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and Deep Learning
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Schools of Computer Science and Biosciences, University of Nottingham, Nottingham, United Kingdom

Understanding plant growth processes is important for many aspects of biology and food
security. Automating the observations of plant development—a process referred to as
plant phenotyping—is increasingly important in the plant sciences, and is often a
bottleneck. Automated tools are required to analyze the data in microscopy images
depicting plant growth, either locating or counting regions of cellular features in images. In
this paper, we present to the plant community an introduction to and exploration of two
machine learning approaches to address the problem of marker localization in confocal
microscopy. First, a comparative study is conducted on the classification accuracy of
common conventional machine learning algorithms, as a means to highlight challenges
with these methods. Second, a 3D (volumetric) deep learning approach is developed and
presented, including consideration of appropriate loss functions and training data. A
qualitative and quantitative analysis of all the results produced is performed. Evaluation of
all approaches is performed on an unseen time-series sequence comprising several
individual 3D volumes, capturing plant growth. The comparative analysis shows that the
deep learning approach produces more accurate and robust results than traditional
machine learning. To accompany the paper, we are releasing the 4D point annotation tool
used to generate the annotations, in the form of a plugin for the popular ImageJ (FIJI)
software. Network models and example datasets will also be available online.

Keywords: plant analysis procedures, machine learning, deep learning, phenotyping, software, annotation
INTRODUCTION

Understanding plant growth is becoming increasingly important, as the ability to feed an increasing
population is heavily dependent on successful and efficient crop production. Growth of plants
occurs as an interaction between two key activities: cell division and cell expansion. In
developmental biology, quantifying cell divisions is an important measure to estimate and
compare organ or tissue growth between different genotypes or to compare different growth
conditions. In plants, the root meristem is located at the root tip and overall root growth is achieved
by the sum of generating new cells by cell division and their subsequent elongation. Therefore,
quantifying cell division is important when determining root growth dynamics. Being able
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to analyze these events is critical in many plant science
experiments. Modern microscopy methods such as confocal or
light sheet microscopy allow a biologist to see inside a plant root,
at a cellular scale, and even over time. Analysis of these datasets
for morphological changes remains challenging, as they often
comprise large, possibly 4D image data. Certain fluorescent
markers can be used to help visualize events such as cell
division, but nevertheless, finding and counting the markers in
these expansive datasets remains a labor intensive task.

Three-dimensional confocal microscopy is an imaging
technology that allows us to see inside biological samples.
Fluorescent markers or dyes are excited by laser light, allowing
for clear labeling of particular structures within an organism.
Volumetric image datasets can therefore be produced allowing
inspection at the cellular scale. If timelapse imaging is used, such
volumes can be collected at regular time points. The resulting
“4D” datasets are large, and due to their dimensionality are hard
to inspect by hand. Labeling regions in 3D data is often reduced
to labeling 2D slices or drawing complex surfaces. Both methods
are time consuming and often frustrating to perform in practice.
This challenge is the motivation behind the study performed
here: to determine the success of segmenting and locating
fluorescent nuclei markers inside an Arabidopsis root using
machine (classical and deep) learning methods. The particular
markers used in this paper provide a unique challenge, as the
structures are small and sparse, often ill-defined, and are marked
by the same colour as other distracting features in the image such
as the cell walls. We believe this therefore provides a tough test,
applicable to a wide variety of real-world markers and features in
confocal images.

Segmentation of nuclei in 3D has presented image analysis
with a challenge for many years. Indeed, labeling and segmenting
cells and sub-cellular features such as nuclei has been an active
research area for decades (Meijering, 2012). There is a need
across many biological disciplines to locate, count, and segment
nuclei and nuclear markers for quantification in many types of
experiments (Xing and Yang, 2016). Until recently, handling the
challenges of nuclei segmentation, especially when in close
proximity, has traditionally been accomplished by concatenating
a pipeline of various analysis techniques together to separate the
features in the image [e.g., (Mathew et al., 2015; Xing and Yang,
2016)]. Now, machine learning-based methods are providing
more reliable results across a wider range of datasets without the
need to use many individual processing steps. Deep machine
learning in particular has begun to challenge preconceptions
about how to accomplish image analysis tasks. Here, we present
two approaches to a classic problem in confocal microscopy:
fluorescent marker segmentation and localization. In particular,
we are segmenting cell-cycle nuclear markers in 4D datasets;
although the approach is flexible in nature and could be adapted
for detection of similar nuclear markers. To do this, first, we
explore a number of classical machine learning approaches to find
the markers, and evaluate their segmentation accuracy. Second, we
then build and test a modern deep machine learning approach to
segment cell-cycle nuclear markers in 4D datasets, thereby
developing an AI-based solution to the problem, operating on
Frontiers in Plant Science | www.frontiersin.org 2
full volumetric (ie., x, y, z) datasets. We then compare and contrast
the methods, as well as using the deep learning approach in a final
counting scenario, were we are interested in counting how many
cells are flagged by the marker (rather than stopping at
labeling pixels).
RELATED WORK

It is certain that over coming years, we will see a trend for
traditional image analysis and processing pipelines to be replaced
or at least supported by dedicated deep learning models. Some
existing popular tools for cell image analysis, such as CellProfiler
(McQuin et al., 2018), have recently begun to support the ability
to load in developed deep learning models to form part of their
analysis suite. Beyond segmentation, other applications of deep
learning with reference to microscopy include approaches to
generate super-resolution images—software-enhanced images
creating clarity beyond the physical limits of the microscope
system in use (Wang et al., 2019).

In recent years, traditional computer vision and machine
learning has been used in a variety of fields to perform image
segmentation. Image analysis at the textural level (i.e., considering
properties of local pixel patches) has been used by many authors
when wanting to produce a segmented output. Zayed and Elnemr
(2015) proposed a method for detecting and segmenting
abnormalities in Computed Tomography (CT) images of lungs,
such as pulmonary edema and tumors. The authors relied on
Haralick features based on Gray Level Co-occurrence Matrix
(GLCM) to extract textural patterns from the lung images.
Haralick features are a set of statistical measurements that
effectively describe the overall texture of the image. Similarly,
Chaddad et al. (2011) relied on five measurements of the Haralick
features for classifying and segmenting colon cancer cells in multi-
spectral bio-images. Fleet et al. (2014) used Haralick features to
capture textural patterns from image reconstructions of
ultrawideband microwave scans. They demonstrated the feasibility
of Haralick features for breast cancer detection by classifying
between malignant tumor present and no malignancy found.
Recently, Brynolfsson et al. (2017) analyzed Haralick features
extracted from apparent diffusion coefficient (ADC) MRI Images
and assessed the sensitivity of these features against five image
acquisition parameters. Similarly, Campbell et al. (2017) also
utilized Haralick features in a recent study for textural analysis of
brain positron emission tomography (PET) images. In addition to
being effectively used in medical textural analysis, Haralick features
have also been effectively used in the quality control field (Corbane
et al., 2008; Bhandari and Deshpande, 2011). As a choice of feature,
then, Haralick seem to show a capability to segment regions in
challenging image data across a variety of datasets.

