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ABSTRACT 1 

This work aimed to explore the possibility of predicting total fat content in whole dried cocoa 2 

beans at a single bean level using hyperspectral imaging (HSI).  3 

170 beans randomly selected from 17 batches were individually analysed by HSI and by 4 

reference methodology for fat quantification. Both whole (i.e. in-shell) beans and shelled seeds 5 

(cotyledons) were analysed. Partial Least Square (PLS) regression models showed good 6 

performance for single shelled beans (R2=0.84 for shelled beans, external prediction error of 7 

2.4%). For in-shell beans a slightly lower prediction error of 4.0% and R2=0.52 was achieved, 8 

but fat content estimation is still of interest given its wide range. Beans were manually 9 

segregated, demonstrating an increase by up to 6% in the fat content of sub-fractions. 10 

HSI was shown to be a valuable technique for rapid, non-contact prediction of fat content in 11 

cocoa beans even from scans of unshelled beans, enabling significant practical benefits to the 12 

food industry for quality control purposes and for obtaining a more consistent raw material. 13 

 14 

Keywords: Theobroma cacao; hyperspectral imaging; near-infrared spectroscopy; chemical 15 

imaging; total lipid quantification; cocoa quality assessment; cocoa nibs; cocoa butter. 16 

  17 
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1. INTRODUCTION 18 

Cocoa beans have high commercial importance worldwide due to their use as the primary 19 

ingredient in chocolate. One of the prominent quality factors for cocoa is its lipid content 20 

(Fowler, 2009). Fat represents approximately half of the cocoa bean’s weight and is used to 21 

produce cocoa butter, which is one of the most valuable products of the bean and a strong 22 

determinant of its market price (Afoakwa, 2017). 23 

Several methods are available for the analysis of fat content in food products (AOAC, 2006; 24 

ElKhori et al., 2007; Moller, 2010; ISO, 2014; ISO, 2019). The Soxhlet extraction method is 25 

one of the most common analytical approaches, and is based on the gravimetric determination 26 

of crude fat, followed by solvent extraction. This method has often been reported to give lower 27 

results than other methods such as those where digestion or hydrolysis is used. Indeed, bound 28 

fats or those naturally emulsified are not measured by Soxhlet. Conversely, methods based on 29 

ether extraction tend to overestimate fat content. Other methods for fat analysis are based on 30 

acid hydrolysis, followed by saponification of the fats and esterification to give methyl esters 31 

of the fatty acids, which can be analysed by gas-chromatography. Despite the accuracy of these 32 

methods, they are very time consuming, only are effective on relatively large batches of 33 

samples and involve the use of hazardous chemicals. Additionally, they are destructive 34 

methods, thus not allowing using the samples for further analyses or for their use in processing 35 

or assessing the variability of biochemical composition across within the batch (ISO, 2019). 36 

Rapid non-destructive techniques for the analysis of major food constituents include Near-37 

Infrared (NIR) spectroscopy, mid-infrared (MID) spectroscopy and Raman spectroscopy 38 

(Osborne, Fearn and Hindle, 1993; Caporaso, Whitworth and Fisk, 2018; Turker-Kaya and 39 

Huck, 2017; Xu et al., 2020). Although typically used to measure the average composition of 40 

bulk samples, hyperspectral imaging (HSI) enables spectra to be obtained for each pixel in an 41 

image, enabling spatial variations in composition to be measured (Caporaso, Whitworth and 42 
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Fisk, 2018). When applied to food product characterisation, HSI can provide information on 43 

chemical composition or other properties, as well as spatial information, such as distribution 44 

across a sample (Gowen et al., 2007; Elmasry et al., 2012). 45 

Recent works reported on the successful prediction of bioactive compounds in cocoa bean 46 

husks using conventional NIR spectroscopy (Hernández-Hernández et al., 2020), and using 47 

hyperspectral imaging (HSI) to predict the antioxidant activity, total phenolic content and the 48 

fermentation index of whole cocoa beans (Caporaso, Whitworth, Fowler and Fisk, 2018). NIR 49 

spectroscopy has also been applied to quantify the amount of cocoa shell in cocoa powder due 50 

to contamination from processing, and showed good results (Burns and Ciurczak, 2007, 51 

Workman and Weyer, 2012), e.g. Quelal-Vasconez et al. (2019) reported that NIR successfully 52 

distinguished contamination above 5%, with a root mean square error of prediction (RMSEP) 53 

of 2.43%.  Hyperspectral imaging has also recently been applied for fast authentication of two 54 

cocoa hybrids, e.g. Cruz-Tirado et al. (2020) reported that the classification models based on 55 

SVN and PLS-DA had promising results, with classification errors ranging from 4 to 34%.  56 

FT-NIR spectroscopy has been applied for fat quantification in cocoa beans, by scanning the 57 

samples as ground, showing excellent prediction performance (Teye and Huang, 2015). A 58 

similar technique was applied by Sunoj et al. (2016), and Teye et al. (2015) for the prediction 59 

of fermentation index, pH and polyphenols in cocoa beans, scanned as ground material. 60 

