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University of Quindı́o, Colombia

Reviewed by:
Robson De Queiroz Monteiro,

Federal University of Rio de Janeiro,
Brazil

Daniel Adesse,
Oswaldo Cruz Foundation (Fiocruz),

Brazil

*Correspondence:
Jun-Jun He

hejunjun617@163.com

Specialty section:
This article was submitted to

Parasite and Host,
a section of the journal

Frontiers in Cellular
and Infection Microbiology

Received: 24 July 2020
Accepted: 30 October 2020

Published: 30 November 2020

Citation:
Li J-X, He J-J, Elsheikha HM, Ma J,
Xu X-P and Zhu X-Q (2020) ROP18-

Mediated Transcriptional
Reprogramming of HEK293T Cell

Reveals New Roles of ROP18 in the
Interplay Between Toxoplasma

gondii and the Host Cell.
Front. Cell. Infect. Microbiol. 10:586946.

doi: 10.3389/fcimb.2020.586946

ORIGINAL RESEARCH
published: 30 November 2020

doi: 10.3389/fcimb.2020.586946
ROP18-Mediated Transcriptional
Reprogramming of HEK293T Cell
Reveals New Roles of ROP18 in the
Interplay Between Toxoplasma gondii
and the Host Cell
Jie-Xi Li1, Jun-Jun He1*, Hany M. Elsheikha2, Jun Ma1, Xiao-Pei Xu1,3

and Xing-Quan Zhu1,4

1 State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou
Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China, 2 Faculty of Medicine and Health
Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom, 3 Heilongjiang
Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China, 4 College of
Veterinary Medicine, Shanxi Agricultural University, Taigu, China

Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the
rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions
of ROP18, we examined the transcriptional response of human embryonic kidney cells
(HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared
the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our
analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes
and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway
enrichment analyses showed that differentially expressed genes (DEGs) were significantly
enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG
pathway enrichment analysis revealed that DEGs were involved in several disease-related
pathways, such as nervous system diseases and eye disease. ROP18 significantly increased
the alternative splicing pattern “retained intron” and altered the expression of 144
transcription factors (TFs). These results provide new insight into how ROP18 may
influence biological processes in the host cells via altering the expression of genes, TFs,
and pathways. More in vitro and in vivo studies are required to substantiate these findings.
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INTRODUCTION

Toxoplasma gondii is an opportunistic and obligate intracellular protozoan, which can establish a
persistent infection (Sibley, 2003). T. gondii infects nearly one third of the world’s human population
(Tenter et al., 2000). Strains of T. gondii are categorized into three major genotypes based on their
virulence in mice into types I, II, and III. Genotype I strains are highly virulent, whereas strains of
genotypes II and III are less virulent (Saeij et al., 2006). In general, infection of immunocompetent
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individuals is either asymptomatic or causes mild flu-like
symptoms (Beazley and Egerman, 1998; Schneider et al., 2013).
High risks of encephalitis and even death due to reactivation of a
latent infection can occur in immuno-compromised individuals
(Dubey, 2004; Weiss and Dubey, 2009; Kaye, 2011; An et al.,
2018). T. gondii can also result in adverse health consequences in
congenitally infected fetuses (Elsheikha, 2008).

In order to establish an infection, T. gondii manipulates the
host cells via altering the cellular metabolism (Ma et al., 2019),
dysregulating the gene expression (He et al., 2016), and
subverting the immune response (Yarovinsky, 2014). Infection
of T. gondii elicits the production of interferon gamma (IFN-g),
tumor necrosis factor (TNF), interleukin 10 (IL-10), IL-12, and
several cytokine receptors (Gazzinelli et al., 1996; He et al., 2016),
while reduces production of nitric oxide (Rozenfeld et al., 2005).
The parasite performs these functions by secreting a number of
effector molecules into host cell, such as dense granule proteins
(GRAs) and rhoptry proteins (ROPs) (Bradley and Sibley, 2007)
that play important roles in the regulation of immune responses
(Fox et al., 2016) and gene expression (Rastogi et al., 2020). For
example, GRA15 regulates the expression of genes in the NF-kB
pathway (Sangare et al., 2019); ROP17 inhibits the expression of
innate immune response genes (Li et al., 2019). ROP18 induces
apoptosis in mouse neuroblastoma Neuro2a cells via
endoplasmic reticulum stress-mediated apoptosis pathway
(Wan et al., 2015) and inhibits the differentiation of cultured
murine neural stem cells via inhibiting the activity of the Wnt/b-
catenin signaling pathway (Zhang et al., 2017).

ROP18 is serine/threonine phosphokinase and contributes to
the virulence of T. gondii (Hunter and Sibley, 2012). The
expression of ROP18 is higher in T. gondii genotype I strain
than in genotype III strain (Taylor et al., 2006). Deletion of
ROP18 significantly increases the survival of infected mouse
(Behnke et al., 2015). T. gondii utilizes ROP18 to prevent
disruption of parasitophorous vacuole membrane (PVM) via
phosphorylating the immunity-related GTPases (IRGs) of host
cell, and to regulate the biological processes of neurocytes
(Steinfeldt et al., 2010; Fleckenstein et al., 2012; Wan et al.,
2015; Zhang et al., 2017). Also, ROP18 via degradation of the
transcription factor (TF) p65 inhibits the NF-kB pathway and
suppresses the inflammatory responses to promote its own
survival and growth (Du et al., 2014). Besides p65, ROP18 also
targets other TFs, such as p53 and Smad1 (Yang et al., 2017).