Three-dimensional segmentation using deep learning presents
particular challenges. Most deep learning to date has focused on 2D
data, requiring significantly fewer computational resources due to
the size of the datasets in use. Care must be taken when developing
fully volumetric approaches, as the limits of even modern computer
systems are easily reached. The work here focuses on plant cells, but
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3Dmicroscopy segmentation using deep learning is an active area of
research in many domains. Recent work has developed a deep
network approach to analyzing neurites in brain EM images (Zeng
et al., 2017). Convolutional neural networks have also been used to
segment larval zebrafish intestines in light sheet images (Hay and
Parthasarathy, 2018). This was found to be as accurate as human
experts and outperformed other non-deep machine learning
approaches in common use, such as random forest and support
vector machines. MRI (Magnetic Resonance Imaging), the medical
3D imaging technique, has also received attention from the deep
learning community, applications of which include brain scan
analysis (Akkus et al., 2017), and diagnostics for knee
imaging (Bien et al., 2018).

When segmenting regions of interest in 3D, several deep
learning architectures may be used, but all have a common
structure. Key to any form of semantic segmentation is to enable
an efficient upscaling in the network so that a high-quality, pixel-
wise map can be produced for the segmentation labels.
Convolutions are used to reduce the initial image dimension
down to a spatially reduced set of dense, high-level features.
These are then upsampled back into pixel values at a scale
normally equivalent to the input image. As spatial information is
lost in the central part of the architecture, techniques have been
developed to maintain spatial information throughout this process.
These include skip layers in the Fully Convolutional Network [e.g.,
(Long et al., 2015)] or in the case of U-Net, many feature channels
are additionally used in the upscaling path to preserve features
(Ronneberger et al., 2015). This latter 2D approach is expanded to
handle volumetric data with 3D U-Net (Çiçek et al., 2016). In
particular, the authors recognize the challenge of annotating 3D
data to provide as training instances, so propose a 2D annotation
approach. The network is envisioned to both fill in sparse 2D
annotations to produce a 3D dataset segmentation, and to
generalize to new unannotated datasets. Both applications are
relevant to this work, so a 3D encoder-decoder architecture
based on a modified U-Net will be the base architecture used here.

The rest of this paper is organized as follows. In the following
section, we describe the nature of the microscopy involved and
the dataset details. This is followed by the methodology section
where the machine learning systems utilized and the proposed
deep learning architecture are outlined. The results achieved on
the dataset by all systems are also compared here and discussed.
We then present quantitative and image-based results of the
developed deep learning approach on unseen data, and the
results are then explored in the discussion. This includes an
examination of the failure cases of the network, and proposed
methods of handling such errors in the future.
METHODOLOGY

The Confocal Dataset
The confocal dataset used here is composed of five 3D time-lapse
sequences depicting five growing Arabidopsis thaliana roots. The
purpose behind the time series is to ensure we capture cell
divisions, hence confocal microscopy time course datasets have
Frontiers in Plant Science | www.frontiersin.org
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been generated. Visualizing cell division events is challenging, as
the divisions (seen as the emergence of new cell walls) happens
relatively quickly compared to the data capture rate, so this
process is likely to occur between image capture points.
Therefore, identification of dividing cells is facilitated here by
the use of specialist marker lines, in which fluorescent cell
division-specific proteins allow the visualization of dividing
cells. In particular, we made use of the Arabidopsis thaliana
line CYCB1;1:: CYCB1;1-GFP (Boudolf et al., 2004) which marks
nuclei of dividing cells. Imaging was carried out on a Leica SP8
Confocal microscope. The fluorescing markers can be seen in the
captured image as bright spots in Figures 2A, C, for example.

To visualize and quantify this cell division in Arabidopsis, we
imaged growing roots of 5-day-old seedlings (grown at 22°C in 12-
h light 12-h dark cycles on 0.5 MS, pH 5.8) for up to 3 h, every 10–
30 min. To train the software, every cell division event was
manually annotated using “Orthogonal Pixels” in FIJI
(Schindelin et al., 2012). This is a custom written plugin which
alleviates the challenge of labeling broadly spherical 3D structures
as points in volumetric data. The problem with annotating such
data is that it can be a challenge to identify where the center of
such a structure lies, and additionally in identifying if a structure
has already been labeled on a neighboring slice. This tool allows
efficient capture of point annotations in 3D or 4D by representing
3D clicks visually as spheres. At each stack, spheres representing
clicks in nearby slices are also visualized, reducing the chance of
annotating the same object twice (see Figure 1). This plugin is
available as a supplemental file to accompany this paper (see
Supplemental Data).

In total, a little over 1,000 cell division events were annotated. To
enable efficient labeling, all such events in the dataset have been
annotated by a single expert, stored as x, y, z, and t coordinates
representing the center of each nucleus in 3D space and at a point in
time. These have been manually localized in the datasets by
navigating to the x, y, z, t position within the data using the
plugin, and adding an annotation with the space bar. Annotations
are then stored as a CSV text file alongside the volumetric image
data. Note that although individual time points are considered here
for the marker localization task, we anticipate the approach being
deployed on data captured over longer periods and more frequent
time points using technology such as light sheet microscopy. A
comparison of confocal microscopy and lightsheet microscopy and
the challenges of imaging with plants can be found in Ovecka et al.
(2018). Importantly, the data resolves to ultimately the same format
as used here, both being volumetric RGB image stacks, exported
from the manufacturer’s microscopy software as uncompressed
TIFF files.

The point x, y, z coordinates at a specific time need further
processing in order to effectively train a semantic segmentation
network. Our point labels must be expanded to encompass a
volume of space, which is centered on the feature we are
interested in. To this end, in order to generate a ground truth
volume for training purposes, a 3D Gaussian function is used to
generate a region of interest at every x, y, z coordinate. This
provides a contextual volume of space to the network centered
on the area of interest. As the marker is concentrated in the
August 2020 | Volume 11 | Article 1275
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nucleus with some bleed into the surround cell space and
surrounding space, this is an appropriate representation.

