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Abstract 45 

 46 
Computing plays a critical role in the biological sciences but faces increasing challenges of scale 47 
and complexity.  We evaluate the potential for quantum computing algorithms to aid in the 48 
merging of insights from genetics to neuroscience. 49 
 50 

Introduction 51 

In an era of increasingly collaborative efforts towards unravelling the complexities of biology, 52 
one may posit the existence of two broad tendencies: first, an approach towards greater depth 53 
in particular fields, whether relying on intensive technological, theoretical or computational 54 
development, that aims to comprehensively explore a specific aspect of biology; and second, a 55 
recognition of the need to knit together the disparate experimental and conceptual threads 56 
across the vast spectrum of length, time and system-size scales inherent in biology into a 57 
coherent framework. Addressing both sources of complexity necessarily requires research-area-58 
specific experimental and theoretical advances, but there is also the possibility of outsourcing 59 
some of the analytical burden to high-throughput computing resources. The significant interest 60 
in large-scale computing infrastructure evinced by governmental and private entities 61 
underscores the importance of the scientific community exploring new ways of interfacing with 62 
cutting-edge computing technologies. These include expansions of current super-computing 63 
and other massively parallel computing facilities, but also considerations of entirely new 64 
computing paradigms. Here, we consider the potential of quantum computing (QC) to address 65 
complex biological questions. Recent technological developments have carried QC capabilities 66 
from the realm of academic exploration to commercial opportunities1,2. While the scale is not 67 
currently competitive with classical technologies, there is substantial excitement in its eventual 68 
promise, and we hope to provide an entry point for biologists to certain aspects of the 69 
discussion surrounding QC. This effort is especially timely given recent policy efforts at a 70 
national or international level, such as the U.S. National Quantum Initiative Act 20183 71 
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(implementation of a National Quantum Initiative for quantum information science and 72 
technology4), the European Quantum Technologies Flagship, and efforts in the UK and China5. 73 

We first present a primer on quantum computation to familiarize the reader with the basic 74 
concepts and language of QC. The remainder is focused on the study of the human brain 75 
through genetics, genomics, neuroimaging, and deep behavioral phenotyping, a 76 
multidisciplinary effort that falls under the term ‘convergent neuroscience’. We highlight these 77 
areas as they exemplify the two aforementioned sources of complexity: separately, each field 78 
presents an incredibly rich set of problems that often push the limits of classical computational 79 
capability; in combination, they offer a multi-scale challenge leading from the molecular scale 80 
through the cellular and tissue levels, to brain architecture and, eventually, to complex human 81 
behaviors and disorders. The study of the emergent properties of the brain, such as cognition 82 
and behavior, is a uniquely challenging multi-level endeavor that demands pioneering 83 
approaches in computation. Accordingly, we discuss how quantum algorithms that map onto 84 
methodological issues in neuroscience may provide much needed improvements in 85 
computational efficiency, and posit open questions for eventual development of new 86 
computational solutions. 87 

Classical versus Quantum Circuits: State of the Art 88 

Quantum computers (QCs) promise a new form of computing that would be qualitatively 89 
different from any previous ("classical") form of computation10. While QCs are technically more 90 
difficult to build, and the best current general-purpose quantum computers have only 50-100 91 
qubits, they can solve some problems with a time that grows more slowly as a function of the 92 
input size. The term "qubit" refers to a quantum two-level system, such as the spin of a spin-1/2 93 
particle. Qubits can be thought of as a generalization of classical bits (cbits), in that cbits can be 94 
in states 0 or 1, while the state of a single qubit is described by complex numbers ߙ଴ and ߙଵ 95 
satisfying |ߙ଴|ଶ 	+	 ଵ|ଶߙ| = 1. The power of quantum computers comes from scaling. A system 96 
of ݊ cbits can be in one of 2௡ possible states at any time, while the state of ݊ qubits is described 97 
by a complex unit vector of dimension 2௡ (Fig. 1A and B). These vectors (also called 98 
wavevectors or wavefunctions) can be transformed by multiplying them by unitary matrices, 99 
and in many cases this can be done efficiently. For example, the wavevector can be Fourier 100 
transformed using ܱ(݊ଶ) elementary quantum gates. However, not all transformations can be 101 
done efficiently. The laws of quantum measurement also limit the amount of information that 102 
can be extracted from a quantum state. A full measurement of the state yields outcome ݔ with 103 
probability |ߙ௫|ଶ, destroying the state in the process. Thus, even though describing the 104 
quantum state of ݊ qubits requires an amount of information that scales exponentially with ݊, 105 
measurement can only extract ݊ bits of information. Finding a way to benefit from the 106 
exponential state space of quantum computers despite this and other limitations is the central 107 
challenge of quantum algorithm design11. 108 
 109 
The challenges in building quantum hardware and mitigating noise are considerable and are not 110 
addressed in this paper, since our focus is principally on algorithm development. Large-scale 111 
quantum computers are likely to rely on error-correcting codes and other error mitigation 112 
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strategies which will result in additional overheads, e.g. needing to use many physical qubits to 113 
store one logical qubit.  However, quantum algorithms can be built out of a universal set of 114 
quantum gates in a way that does not depend on the underlying hardware, just like classical 115 
algorithms. 116 
 117 
Given the ubiquity of classical computers, the natural way to understand the strengths of 118 
quantum computers is by comparing their run-time scaling with the best-known classical 119 
algorithms. In some cases, these speedups are exponential: a QC with a few thousand error-120 
corrected qubits could factor numbers that could not be factored using existing classical 121 
computers and currently known algorithms in time less than the age of the universe. In other 122 
cases, provable polynomial speedups are known: for example, given the ability to compute a 123 
function ݂(ݔ) where ݔ takes on ܰ values, a QC can find the minimum value of ݂(ݔ) in only 124 ܱ(√ܰ) evaluations of ݂(ݔ) while a classical computer would require ܱ(ܰ)	steps (assuming that 125 ݂(ݔ) has no other structure we can exploit)13. On the other hand, for some problems, QCs are 126 
known to be no stronger than classical computers. And in many other cases, plausible heuristic 127 
algorithms have been proposed for QCs, whose performance is only incompletely understood.  128 
 129 
The source of quantum speedup. There is not a simple description of what accounts for 130 
speedups, although the most plausible explanation is the difference between interference of 131 
amplitudes and addition of probabilities.  For example, a qubit can have states |0⟩ and |1⟩, 132 
which correspond to cbit values 0 and 1, and, in the representation of Fig 1A, are the north and 133 
south poles. Qubits can also be in superpositions (see Box 1) such as |଴⟩ା|ଵ⟩√ଶ  and |଴⟩ି|ଵ⟩√ଶ , which lie 134 
on the equator in the figure.  To see that these differ from each other, and also from a random 135 
mixture of |0⟩ and |1⟩, consider the √ܱܰܶ gate, which maps |0⟩ and |1⟩ to |଴⟩ା|ଵ⟩√ଶ  and |଴⟩ି|ଵ⟩√ଶ , 136 