These diverse functions of ROP18 have led us to hypothesize
that ROP18 exerts its multiple effects via reprogramming host
cell transcriptome. In the present study, we investigated
the molecular involvement and significance of ROP18 in the
pathogenesis of T. gondii infection by investigating the influence
of ROP18 on the transcriptome of HEK293T cells using RNA
sequencing (RNA-Seq).
MATERIALS AND METHODS

Cell Culture and Parasite
HEK293T (human embryonic kidney) cells were purchased from
the American Type Culture Collection (ATCC, Manassas, VA)
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and were cultured in high glucose Dulbecco’s modified Eagle’s
medium (Sigma-Aldrich, USA), containing 2 mM l-glutamine,
100 U/ml penicillin and 10 mg/mL streptomycin, and 10% (vol/
vol) fetal bovine serum (Gibco, New Zealand). The cultured
HEK293T cells were incubated at 37°C in humidified air with 5%
CO2. HEK293T cell line was chosen in this study due to its high
efficiency for transfection and expression of exogenous genes.
T. gondii RH strain was maintained via passage in human
foreskin fibroblast (HFF) cells. Total RNA of the T. gondii RH
tachyzoites was extracted using TRIzol reagent (Invitrogen,
USA) according to the manufacturer’s protocol. The residual
genomic DNA of T. gondii was removed using RNase-Free
DNase (Ambion, Shanghai, China).

Plasmid Construction
The coding sequence (CDS) of ROP18 of T. gondii RH strain
(GenBank No. JX045330) was amplified from total RNA
extracted from tachyzoite of T. gondii RH strain using the
primers: ROP18-F (5’-GGGGGATCCATGACACTTGGTC
CTTCAAAACTCG-3’) and ROP18-R (5’-GGGGTCGACTT
CTGTGTGGAGATGTTCCTGCTGTTC-3 ’) . The PCR
conditions were set as follows: pre-denaturation for 5 min at
98°C followed by 35 cycles of 98°C for 20 s, 56°C for 18 s, and
72°C for 30 s; 72°C for 5 min and hold at 4°C. The PCR product
was purified using Gel Extraction kit (OMEGA, China). The
purified ROP18 CDS was cloned into PCMV-N-HA vector using
BamHI and SalI restriction enzymes (NEB, USA), according to
the manufacturer’s instructions. The constructed plasmid
(PCMV-N-HA-ROP18) was transformed into E. coli DH5a
competent cells (TIANGEN, China). Single bacterial colony
was randomly selected and identified using PCR primers
ROP18-F and ROP18-R. Positive colonies were sequenced by
Genscript Corporation (Nanjing, China). The plasmid of
PCMV-N-HA-ROP18 bacterial colony was extracted using
Endofree Plasmid Kit (TIANGEN, China) following the
manufacturer’s instructions, and the extracted plasmid was
stored at −20°C until use.

Transfection of HEK293T Cells
The HEK293T cells were cultured in T-25cm2 cell culture flasks
(NEST, China). When the monolayers reached 70%–80%
confluence, transfection was performed using Xfect™

Transfection Reagent (Takara, China). Briefly, 30 µg PCMV-N-
HA-ROP18 and PCMV-N-HA (empty control vector) were diluted
separately in 300 µl Xfect™ transfection buffer. Then, 10 µl Xfect™

polymer was added and vortexed for 5 s at high speed, followed by
incubation for 10 min at room temperature. The mixture was then
added into the supernatant of the cultured cells and incubated for 4 h.
Following the incubation, the DMEMof transfected cell was replaced
with 5 ml fresh DMEM supplemented with 10% FBS. Forty-eight
hours post transfection, transfected cells were collected and used for
Western blotting, indirect immunofluorescence and transcriptome
analysis as described below.

Western Blotting
We examined whether ROP18 was correctly expressed in
HEK293T cells using Western blotting analysis. Briefly, total
November 2020 | Volume 10 | Article 586946
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protein was extracted using ProteinExt™ Mammalian Total
Protein Extraction Kit (TRAN, China). Then, 20 µg of the
extracted protein and 10 µl PageRuler™ Prestained Protein
Ladder (Thermo Scientific, USA) were electrophoresed on 12%
ExpressplusTM PAGE Gels (GenScript, China) under 120V and
then electrotransferred to PVDF membrane (Thermo,
Germany). The PVDF blotting membrane was incubated with
anti-HA tag antibody (Abcam, UK) overnight at 4°C. Then, the
PVDF membrane was washed three times with 1× TBS (Solarbio,
China) and the PVDF membrane was incubated with secondary
antibody, goat anti-mouse IgG H&L (HRP) (Abcam, UK), for 1 h
at 37°C. The PVDF membrane was washed three times by 1×
TBS. The ECL reagent (Solarbio, China) was used to detect the
targeted protein (Solarbio, China). The Western blot image was
recorded by Gel DocTM XR+ with image lab™ Software (BIO-
RAD, USA).