However, since these were bulk methods, they cannot detect the distribution within batches as 61 

they can only measure the average content. There is a lack of studies on the prediction of lipids, 62 

which have the largest economic implication for this commodity. 63 

NIR spectroscopy has been proven to be effective for fat quantification in several food products 64 

including cocoa (Veselá et al., 2007; Vines, Kays, & Koehler, 2005). Kays, Archibald and 65 

Sohn (2005) analysed a diverse set of intact cereal products by NIR spectroscopy, reporting an 66 

average SECV of 1.18% and R2=0.98, using gravimetric determination by extracting the fat 67 



5 
 

with petroleum ether as the reference method. Wang et al. (2006) built calibrations for rice 68 

grains and flour, as batch, by NIR spectroscopy and reported good results, with R2 values 69 

ranging from 0.79 to 0.91, and RMSE from 0.08 to 0.16%.  70 

Previous literature using NIRS for the analysis of total fat in cocoa beans used ground material, 71 

thus only the average fat content was predicted, not allowing any investigation on the single 72 

bean variability. For example, Fourier-Transform NIR (FT-NIR) has been successfully applied 73 

in the spectral region 10,000-4,000 cm-1 to investigate the total fat content in ground shelled 74 

cocoa beans (i.e. ground cocoa nibs) (Teye & Huang, 2015). The fat content ranged from 51.3 75 

to 68.0% and the calibration and prediction R2 values were 0.93-0.98 and 0.92-0.97 76 

respectively, depending on the different PLS regression models used. The prediction error was 77 

RMSECV=0.01-0.02% and RMSEP~0.02%. Fifty samples were used for the calibration 78 

dataset and 30 for prediction. Despite the good calibration performance, no information on the 79 

bean-to-bean variability was reported, and more importantly, it should be noted that this 80 

method still requires the removal of the cocoa bean shell and grinding of the resulting nibs to 81 

the required dimensions.   82 

Vesalá et al. (2007) compared NIR (1100-2500 nm) and FT-IR (2500-25,000 nm) for the 83 

prediction of fat, nitrogen and moisture content in cocoa powder. Fat content exhibits a wide 84 

range, i.e. 2.4-22.0% as expected, as cocoa powder is made by grinding cocoa nibs and 85 

removing some of the fat. The NIR prediction model for this constituent achieved R2=0.96 and 86 

RMSECV=7.0%. By FT-IR, the prediction model had R2=0.94 and RMSECV=10.4%. 87 

NIRS has also been reported to predict total fat content in shelled cocoa beans by Álvarez et 88 

al. (2012). The authors applied reflectance spectroscopy in the region 780-2500 nm to evaluate 89 

fat, caffeine, theobromine and epicatechin content. On a fat content ranging from 46 to 64%, 90 

the R2 value was 0.94, SECV=0.89%, and RPD=3.4. Additionally, the fat content of Criollo 91 

types was generally reported to be lower than other cocoa types like Forastero and Trinitario. 92 
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The only paper found in the literature on whole cocoa bean analysis using FT-NIR was by 93 

Sunoj et al. (2016). FT-NIR (800-2778 nm) was used to scan whole cocoa beans obtained from 94 

one batch fermented at different fermentation times, from 1 to 6 days. Prediction models were 95 

built for predicting polyphenol content, pH and fermentation index. However, no indication 96 

about fat content prediction was reported. 97 

Despite the efforts to build prediction models for important quality attributes of cocoa, 98 

traditional NIR instruments and the approaches used so far are not capable of investigating 99 

single cocoa bean variability while rapidly predicting fat content in a non-destructive manner. 100 

Moreover, and more importantly, existing NIR approaches require cocoa beans to be unshelled 101 

and ground, which is a time consuming manual process.  102 

Several studies have shown the potential of HSI for fat prediction in grains, nuts or seeds, 103 

especially for single objects. A recent publication demonstrated its application for green coffee 104 

beans (Caporaso et al., 2018).  Jin et al. (2016) applied HSI using two detectors, working at 105 

400-1000 and 1000-2500 nm, to measure oil content in single peanuts. The authors used five 106 

varieties, sampling 30 nuts per batch. The performance of the PLS regression models had 107 

prediction R2 values of 0.67-0.92, and error (RMSEP) of 0.21-0.42 %.  108 

The literature is lacking in relation to the use of HSI for non-destructive prediction of lipid 109 

content of whole cocoa beans, or to investigate the distribution of fat content within the beans. 110 

A recent paper investigated the feasibility of HSI to predict fermentation index, antioxidant 111 

activity and phenolic content in cocoa beans (Caporaso, Whitworth, Fowler and Fisk, 2018), 112 

but lipid content was not assessed and all beans were shelled. Lipid content is the most critical 113 

factor for cocoa bean quality assessment and in defining its commercial price.  Therefore, the 114 

aim of the present work was to investigate the feasibility of HSI to non-destructively analyse 115 

unshelled and shelled cocoa beans on a single bean basis in order to predict total fat content 116 

and its intra-bean distribution. 117 
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2. MATERIALS AND METHODS 118 