respectively. Starting with the |0⟩ state, applying √ܱܰܶ once yields |଴⟩ା|ଵ⟩√ଶ .  This state could be 137 

thought of as analogous to a random mixture of 0 and 1, as we would expect if √ܱܰܶmeans 138 
applying ܱܰܶ with probability ½.  However, applying √ܱܰܶ twice yields |1⟩, just as we would 139 
expect from a ܱܰܶ gate, whereas applying the randomized version twice would yield the same 140 
uniform mixture of 0 and 1.  More generally, quantum computers and randomized computers 141 
can both be thought of as taking different paths through the 2௡ possible bit strings, but for 142 
randomized computers we sum the nonnegative-valued probabilities of these paths to get the 143 
final output distribution, while for quantum computers we sum the complex-valued amplitudes 144 
of these paths. Adding complex numbers of roughly the same phase corresponds to 145 
constructive interference while opposite phases correspond to destructive interference, 146 
analogous to the way that light and other waves can exhibit interference. 147 
While we often do not know how to take advantage of the rich possibilities offered by quantum 148 
interference, in some cases we can use them to achieve asymptotic speedups. Algorithms like 149 
Grover's are simple examples of this, making use largely of the fact that probabilities are 150 
obtained by taking the square of quantum amplitudes, so that a subroutine with a small success 151 
probability ݌ needs to be repeated only ܱ(1/ඥ݌) times instead of ܱ(1/݌) times14. The 152 
quantum Fourier transform (used in period finding and Shor's factoring algorithm (Fig. 1C)) is a 153 
more sophisticated example of how complex-weighted transitions can be useful, and in some 154 
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cases this can give rise to exponential speedups. On the other hand, some problems are known 155 
to not admit any quantum speedup, e.g. taking the parity of ܰ numbers requires time ܱ(ܰ) on 156 
either a quantum or classical computer15.  It is a major open research problem to determine 157 
when quantum speedup does or does not exist, and it is unlikely to ever be fully resolved, just 158 
as there is still no single theorem describing which problems can be solved by efficient classical 159 
algorithms. We next discuss some examples of potential quantum speedups. 160 
Exponential speedup. The main exponential speedups known are for cryptanalysis (dramatic 161 
but unlikely to be relevant here) and quantum simulation of molecules or other large quantum 162 
systems. If the properties of a molecule are not well captured by simple classical 163 
approximations then there is a good case to be made for using a quantum computer to make a 164 
better-quality approximation computationally tractable.  The advantage of a QC here arises 165 
from the exponentially growing dimension of quantum states. As a result, some promising cases 166 
for quantum advantage involve molecules with large numbers of active electrons, such as 167 
organometallic compounds16. 168 
Polynomial speedup. Typical polynomial speedups can be thought of as direct improvements of 169 
some classical algorithms. The best known of these is Grover's square-root search speedup17, 170 
which is a quadratic improvement of classical brute-force search: given a search space of size N, 171 
brute-force search requires evaluating N points, while Grover search requires the equivalent of 172 
evaluating ܱ(√ܰ) points on a quantum computer.  Other, more sophisticated, algorithms also 173 
admit provably quadratic improvements.  For example, a classical algorithm might search over a 174 
tree of possibilities in a manner that can improve over brute-force search by sometimes being 175 
able to quickly prune entire subtrees. Such searches can also be quadratically improved 176 
quantumly, i.e. if the classical search process explores ܰ nodes, then the quantum algorithm 177 
requires effort roughly equal to √ܰ times the effort to evaluate one node18. The strength of 178 
these algorithms is that they apply under extremely general conditions, such as needing to 179 
minimize an easily computable function. They also do not usually need more qubits than are 180 
already needed to compute the function.  181 
Heuristic speedups. Many of the most important algorithms for classical computers either lack 182 
formal proofs of correctness or are often run outside of the regime in which these proofs of 183 
correctness apply.  These include Markov chain Monte Carlo (where rigorous upper bounds on 184 
mixing time are usually not known) and gradient descent applied to non-convex problems such 185 
as deep neural networks. For quantum computers, heuristic algorithms include adiabatic 186 
optimization19, or more generally, quantum annealing (QA)20, and the quantum approximate 187 
optimization algorithm (QAOA)21. The level of speedup provided by these algorithms over 188 
classical algorithms is in general unknown, and may be anywhere from an exponential 189 
improvement to no speedup. It is expected that as quantum computers are built, our 190 
understanding of the performance of these heuristics will improve, just as much of our 191 
understanding of the performance of classical heuristics comes from empirical evidence and 192 
not only theory. In the following sections, we refer to this class of methods as “quantum 193 
heuristics”.  194 
Interfacing with classical algorithms. There is an important caveat about quantum algorithms. 195 
Suppose for concreteness that we are minimizing a function ݂(ݔ). Then a quantum computer 196 
would need to compute ݂(ݔ) in superposition over many different values of ݔ, i.e. the 197 
computation could not leak any information about ݔ to any outside system. This would limit its 198 
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ability to share the computation with a classical computer. Suppose, for example, that the 199 
evaluation of ݂(ݔ) were a memory- and time-intensive calculation for which quantum 200 
speedups were not known. Then using quantum computers to improve the minimization of ݂ 201 
would need to use qubits to perform this evaluation and could not offload the computation to a 202 
classical computer. This means that the overall speedup would be less than quadratic.  203 
Big data and quantum RAM. A related limitation of current models of quantum computers is 204 
that they cannot access large classical datasets in superposition. This means that they may be 205 
able to speed up complicated calculations on small datasets (e.g. finding the best Bayesian 206 
network) but have less advantage in solving problems on large datasets. One way to address 207 
this is with filtering or data reduction techniques, which select a small but hopefully 208 
representative sample of the data and use that as input to the optimization problem22. Or the 209 
quantum computer could be used for "small data" problems where the difficulty comes from 210 
the complexity of the analysis. A more speculative possibility is a quantum hardware solution 211 
known as a qRAM (quantum RAM)8, which would give a quantum computer the ability to 212 
coherently query a large classical dataset as a superposition of qubits: a superposition of input 213 
memory addresses would yield an output consisting of a superposition of memory cell contents 214 
(see Box 2). A qRAM would enable powerful quantum algorithmic primitives8 but there are no 215 
proposals for scalable error-corrected qRAM, and it is not clear if it would ultimately be easier 216 
than making a large quantum computer23.  217 