Indirect Immunofluorescence Assay
The transfected cells were washed three times with phosphate
buffered saline (PBS) and fixed with 4% paraformaldehyde
(Solarbio, China) for 10 min. The paraformaldehyde was
discarded and the fixed cells were washed three times with
PBS, permeabilized using 0.1% Triton X-100 (Beyotime,
China), and blocked with 5% bovine serum albumin for 1 h.
Following three times washing with PBS, primary mouse anti-
HA tag antibody (Abcam, UK) was used to recognize HA tag of
ROP18 protein. After incubation with the anti-HA tag antibody
at 4°C overnight, the residue HA-tag antibody was discarded and
the fixed cells were washed three times with PBS, and then
incubated with goat anti-mouse IgG H&L conjugated with Alexa
Fluor®555 (Abcam, UK) at 37°C for 1 h. Nucleus was counter-
stained with 10 µg/ml DAPI (Solarbio, China). Before the
immunofluorescence detection, the goat anti-mouse IgG H&L
antibody and DAPI were discarded by washing three times with
PBS. The immunofluorescence images were recorded using a
Fluorescence microscope Axiovert 100TV (Zeiss, Germany).

Total RNA Extraction and RNA Sequencing
of HEK293T Cells
Total RNA of HEK293T cells was extracted by using TRIzol Reagent
(Invitrogen China Ltd, Beijing, China) according to the
manufacturer’s instructions. All extracted RNA samples were
treated with RNase-Free DNase (Ambion, Shanghai, China) to
remove residual genomic DNA. The concentration and quality of
RNA were detected using the Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, Calif.). mRNAwas isolated from total RNA
using Poly-T oligo-conjugatedmagnetic beads, and thenmRNAwas
reversely transcribed into cDNA with PrimerScriptTMRT reagent
kit with gDNA Eraser (Takara, China) following the manufacturer’s
instructions. Construction of transcriptomic libraries and RNA-Seq
were performed by BGI-Shenzhen (Shenzhen, China).

Sequencing Quality and Mapping
of Sequencing Reads
Reads were trimmed to remove the adaptor primers, low-quality
reads, and very short (<50 nt) reads. The quality of RNA-Seq was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
checked by using the quality scores Q20 and Q30. The clean
reads were mapped against the human reference genome (ftp://
ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/current/GCF_
000001405.39_GRCh38.p13/) using SOAPaligner/SOAP2
software. Reads per kilobase per million mapped reads
(RPKM) method was used for calculation of the relative gene
expression (Mortazavi et al., 2008). rMATS software was used to
detect gene alternative splicing (AS) events among samples,
including skipped exon (SE), alternative 5’ splicing site (A5SS),
alternative 3’ splicing site (A3SS), mutually exclusive exons
(MXE) and retained intron (RI).

Bioinformatic Analysis of the Differentially
Expressed Genes
DESeq2 software was used to determine gene expression and
identify differentially expressed genes (DEGs) between the
PCMV-N-HA-ROP18 transfected cells and PCMV-N-HA
transfected (control) cells. The Benjamini and Hochberg false
discovery rate (FDR) was used to correct multiple hypothesis
testing P values. Genes with FDR adjusted P values of Fisher’s
exact test ≤ 0.05 and | log2(fold change) | ≥ 1 were deemed as
DEGs. The fold change (FC) = gene RPKM value of ROP18-
expressing HEK293T cells/gene RPKM value of control-
HEK293T cells. The gene expression data were clustered using
Euclidean distance. The functional annotation and pathways
involving the DEGs were analyzed using Gene Ontology (GO),
Reactome, and KEGG (http://www.kegg.jp/) pathway
enrichment analyses. Fisher’s exact test adjusted with FDR was
used to identify significantly enriched GO terms or pathways.
The FDR adjusted P value ≤ 0.05 was used to identify the
significantly enriched GO terms or pathways. TRRUST
database was used to identify the relationship between TFs and
their target genes. Cytoscape software was used to visualize the
relationship between DEGs, GO terms, and pathways.

Real-Time Quantitative PCR (qRT-PCR)
Validation
We examined the reliability of RNA-seq results by using qRT-
PCR. Twenty DEGs were chosen, including WNK4, TNC,
TNFRSF9, IL6R, PCK1, FRMD1, TES1, INHBA, CD44,
LINC01599, LOC400710, EIF4EBP3, LOC101929181, OR2B6,
LRRC46, FGF21, KRTAP5-2, KCNN4, SEZ6, and RNU1-2.
GAPDH was included as a reference gene. The details of all the
primers are shown in Supplementary Table S1. Briefly, total
RNA was extracted from the transfected cells, and reverse
transcribed into cDNA using PrimerScriptTMRT reagent kit
with gDNA Eraser (Takara, China). The cDNA was stored at –
80°C until use. The following qRT-PCR conditions were used for
gene amplification: 95°C for 10 min, followed by 40 cycles of
denaturing at 94°C for 15 s and 60°C for 1 min. The melt curve
analysis ranged from 72°C to 95°C to ensure that specific product
was amplified in each qRT-PCR reaction. The 2−DDCT relative
expression calculation method was used to calculate the relative
gene expression levels of the examined genes (Livak and
Schmittgen, 2001).
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RESULTS

