frequencies, damage detection can980

be achieved as can be seen in Fig. 8. Similarly, for the
Z24 Bridge, when the most affected natural frequency (the
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Figure 11: Plot of temperature versus (a) 1st natural frequency, (b) 2nd natural frequency, (c) 3rd natural frequency and (d) 4th natural
frequency of the Z24 Bridge.

Table 3: Percentage change in R-Squared from previous polynomial order. Chosen polynomial order highlighted with the symbol ‘*’.

Polynomial order 1NF, 2NF 1NF, 3NF 1NF, 4NF 3NF, 2NF 3NF, 4NF 4NF, 2NF

1 - -* -* - -* -
2 35* 0 0 36* 1 43*
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

second natural frequency) was compared with the least af-
fected one (the first, third and fourth modes of vibration
were less affected), the presence of damage can be seen.985

For damage detection, it is important to construct a model
between each pair of natural frequencies so that the most
affected and the least affected modes of vibration can be
compared with each other for any damaged scenarios.

The traditional regression damage detection method is990

also applied to the data of the Z24 Bridge for compari-
son. The ambient temperature condition is used as the
independent variable while all four natural frequencies are
used as the dependent variables. The first 3000 undam-
aged observations are used to create the regression models995

and another 200 undamaged observations are used to val-
idate the models. The rest of the undamaged cases and
all the damaged cases are used for testing. The success-

ful rates for the undamaged and damaged cases using the
traditional regression damage detection method are 98.91000

% and 83.5 %, respectively. Some of the damaged cases
were not alerted as damage because, as can be seen in Fig.
11, most of the damaged cases cluster together with the
undamaged cases in the space containing the observations
with high noise levels and large data processing errors.1005

Some of the damaged cases are also in the main cluster of
the undamaged cases in the first, third and fourth natu-
ral frequency - temperature conditions plots (Figs. 11(a,
c and d)).

From the results obtained using both damage detec-1010

tion methods, it can be seen that better performances are
obtained for the damaged cases using the method devel-
oped in this paper with an improvement of 12 %. For
the undamaged cases, slightly better result is obtained us-
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Figure 12: Results of outlier analysis of the Z24 Bridge using the method developed in this paper. *NF represents natural frequency.

ing the traditional regression damage detection method.1015

As mentioned previously, the undamaged cases that are
alerted as damage may be due to high noise levels and
large errors while extracting the frequencies. To reduce
these false alerts, it is proposed to introduce a threshold
where only after a specific number of consecutive obser-1020

vations is outside the control limits that the damage alert
will be raised. For example, in this paper it is proposed
to use 2 and 3 consecutive observations as the threshold.
This means that only when 2 (or 3 depending on which one
was chosen) consecutive observations are outside the con-1025

trol limits that the damage alert is raised. The results of
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applying these two thresholds with the damage detection
method developed in this paper and with the traditional
regression analysis method are given in Table 4.

From Table 4, it can be seen that better results are1030

obtained (using both methods) for the undamaged cases
when the thresholds are applied. When the 3 consecutive
observations is adopted as the threshold, 100 % successful
rate is obtained for the undamaged cases. The observa-
tions with high noise levels and large data processing errors1035

have been taken into account using the thresholds. This
is because, observations with high noise levels and large
errors are usually not continuous. Therefore, establishing
the consecutive observations threshold, the false alerts are
reduced. For the damaged cases, however, as the num-1040

ber of consecutive observation increases for the threshold,
the successful rate decreases for both methods. This is
because, observations that are outside the control limits
are considered as not damaged when they are followed by
or they follow an observation that is within the control1045

limits. A compromise need to be found between alerting
damage for the damaged cases and not raising the dam-
age alert for the undamaged cases subjected to high noise
levels and data processing errors.

Although the successful rate decreases for both meth-1050

ods for the damaged cases, the damage detection method
developed in this paper has better performances than the
traditional regression analysis method. In addition of hav-
ing better performances, the developed method eliminates
the limitations of the damage detection methods proposed1055

in the literature mentioned previously in the ‘Introduction’
section. The environmental and operational parameters
were not needed to apply the damage detection method.
A single data set containing all the vibration properties
was not required to be analysed simultaneously to extract1060

new features that are sensitive to damage but less sensitive
to the changing environments. The method also does not
require a regression target, which is difficult to determine,
to be chosen. Moreover, the nonlinear effects from the
changing environmental and operational conditions can be1065

taken into account using the damage detection method de-
veloped in this paper.

In the method developed in this paper, the natural fre-
quencies of structures were used as both the independent
and dependent variables, while for the traditional regres-1070

sion damage detection method, the temperature condition
was used as the independent variable and the frequencies
were the dependent variables. The temperature condition
was used as the independent variable because although
both structures analysed were subjected to multiple effects1075

(e.g. variations in temperature and mass for the beam
and the likes of temperature and wind loading for the Z24
Bridge), it was assumed that temperature was the main
environmental effect affecting the structures. However, for
other civil engineering structures, a combination of mul-1080

tiple main environmental and operational effects can also
affect the structures. Hence, more work need to be carried
out to analyse structures where several main environmen-

tal and operational conditions are present.

4. Conclusion1085

A damage detection method is developed in this paper
using the regression analysis approach with the natural
frequencies of the structures used as the independent and
dependent variables. The method is applied to a beam
structure and the Z24 Bridge, in Switzerland. The tradi-1090

tional regression damage detection method is also applied
to the two case studies for comparison. Although both
methods can detect the presence of damage, better results
are obtained using the method developed in this paper.
Analysing the relationships among the natural frequen-1095

cies and comparing the least affected to the most affected
modes of vibration, allow the method to be more sensitive
to damage. In addition of having better performances, the
method developed in this paper does not require the envi-
ronmental and operational parameters for analysis, which1100

reduces the risk of affecting the performance of the damage
detection method. Moreover, all the natural frequencies
were not processed simultaneously in a single data set us-
ing multivariate statistical tools, which reduces false alerts.
The nonlinear effects from the changing environments can1105

also be taken into account using the developed method.
The use of a threshold is also introduced in this paper to
reduce the occurrence of false alerts due to high noise lev-
els and large data processing errors. The successful rates
for the undamaged cases increases when the threshold is1110

used.
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