G(x, y, z) =
1

2s 2 exp( − ((x − x0)
2 + (y − y0)

2 + (z − z0)
2) (1)

Here, x0, y0, z0 represent the center of the area of interest, and s
represents the standard deviation of the Gaussian curve. The
standard deviation effectively defines an area of interest centered
on the click locations. Depending on the loss function in use, this
Gaussian can be used to define contextual interest which drops off
away from the center, or a threshold can be applied to effectively
produce fixed radius spheres around the annotation points. This
latter approach produces a binary 3D volume where the areas of
interest (nuclei in this case) are represented in a sphere defined by
logical 1’s and anything other than the nuclei are represented by
logical 0’s. A 2D slice from a 3D volume can be seen in Figure 2A,
while its corresponding ground truth can be seen in Figure 2B
where a 3D Gaussian is generated at every point of interest from a
ground truth coordinate file accompanying the image data. In the
case of Figure 2B, this is then thresholded at a fixed distance to
produce a spherical region.

As explained above, the confocal dataset is composed of five
time-lapse sequences comprising roots offive different plants, which
contain in total 142 individual time points. Out of these five
sequences, four (containing 136 time points total) are used for
training (132) and validation (4) while the last (containing 6 time
points) is used for evaluating final performance of the network. At
Frontiers in Plant Science | www.frontiersin.org 4
no time during training is any volume from the test sequence
introduced to the network, ensuring adequate separation between
training and testing, and allowing a “real world” demonstration of
the network as if run on a newly captured time sequence in a
subsequent biological experiment. We used this approach rather
than randomly assigning individual time points to test and train sets
to avoid close correlations between testing and training, i.e.,
neighboring time points could be separated into training and
testing, while being similar in appearance. However, we note this
does leave limited data for testing, and means the test set is
challenging as it is drawn from a separate capture session.

Classical Machine Learning
To begin with we will introduce and implement some classical
machine learning approaches to the task; both supervised and
unsupervised algorithms will be implemented. While we
anticipate these approaches to have some success, we also
anticipate challenges with the complex images present here, which
we hope the subsequent deep learning approach will overcome.
Supervised machine learning approaches use manual ground truth
with labeled volumes, where the goal is to learn a function that,
when given new unseen data, is able to predict the output label of
that data. Unsupervised learning on the other hand does not require
any ground truth and the goal is to infer the underlying distribution
or structure of the given data. We provide here a brief consideration
of some commonmethods as comparison; this is not intended as an
exhaustive study of machine learning approaches.
A B

FIGURE 1 | (A) Annotation of cell division events using the orthogonal pixels plugin in Fiji Schindelin et al., 2012. (B) Zoom of (A). Note that point annotations are
visualized as spheres—circles are seen in each of the orthogonal views. This makes labeling of 3D data in individual views easier for the annotator, and prevents
common errors, such as double labeling of single structures. Crosses indicate the center of the sphere, indicating the plane on which they were placed.
A B C

FIGURE 2 | (A) Shows a 2D slice from a 3D confocal volume, and its corresponding ground truth can be seen in (B). (C) shows zoomed details of panel (A),
highlighting the fluorescing cell-cycle markers, as well as bleed-through marker fluorescence and noise.
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Unsupervised Learning
To begin, we implement an unsupervised learning algorithm, k-
means clustering (Lloyd, 1982). K-means aims to divide the data
points into “K” clusters, a cluster being an aggregation of data
points having certain similarities. For our purposes, clustering
will be performed based on pixel intensities.

From the input image shown in Figure 2, we can observe that
the entire sample, based on intensities, can be grouped into three
main regions: the background, the foreground and the bright
nuclei. Based on this observation, clustering is performed on the
test volume with three clusters (i.e., k = 3), with the intention of
each region being represented by a cluster. K-means clustering is
an iterative algorithm that continues until cluster assignments of
the data points stop changing below a certain epsilon value (0.2
used here). Once all pixels are grouped into their respective
clusters, we can separate our cluster of interest (representing the
marker) from the others. This is achieved with the help of a masked
image that only displays the pixels of the cluster related to the
nuclei while ignoring the other two clusters. The pixel-distribution
of a single test volume while using each cluster as a mask is given in
Table 1. Looking at Figure 3C, cluster 2 appears to provide the best
segmentation of the nuclei marker in our method, but an optimal
k-means approach may require more complex handling, such as
combining, of a larger number of clusters.

As can be seen, despite the simple implementation method
requiring no training data, and being based on intensity values
alone, the k-means algorithm was able to group all the pixels
representing nuclei into a single cluster. But since this is based on
an intensity measure alone (i.e., without spatial context), pixels
having intensities similar to the nuclei are also grouped into
the same cluster, which is evident from the output, where the
location and shape of regions is not taken into account by the
algorithm. For our simple scenario here, k-means appears to
produce acceptable results without any supervised training, albeit
including some irrelevant biological features into the segmentation,
but for more complex images this method is likely to significantly
Frontiers in Plant Science | www.frontiersin.org 5
under-perform. By providing training data via supervised learning,
we hope to improve this result.

Supervised Learning
Supervised machine learning typically produces much more
accurate results than unsupervised methods, as the algorithm is
allowed to learn the relationship between input and the expected
output. However, unlike unsupervised methods, supervised
learning cannot work on the sample directly and needs to be
trained using a dedicated training dataset. Furthermore,
descriptive features must be extracted from the training dataset
before they can used in order to produce a more effective
predictive model. Raw pixels often do not contain enough
information for a system to learn effectively, so a number of
information-rich features must be extracted from the image data
first. A range of suitable supervised machine learning algorithms
and feature extraction methods have been analyzed here, with a
view to comparing the results achieved here with the deep
learning approach proposed later in this paper.

Feature Extraction
For any machine learning algorithm to be effective, a well
thought out feature extraction and selection pipeline is
necessary. As we are aiming to perform segmentation (i.e., per
pixel classification), we will explore textural features, i.e., features
that retain the original image dimensions, and by doing so
maintain the per pixel connection with the ground truth
volume. By being limited to textural features many of the
otherwise-effective, well-known feature extractors such as Scale
Invariant Feature Transform (SIFT) (Lowe, 2004), Speeded Up
Robust Features (SURF) (Bay et al., 2008), Bag of Visual Words
(BoV) (Csurka et al., 2004), Features from Accelerated Segment
Test (FAST) (Rosten and Drummond, 2005), Oriented FAST,
and Rotated BRIEF (ORB) (Rublee et al., 2011) would not be
suitable in our case.