Confirmation of ROP18 Expression
in HEK293T Cell
Sequencing of PCMV-N-HA-ROP18 showed that the CDS of
ROP18 of T. gondii RH strain had been correctly cloned into the
PCMV-N-HA plasmid. The results of Western blotting
demonstrated that ROP18 protein was correctly expressed in
HEK293T cells; however, no protein was detected in the
HEK293T cells transfected with PCMV-N-HA (Figure S1).
The efficiency of transfection was examined using indirect
immunofluorescence analysis, which demonstrated the high
expression of ROP18 in HEK293T cells. As expected, no
fluorescent signal was detected in HEK293T cells transfected
with PCMV-N-HA (Figure 1).
RNA-Sequencing and Identification
of Differentially Expressed Genes
Each sequenced sample had > 119 million raw reads and 110 to
111 million clean reads. Also, 98% and 92% clean reads have
met the sequencing quality standards of Q20 and Q30,
respectively, demonstrating the high quality of RNA-seq
data. Approximately 85%–86% clean reads were mapped to
reference human genome (Version: hg38) and 71%–72% clean
reads were aligned against reference human genes. A total of
22,460 genes were detected in the HEK293T cells, of which 283
and 467 genes had decreased and increased expression,
respectively (Figure 2A). Details of the DEGs are shown in
Supplementary Table S2. Clustering analysis of gene
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
expression clearly separated the data into two clusters
(ROP18-expressing cell cluster and control cell cluster),
showing the distinct transcriptomic profiles between ROP18
expressing cells and non-ROP18 expressing cells (Figure 2B).
The RNA-seq data were validated by examining the level of
expression of 20 DEGs using qRT-PCR and the results
obtained by qRT-PCR and RNA-seq were consistent (Figure
2C). Analysis of AS events showed that ROP18 had no
significant impact on the SE, A5SS, A3SS, and MXE;
however, RI event was significantly increased in ROP18-
expressing cells (Table 1).

Pathway Enrichment Analysis of DEGs
To further investigate the the cellular functions that were
significantly altered by ROP18 of T. gondii RH strain, pathway
enrichment analysis was performed. As shown in Supplementary
Table S3, the DEGs were significantly enriched in 129 pathways.
The top 30 enriched pathways were extracellular matrix (ECM)
organization, ECM-receptor interaction, ECM proteoglycans,
integrin cell surface interactions, degradation of the ECM, focal
adhesion, laminin interactions, integrin signalling pathway, non-
integrin membrane-ECM interactions, immune system, PI3K-Akt
signaling pathway, collagen formation, protein digestion and
absorption, assembly of collagen fibrils and other multimeric
structures, collagen chain trimerization, cytokine-cytokine
receptor interaction, collagen degradation, amoebiasis,
hematopoietic cell lineage, binding and uptake of ligands by
scavenger receptors, MET activates PTK2 signaling, elastic fibre
formation, human papillomavirus infection, small cell lung cancer,
molecules associated with elastic fibres, collagen biosynthesis and
FIGURE 1 | Indirect immunofluorescence of the transfected HEK293T cells. The ROP18 protein tagged with HA was stained with AlexaFluor 555 (Orange) and the
nucleus was counterstained with DAPI (Blue). The HEK293T cells transfected with PCMV-N-HA-ROP18 showed high density of orange signal, whereas HEK293T
cells transfected with PCMV-N-HA did not show any fluorescent signal.
November 2020 | Volume 10 | Article 586946
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modifying enzymes, MET promotes cell motility, neuroactive
ligand-receptor interaction, GPCR ligand binding, and signaling
by receptor tyrosine kinases. All the top 30 pahtways were
upregulated by ROP18. The details of the relationship between
the DEGs and the top 30 pathways are shown in Figure 3 and
Supplementary Table S3.

Disease Pathway Enrichment Analysis
of DEGs
The significantly enriched disease pathways were congenital
malformations, congenital malformations of the musculoskeletal
system, cardiovascular diseases, immune system diseases, nervous
system diseases, eye disease, vascular diseases, epidermolysis
bullosa, junctional, atypical hemolytic uremic syndrome,
congenital malformations of skin, hematologic diseases,
inherited thrombophilia, musculoskeletal diseases, and primary
immunodeficiency. Most of these disease related pathways were
dominated by upregulated genes. The relationships between DEGs
and disease-related pathways are shown in Supplementary
Table S4.