2.1.Samples and reagents 119 

Seventeen samples of commercial cocoa beans were obtained from Ghana, Indonesia, Ivory 120 

Coast, Nigeria, Ecuador, Cameroon, Brazil, Venezuela, and Mexico, including all the major 121 

cocoa producing countries. Ten batches were of Forastero type, six were of Trinitario type and 122 

one was of unknown type. Ten beans were randomly selected from each of the 17 batches and 123 

analysed by HSI without any further treatment. The samples were scanned by HSI, first as un-124 

shelled, then after they were manually shelled. Once the HSI acquisition was performed, the 125 

shelled cocoa beans were manually ground using a mortar and pestle. The ground samples were 126 

then stored in closed Eppendorf tubes at -20 °C prior to chemical analysis.  127 

As a verification of the performance of the calibration, an additional small batch was scanned 128 

by HSI, the model was applied on this data and single seeds were manually selected based on 129 

the predicted total fat content, categorised as low-fat content, high-fat content, remaining seeds. 130 

These fractions were analysed by the reference method to measure the average lipid content of 131 

each fraction.  132 

2.2.Hyperspectral imaging analysis 133 

A SWIR HSI system described in Caporaso, Whitworth, Fowler and Fisk (2018) was used. The 134 

system consisted of an instrument provided by Gilden Photonics Ltd. (Glasgow, U.K.) and 135 

includes a SWIR spectral camera (Specim Ltd., Oulu, Finland) containing a cooled 14 bit 136 

320×256 pixel HgCdTe detector and N25E spectrograph providing 256 spectral bands over a 137 

wavelength range of ~980-2500 nm with a spectral resolution of about 6 nm. Only the final 138 

240 spectral bands contained useful data, and the first 16 bands were excluded. The acquisition 139 

was based on a push-broom approach, with the sample placed at a distance of 220 mm and 140 

using 31 mm focal length lens. The samples were scanned while moving at a speed of 10.9 mm 141 

s-1 to provide square pixels. The illumination was based on two 500 W incandescent lamps. 142 
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SpectralCube 3.0041 software (Specim) was used to control the moving stage on which the 143 

samples were placed, and the camera acquisition parameters. The dark reference was acquired 144 

by recording ~100 frames after closing the camera shutter after each data acquisition, while the 145 

white reference was acquired by scanning a white PTFE reference material with ~100% 146 

reflectance.  147 

Samples of single cocoa beans were analysed by HSI as unshelled (i.e. whole, as received) or 148 

shelled unground beans (i.e. cotyledons or nibs). Ten cocoa beans at a time were placed on a 149 

moveable plastic stage and scanned using the push-broom approach. Details on the instrument, 150 

image acquisition, processing and hypercube data management have been previously described 151 

in Caporaso, Whitworth, Fowler and Fisk (2018). Each cocoa bean was scanned on both sides, 152 

so that the final number of average spectra for the prediction models was 340. Cocoa beans 153 

were manually de-shelled and scanned again by HSI. They were then individually ground using 154 

a manual mortal, yielding approximately 1 g material for each bean. The samples were then 155 

stored at -20 °C, in readiness for reference analyses. The average spectra for each cocoa bean 156 

were exported for statistical analysis.  157 

2.3. Total fat analysis 158 

Fat content reference determination was carried out using Nuclear Magnetic Resonance 159 

(NMR), which is known to have very good precision for total lipid assessment (McManus and 160 

Horn, 2004), and has been recently applied for similar experiments on other granular food 161 

commodities (Caporaso, Whitworth, Grebby and Fisk, 2018). Single cocoa beans were 162 

manually shelled and stored at -20 ºC for at least one hour to obtain fat crystallisation. The 163 

ground material was analysed by a CEM Smart Trac II Moisture and Fat analyser (CEM 164 

Microwave Technology Ltd., Buckingham, UK), which has a resolution of 0.01%. Fat content 165 

was either expressed on “as is” basis, or on a dry matter basis (dmb), based on bean moisture 166 

measurements made with a CEM microwave moisture analyser. The same reference method 167 
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was successfully applied in our previous work on single green coffee bean to analyse total lipid 168 

content (Caporaso, Whitworth, Grebby and Fisk, 2018).  169 

To verify the accuracy and repeatability of the method, one batch of ground cocoa beans was 170 

analysed in 10 replicates. The analytical error, expressed as standard deviation for 10 replicate 171 

measurements (SD) was 0.81% (“as is”), with a coefficient of variation (CV) of 1.19%. 172 