Potential applications for Quantum Computing in Biology 218 

Genetics and sequence analysis 219 

We first consider QC algorithms implementable on near-term quantum processors. An essential 220 
initial step in genetics and genomics is the matching of sequences of nucleotides and amino 221 
acids to organism databases, and, more specifically, the mapping of sequencing reads from 222 
experimental assays to reference genomes. Any approach needs to contend with both memory 223 
(holding a representation of the reference, and information on the mapping) and speed 224 
concerns. Dynamic programming methods, such as the Smith-Waterman algorithm30, enable 225 
queries of sequence strings against immense databases, and could be cast as Hidden Markov 226 
Models (HMMs). The recent development of Hidden Quantum Markov Models (HQMMs)9,31 227 
opens the possibility of simulating classical HMMs on currently available quantum circuits31, as 228 
well as extending model space beyond classical HMMs9. Hybrid approaches are attractive 229 
prospects: the iteration through hyperparameter space in HMMs could be classical, with 230 
quantum optimization of the maximal trajectory through state space. Given that dynamic 231 
programming methods have mostly been supplanted by the approximate but faster k-mer-232 
based BLAST algorithm30 for database searches, a QC-based improvement in efficiency could 233 
reopen the case for their utility.  A similar problem occurs in the imputation of individual-234 
specific mutations, especially single-nucleotide polymorphisms (SNPs): given shared sets of 235 
haplotypes across subpopulations, a relatively sparse set of SNPs can be expanded by inferring 236 
additional SNPs that co-occur with the original set with high probability. This imputation usually 237 
involves an HMM-based likelihood maximization32, which could be cast as HQMMs.  238 
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 239 
While imputation depends on inherited SNPs within populations (germline mutations), cells 240 
also contain post-conception de novo variants, called “somatic variants”. Every neuron in the 241 
human brain is likely to contain private somatic variants, including single nucleotide variants, 242 
and large structural variants that alter allelic diversity for dozens of genes. Identifying their 243 
functional impact is essential. Machine-learning classifiers have been trained on case/control 244 
datasets to identify psychiatric disorder-associated variants33. However, given the large-245 
dimensional parameter search space for the classification problem, classical computation 246 
frequently runs into search efficiency issues. These issues could possibly be ameliorated using 247 
near-term implementable QC machine learning methods34, discussed in subsequent 248 
subsections. 249 
 250 
Another important category of genetic analyses is the construction of optimal trees that 251 
describe the relative proximity of genetic sequences, including: ancestral recombination graphs 252 
(ARGs)35, depicting ancestral relationships between individual genomes while accounting for 253 
genetic recombination; pathogen evolutionary trees in epidemiological studies; tumor cell 254 
mutational lineages, as could be relevant to malignancy and medical response. Tree 255 
reconstruction algorithms optimize across the similarity constraints between genomic 256 
segments, mainly involving sampling from the space of possible genealogies with heuristics and 257 
simplifications36.  For smaller input sequence sets, the massive tree-search space makes this an 258 
open candidate problem for speed-up using available quantum heuristic optimization 259 
methods19–21. 260 
 261 
We next explore problems whose QC solutions may depend on the availability and storage in 262 
memory of superpositions of qubits (qRAM). For genomic read mapping, state-of-the-art 263 
classical algorithms include the exploitation of the Burrows-Wheeler transform to efficiently 264 
perform DNA sequence alignments37, and seed-based approaches to map RNA reads to exon 265 
boundaries separated by large genomic distances38. Both methods rely on lexicographically 266 
sorted suffixes constructed from the reference genome, followed by scanning for matches of 267 
the query read. The classical complexity of sequence-matching depends on whether exact 268 