GO Enrichment and Transcripton Factor
Analysis of DEGs
A total of 264 GO terms were significantly enriched by DEGs.
The top 30 enriched GO terms included twenty-three biological
process GO terms (response to external stimulus, regulation of
multicellular organismal process, system development, positive
regulation of multicellular organismal process, collagen
metabolic process, cell adhesion, locomotion, cell surface
receptor signaling pathway, cellular response to cytokine
stimulus, cellular process, angiogenesis, positive regulation of
cell population proliferation, ECM organization, blood vessel
development, biological adhesion, regulation of transport,
positive regulation of biological process, response to stimulus,
cell migration, tissue migration, cell population proliferation,
regulation of cell communication, and metabolic process), five
cellular component GO terms (integral component of
membrane, cell periphery, extracellular region, extracellular
vesicle, and cell surface), and two molecular function GO
terms (ECM structural constituent and calcium ion binding)
(Figure 4 and Supplementary Table S5). We also identifed 144
differentially expressed TFs (DETFs), including 75 upregulated
TFs and 69 down-regulated TFs. As shown in Figure 5, the
DETFs were classed into 29 families. zf-C2H2, Homeobox and
HMGI/HMGY were the top 3 families that contained most
DETFs altered by ROP18 of T. gondii. We identified the target
DEGs of DETFs in the TRRUST database, where 16, 4, 2, and 1
DEGs are targeted by ETS1, RUNX2, NFATC2, and IRF9,
respectively (Figure 6).
DISCUSSION

In this study, we expressed ROP18 of RH strain in HEK293T
cells and studied the resultant effects on the cell transcriptome by
using RNA-seq approach. Sequencing of PCMV-N-HA-ROP18
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
plasmid showed that ROP18 eukaryotic expression plasmid has
been successfully constructed, and Western blotting showed that
ROP18 was correctly expressed in HEK293T cell (Figure S1). As
shown in Figure 1, no HA-tagged protein was detected in the
control cells, however a strong fluorescent signal was detected in
HEK293T cells transfected with PCMV-N-HA-ROP18. RNA-
seq showed that ROP18 of RH strain decreased the expression of
283 gene but increased the expressions of 467 genes of HEK293T
cells (Figure 2A and Supplementary Table S2). ROP18-
expressing cell cluster and control cell cluster were clearly
separated into two clusters, indicating the distinct
transcriptomic profiles between ROP18 expressing cells and
non-ROP18 expressing cells (Figure 2B). The qRT-PCR
validation showed an agreement between the results obtained
by qRT-PCR and RNA-seq (Figure 2C), demonstrating the
reliability of the RNA-seq data.

The GO enrichment and pathway analyses showed that DEGs
were significantly enriched in 129 pathways (Supplementary
Table S3), and 115 DEGs were linked to 14 KEGG disease
pathways (Supplementary Table S4). Most of the top 30
enriched pathways were involved in ECM, cell binding and
immune response (Figure 3). Consistent with the KEGG
analysis, most of the top 30 enriched GO terms were also
related to ECM, cell binding and immune response (Figure 4
and Supplementary Table S5). These data clearly showed that a
large number of ECM-related pathways and GO terms were
significantly enriched (Figures 3 and 4). These findings are
expected because HEK293 cells are frequently used as a model
for ECM-interaction studies because they express several b1
integrin containing subunits on their cell surface, which allow
them to adhere to a range of ECM proteins (Bodary and McLean,
1990). ECM components are critical scaffolds for adhesive cells,
and regulate proliferation, differentiation, and fate of the cells. All
these crucial processes contribute to cell migration, cellular
communication, inflammation, and histopathology. Alterations
in ECM composition, structure, abundance, or expression of
ECM genes have been shown to cause or underpin sevreal
diseases (Lamande and Bateman, 2020). Given these highly
versatile functions of ECM, it is not surprising to see
significant alterations in multiple disease-related processes
enriched by DEGs. Also, ECM plays a key role in the
morphogenesis and regulation of the neural progenitor
behavior (Long and Huttner, 2019). We also found that ECM
organization and congenital malformation processes were
significantly enriched by 47 DEGs (Figure 3) and 47 DEGs
(Supplementary Table S4), respectively. Most of the DEGs were
upregulated by ROP18. Whether alterations in the expression of
genes related to ECM or tissue defects caused by ROP18
contribute to the prenatal congenital pathologies that occur in
the fetus who become infected during pregnancy remains to
be investigated.