2.4. Colour measurement 173 

The colour of individual unshelled cocoa beans and of ground cocoa nibs was determined using 174 

a DigiEye imaging system (VeriVide, Leicester, UK). Colour of in-shell cocoa beans and cocoa 175 

nibs (as ground) was assessed for each seed within the CIE L* a* b* colour space. Samples 176 

were placed in the DigiEye chamber under standard light conditions and colour measurements 177 

were analysed using the provided software. The instrument was standardised for white balance 178 

and uniformity, and colour was calibrated using a reference colour chart. Images were acquired 179 

on both sides of the in-shell beans and the average colour was calculated, while one picture of 180 

the ground material was taken for sample (individual cocoa bean). 181 

2.5. Data treatment and statistical analysis 182 

The spectral data exported for single cocoa beans (whole, i.e. ‘in-shell’ and shelled) were 183 

analysed using the Unscrambler 10.3 software (CAMO, Norway). Spectra acquired from two 184 

sides of each cocoa bean (whole and shelled) were randomly split into calibration and 185 

validation datasets, using an holdout approach (70:30 ratio), and making sure that spectra from 186 

the same bean were all included in either the calibration or validation set. The splitting into 187 

calibration and validation datasets was performed by randomised sampling from the total cocoa 188 

beans of 170 samples. PLS regression calibrations were evaluated based on the coefficient of 189 

regression (R2) and the root mean square error of calibration (RMSEC), cross validation 190 

(RMSECV) and prediction (RMSEP), as well as using the Ratio to Performance Deviation 191 
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(RPD), which is defined as the ratio between the measured standard deviation and the 192 

prediction error. 193 

2.6. Visualisation of chemical images 194 

Once established, the best PLS regression prediction model was applied to the hypercubes, by 195 

exporting and using the weighted beta-coefficients. The calibration was applied in two ways; 196 

at single pixel level, by multiplying the beta-coefficients for each spectral band of each pixel, 197 

and at single bean level, by applying the regression coefficients to the average spectrum of each 198 

cocoa bean. In this way, visualisation of fat distribution across the bean can be obtained, and a 199 

predicted average fat content. Our previous paper demonstrated the visualisation of HSI 200 

calibrations for seeds, showing the advantages of visualising the spatial variability across seeds, 201 

or averaging the spectra that belong to single seeds and then applying a calibration such that 202 

the average content per seed is obtained (Caporaso, Whitworth and Fisk, 2017). 203 

The second strategy is likely to be more convenient for practical application, while the first one 204 

is more of scientific interest because it gives understanding of the possible accumulation of a 205 

cocoa constituent across the beans, thus allowing also plant physiology and biochemical 206 

studies. The obtained images are termed “chemical images”, which are graded colour images 207 

in which the colour indicates the abundance of an attribute, i.e., fat content in the present case. 208 

3. RESULTS AND DISCUSSION 209 

3.1.Reference analysis of fat content 210 

A preliminary objective was to investigate the natural variability of fat found in single 211 

fermented dried cocoa beans. Figure 1 shows the descriptive statistics of all the parameters 212 

analysed, i.e. fat content expressed on “as is” basis and on a dry matter basis (dmb), as well as 213 

the colour parameters assessed on the in-shell and the shelled ground nibs. A wide range of 214 

lipid content was found in the whole dataset, but also an interesting wide variation of fat content 215 
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was observed within batches, for which 10 beans were analysed. In a few cases, the fat content 216 

was consistent within batches, e.g. for the batch of Mexican cocoa the fat range was below 4% 217 

(“as is”), while in the majority of batches the variability was wide, with the maximum 218 

variability observed in one batch from Ivory Coast, attaining approximately 25% of the overall 219 

range. The observed variability is likely to be due to the interaction between genetics and 220 

environment, and great influence is likely to be attributed to the post-harvest conditions, 221 

particularly the fermentation and drying steps. Even batches from the same origin, for example 222 

from Ivory Coast, had different fat distributions. The median fat content among the three 223 

batches from Ivory Coast was almost identical, with very similar average fat content, while 224 

their range varied dramatically. This could be due to the different handling of the fermentation 225 

process in the three farms, or the use of different agronomical conditions that might lead to 226 

higher or lower variability in terms of lipid accumulation in the beans. It should also be 227 

recognised that these are commercial samples and, especially in the case of Ivory Coast beans, 228 

it is likely that mixing or blending has occurred within the supply chain.  229 

The calibration and independent validation datasets are shown separately (Figure 1a and Figure 230 

1b), and a similar range and standard deviation was observed between the two groups, with 231 

slightly higher standard deviation for fat content for the calibration dataset, but no statistically 232 

significant difference was obtained from a t-test (p>0.05). The fact that the range of fat content 233 

for the validation dataset is within the calibration range is desired, and theoretically this should 234 

happen also for new samples that will be scanned in the future from new sources, new 235 

harvesting years, etc. However, generally, from a practical point of view, NIR and HSI 236 

calibrations are intended to be periodically updated with new samples so that new varieties or 237 

unexpected samples are correctly classified or quantified.  238 

 239 
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3.2.HSI for fat content prediction  240 

PLS regression models for total fat content of cocoa beans were built from HSI scans of both 241 

whole “in-shell” beans and whole nibs, after appropriate treatment of the information in the 242 

hypercubes. The results of these prediction models for whole cocoa nibs are reported in Table 243 

1.  244 

For the shelled beans, the results are separately reported by expressing the lipid content on wet 245 