Textural feature extraction methods analyze the spatial
distribution of gray values and compute local features at each
pixel by inferring often statistical measures from the local
distribution of features. Based on the literature review performed,
it has been established that to perform segmentation of images
textural features must be utilized and that Haralick features have
been demonstrated to be a strong candidate for textural analysis of
images. Taking guidance from previous studies and their findings,
we have also utilized Haralick features for the textural analysis of
our confocal dataset. Furthermore, in addition to Haralick features
A B C

FIGURE 3 | 2D representation of the (A) input volume, (B) the accompanying ground truth, and the (C) segmentation results achieved via k-means clustering;
green: background, red: non-nuclei foreground, yellow: nuclei.
TABLE 1 | Pixel distribution of each cluster using K-means clustering on a single
test volume.

Background (pixels) Foreground (pixels) Nuclei (pixels)

Cluster 1 9786380 1223668 4597
Cluster 2 10972171 37877 6021
Cluster 3 2627172 8382876 437
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and for the sake of comparison we have also utilized the popular
Local Binary Patterns (LBPs) which is another well-known and
effective feature for textural analysis. To note, feature selection is
important in machine learning as it is the foundation on which
learning is built; it is also in contrast to deep learning, where
features themselves are learnt and do not need to be selected. What
we represent here are commonly used feature selection methods,
rather than a necessarily optimal choice.

Haralick Textural Features
Haralick et al. proposed the Gray Level Co-occurrence Matrix
(GLCM) and the set of textural measures extracted from the
GLCM (Haralick et al., 1973). These features have since been
widely used in biomedical image analysis. Haralick feature
extraction consists of two steps, first the GLCM is determined by
calculating the occurrence of a gray level at a certain geometric
position for each pixel relative to its neighboring pixels. Next, a set
of nine statistical measures are calculated from the GLCM that
forms the textural representation of that image. The nine statistical
measures are angular second moment, contrast, correlation,
variance, sum variance, inverse difference moment, sum average,
entropy, and sum entropy.

Local Binary Patterns (LBPs)
LBPs are textural descriptors that were made popular as a strong
discriminatory feature by the work of Ojala et al. (Ojala et al., 2002)
but were first proposed as early as 1993 in (Wang and He, 1990).
LBPs determine the local representation of a texture by comparing
each central pixel to its surrounding neighbors and in doing so, the
image is encoded to a binary representation of its grayscale values.
The neighbors smaller than the central pixel are set to 0 while those
larger or equal to the central pixel are set to 1. A binary number is
generated by concatenating the neighboring pixels in a clockwise
manner and the resulting decimal value replaces the central pixel.
LBP is represented mathematically as

LBPN ,R(x, y) = o
N � 1

n=0
s(in, ic)2

N (2)

where ic represents the gray level value of the central pixel, in
represents the gray level values of N surrounding pixels in a
neighborhood of radius R, and the functions s(x) is represented as

s(x) =
1 x ≥ 0

0 x < 0

(
(3)

Classifiers
Once features have been calculated from the raw image data, we
then need algorithms to learn to classify data based on these
features. The three machine learning classifiers implemented
here (using the scikit-learn python library) are outlined below.
We chose them as sensible and popular classifiers, rather than to
claim they are optimal for this particular work.

Support Vector Machine (SVM)
Support Vector Machines, also known as maximum margin
classifiers (Bishop, 2006), are discriminative classifiers that are
Frontiers in Plant Science | www.frontiersin.org 6
formally defined using a separating hyperplane. A hyperplane is
a decision boundary that classifies data points falling on either
side of this boundary using their respective class. In two
dimensions, this is simply a line. Support vectors are the data
points that lie closest to the hyperplane and are the ones that are
most difficult to classify, and as such have a direct bearing on the
optimum location of the dividing hyperplane. SVM relies on the
proper kernel selection and a regularization parameter to be an
effective classifier, the selection of which has been described in
Implementation Details.

Random Forests (RF)
Random Forests comprise an ensemble of randomized decision
trees which use a bagging approach. A decision tree can be
thought of as performing a series of “yes” or “no” decisions
before eventually leading to a predicted class—a series of
questions are asked before zeroing in on the predicted class
label. A common problem with decision trees is that they tend to
very easily overfit to the training data; a single tree can very easily
fit to the details of that particular data rather than the overall
distribution of the general properties of that dataset.

Random Forests on the other hand are a model that is
composed of multiple decision trees, and demonstrates that
multiple overfitting estimators when combined tend to reduce
the overfitting effect. Random Forests average the final prediction
of each tree in the forest and follow two key concepts in doing so:
1) When building trees, the training data is sampled randomly
and 2) when splitting nodes, a random subset of features
is considered.

Gradient Boosting Classifiers (GBC)
Gradient Boosting is also an ensemble learning method made
from the combination of many decision trees, but differ from
Random Forests in the way the trees are built, their order and
how the results are combined. GBC builds one tree at a time,
where every new tree learns from the errors of the previous tree
and makes corrections accordingly (in contrast a Random Forest
builds each tree independently). Since GBCs are built in a
forward stage-wise manner all the results are combined along
the way rather than averaging at the very end, as is done in a
Random Forest model. GBCs are known to be an effective
classifier when tuned properly, especially when dealing with
highly imbalanced and sparse data (Frery et al., 2017), which
makes them a hopeful candidate here.

Implementation Details
All results reported in this work have been produced on our local
machine having an Intel Xeon 3.6 GHz processor and 16GB of
RAM. The proposed deep learning architecture was trained using
an NVIDIA GeForce GTX 1060 GPU.