ECM modulates the activities of growth factors and cytokines
(Schonherr and Hausser, 2000). Also, upregulation of ECM
components has been linked to inflammatory responses
(Sorokin, 2010; Herrera et al., 2018). We identified 88
immune-related DEGs in ROP18-expressing cells, including 61
November 2020 | Volume 10 | Article 586946
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upregulated and 27 downregulated genes (Figure 3). The
enriched innate immune system pathway was alterd by 28
upregulated genes (CR2, LPCAT1, IFIH1, LGALS3, AMPD3,
HPSE, CLU, PLD1, PROS1, CFB, NLRP1, TXK, MGAM, PLAU,
PTX3, PLPP5, NFATC2, CFI, PTPRB, ANPEP, CD68, HP, GNLY,
PRG2, ATP6V0D2, S100P, C3AR1, and CD44) and 11
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
downregulated genes (LCK, CLEC7A, MB21D1, PRSS3,
TICAM2, C4B, ZBP1, LYZ, TLR7, LAIR1, and CEACAM8)
(Supplementary Table S3). Also, 24 genes of cytokine-
cytokine receptor interaction pathway were significantly altered
(Figure 3 and Supplementary Table S3), including 17
upregulated genes (GDF7, ACVR1C, TGFBR2, CNTF, IL18R1,
IL1RAP, TNFSF13B, IL32, TNFSF4, TNFRSF13C, CXCL8,
INHBA, IL6R, TNFSF11, TNFRSF9, CX3CL1, and IL7) and 7
downregulated genes (TNFRSF25, IL17C, IL31, CCR4, CCL5,
IL15, and IL12RB1). In these differentially expressed cytokine-
related genes, four of them regulate the chemotaxis of immune
cells, including CXCL8, CXCL1, CCR4, and CCL5. These
chemotaxis-related genes have several biological and
immunological functions. Maintaining a balanced immune
response during T. gondii infection is essential in order to limit
the parasite proliferation, while at the same time protects the
host from the adverse effects of excessive inflammatory
pathologies (Chousterman et al., 2017). The CCL5 which
regulates the migration of eosinophils and regulatory T cells
(Griffith et al., 2014) was downregulated by ROP18. However,
A B

C

FIGURE 2 | Differentially expressed genes (DEGs) and qRT-PCR validation. (A) Volcano plot showing gene expression changes in ROP18-expressing HEK293T
cells, including 467 upregulated genes and 283 downregulated genes. Red and green colors represent upregulated and downregulated genes, respectively.
(B) Clustering analysis of DEGs and samples. The color scale bar for heat intensity indicates Log2(Fold Change); up and down indicate upregulated and
downregulated genes in ROP18-expressing cells, respectively. Columns, samples; rows, DEGs. The samples were grouped into two distinct clusters: ROP18-
expressing group and control group. (C) qRT-PCR validation of the RNA-seq results. The expressional trends of the examined DEGs were similar between qRT-PCR
and RNA-seq results. Blue and green colors represent the result of RNA-seq and qRT-PCR, respectively.
TABLE 1 | The number of alternative splicing events in ROP18-expressing
compared to non-expressing (control) HEK239T cells.

Sample SE MXE A5SS A3SS RI

Control_1 56,027 12,900 5,283 5,419 5,992
Control_2 55,326 12,675 5,215 5,401 5,954
Control_3 50,519 11,138 5,167 5,285 5,985
ROP18_1 52,504 11,444 5,161 5,349 6,043
ROP18_2 55,771 12,523 5,274 5,485 6,100
ROP18_3 50,314 10,772 5,142 5,296 6,036
P value of T test 0.665 0.431 0.611 0.911 0.024
SE, skipped exon; A5SS, alternative 5’ splicing site; A3SS, alternative 3’ splicing site; MXE,
mutually exclusive exons; RI, retained intron.
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CXCL8 and CXCL1 that regulate the chemotaxis of CD8+

effector T cells, resident monocytes, microglia, CD8+ effector-
memory T cells, and T cells were significantly upregulated by
ROP18. Thus, it is possible that ROP18 contributes to the
recruitment of host immune cells to the infection site.

We also found that DEGs were enriched in several disease
pathways. Chorioretinitis is a common manifestation in ocular
toxoplasmosis, and a correlation exists between ROP18 allele
type and the severity of ocular inflammatory response (Sanchez
et al., 2014). As shown in Supplementary Table S4, ROP18
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
altered the expressions of 15 eye disease-related genes, including
EFEMP1, SLC7A14, MIP (major intrinsic protein of lens fibe),
COL25A1, CFB, SLC38A8, CFI, RIMS1, CABP4, RP1L1, CRYAB,
PROM1, CRX, KCNJ13, and VCAN. Previous studies showed
that EFEMP1 (Lin et al., 2018; Thompson et al., 2019), SLC7A14
(Jin et al., 2014), and RP1L1 (Albarry et al., 2019) are linked
to macular degeneration or retinitis pigmentosa; COL25A1,
which encodes a membrane associated collagen, is associated
with oculomotor neuron development (Shinwari et al., 2015).
Also, RP1L1 (Fujinami-Yokokawa et al., 2019), PROM1
FIGURE 3 | The relationship between the DEGs and the top 30 enriched pathways. A total of 186 DEGs were linked to the top 30 pathways. Triangles represent
the DEGs and ovals represent the pathways. Red and green triangles represent upregulated and downregulated DEGs, respectively. The details of DEGs are listed in
Supplementary Table S2.
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(Fujinami et al., 2020), CRX (Fujinami-Yokokawa et al., 2020),
CFI and CFB (Rathi et al., 2017; Shahulhameed et al., 2020), and
KCNJ13 (Toms et al., 2019) have been linked to retinopathy.
Additionally, SLC38A8 contributes to congenital nystagmus
(Weiner et al., 2020), and RIMS1 and CABP4 are associated
with dystrophy (Sisodiya et al., 2007) and synaptic disorder of
cone-rod (Littink et al., 2009), respectively. Furthermore,
alteration of CRYAB is associated with cataract (Molnar et al.,
2019), and VCAN is associated with vitreoretinal degeneration
(Tang et al., 2019). Most of these eye disease-related genes were
upregulated in HEK293T cells by ROP18 (Supplementary Table
S3). Whether the same genes are also altered in other cell lines
such as occular cell types remains to be determined. A previous
study showed that the expression of IFN-g and IL-1b was not
significantly influenced by ROP18 in peripheral blood
mononuclear cells collected from patients with ocular
toxoplasmosis (Hernandez-de-Los-Rios et al., 2019). Our
results also showed that the expression of IFN-g and IL-1b was
not significantly influenced by the expression of ROP18 protein
in HEK293T cells.