(“as is”) basis or dry matter basis (dmb). For the model was built on reference data “as is”, the 246 

use of spectral pre-treatment caused very slight improvement in the prediction models, with R2 247 

values for the calibration models ranging from R2=0.81 (Log(1/R)) to 0.84 (SNV+1st 248 

derivative). However, a larger difference was observed for the cross-validation and the external 249 

validation (prediction) datasets, where the use of log(1/R) spectra showed worse results in 250 

terms of R2 and prediction errors. Multiple scatter correction (MSC) and standard normal 251 

variate (SNV) had similar prediction performance, as expected, as both are intended to remove 252 

light scattering effects. Derivatives also showed good performance, with the first derivative 253 

treatment model resulting in a slightly lower prediction error. However, MSC treatment led to 254 

the model with the best performance and the highest ratio to performance deviation (RPD), 255 

with both cross-validation and prediction R2=0.842-0.841. Both RMSECV and RMSEP were 256 

below 2.3% (as is). Considering the range of natural variability observed even within the same 257 

batch, often being 10-20%, an error of approximately 2% for a single bean fat determination is 258 

acceptable for screening purposes and sorting of higher/lower fraction.  259 

Similarly, the prediction on dry matter basis (dmb) of shelled cocoa beans achieved a good 260 

level of performance, with slightly worse R2 values and slightly higher calibration and 261 

prediction errors than the prediction made on fat content expressed “as is”. This difference 262 

might be due to the incomplete drying of samples using the CEM instrument, which is based 263 

on microwave drying. While the fat analysis is based on NMR, which is very accurate in 264 
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analysing fats, moisture is obtained gravimetrically and the error was likely to be higher as the 265 

sample size was very small.  266 

The SNV spectral treatment gave generally the best prediction model for fat content expressed 267 

as dmb, with calibration R2 of 0.825, cross-validation R2 of 0.816 and prediction R2 of 0.828. 268 

The calibration error was 2.55%, with an external prediction error (RMSEP) or 2.36%.    269 

This demonstrates robustness of the model and reliability for future applications on unknown 270 

samples. Generally, this performance allows the application of the calibration for screening 271 

purposes and to estimate single-bean fat content. In some cases, this prediction error is 272 

comparable to traditional methods for fat content analysis. For example, the AOAC method 273 

922.06 for fat content through acid hydrolysis has standard deviation (SD) ranging from 0.7 to 274 

7.5%, depending on the type of food analysed. Therefore, the method presented here is 275 

perfectly acceptable even for quantification purposes, especially given its advantages for 1) 276 

single bean analysis; 2) non-destructive measurement; 3) rapidity and 4) operator skill levels 277 

with no hazardous chemicals.  278 

The performance of total fat content in unshelled cocoa beans is reported in Table 1c. For this 279 

model, the whole beans were scanned before any treatment. A weaker performance was 280 

observed compared to the shelled beans. The best model was the one using the 2nd derivative 281 

pre-treatment, and it showed R2=0.62 and 0.52 for the calibration and prediction datasets, 282 

respectively. The calibration error was 3.58%, while the external prediction (validation) error 283 

was 4.06%. The prediction RPD value was 1.41, thus indicating poorer quality for using this 284 

model for quantification purposes. This value might appear relatively high when compared to 285 

traditional methods for fat content analysis, but the HSI model herein presented has practical 286 

applicability. Therefore, it could still be potentially applied for general screening purposes. 287 

Even 4% of prediction error might be acceptable considering that in many of the batches, the 288 

single bean variability was above 15%. Thus, using HSI would allow identification of seeds 289 
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with the highest and lowest fat content in a rapid inexpensive way at the reception before any 290 

processing step. 291 

For all the models tested, i.e. shelled and in-shell and expressed "as is" or dmb, the paired t-292 

test showed a nonsignificant difference between the predicted values and the reference values, 293 

at the significance level of 5%. The confidence intervals for those models are the following: 1) 294 

shelled, as is: ±0.265; 2) shelled, dmb: ±0.271; 3) in-shell, as is: ±0.390; 4) in-shell, dmb: 295 

±0.388.  296 

Figure 2 shows the predicted fat content in shelled and unshelled cocoa beans for the best 297 

prediction models, while Figure 3a,b reports the β-regression coefficients for these fat 298 

quantification models for the shelled beans and Figure 3c shows the models for in-shell beans. 299 

The best models using whole cocoa nibs used SNV as the spectral pre-treatment, while the 300 

model built on unshelled cocoa beans used 2nd derivative treatment. The wavelengths at 1107, 301 

1212, 1302, 2057, 2145 and 2295 nm were among the most influential ones for the whole cocoa 302 

nib models. The regression coefficients of the calibrations were similar for models built on an 303 

“as is” basis or on dry matter basis, indicated in Figure 1a by continuous and dotted line, 304 

respectively. Slight differences were observed around 1940 nm, where the O-H bond absorbs 305 

strongly. On the contrary, fat prediction model from whole unshelled cocoa beans had major 306 

peaks at 1226, 1378, 1428, 1913 and 2250-2326 nm. The most important absorption 307 

wavelengths resulting from the regression equation reported by Vaselá et al. (2007) for fat 308 

prediction in cocoa powder by traditional NIRS were those at 1728-1744, 2308-2322, 2334-309 