As mentioned above, since a per-pixel classification is being
performed each pixel effectively becomes a feature for training
the classifiers. This produces an overwhelmingly large number of
features (2.1 Billion pixels from the entire dataset) that would
require an excessive amount of memory to process therefore, to
avoid running out of memory during analysis and to avoid over-
fitting the classifiers by using such a large number of features,
August 2020 | Volume 11 | Article 1275
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5,000 (out of 524,288) randomly selected features are retained
from each image (slice) for the training process, while no random
selection is performed for evaluation/testing, i.e., when testing or
evaluating the network, all features of the test sample are used
without any random selection of these features. Five thousand
features per image is the maximum allowed number before
running out of memory on our local machine; therefore, we
found it better to select these features randomly rather than
sequentially. This random selection of features provides a
representation of the full training dataset, as the ratio of the
nuclei to background pixels in the randomly selected features is
found to be the same as in the full dataset (1:1,500); it allows
features from the foreground to be selected despite being a very
small class. This imbalance between foreground and background
can be seen in, e.g., Figure 2, and training any classifier with such
an imbalance would create a natural bias toward the majority
class. This imbalance is tackled by performing a weighted
training of the classifiers and is accomplished by assigning a
higher misclassification penalty to the minority class (foreground
in this case) during training.

Parameter Hyper-Tuning
Classifiers are parameterized so that their behavior can be tuned
to the dataset on which they are trained and it is advised to find
the best combination of these parameters using a validation sub-
set before the training process can begin. Hyper-parameter
tuning was performed on all classifiers by using a random
search approach of 100 iterations and a three-fold cross-
validation. The best result for the SVM model was achieved by
using a regularization parameter, C, of 0.7 and a radial basis
function (RBF) kernel. Similarly, the best fit for the RF classifier
was achieved using 35 trees in the forest having a max depth of
17, 9 were the minimum samples required to split a node and 24
were the minimum samples required to be at a leaf node. The
Frontiers in Plant Science | www.frontiersin.org 7
quality of the split was measured by the gini criterion. GBC
produced the best results using 100 trees in the forest at a max
depth of 1, the minimum samples per leaf and the minimum
samples required for a split were found to be 0.2 and 0.3,
respectively. The quality of each split was measured using the
Friedman mse criterion.
Results
All machine learning operations are performed at the 2D level on
each individual 2D slice, the results of which are concatenated at
the end to get a 3D volumetric output. The middle output slice of
a test volume is shown in Figure 4 in an effort to visualize the
output volume.

Numerical evaluation of each result performance is carried
out by determining the F-measure value, which is defined as the
harmonic mean of precision and recall, and also referred to as the
F1 Score. Precision represents the ability of the network not to
classify a sample as positive when it is actually negative, and is
determined using

Precision, p =
tp

(tp + fp)
(4)

Conversely, the recall value is the ability of the network to
detect all of the positive samples present in the volume and is
determined using

Recall, r =
tp

(tp + fn)
(5)

where, tp is the number of true positives, fp is the number of false
positives and fn is the number of false negatives. The F-measure
is a combination of these values, giving an overall measure of
performance and is determined as
A

B

C

FIGURE 4 | 2D representation of the classification results achieved for a single test volume using machine learning. (A) Input volume and accompanying ground
truth. (B) SVM, RF, and GBC predicted outputs using LBP. (C) SVM, RF, and GBC predicted outputs using Haralick features.
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F�measure = 2
(Precision)(Recall)
(Precision + Recall)

� �
(6)

The precision, recall and f-measure scores for all three
classifiers have been reported in Table 2 and visual results can
be seen in Figure 4. Figure 4B represents the outputs predicted
by SVM, RF, and GBC respectively for the input slice shown in
(A) using LBP features, while Figure 4C represents the same but
for Haralick features.

Out of the three classifiers, SVM produced the worst results
using either feature. This is not unexpected as SVM classifiers are
known to be effective where the dimensionality of a feature is
much larger than the number of features. Our case here is the
opposite, as we have a very large number of features with each
having a very small number of variables per feature. On the other
hand, the decision tree classifiers produced comparatively better
results, and it can be seen that out of the two ensemble methods
used, GBC produced a better result for such an imbalanced
and sparse datase, possibly due to the forward stage-wise
construction of the GBC trees. GBC trained on Haralick
features produced the cleanest results with minimum pixel
noise in Figure 4, but was still unable to differentiate between
the nuclei and any artefacts in the image as can be seen from the
last panel of Figure 4C. Despite a noisier visual output, Random
Forests had a slightly improved F-Measure (Table 2) compared
to GBC, but both methods far outperformed the SVM method.
Furthermore, although Haralick features produce the best results
(Figure 4B versus 4B), they have a very long inference time (we
experienced an inference time of approximately 12 h per input
volume). This is due to the fact that each 3D volume is broken
Frontiers in Plant Science | www.frontiersin.org 8
down into patches of size [11 × 11] from which haralick features
are calculated. Having such a long inference time, this may not be
a practical solution.
Deep Learning
This section discusses the deep learning approach to classifying
and locating the nuclei markers in our dataset. A pipeline of the
deep-learning approach is shown in Figure 5. One key advantage
with deep learning is we no longer have to choose our own
features; deep learning will learn appropriate features as part of
the model.

The network proposed here utilizes the encoder-decoder
approach based on a modified version of the 3D U-Net
presented in (Çiçek et al., 2016). Such deep learning networks
have many design parameters such as the number and depth of
each layer, the filter/kernel size and the number of encoder,
decoder blocks. As a rule, small and simple networks lack the
complexity for classifying large image data as they are limited by
the number of parameters. On the other hand, large and complex
models can handle difficult classification tasks but come with a
greater computational load due to their large number of
parameters (Hay and Parthasarathy, 2018). For our task, the
model architecture needed to be between these two limits. Figure
6 shows an outline of the network architecture used. As can be
seen, the network path is composed of 4 encoder blocks, 3
decoder blocks, and a final convolution block. Each encoder
block consists of two consecutive convolution blocks followed by
a max pooling layer. Each convolution block is composed of a
convolution layer, followed by a Rectified Linear Unit (ReLU)
FIGURE 5 | A pipeline view of our proposed deep learning approach.
TABLE 2 | Evaluation of supervised machine learning results using precision, recall, and f-measure, per-pixel measures using Haralick features over six time points in
the test time-series.