Recent studies show that T. gondii infection can induce
significant structural, functional and metabolic changes in the
brain microvascular endotehlial cells (Al-Sandaqchi et al., 2018;
Hu et al., 2018; Ma et al., 2019; Al-Sandaqchi et al., 2020; Harun
et al., 2020a; Harun et al., 2020b) and can change the neuron
subpopulations (Odorizzi et al., 2010). However, the exact
mechanisms of behavioral abnormalities and change in the
subpopulations of neurons induced by T. gondii infection
remains to be clearly defined. A previous study revealed a role
for ROP18 in increased neural apoptosis and encephalitis during
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
T. gondii infection (An et al., 2018). Although HEK293T cells are
not drieved from brain, our transcriptomic analysis showed that
ROP18 can alter the expressions of genes involved in several
neural activity-related pathways, neuron differentiation and
development processes. We found that the neural activity-
related pathways/GO terms were significantly enriched in
HEK293T cells following expression of ROP18 protein.
Neuroactive ligand-receptor interaction was enriched by 23
DEGs, including 13 upregulated genes and 10 downregulated
genes (Figure 5 and Table Supplementary S3). Nervous system
diseases were also enriched by 23 upregulated genes and 13
downregulated genes (Supplementary Table S4). GO
enrichment analysis showed that neuronal cell body and
neuron differentiation process were significantly altered by 10
DEGs and 13 DEGs, respectively; cell morphogenesis involved in
neuron differentiation was significantly altered by 6 upregulated
genes and 3 downregulated genes; and regulation of neuron
differentiation was significantly altered by 5 upergulated genes
and 1 downregulated genes (Supplementary Table S5). Although
the impact of ROP18 on neurons remains to be determined, our
results offer preliminary results for further investigation of the
effect of ROP18 on the neurobiology of cerebral toxoplasmosis.

RNA-seq analysis has been used to detect AS events (Filichkin
et al., 2010; Feng et al., 2013; Shen et al., 2014). Our previous
study showed that ROP17 of T. gondii can modify host AS events
(Li et al., 2019) which have significant roles in various biological
processes (Blencowe, 2006; Baralle and Giudice, 2017). We
investigated the role of ROP18 in the regulation of host AS
events by comparing five AS events, including SE, A5SS, A3SS,
MXE, and RI, in ROP18-expressing and control cells. As shown
FIGURE 6 | The interaction network showing the relationships between differentially expressed transcription factors (DETFs) and their corresponding target genes.
Ovals and triangles represent DETFs and their target genes, respectively. Red and green denote genes with increased and decreased expression, respectively.
Arrows with a T-shaped end represent inhibition or repression of gene expression, arrows with a delta-shaped end represent gene activation, and arrows with a dot-
shaped end represent unknown regulatory type. Network was constructed using Cytoscape and TRRUST database. The details of DEGs are listed in
Supplementary Table S2.
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in Table 1, RI event was significantly increased in ROP18-
expressing cells. RI is a type of AS envent that can introduce
functional elements to the protein (Buckley et al., 2011) or results
in the degradation of mRNA by RNA surveillance mechanism
(Belgrader et al., 1994). This result suggests that ROP18 can
influence host biological processes via altering the RI event
within the host cells. The exact mechanism by which ROP18
alters RI event is unknown, however, we found that U2 small
nuclear RNA auxiliary factor 1 like 5 (U2AF1L5) was
significanlty downregulated (Log2FC = –1.135, FDR corrected
P value = 0) in ROP18-expressioning cells. The U2AF1L5 seems
to participate in mRNA splicing according to annotation in
NCBI database.