2348 nm. The results herein presented are in agreement with previous literature, as observed 310 

here some influence of the bands around 1700 and 2300 nm; however, they are not the most 311 

intense ones for the fat prediction model. The calibrations herein presented cannot be directly 312 

compared to previous literature, as they used cocoa powder, with fat content ranging from to 5 313 
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to ~23% rather than cocoa nibs. In addition, despite the good R2 value (0.96), their cross-314 

validation error was 7.0%.  315 

The different performance obtained depending on the spectral pre-processing used can be 316 

explained by the different ways in which these treatments remove physical phenomena which 317 

are unrelated to chemical information. It is a good practice to test several pre-processing 318 

methods to understand the one that brings to the best performance of the multivariate regression 319 

model. Whilst it is possible to use raw absorbance spectra to build these calibrations, it is 320 

always useful to apply these pre-processing techniques to remove light scattering effects. The 321 

most common techniques are Standard Normal Variate (SNV), Multiplicative Scatter 322 

Correction (MSC), first and second derivative (better results are achieved when the Savitzky-323 

Golay algorithm), de-trending and normalisation. The SNV treatment effectively removes the 324 

multiplicative interferences of scatter and particle size, and the results are similar to those 325 

obtained by MSC. Methods such as de-trending and derivatives aim to remove the variation in 326 

the baseline, and these spectral pre-processing techniques can be combined to remove 327 

unwanted variation in a more effective manner (Rinnan, Van Den Berg and Engelsen, 2009).   328 

The literature is very scarce or non-existent in relation to the application of HSI for qualitative 329 

or quantitative prediction of cocoa bean lipid composition, or even on chocolate or other cocoa 330 

products, thus a more direct comparison with other chemometric models is difficult. However, 331 

other authors applied conventional NIRS to evaluate other parameters in this product, for 332 

example sucrose content in chocolate mass (da Costa Filho, 2009), procyanidin content in 333 

cocoa liquor (Whitacre et al. 2003), or for the classification of ground cocoa beans from 334 

different regions within Ghana by using FT-NIR (Teye et al., 2013).  335 

Previous research reporting on HSI fat calibrations for single peanut kernels demonstrated that 336 

the use of the spectral range 1000-2500 nm over the region 400-1000 nm leads to dramatic 337 

improvements in the prediction. Indeed, using the visible region led to R2 values of 0.536-338 
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0.696, depending on the spectral pre-treatment, while the longer wavelength region led to R2 339 

values of 0.536-0.923 (Jin et al., 2016). These authors scanned peanut kernels individually by 340 

placing only one kernel at a time on the mobile platform (Jin et al., 2016), while in the study 341 

herein presented a program was written in IDL+ENVI to manage hypercube processing in a 342 

more efficient manner as multiple objects per time can be scanned at a time, thus potentially 343 

reducing the acquisition time. In this way, several kernels can be scanned together and 344 

contained in the same hypercube. Based on the kernel position in the image, the program was 345 

able to attribute a sample number in order to track them individually and export the mean 346 

spectra automatically.  347 

 348 

3.3.Wavelength selection for multi-spectral imaging systems 349 

For applications especially at the industrial level, a multispectral imaging system could be 350 

preferred to a full hyperspectral system due to the lower price and lower computational speed 351 

requirements. Thus, starting from the full spectrum PLS regression model presented above, a 352 

selection of the most important wavelengths was carried out. Selection was made based on the 353 

weighted regression coefficients of the PLS regression model. The results of these models are 354 

reported in Table 1d. For the unshelled beans, the R2 value was above 0.5 when using just 5 355 

spectral bands. In the case of shelled cocoa (cotyledons), the performance was much better, 356 

with R2 values above 0.8. The validation R2 value was also above 0.8, when using either 16 357 

bands or 4 bands. Lowering the number of bands did not result in poorer prediction and 4 358 

wavelengths even gave better validation performance (R2=0.85, RMSEP=2.2%). This is 359 

possibly explained by the strong absorbance bands of lipids, according to the literature 360 

(Osborne, Fearn and Hindle, 1993; Burns and Ciurczak, 2007), and the removal of 361 

uninformative bands that bring certain noise in the model. However, it should be pointed out 362 

that these models were built on the spectra treated using the second derivative or MSC pre-363 
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treatments, which are obviously applicable only when full spectra are available. When using a 364 

multispectral imaging system, no spectral pre-treatment is possible anymore, as only a few 365 

discrete wavelengths are acquired instead of continuous full spectra, thus only the absorbance 366 

data, i.e. log(1/R), can be used. This is likely to bring lower prediction performance due to 367 

scattering effects that cannot be correct in multispectral imaging systems.  368 

 369 

3.4.Application of HSI calibration and visualisation of chemical images 370 

The best prediction models based on PLS regression for fat prediction were applied to 371 

hyperspectral images of larger numbers of cocoa beans. Once the β-regression coefficients 372 

were exported and applied to the hypercubes, it was possible to predict the fat content even at 373 

the single pixel level, within each cocoa bean, thus visualising the distribution across the bean. 374 

