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Abstract 

X-ray photoelectron spectroscopy is used to investigate the impact of methylation 

on the electronic environment of the pyridinium cation. Due to the electron donating 

effect of the methyl group, there is a significant increase in electron density on the 

cationic nitrogen. The shift of N 1s binding energy is inversely proportional to the anion 

basicity. The methylation position on the electronic environment of the cationic nitrogen 

is investigated. N 1s binding energy follows the trend: 1-octylpyridinium > 

1-octyl-3-picolinium > 1-octyl-4-picolinium > 1-octyl-2-picolinium, which is in good 

agreement with the cation acidity. The increase in inductive effect subsequently weakens 

the cation-anion interactions through charge-transfer from the anion to the cation, 

causing subtle change in electronic environment of the anion. Such an effect is noticeably 

reflected in Br 3d binding energy. It shows that the Br 3d5/2 binding energy of 

1-octyl-2-picolinium bromide is 0.2 eV lower than that of 1-octylpyridinium bromide. 
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1. Introduction 

In general, ionic liquids (ILs) are considered as tuneable solvents, since there are 

nearly an endless number of combinations of cations and anions, each of which is of 

distinct physicochemical properties.1 By simply selecting the cation, the anion and the 

mixture composition, it is feasible to design ILs with desired properties, such as melting 

point, viscosity, solubility, hydrophobicity, thermal stability, etc. This tunability has 

become the most unique advantages of ILs, making them potential materials in a wide 

range of applications, such as chemical reactions,2,3 lubrication,4 phase separation,5,6 CO2 

capture,7 desulfurization of fuel8 and electrochemistry.9,10 

Over the past decade, there have been many efforts focusing on the tuning of ILs 

properties. It has concluded that the hydrophobicity and viscosity can be increased with 

increasing the alkyl substituent length;11 the solubility of ILs in water can be 

significantly reduced by switching the anion from halide to [Tf2N]- or changing the cation 

from imidazolium to pyridinium.12 It is also found that there is a correlation between 

polarity and thermal stability. For a given cation, when decreasing the coordinating 

ability of the anion, it significantly decreases the polarity of ILs, which subsequently 

enhances the thermal stability.13 From another point of view, the cation seems to have 

complicated impact on the thermal stability. Imidazolium and pyridinium ILs are usually 

less stable than their non-aromatic analogues, such as pyrrolidinium.14 The main 

problem is the presence of more acidic protons on the cation. To overcome such a 

problem, proper methylation of the cation would be an effective way. For example, the 

substitution of a methyl group on C2 position of imidazolium provides additional 

thermal stability.13,15 However, the methyl group on pyridinium cation seems to have 

only minor influence on thermal stability.13 Therefore, aiming to design ILs for specific 

applications, the prediction of the physicochemical properties, which is determined by 

the cation-anion interactions, needs to be properly understood. 

It is well known that X-ray photoelectron spectroscopy (XPS) has been a powerful 

tool to investigate ILs, focusing on surface composition,16,17 surface enrichment18,19 and 

electronic environment of ILs.20 XPS is also employed to monitor liquid phase reactions, 

21-23 to identify the metal centre in ILs,24,25 and in particularly to probe the cation-anion 

interactions.26-28 It is demonstrated that both the cation acidity and the anion basicity 

can have noticeable effect on the cation-anion interactions, which are through 

charge-transfer effect from the anion to the cation.29,30 In specific for the cation, XPS 

investigations have provided insights into the impact of C2-methylation on the electronic 

environment of imidazolium cation.26,31 It also inspires the idea to systematically 

investigate the impact of methylation on the electronic environment of the cation and 

the anion for pyridinium ILs. 

In this work, we extend such a topic to probe the impact of methylation on the 

cation-anion interactions for pyridinium ILs by XPS for the first time, comparing 
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1-octylpyridinium ([C8Py]+) cation versus three types of 1-octylpicolinium ([C8Pic]+) 

cations: 1-octyl-2-picolinium ([C8Pic2]+), 1-octyl-3-picolinium ([C8Pic3]+) and 

1-octyl-4-picolinium ([C8Pic4]+), with three commonly used anions. Due to the additional 

electron donating effect, there is a significant increase in electron density of the cationic 

nitrogen, which causes the lowering of the N 1s binding energy. The measured cationic N 

1s binding energy follows the trend as [C8Py]+ > [C8Pic3]+ > [C8Pic4]+ > [C8Pic2]+, which is 

in good agreement with the cation acidity. The additional inductive effect also gives rise 

to the weakening of the cation-anion interactions. Such an effect is noticeable in the case 

of Br- ILs. It concludes that there is a 0.2 eV shift to the lower value for [C8Pic2]Br, 

compared to that of [C8Py]Br. These findings are useful to provide a strategy to design 

ILs by slightly changing the cation structure for specific applications and for the future 

study aiming to further enhance the thermal stability of pyridinium ILs.  