(ܱ(݊ +݉); ݊ = number of reads, ݉ = query read length) or inexact matches (ܱ(݊݉)), including 269 
gaps, are considered. Grover’s algorithm-based improvements in string-matching speeds39 270 
could be exploited (ܱ൫√݊ + √݉൯ for exact matches) to aid the scanning process. Recent work 271 
has demonstrated the potential for even further QC speed gains under the assumption of 272 
unique membership of a query string within a reference database40. The scaling of the problem 273 
is such that a reduction in complexity of even simpler mapping problems would be highly 274 
beneficial, although the need to generate superpositions of the entire reference string also 275 
creates potential problems: given the need for storing a large reference database in 276 
superposition, the current lack of qRAM is an issue. Furthermore, speed gains from Grover’s 277 
algorithm-based methods could be reduced by the cost of evaluating the function being 278 
searched, if done classically. 279 
 280 
SNP association and heritability analyses are problematic for near-term quantum approaches, 281 
given the need to manipulate large matrices to solve systems of linear equations. In association 282 
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studies, SNPs can be statistically associated with individual-level phenotypes (genome-wide 283 
association studies (GWAS)) or to quantitative molecular traits (cell/tissue gene expression, 284 
methylation, epigenetic markers, cell fractions (QTL studies)). The evaluation of total SNP 285 
heritability often involves linear mixed effects models, with genetic variance estimations carried 286 
out through techniques such as the restricted maximum likelihood (REML) method41. With 287 
qRAM, algorithms such as Quantum Least Squares42,43 could offer up to exponential speed-ups 288 
through the ability to perform fast linear-algebraic operations, under certain assumptions of 289 
sparseness and condition number, although it is unclear how any advantages would be 290 
undercut by the time cost of querying the qRAM. For lower-dimensional regression problems, 291 
there is some potential for near-term quantum heuristic optimizers to tackle these tasks26. 292 
  293 

Functional Genomics 294 

The causal chain by which genetic variation leads to expression in higher-level behaviors such as 295 
cognitive traits involves multiple intermediate molecular-to-cellular-to-system steps, governed 296 
by complex developmental processes and gene-environment interactions. Despite this 297 
complexity, recent studies have shown that genetic risk for particular traits can be partitioned 298 
across ‘intermediate’ phenotypes, such as gene expression or chromatin binding profiles; a 299 
direct approach to such analysis is to impute intermediate molecular phenotypes first, and link 300 
the imputed phenotypes to high-level traits44. However, intermediate molecular phenotypes 301 
are typically high dimensional and interdependent, such as bulk transcriptome expression 302 
profiles (≈22K dimensional). Possible models which can learn joint probability distributions over 303 
such levels of analyses include Bayesian Networks, undirected models such as Boltzmann 304 
Machines45, and recent deep-learning approaches such as Variational Autoencoder (VAEs). 305 
Exact optimization of such models however is intractable: structure learning in Bayesian 306 
Networks requires optimization over a search space of all directed acyclic graphs, which is 307 

super-exponential (ܱ ൬݊! 2 ೙!(మ!(೙షమ)!)൰, where n is the dimensionality46). On the other hand, 308 

inference in Boltzmann machines requires a search over ܱ(2௡) states after binarization to 309 
calculate a gradient, and training VAEs requires the optimization of a non-convex objective 310 
function. Such problems may be potential candidates for quantum approaches: for smaller 311 
input sizes, near-term approaches without qRAM may be developed to perform exact searches 312 
across the space of Bayesian networks, while for moderate-sized problems, approximate 313 
quantum analogues of Boltzmann machines and VAEs have been tested in simulation and 314 
experimentally6,7, with the optimization being conducted through QA. We note also that for all 315 
these models, prior knowledge of molecular interactions may be used during training to suggest 316 
causal network interpretations. 317 