As shown in Figure 4, the prediction on single pixels allowed visualisation of fat distribution 375 

across the beans, as shelled unground beans. Images were acquired on both sides of the beans, 376 

by overturning them on the vertical axis (left and right images of Figure 4, which show the two 377 

sides of the beans). Application of the prediction on “as is” basis and on dry matter basis agree, 378 

with the expected bias due to the moisture content.  379 

For practicality, it is useful to visualise the predicted fat content as the average for each cocoa 380 

bean instead of single-pixel visualisation, thus images were also produced in this sense. This 381 

can allow rapid detection of beans with high or low fat content, which can be selected for 382 

specific applications, e.g. segregation of beans with low fat content and thus higher non-fat 383 

solids, which could be used for dark chocolate manufacture.  384 

To validate the method and prove the concept of selecting the top and bottom fractions of the 385 

cocoa beans based on HSI predicted fat content, a manual sorting experiment was carried out 386 

on an independent set of beans, as shown in Figure 5. Three cocoa beans were picked for the 387 

“high fat” fraction, 3 for the “low fraction” batch and 3 belonging to the remaining beans with 388 
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average fat content (Figure 1a). The beans were manually ground and analysed by the 389 

conventional reference method. The results demonstrated that the high and low fractions had 390 

statistically significant differences in fat content, with P<0.01 and with an approximate 391 

difference of 6% total lipid content (Figure 1b). The high fraction had also higher fat content 392 

than the “average” (batch) fraction, whereas the latter did not show significant difference with 393 

the “low” fat fraction, due to the large standard deviation. Therefore, the results showed that it 394 

is possible to sort whole cocoa beans into sub-batches, which can be further included in 395 

different streams according to the industrial or scientific needs.  396 

 397 

4. CONCLUSIONS 398 

Whilst a few studies previously reported total fat prediction using conventional NIR 399 

instruments, previous calibrations were carried out on ground samples and nothing was 400 

reported on a single cocoa bean level. The current research therefore established: that (i) within 401 

commercial batches of cocoa beans, single beans vary significantly in their fat contents; (ii) 402 

that this variation in fat content can be predicted at a single cocoa bean level using HSI; and 403 

that (iii) HSI fat content prediction is powerful enough to enable manual sorting of whole cocoa 404 

beans, which was demonstrated to enhance the fat content of batches by up to 6%; furthermore 405 

(iv) HSI can be used to generate a rough prediction of fat content for the raw cocoa bean even 406 

without the need to remove the shell. 407 

 408 
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Table and Figure captions:  512 

Figure 1. Descriptive statistics for fat content and colour parameters in single cocoa bean 513 

levels; (a) total fat content in the calibration and validation datasets, (b) colour parameters for 514 

the unshelled and shelled samples; (c-d) variability of total fat in single dry cocoa nibs, 515 

expressed on “as is” basis for (c) each batch (n=10), or (d) grouped by geographical origin. In 516 

a-b, circles indicate the mean values, vertical lines indicate the standard deviation and 517 

diamonds indicate the range of values.  518 

Figure 2. Predicted vs Reference values of fat content in (a) whole cocoa nibs and (b) unshelled 519 

cocoa beans, using the best HSI prediction models. 520 

Figure 3. PLS regression model for fat prediction by HSI in single (a,b) shelled and (c) in-521 

shell cocoa beans. a) Regression coefficients for fat expressed on “as is” or dry matter basis 522 

for the shelled beans.  b) Latent Variable plot to express the calibration, cross-validation and 523 

external prediction error (RMSE). Models use MSC spectral pre-treatment. c) Regression 524 

coefficient plot for in-shell beans. Numbers indicate the wavelength in nm. The arrow indicates 525 

the selected optimal number of Latent Variables.  526 

Figure 4. Applied calibration models for total fat content visualisation in unroasted whole 527 

cocoa beans (unshelled) at a single pixel level, predicted on (a) “as is” or (b) dry matter basis. 528 

Beans are shown on both orientation, numbers indicate the predicted average value for each 529 

bean (batch from Ivory Coast). 530 

Figure 5. Results of manual sorting of whole cacao nibs for total fat content. a) Hypercubes 531 

of the scanned beans, shown at ~1000 nm. b) Average fat content in the three sub-batches, 532 

analysed by the reference method (3 beans picked per each batch selected). Bars indicate the 533 

standard deviation, and different letters indicate statistically significant differences among the 534 

fractions (p<0.05). 535 

  536 
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Table 1. Performance of PLS regression models for total fat content in (a-b) shelled and (c) 

unshelled single cocoa beans (nibs), and multispectral imaging model based on few selected 

wavelengths for both sample presentations (d). RMSE = root mean square error of 

calibration, cross-validation or prediction. RPD = ratio to performance deviation, calculated 

as the ratio between the reference standard deviation and the RMSECV or RMSEP. MSC = 

multiplicative scatter correction. SNV = standard normal variate. LV = Latent Variables. 