Volumetric Time Stamp Support Vector Machine (SVM) Random Forest (RF) Gradient Boosting Classifier (GBC)

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

1 0.0003 0.063 0.0006 0.190 0.438 0.258 0.077 0.493 0.132
2 0.002 0.185 0.004 0.455 0.464 0.339 0.115 0.557 0.179
3 0.0007 0.073 0.001 0.436 0.519 0.432 0.126 0.756 0.212
4 0.0002 0.038 0.0005 0.419 0.544 0.431 0.099 0.843 0.174
5 0.0001 0.042 0.0003 0.135 0.365 0.185 0.071 0.526 0.118
6 0.000 0.0022 0.000 0.081 0.289 0.116 0.053 0.521 0.092
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(Nair and Hinton, 2010) layer and a batch normalization
layer. Following the observations outlined in (Simonyan
and Zisserman, 2014; Tran et al., 2015), we used small
convolution kernels of size [3 × 3 × 3] in all convolution layers
as they have been shown to improve computational efficiency
and representation capability. All max pooling layers have a
kernel size of [2 × 2 × 2] and a stride of [2 × 2 × 2] to effectively
downsample inputs from the previous layer. Each decoder block
is composed of an upsampling layer that reverses the process of
max pooling performed at the encoder stage. This is followed by
two consecutive convolution blocks, similar in structure to those
used at the encoder stage. The last convolution block performs a
single [1 × 1 × 1] convolution that reduces the number of output
channels to the number of classes, so in our case, for a single
marker, the final layer will reduce the output to a single channel.
Finally, an additional sigmoid layer is used to normalize the
network output so that the unnormalized logits can be fit to the
target. During training an Adam optimizer is used with a starting
learning rate of 0.0002 and a weight decay of 0.0001. Cropping is
avoided in the decoder path by using padded convolutions, this
ensures that the output resolution of the convolution layer is the
same as that of the input. The resulting network architecture has
a total of approximately 59 million learnable parameters.

In our case, upsampling via transposed convolution was favored
over a pre-defined interpolation approach because it was observed
that in cases of severe class imbalance, a learned upsampling
approach performed better than simple interpolation. One
possible reason for this could be that the input to the upsampling
layer is rather coarse, and straightforward interpolation is too simple
a process to capture subtle features. Due to this, small objects or
regions (such as the marker being segmented here) are often
overlooked or misclassified (Noh et al., 2015). This transposed
Frontiers in Plant Science | www.frontiersin.org 9
convolution process reconstructs the previous spatial resolution and
follows it with a convolution operation (Dumoulin and Visin, 2016).

The confocal volumes used here are of dimensions 1,024 ×
512 ×32 in the x, y, and z directions, respectively. This is too large
a volume of data to be input directly into the network as is, since
at such sizes GPU memory becomes a limiting factor. This is a
common problem when working with 3D data in deep learning
methodologies. Instead of feeding in all data at once, we used an
overlapping patch-based approach to train the network, with the
full volume divided into patches of size 128 × 128 × 20. Patches
are overlapped rather than tiled to ensure that the chance of a
feature of interest (a nucleus in this case) occurring at the edge of
a patch and being cropped is minimized. A 25% overlap between
patches in all directions is used.

Data Augmentation
We observed fairly consistent appearance between samples
across time series and images, and so felt that extensive and
complex augmentations such as elastic deformations, skewing
and random angle rotations were not necessary during training.
We first normalized the dataset samples to a zero mean and unit
variance, followed by standard augmentation such as random
flipping of the volume over the x-axis and random 90° rotations,
representing different presentations of the root structure to the
microscope. Given more complex datasets or perhaps different
presentation to the microscope, additional augmentation of the
data could be incorporated easily enough.

Loss Function
Successful segmentation is made possible not only by the
architecture of the network used, but also by the use of an
effective loss function—a metric for the amount of error in a
FIGURE 6 | An overview of the network architecture used. Key to blocks: yellow, convolution; red, max pooling; blue, transposed convolution; gray, concatenation;
purple, sigmoid.
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prediction—for the task at hand. The choice of loss function is
even more important where there exists a severe class imbalance
between the background and foreground objects. This is
certainly the case here, where the fluorescent markers of
interest represent a small proportion of the root, which itself
occupies only a fraction of the complete image volume.

Recently, in the literature, Weighted Cross Entropy (WCE)
(Ronneberger et al., 2015), Binary Cross Entropy (BCE), Dice
(Milletari et al., 2016), and Generalized Dice Loss (GDL) (Sudre
et al., 2017) have been used as loss functions to segment data
when there is a high imbalance between the foreground and
background pixels. To find the best performing loss function for
our dataset, separate instances of our network were trained using
each of these loss functions, and the validation results produced
by early stages of training were compared. Figure 7 shows a
comparison of the network output using different loss functions.
As can be observed, for the binary segmentation of such an
imbalanced dataset Dice and GDL appear to perform better than
WCE and BCE. In the end, a decision was made in favor of GDL
as it takes into consideration the class-rebalancing property of
the Dice overlap (Sudre et al., 2017).

The GDL loss function was proposed by Crum et al. (Crum
et al., 2006) to evaluate segmentation performance using a single
score. Sudre et al. (Sudre et al., 2017) then proposed to use this
score as a loss function to train deep neural networks to perform
segmentation on highly imbalanced data and is represented as

GDL = 1 − 2 oL
l=1wloN

n=1tnpn

oL
l=1wl oN

n=1(tn + pn)
� �

" #
(7)

where t is the reference ground truth volume, p is the predicted
probalistic map, and w is the label specific weight. The
contribution of each label to the GDL weight w is determined
by the inverse of that label’s volume. This therefore reduces the
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correlation between the Dice score and the region size. w is
represented by

w =
1

oN
n=1tn

� �2 (8)
Results
In an effort to visualize the 3D output of our network for this
paper, a 2D slice is taken from each volume along with its
respective slice in the input volume and ground truth. This 2D
slice representation has been used for the visualization of all
results in Figure 8. Using this, the reader should be able to get a
qualitative feel for network performance, but do note the input
and output is a 3D volumetric image.

Despite limited training data, the challenge of working with
the volumetric 3D data, and the artefacts and noise present in the
confocal images, the results produced by the deep network are
encouraging. This is especially true compared to the results of the
classical machine learning studies presented earlier. The overlay
of the ground truth over the output (see Figure 8D) shows that
our network has detected almost all of the nuclei markers present
in the input volumes along with some false positives; however,
comparing these false positives with their respective input
volumes shows that the network is arguably justified in
detecting these features, as they are located on feasible artefacts
in the image (represented as those enclosed within the yellow
markers in Figure 8A). This clutter presents itself as a likely
marker; however, its location in the image means a biologist
would discount it. This is a notable error, and as such has been
further discussed below.