 318 

In contrast to direct imputation of molecular phenotypes, intermediate phenotypes may be 319 
derived at the level of sets of genes (such as functional pathways), and cell-type proportions. 320 
For instance, Weighted Gene Correlation Network Analysis (WGCNA) performs a version of 321 
hierarchical clustering to derive co-expression modules, which are enriched in gene pathways47, 322 
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and non-negative matrix factorization (NMF) based on ‘marker-gene’ profiles can be used to 323 
decompose bulk transcriptome data into components corresponding to cell-type fractions45.  324 
Exact optimization of these models is again intractable, where exact hierarchical clustering 325 
would require a search over a large space of trees, and NMF is a non-convex optimization 326 
problem.  The former may be a candidate for an exact quantum solution for small-scale 327 
problems, while both may benefit from quantum heuristic approaches (a QA approach to NMF 328 
is found in ref. 48 and quantum speedups for approximate clustering are described in ref. 22).  329 
While clustering ~1000 - ~20,000 features is common in genomics, there are a number of 330 
applications where a relatively small number of features, ~100, are clustered across samples 331 
(e.g., protein-array data).  Clustering associated with global minimization of objective functions 332 
is of great interest in these small feature number cases. More generally, comparison of clusters 333 
(and solutions to other genomic algorithms) derived from exact and approximate greedy 334 
minimization would inform the nature of the errors associated with applying greedy algorithms 335 
to large numbers of features and samples, as well as suggest possible approaches to improving 336 
the greedy algorithms in the short term. Application of these methods at full genomic scale, 337 
however, would require further technical developments in qRAM or quantum processor size. 338 

Mapping Neuro-Behavioral Variation via Neuroimaging and Deep Phenotyping 339 

The overarching goal of ‘convergent’ neuroscience is to link cellular-level mechanisms to 340 
system-level observations and ultimately behavior.  Multi-modal neuroimaging provides rich 341 
high-dimensional data that can map neural and behavioral mechanisms in humans. While many 342 
quantitative optimizations remain to be done, one of the core challenges is accurate 343 
identification and alignment of brain anatomy across people to reference atlases. For instance, 344 
one widespread approach implemented in FreeSurfer software49 employs a sequence of 345 
registration steps involving the minimization of an energy functional over the spatial 346 
transformation field. Here, potential quantum heuristic approaches could be brought to bear 347 
for images of moderate resolution if the corresponding energy function (Hamiltonian) can be 348 
mapped to an Ising-type model.  A related challenge involves training statistical models to 349 
rapidly and accurately quantify neuro-behavioral variation. For instance, the presence of active 350 
psychotic symptoms in previously unseen individuals diagnosed with schizophrenia and bipolar 351 
illness can be predicted using dynamic functional connectome features derived from fMRI50. 352 
Quantum analogues (such as HQMMs9,31, see ‘Genetics and Sequence Analysis’) may help train 353 
such predictive models more efficiently. 354 

Computational neuroscience has used circuit models to inform and constrain experimental 355 
observations. Dynamical neural models operate at the local circuit or global level, and use 356 
parameterizations based on known constraints (e.g. biophysical parameters) or learned de 357 
novo. Local and global neural dynamics are typically highly nonlinear, producing difficult 358 
optimization problems in the case of parametric model fitting51, and requiring a rich model-359 
class for de novo learning methods. Fluctuations at equilibrium exhibit complex inter-360 
dependencies. Additionally, the hierarchical relationships between genetics, anatomy, function 361 
and the equilibrium connectivity neural state are, in general, highly nonlinear, and only partially 362 
captured by available computational models. Current classical models relate such simulations 363 
to equilibrium distribution features (or to resting state characteristics): for instance, Ising 364 



10 
 

models and second-order mean-field regional models of resting-state fMRI observations52,53. 365 
These differential equation-based analyses of global brain dynamics represent regional firing 366 
rates using a mean-field approximation52. Such models can be fitted to functional neuroimaging 367 
data, by linearizing the initial stochastic nonlinear system of differential equations around a 368 
fixed point using the method of moments52, and using methods such as Approximate Bayesian 369 
Computation to fit parameters51. In the QC domain, quantum algorithms have been developed 370 
which have the potential to offer exponential speed-ups in the solution of linear differential 371 
equations54,55. Furthermore, models such as the Quantum Boltzmann machine (QBM)6 and 372 
Quantum VAE7, as discussed in the previous subsection, may be naturally applied to model 373 
complex distributions as found in neurodynamics datasets.  374 