Values for the error are indicate as percentage (%, on “as is” or dmb). 238 samples (average 

spectra) used for calibration, 102 for validation.  

 

a) Wet basis (“as 

is”) 
LV 

Calibration   Cross-Validation   Prediction 
RPDCV RPDP 

Rc
2 RMSEC   Rcv

2 RMSECV   Rp
2 RMSEP 

Log(1/R) 6 0.810 2.639   0.781 2.780   0.769 2.785 2.18 2.05 

Normalisation 7 0.809 2.710   0.798 2.718   0.824 2.385 2.23 2.40 

MSC 6 0.829 2.505   0.842 2.286   0.841 2.273 2.65 2.52 

1st derivative 5 0.814 2.609   0.814 2.425   0.809 2.486 2.50 2.30 

2nd derivative 6 0.813 2.620   0.811 2.573   0.799 2.552 2.35 2.24 

SNV 6 0.829 2.503   0.843 2.313   0.841 2.274 2.62 2.51 

SNV+1st derivative 6 0.840 2.440   0.806 2.680   0.827 2.359 2.26 2.42 

b) Dry Matter 

Basis 
LV Calibration   Cross-Validation   Prediction RPDCV RPDP 

Rc
2 RMSEC   Rcv

2 RMSECV   Rp
2 RMSEP 

Log(1/R) 5 0.821 2.563   0.773 2.833   0.800 2.543 2.14 2.24 

Normalisation 7 0.822 2.579   0.840 2.316   0.795 2.534 2.62 2.25 

MSC 5 0.825 2.555   0.801 2.686   0.828 2.353 2.26 2.42 

1st derivative 5 0.810 2.651   0.791 2.602   0.791 2.594 2.33 2.20 

2nd derivative 6 0.811 2.657   0.785 2.826   0.782 2.653 2.15 2.15 

SNV 6 0.825 2.553   0.816 2.452   0.828 2.355 2.47 2.42 

SNV+1st  derivative 5 0.840 2.440   0.813 2.617   0.827 2.359 2.32 2.42 

 

c)Unshelled beans LV Calibration     Cross-Validation Prediction RPDCV RPDP 
 

 Rc
2 RMSEC   Rcv

2 RMSECV   Rp
2 RMSEP   

Log(1/R) 9 0.525 4.006  0.446 4.340  0.247 4.940 1.40 1.16 

MSC 4 0.388 4.738  0.324 5.001  0.169 5.187 1.21 1.10 

1st derivative 8 0.652 3.441  0.504 4.098  0.299 4.801 1.48 1.19 

2nd derivative 6 0.623 3.581  0.491 4.182  0.519 4.060 1.45 1.41 

SNV+1st derivative 6 0.540 3.753   0.421 4.224   0.195 5.110 1.43 1.12 

 

d) Multispectral 

models 
LV 

 Calibration Cross-validation Prediction N. 

bands 

Pre- 

treatment Rc
2 RMSEC Rcv

2 RMSECV Rp
2 RMSEP 

Unshelled  3 0.524 4.102 0.492 4.267 0.358 4.692 5 2nd deriv. 

Shelled  5 0.838 2.350 0.834 2.388 0.825 2.382 16 MSC 

Shelled 3 0.816 2.506 0.812 2.541 0.849 2.214 4 MSC 
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 537 

ADDITIONAL MATERIAL: (top) Flow chart of the experimental design used for the non-destructive 538 
prediction of cocoa bean quality. n=170 refers to the number of beans, while the other numbers indicate 539 
the mean spectra (2 spectra per bean). (bottom) List of the cocoa bean samples used in the present 540 
experiment.   541 

 

Sample Country Continent Type / origin of cocoa 

1 n.a.  n.a. n.a. 

2 Ghana Africa Forastero (Amazon hybrids / Amelonado) 

3 Indonesia Asia Forastero / Trinitario 

4 Ivory Coast Africa Forastero (Amazon hybrids / Amelonado) 

5 Nigeria Africa Forastero (Amazon hybrids / Amelonado) 

6 Ecuador America Trinitario (also some Arriba Nacional original types) 

7 Cameroon Africa Trinitario 

8 Ivory Coast Africa Forastero (Amazon hybrids / Amelonado) 

9 Ghana Africa Forastero (Amazon hybrids / Amelonado) 

10 Brazil America Forastero / Amelonado 

11 Ecuador  America Trinitario (also some Arriba Nacional original types) 

12 Ivory Coast Africa Forastero (Amazon hybrids / Amelonado) 

13 Venezuela America Trinitario, possibly some Criollo 

14 Mexico America Trintario?, possibly some Criollo 

15 Ghana Africa Forastero (Amazon hybrids / Amelonado) 

16 Ecuador America Trinitario (and possiblt Arriba Nacional) 

17 Nigeria Africa Forastero (Amazon hybrids / Amelonado) 

 

(170 x 2) 