In some places, the markers are in very close proximity. This
is likely a common occurrence in this and other biological
datasets, as the markers will tend to cluster at sites of similar
A

B D EC

FIGURE 7 | Comparison of segmentation results produced by using different loss functions. (A) shows the ground truth of the input volume labeled regions,
network outputs are then shown using the following loss functions: (B) WCE (Weighted Cross Entropy), (C) BCE (Binary Cross Entropy), (D) Dice, and (E) GDL
(Generalized Dice Loss).
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biological action—in this case, cell division. It can be seen in, e.g.,
Figure 8C center panel that markers in close proximity are
sometimes joined, producing a single output volume where there
should be two distinguishable volumes in reality. Due to the
shape of the regions, however, this error can be easily fixed in a
post-processing stage using morphological operations, which will
be explained in the discussion section.

As can be seen from Figure 8, the predicted results generated
by the deep learning network are much closer to their respective
ground truth volumes versus the earlier machine learning
predictions. This is visible in the qualitative visual results, and
also in the F-Measure result of Table 3 versus the machine
learning approaches in Table 2. Based on these encouraging
results for deep learning, we take evaluation here a step further,
and move to counting markers—that is, post-processing
segmented pixels to locate and count the nuclear markers in
the image. This would be the final desired result of our marker
detection pipeline, which could be used to, for example, locate
dividing cells in a time series, or provide a count of divisions in a
time period. Here then, we move to an additional object/event-
based analysis, rather than purely pixel-based. To do this, it is
important to determine the criteria for what can be considered a
“correct” detection and to distinguish between a true positive,
false positive and false negative. This is accomplished by using a
count and distance measure, where a simple Euclidean distance
is determined between the center of a detected nucleus and its
Frontiers in Plant Science | www.frontiersin.org 11
closest ground truth nucleus. If this distance is less than a set
threshold, then it is considered as a true positive, otherwise it is
considered as a false positive. Any nuclei that the network fails to
detect are counted as false negatives. The value of this threshold
was determined empirically and it was observed that a distance
threshold of 5 pixels gave the best representation of the network’s
performance. Furthermore, the area of all the objects detected by
the network is determined and very small detections having a
much smaller comparative area than the other detections are
ignored, as these are clearly not nuclei. In practice, this value will
be related to the size of the biological feature being marked, the
zoom of the microscope, and the calibration scale of the image.
Table 3 reports the performance of each volumetric test sample
given to the network using the deep learning model, providing
both object count accuracies and the F-Measure of the pixel-
based segmentation. In addition to producing more accurate
results, the proposed deep learning method is a more practical
solution in terms of inference time. On our local GPU, we
experienced an inference time of approximately 10 min per
input volume which is a huge improvement over the inference
time of 12 h per input volume for Haralick features.

Discussion
It can be seen from the reported results that our network is
producing encouraging results, even for difficult volumetric
samples. Performance is particularly encouraging given the
A

B

D

C

FIGURE 8 | Representation of network output over different time points of the test timeseries (time points 1, 2, and 3), and comparison against the ground truth and
the input data. (A) Represents a 2D slice from the input volume (note, the yellow circle indicates an artefact feature referred to in the main text), (B) represents the
generated ground truth for this input volume, (C) represents the network output, and (D) shows the overlay of the ground truth (red) on top of the network output
(white). If comparing to numerical results, note that this is a 2D section of a 3D slice—more nuclei are likely present.
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small number of training instances available. The network allows
cell division markers to be identified, located and, if necessary,
counted within an unseen volumetric dataset. The network
continues to produce some false positives, however. Upon
further investigation, we found that a false positive reported in
almost every sample is actually an artefact (marked in Figure
8A) present in the test input volume throughout the entire time
sequence. This artefact resembles a nucleus feature in appearance
and is therefore reported as one by the network. Figure 10 shows
the presence of this artifact, which can be seen in close-up as the
bright region at the top of the volume. Since this lies outside our
pre-determined distance threshold to ground truth locations, it is
reported as a false positive. Such an artefact is easy to throw away
by visual inspection because of the context—the location is
outside of the root, and so would be dismissed by a biologist.
This highlights a downfall of our network; that context can be
lost in the process of dividing the image into overlapping
patches. It may be possible to build context into the network
(indeed this is discussed in the Conclusion section), but here, we
first test a simpler method to prevent detection by altering the
training procedure.

The underlying problem here is one inherent in machine
learning—the training data did not include any such samples as
negative ground truth. It is only present in the time-series that
was randomly selected for testing the system. We hypothesize
that had there been more training samples with such artefacts
from which the network could learn, then the network could
learn to ignore them. This underlines the importance of a having
a representative training set when using machine learning. To
address this, first, our network was re-trained from scratch on a
smaller, re-shuffled dataset where the majority of the artefact
stained samples were included into the training pool. But this
caused a large imbalance of data as there were very few
foreground samples compared to the background ones. To
rectify this, the training/validation pool was reduced from 132
time points to around 50 time points, out of which 9 volumes had
the artefact staining, and the remaining 41 did not. Two artefact
Frontiers in Plant Science | www.frontiersin.org 12
stained time points were left out for the purpose of testing the
network. As expected the system, successfully learned to ignore
such artefacts and only reported and segmented the actual nuclei.
The output of this re-trained network can be seen in Figure 9;
here, the artefact is no longer reported even though it is very
prominent in the input volume, demonstrating the importance
of a suitable, representative training set.

Another error case highlights the sensitivity of such deep
learning approaches to annotations themselves. The network
labels twice as many markers in volume 5 than are present in
the ground truth (Table 3). Figures 10A, B show example z-slices
from the input in question. Similarly, the network is reporting 5
nuclei present in volume 6, whereas only 2 are present according
to the ground truth. As for test volume 6, Figures 10C, D show
different z-slices from this volume where the nuclei have been
detected. Green circles represent the network predictions, whereas
red circles represent the ground truth locations. As can be seen, the
network predictions seem reasonable (either partial marked
locations or artefacts), but since they are not marked as present
in the ground truth, these detections are reported as false positives.
In the end, it would be left to the biologist to determine whether a
detection by the network is a true positive or a false positive; it is
likely a judgement call. This is clearly an issue with providing
training data for—and a measure of confidence in the results of—
similar deep network approaches; especially a challenge with large,
4D datasets as in use here.

As shown in Figure 8, the network struggles to completely
distinguish between nuclei that are closely located to each other,
but is able to detect two entities that are joined (see Figure 11A).
Despite the fact that point annotations are used, giving the
regions of interest volumes means they can become connected
regions as depicted in this figure. However, the shape they
acquire when joined is amenable to further processing to
distinguish the two regions. This allows us to make use of a
combination of morphological operations to clean up the
network output and further improve the result. Figure 11A
shows a 2D slice taken from an output volume that has detected
TABLE 3 | Evaluation of proposed deep learning network using precision, recall, and f-measure for nuclei marker locations and per-pixel measurements, calculated over
the six time points in the test time-series. For the sake of comparison, the per-pixel F-measure values written within brackets represent the best result achieved for this
time stamp using machine learning.