General-purpose quantum solvers for nonlinear systems of differential equations have also 375 
been proposed56, although currently these seem unlikely to offer speed-ups over classical 376 
methods. Efficient general-purpose solvers would eliminate the need for linear approximations, 377 
and allow more accurate fitting of neural dynamical models, particularly out of steady state (for 378 
example, transitions between resting-state and task-based fMRI). This application may help 379 
motivate finding better quantum algorithms for nonlinear differential equations. 380 

The computational challenge in human neuroscience is particularly acute in the case of ‘deep’ 381 
behavioral phenotyping (e.g. digital ‘real time’ measures), which can generate massive amounts 382 
of continuously measured dynamical behavioral variables with varied granularity. In this 383 
situation, there is clear potential for ‘very deep’ optimization and the opportunity for massive 384 
state-space exploration. Relevant use-case scenarios include ‘in-the-moment’ clinical decisions 385 
that may require rapid computation. This becomes challenging for longitudinal real-time digital 386 
phenotyping, which may require rapid and precise data reduction. For instance, rich 387 
individualized phenotypic characterization using high-resolution video and audio datasets have 388 
yet to be leveraged since they are identifiable in raw form and present operational challenges 389 
to data reduction and protection of participant privacy.  390 

Collectively, the complexity of human neuro-behavioral data tests the boundaries of learning 391 
algorithms, which have to deal with the high-dimensionality of data needed to robustly link 392 
nonlinear dynamics of brain states (e.g. fMRI) and the influence of time-related variables 393 
relevant to behavioral mapping. Recent deep learning approaches using interpretable recurrent 394 
networks have provided a powerful means of learning such brain-state/behavior associations 395 
de novo by jointly modeling fMRI and behavioral data57. Quantum analogs of neural network 396 
frameworks (such as QBMs6 and QVAEs7) have the potential to discover novel structure in these 397 
datasets. Models such as HQMMs provide alternative dynamical models with intrinsically 398 
quantum representations31, which have been shown to have comparable or possibly improved 399 
performance relative to classical methods on small-scale problems through classical 400 
simulations. Further, there is evidence that HQMMs allow complex dynamics to be modelled 401 
with a reduced state space9 compared to classical models.  The application of such methods to 402 
behavioral data, though, is a long-term goal, since reliable qRAM appears necessary to handle 403 
large dataset sizes. 404 
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Integration across disciplines 405 
Stitching together insights across fields and levels of analyses, to yield a complete picture of 406 
brain function, is an ongoing challenge. While the extent to which quantum processes are 407 
relevant across these levels is unclear, quantum machine learning may help elucidate the 408 
interdependencies between levels through its ability to learn and simulate nonlinear, 409 
potentially classically intractable, models. One promising avenue involves mechanism-agnostic 410 
machine learning methods like deep neural networks, where biological insights are gained by 411 
interpreting the model a posteriori. Such an interpretable framework would involve 412 
connections between modules such as gene regulatory networks on the one hand, and 413 
structural/functional neuroimaging parameters (e.g. cortical thickness, white matter integrity, 414 
dynamic functional connectivity, etc.) on the other. The exact nature of these connections 415 
could be altered in competing hypotheses. One could imagine a hierarchical network with 416 
molecular phenotypes at the base, emergent neuroimaging-based parameters at a higher layer, 417 
and behavioral phenotypes as prediction targets. An alternative framework would treat the 418 
molecular and neural system-level components as parallel factors in determining behavior, with 419 
the latter having been influenced at a developmental stage, and not directly emerging from the 420 
molecular phenotypes per se but rather operating in dependent lock-step. Thus, different 421 
architectures of relationships between levels of analysis may be constructed. The NIMH has 422 
recently supported efforts at building such multi-scale, convergent neuroscience approaches 423 
(https://grants.nih.gov/grants/guide/pa-files/par-17-176.html). Such an analysis could be aided 424 
by quantum neural networks (QNNs)58 and quantum variational classifiers59, designed for use 425 
on non-qRAM, gate-based quantum computers. Quantum variational classifiers have been 426 
shown to be able to successfully classify states that were designed to be hard to simulate 427 
classically59. This hints at the greater generality of such circuits than their classical counterparts. 428 
Here the challenge lies in scaling up the available number of qubits. 429 
 430 