Analysis of the regulatory networks between DEGs and TFs is
important for elucidating the role of ROP18 in regulating the
host biological processes. ROP18 protein upregulated the
expressions of 75 TFs, but downregulated the expressions of
other 69 TFs in HEK293T cells, showing the significant impact of
ROP18 on the expression of TFs. The TFs altered by ROP18 were
classed into 29 families, and the zf-C2H2, Homeobox and
HMGI/HMGY families were the top families with the most
DETFs (Figure 6). These results suggest a marked influence of
ROP18 on the expression of TFs belonging to these three TF
families. Most DETFs of Homeobox family were upregulated,
however all DETFs of HMGI/HMGY family were downregulated
(Figure 5), suggesting that ROP18 could have a suppressive effect
on members of the HMGI/HMGY family. By searching TRRUST
database, we identified four DETFs, including ETS1, RUNX2,
NFATC2, and IRF9, which target 16, 4, 2, and 1 DEGs,
respectively (Figure 6). ETS1 induces the expression of
MMP13 (Ghosh et al., 2012), ABCB1 (Kars et al., 2010),
PTHLH (Dittmer et al., 1994), TNC (Jinnin et al., 2004),
ANPEP (Petrovic et al., 2003), PF4 (Okada et al., 2003),
TGFBR2 (Kopp et al., 2004), and MMP1 (Mix et al., 2007).
RUNX2 enhances the expression of LGALS3 (Zhang et al., 2009)
and MMP13 (Wang et al., 2004). NFATC2 suppresses the
expression of CD3G. The expression of these target genes is
consistent with the regulatory functions of the DETFs, suggesting
that ROP18 modifies host gene expression via altering the
expression of TFs. Analysis of the interaction between ROP18
and host TFs may elucidate the interplay between ROP18 and
cellular processes. Previous studies showed that ROP18 interacts
with several TFs, including SOX6, SPDEF, HMGN1, ATF3,
MLLT10, DNMT3L, MYCN, MXD4, TAF12, EPAS1, CNBP,
HMGA1, ATM, TBX3, ZNF148, p65, p53, ATF6B, and SMAD1
(Cheng et al., 2012; Du et al., 2014; Yang et al., 2017; Xia et al.,
2018). Interestingly, the expressions of these interacting TFs were
not significantly altered by ROP18. However, by searching
TRRUST database, we found that MYCN activates the
expressions of CD44 and NDRG1, EPAS1 activates the
expression of FLT1, and HMGA1 activates the expression of
CD44. In this study, CD44 (Log2FC = 2.5, FDR corrected
P-value = 1.23E-30), NDRG1 (Log2FC = 1.1, FDR corrected
P-value = 0) and FLT1 (Log2FC = 1, FDR corrected P-value =
1.16E-36) were upregulated by ROP18 stimulation. The
expression of these target genes is consistent with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
regulatory functions of the MYCN, EPAS1, and HMGA1.
Whether these regulatory effects depend on the phosphokinase
activity of ROP18 remains to be elucidated.

In our study, the cell cycle process was not significantly
affected by ROP18 at the gene transcriptional level. However,
another effector protein, ROP16, plays a significant role in host
cell cycle (Chang et al., 2015). The difference between these two
virulence-associated proteins (ROP16 and ROP18) in the effect
on host cell cycle may be attributed to differences in their host
target genes. In a previous study, ROP18 of RH strain was found
to interact with 492 host proteins (Xia et al., 2018). In our study,
only a few of these interacting proteins (including upregulated
DDX60, COL6A3, PTPRK, and RCAN2; downregulated LYPD5,
KIR3DX1, NPPB, and TNNI1) were significantly altered at the
gene expression level. This difference might be attributed to
variations in the behavior of the transfected host cells. Both
ROP17 and ROP18 are secretory proteins of the ROP2 family (El
Hajj et al., 2006) and have a similar location within the host cell
(Etheridge et al., 2014). By comparing the host transcriptional
responses to ROP17 (Li et al., 2019) and ROP18 in the present
study, we identified 110 and 276 genes whose expression was
decreased or increased, respectively, in both ROP17 and ROP18.
This similarity in the location inside the host cell and in the effect
on host cell transcriptome is consistent with the fact that ROP17
and ROP18 share some host cell targets (Etheridge et al., 2014).
ROP5 forms complexes with ROP18 and ROP17 to mediate the
parasite survival in mice (Etheridge et al., 2014). A link between
ROP18 allele type and virulence in mice has been reported
(Sanchez et al., 2014) and the combination of ROP18/ROP5
allele types was found to be even more predictive of T. gondii
virulence in mice (Shwab et al., 2016). Given the interaction and
overlap between the functions of ROP proteins, studying the
effect of simultaneous expression of ROP5, ROP16, ROP17, and
ROP18 on the host cell transcriptional reprogramming may
improve the understanding of the virulence mechanism of
T. gondii.
CONCLUSION

This study presents the first RNA-Seq-based analysis of the
transcriptomic responses of HEK239T cells to ROP18
expression. We identified 22,460 host genes, and the
expression of 750 genes was significantly altered by ROP18,
including 467 upregulated genes and 283 downregulated genes.
The functions of significantly altered genes were mainly involved
in ECM organization, immune responses and disease processes.
ROP18 also alters the expression of 144 TFs belonging to 29 TF
families and increased the RI pattern of AS. Our data revealed
several potential new roles of ROP18 in the transcriptional
regulation of host cells. Further investigations of the effects of a
catalytic inactive mutant of ROP18 on the host cell
transcriptome and using different cell lines (e.g. neurons and
immune cells) will deepen our understanding of T. gondii
interactions with the host cell processes. Also, using methods
such as siRNA and gene editing to alter ROP18 protein
November 2020 | Volume 10 | Article 586946
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expression can improve the evaluation of the effects of ROP18
protein with the concomitant entry of live parasites.
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