Volumetric Time
Stamp

Nuclei in
Ground Truth

Nuclei in Predicted
Output

True Pos-
itives

False Pos-
itives

False Neg-
atives

Precision Recall F-
Measure

Per-Pixel Measurements

Precision Recall F-
Measure

1 5 8 5 3 0 0.63 1.0 0.77 0.65 0.26 0.37
(0.25)

2 11 9 8 1 2 0.88 0.8 0.84 0.84 0.21 0.34
(0.33)

3 9 9 8 1 0 0.88 1.0 0.94 0.84 0.25 0.39
(0.43)

4 6 6 5 1 0 0.83 1.0 0.90 0.77 0.35 0.49
(0.43)

5 3 6 3 3 0 0.50 1.0 0.66 0.61 0.45 0.52
(0.18)

6 2 5 2 3 0 0.40 1.0 0.57 0.46 0.42 0.44
(0.11)
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two nuclei as a single connected component; we will now use this
volume to explain the post-processing process.

To begin with, the image quality of the output produced by
the network is first improved by removing any unwanted noise
and artefacts. This is achieved via morphological opening using a
sphere structuring element. The output of this stage is shown in
Figure 11B. Having cleaned up the volume, we may be confident
that the region near the center of the connected components are
the foreground and the region further away from the center are
part of the background. The only region that we are unsure of is
the boundary region that connects the two nuclei. To mark this
boundary region we need to know which part of the connected
components are background for certain, and which part of the
connected components are foreground. The “sure background”
region is obtained by morphological dilation of the volume using
the same structuring element, the output of this step marks our
“sure background” and is shown in Figure 11C. Distance
transform is then applied on the dilated “sure background”
volume, which is then thresholded to get the “sure foreground”
region, as shown in Figure 11D. Now that we know for certain
which areas represent background and which areas represent
foreground we can identify the boundary region by subtracting
the “sure foreground” volume from the “sure background”
volume. The output of this subtraction is shown in Figure
11E. Having identified all the regions in the volume, the nuclei
can be marked as areas of interest while the boundary regions
can be marked as areas to ignore. Finally, watershed
segmentation can make use of these marked areas to produce
Frontiers in Plant Science | www.frontiersin.org 13
the final output that separates any connected nuclei at the
boundaries, as can be seen in Figure 11F.
CONCLUSION

We have presented segmentation approaches using classical
machine learning, and a volumetric deep learning approach
which is able to segment labeled nuclei markers in confocal
time series datasets with only a limited number of training
instances. Training has been carried out in time series datasets
isolated from the test data, providing a realistic use case. The
deep learning approach was found to perform with better
accuracy than the machine learning algorithms, with less input
required once the architecture of the networks has been
determined. Features are learned rather than developed by
hand, meaning given sufficient training data, performance is
able to outperform traditional methods.

The segmentation here was carried out on discrete time
points. A future development of this work will actively try to
segment time-based events such as cell divisions, linking features
over time perhaps using a tracking approach. This process will be
performed on light-sheet data (versus confocal), as light-sheet
microscopy is able to capture many more volumes both in
frequency and period, but the work here will provide a
foundation for this development.

The results demonstrated that unless particular care was
taken with the training data coverage, it was easy for the
A B

FIGURE 9 | Representation of the output volume (B) for input data (A) produced by the network trained on the re-shuffled dataset, featuring a wider variety of
training data. Note the artefact outside the root, at the top of the image, is no longer labelled on the output.
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network to mistake clutter for desired features, even if the clutter
was located outside of the biological root system. The developed
network makes use of volumetric patches in order to overcome
memory demands on the GPUs. However, results here suggest
contextual information could be useful to provide to the
network, such that objects outside of biologically relevant areas
could be discounted. Previous work has used lower resolution
data with more spatial coverage to provide such context, and so
such an approach could be utilized here in the future.

Of particular note is that the results were achieved with only a
limited amount of simple augmentation. Given the relatively
constrained problem we are handling - that of particular markers
in a root oriented in the same direction in each image, captured using
very similar microscope settings—these augmentations seem to be
sufficient. However, there is potential work in developing confocal
microscope specific augmentation. This could include, for example,
synthesizing noise expected to affect confocal images, as well as
simulating the effects of laser attenuation throughout the sample.
Frontiers in Plant Science | www.frontiersin.org 14
Such augmentation could be expected to lessen the sensitivity of the
training to particular features of the training set, which is even more
important where training set size is limited—as is often the case with
3Dmicroscopy due to the overhead in annotating the images, as well
as the level of expertise required to do this.

In this paper, we have been concerned with finding fluorescent
markers which indicate a growth event (in this case cell division)
happening as part of the growth of a root. Therefore, when
evaluating the approach, we are primarily interested in if we
produce a prediction sufficiently close to a ground truth x, y, z
label (a true positive) rather than a prediction away from one of
these labels (a false positive). We also want to make sure ground
truth labels are not missed (false negatives). In future work, we can
refine the segmentation of the marker region itself, i.e., evaluate the
pixel-wise segmentation of the region. While this resulting volume
or shape information is less relevant for the marker in use here, it
could be important if trying to analyze the shape of a cell as it
expands or divides, for example. As a pixel-wise segmentation is
A B

DC

FIGURE 10 | Error cases: artefact detection and ambiguous annotation. Representation of the nuclei detected by our network and those reported in the ground
truth. Individual z-slices showing prominent detections taken from test volume 5 are shown in (A, B) while that from test volume 6 are shown in (C, D). The nuclei
enclosed in the green circles are the ones detected by the network and those enclosed in the red circles are the ones reported by the ground truth.
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FIGURE 11 | Steps in the post-processing process to distinguish incorrectly joined neighboring predictions. (A) The predicted output from the network; (B)
morphological opening applied to remove unwanted noise; (C) morphological dilation marks the background pixels; (D) distance transform marks the foreground
pixels; (E) subtraction of foreground from background to get the boundary region of connecting nuclei; (F) watershed segmentation produces the final result (images
cropped to area of interest for clarity).

Khan et al. Volumetric Segmentation of Confocal Images
already produced by the network, but refined in post-processing to a
single location in space, the network is already partially capable of
generating meaningful 3D shape labels.
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