Epilogue 431 

 432 
While the field of QC is undergoing notable development and progress in both hardware and 433 
software, a number of significant knowledge gaps and challenges remain. To surpass classical 434 
computers, quantum computer architectures will need to improve numbers of and connectivity 435 
between qubits, reduce error rates both for operations and storage, as well as expand 436 
algorithmic development into all areas where classical computing faces inherent bottlenecks. 437 
These challenges are all significant and are partially conflicting; indeed, the central 438 
experimental QC challenge is to create quantum systems that are both highly decoupled from 439 
unwanted environmental degrees of freedom yet subject to fast and precise control and 440 
measurement. While there has been steady experimental progress over the past two decades, 441 
it is not easy to predict the rate of future improvements in QC. A recent consensus study on the 442 
progress and prospects of QC from the National Academies of Sciences, Engineering and 443 
Medicine estimates that to find a private key in a 1024-bit RSA encrypted message using Shor’s 444 
algorithm requires building a quantum computer that is five orders of magnitude larger and has 445 
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error rates that are two orders of magnitude better than existing machines60. More than 100 446 
academic and government laboratories around the world are working to address these 447 
challenges with a variety of hardware solutions60. These include ion-trap quantum computers 448 
with 20-100 qubits that are likely to become available by the early 2020s60. Leveraging the 449 
power of lithographic technology, superconducting quantum computers hold great promise, 450 
and 5-, 16- and 20-qubit machines are currently available to users via the web. Other promising 451 
approaches include developing quantum computers based on photonic, neutral-atom and 452 
semiconductor qubits60. 453 
 454 
As mentioned above, many algorithmic quantum speedups depend on qRAM, but there is no 455 
practical implementation of this technology. In fact, this reliance on qRAM, in part, stems from 456 
attempts to arrive at algorithms that are essentially quantum versions of classical algorithms. 457 
An alternative approach is to design intrinsically quantum algorithms which take advantage of 458 
quantum features such as interference. This alternative approach offers the additional benefit 459 
that small-scale versions of problems are readily implementable on existing hardware. Indeed, 460 
recent advances in “near-term” quantum machine learning algorithm development exploit the 461 
exponentially large quantum state space to estimate kernel functions59,61 as well as the natural 462 
ability of quantum computers to execute kernel-based classification62,63. Generalizations of 463 
these algorithms for genomics applications hold great promise and will allow assessment of the 464 
current capabilities of publicly available quantum computers34. Given the potential of quantum 465 
computers to efficiently explore a vast state space, the natural applications to neuroscience 466 
problems are largely associated with optimization and machine learning as detailed above. 467 
However, yet another path is to identify computational problems that can be naturally cast into 468 
a quantum framework. For example, the minimum free energy among all possible protein folds 469 
is an important problem with an exponentially large search space and thus a compelling target. 470 
Another natural set of problems are those associated with quantum biology – the study of 471 
chemical processes including formation of excited electron states within molecules (e.g., 472 
proteins) in living cells, and their functional effects64. These processes are inherently quantum 473 
mechanical and may involve an exponentially vast set of excitation states, which can only be 474 
efficiently modeled by applying transformations to an exponentially large state-space afforded 475 
by a quantum computer. It is unclear whether such processes can be relevant to higher-levels 476 
of brain function (and consciousness65); the algorithms used by the brain at David Marr’s 477 
algorithmic/representational level may ultimately be classical66, although the advent of 478 
quantum machine learning means that increasingly this need not be the case for artificial 479 
agents.  While a cautious albeit optimistic estimation associated with steady progress of 480 
quantum hardware development (e.g., applying Moore’s law) puts the availability of sufficiently 481 
powerful, universal quantum computers years in the future, sudden, orders-of-magnitude 482 
breakthroughs in resolution, noise reduction, etc. are not unprecedented in experimental 483 
physics. Such unforeseen breakthroughs would unleash the power of quantum computing to 484 
address pressing computational challenges in biology.       485 
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Figure Legends 639 

Figure 1. Concepts in Quantum Computing. A. Conceptual illustration of bit vs. qubit. 640 
The state of a qubit can be represented by a point on the unit sphere with the North and 641 
South poles corresponding to the states 0 and 1 of a classical bit. B. The state space of 642 
3 qubits is a 23-dimensional complex vector. C. Classical (Number Field Sieve (NFS) 643 
algorithm) and quantum (Beckman-Chari-Devabhaktuni-Preskill (BCDP) implementation 644 
of Shor’s algorithm) runtimes for factoring integers. Shor's algorithm for quantum 645 
computers yields an exponential speedup over the best-known classical algorithm 646 
(Panel C from ref 12). 647 
 648 

Figure 2. Complexity of linking levels of analyses from genomics to human 649 
behavior. The challenge consists, in part, of the need to interrogate the 650 
enormous search space for determining the mapping across levels, which 651 
constitutes a many-to-many probabilistic problem. Computational innovation will 652 
be a key effort to help close these gaps.  Figure adapted with permission from 653 
ref. 29. 654 
 655 

Boxes 656 

Box 1: Glossary of Terms 657 

Biological:  658 
○ Single nucleotide Polymorphisms (SNPs). Germline (inherited) mutations in a genome 659 

where the identity of a single nucleotide is changed relative to a reference genome, and 660 
whose prevalence in a population is dependent on the pattern of their inheritance. 661 

○ Genetic recombination. Exchange of segments between separate genomes or 662 
chromosomes, or different regions of the same chromosome, by the creation of single- (eg. 663 
viruses) or double-stranded (eg. humans) breaks and subsequent ligation of the crossed 664 
segments. 665 

○ Genome-Wide Association Study (GWAS). Identification of mutations in a population with 666 
statistically significant associations to the occurrence of a studied phenotype.  667 

○ Quantitative Trait Loci (QTL). Mutations in a genome or population with statistically 668 
significant association to the occurrence of a studied endophenotype, i.e. a phenotype at 669 
the sub-organism level, for example, cell- or tissue-level gene expression. 670 
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Machine Learning: 671 
○ Hidden Markov Models (HMMs). Stochastic latent state method to model a linear 672 

sequence of observations as a probabilistic sequence of underlying state transitions and 673 
state-to-observation emissions.  674 

○ Boltzmann Machines. Generative classical neural network model, based on an energy 675 
function containing local (unary) and pairwise terms over an underlying undirected graph.  676 
Recently, the model has been extended to replace the classical energy with a quantum 677 
Hamiltonian to form a Quantum Boltzmann Machine (QBM)6. 678 

○ Variational Auto-Encoders (VAEs). Generative neural network model, incorporating a latent 679 
space which is mapped to observed variables by a learned feedforward classical neural 680 
network.  Latent space can be a classical (Gaussian) or quantum (QBM)7 distribution.  681 

Quantum Computing: 682 
○ Quantum Superposition. A fundamental principle of quantum mechanics whereby the 683 

overall state of a system (e.g., electron in an atom, qubit, etc.) is in a linear combination of 684 
orthogonal basis states (e.g., lowest energy state, next excited state, etc.).  For example, if 685 
|0⟩ denotes the lowest energy state of a qubit and |1⟩ an excited state of a qubit, the state 686 
of the qubit, |߰⟩, can be in a superposition of basis states: |߰⟩ = ߙ଴|0⟩ + ߙଵ|1⟩.   687 

○ Quantum Random Access Memory (qRAM). In analogy with random access memory (RAM) 688 
which uses n bits to address 2௡ distinct memory cells, qRAM uses ݊ qubits to address any 689 
quantum superposition of 2௡ memory cells8.  690 

○ Quantum Annealing (QA). A technique for minimizing a function ݂ using a low-temperature 691 
quantum system whose energy corresponds to ݂, along with an auxiliary field which is 692 
slowly turned off.  The auxiliary field attempts to create superpositions between nearby 693 
qubit strings, similar to equally weighting possible solutions, and facilitates “quantum 694 
tunneling” (i.e. transition of a quantum state between nearby low-energy strings even 695 
through regions of higher energy) to arrive at a minimum of f relatively efficiently once 696 
turned off.   697 

○ Hidden Quantum Markov Model (HQMMs). The quantum analogue of HMMs, where the 698 
sequence of quantum operations is such that information of the state transition and 699 
emission probabilities of the qubits can be retained even after partial measurement of the 700 
system (i.e. measurements do not collapse the entire system)9.  701 

 702 

Box 2: Computational Opportunities for the Future 703 

Existing quantum algorithms, for example, function minimization, are often written in terms of 704 
abstract and highly general functions. If biological applications can help motivate specific, 705 
mathematically well-posed tasks, then it may be the case that targeted quantum algorithm 706 
development can lead to improvement. While this promise is discussed at length in the 707 
following section in the context of the study of the human brain, here we briefly introduce 708 
some of the key areas of ongoing research in quantum computing, related to and providing the 709 
context for applications in biology. 710 
Optimization in biomolecular problems. There has also been considerable interest in extending 711 
QC to biomolecular and biological problems24. In several cases, small examples of biological 712 
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problems have been mapped to combinatorial optimization problems. A QA approach was 713 
employed in the exploration of the coarse-grained folding landscape of a six-amino acid 714 
peptide, within a 2D lattice framework25. QA was also evaluated against a set of classical 715 
methods on an optimization problem involving the search for the consensus DNA sequence 716 
motif of transcription factor binding26. In this instance, the authors trained a classifier 717 
(sequence is binding or non-binding) and a ranking algorithm (ranking sequences by binding 718 
affinity), finding a slight improvement of QA over classical approaches in the classification 719 
problem, and similar performance for the ranking task.  720 
Simulation of classical and quantum systems. There have been successful demonstrations of the 721 
application of quantum computation to problems in chemistry. A Variational Quantum 722 
Eigensolver (VQE) approach was used27 to estimate the ground state energies of small 723 
molecules as a function of their component atomic separations. Briefly, short quantum circuits 724 
define a variational ansatz of trial solutions for the ground state and the circuit parameters are 725 
varied to minimize the energy using algorithms such as gradient descent.  While the complexity 726 
of simulating quantum dynamics on quantum computers is well understood and is usually 727 
tractable, the success of VQE will depend on the quality of the ansatz and is an active area of 728 
ongoing research. 729 
Quantum simulation of chemical reactions is known in principle to be possible on a quantum 730 
computer and as the practical details are fleshed out, this is expected to be an important 731 
application of quantum computers for applications both inside and outside of biology. One 732 
particular strength is in modeling dynamics, and there is evidence that energy transport and 733 
electron transport in biological molecules involves quantum effects that could potentially be 734 
more accurately modeled by a quantum simulation28. 735 
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