2. Experimental section 

2.1 Materials. All chemicals were purchased from Sigma Aldrich and were used as 

received. All ILs were prepared and purified in our lab using established synthetic 

protocols. NMR data were recorded on a JEOL 400YH spectrometer as solutions in 

DMSO-d6. The structures of all ILs in this study are illustrated in Table 1. 

Table 1 Ionic liquids studied in this study 

Abbreviation Structure Name 

[C8Pic2]Br 

N C8H17+

 Br  

1-Octyl-2-picolinium bromide 

[C8Pic2][PF6] 

N C8H17+

 

P

F

F
F

F
FF

 

1-Octyl-2-picolinium 

hexafluorophosphate 

[C8Pic2][Tf2N] 

N C8H17+

 

N
S S

F3C CF3

O

O

O

O  

1-Octyl-2-picolinium  

bis (trifluoromethanesulfonyl)imide 

[C8Pic3]Br 

N C8H17+

 Br  

1-Octyl-3-picolinium bromide 

[C8Pic3][PF6] 

N C8H17+

 

P

F

F
F

F
FF

 

1-Octyl-3-picolinium 

hexafluorophosphate 

[C8Pic3][Tf2N] 

N C8H17+

 

N
S S

F3C CF3

O

O

O

O  

1-Octyl-3-picolinium  

bis (trifluoromethanesulfonyl)imide 

[C8Pic4]Br 
N C8H17+

 Br  

1-Octyl-4-picolinium bromide 
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[C8Pic4][PF6] 

N C8H17+

 

P

F

F
F

F
FF

 

1-Octyl-4-picolinium 

hexafluorophosphate 

[C8Pic4][Tf2N] 
N C8H17+

N
S S

F3C CF3

O

O

O

O  

1-Octyl-4-picolinium  

bis (trifluoromethanesulfonyl)imide 

2.2 XPS Data Collection. XPS experiment was conducted using a Thermo 

Scientific Kα spectrometer employing a focused, monochromated Al Kα source (h = 

1486.6 eV), hemispherical analyser charge neutraliser and a 128-channel detector. 

The instrument employs an oval X-ray spot. The largest spot size (long axis) is 400 

microns. 

All IL samples were purified at -50 oC in a freeze dryer (FreeZone 2.5 

LABCONOCO) for 72 h prior to use. The liquid sample was firstly transferred into a 

load-lock of XPS instrument as sample droplet on a piece of Al foil attached to the 

XPS sample holder. Four solid samples were fixed on the sample hold as thin films. 

Pumping of samples was conducted to achieve the base pressure of the parking lot, 

~10-4 mbar. Samples were then transferred to the main analytical chamber.  

When analysing liquid samples, charge neutralisation is not necessary, which 

ensures the maintenance of the pressure to be below 1 ⨯ 10-8 mbar. When 

analysing solid samples, the charge neutraliser is switched on. In this case, the 

pressure is usually below 1 ⨯ 10-7 mbar. For both cases, it suggests that volatile 

impurities, such as water and solvents, can be completely removed, leading to high 

purity samples.32,33 Therefore, any information derived from XP spectra is reliable. 

2.3 XPS Data Analysis. CasaXPS software was used for data interpretation. A 

spline linear background subtraction was used. Peaks were fitted using GL (30) 

lineshapes; a combination of a Gaussian (70%) and Lorentzian (30%).34 Relative 

sensitive factors for all elements are taken from literature.34 

All XP spectra were normalised to the fitted area of cationic N 1s peak for 

[C8Pic2][Tf2N], in order to aid visual interpretations. This is simply because the 

cationic nitrogen is present in all ILs in the same amount. The charge correction 

was conducted by setting the Caliphatic 1s component to 285.0 eV. It must be noted 

that XP spectra for [C8Py]+ ILs are not measured in this study but can be found in a 

previous paper published by our group.28 It must be noted that the experimental 

error of XPS is ± 0.1 eV. Therefore, any claimed binding energy shift should be no 

less than 0.2 eV. 

3. Results and discussion 

3.1 Electronic environment of the carbon regions. A three-component 

fitting model has been developed for the C 1s region of [CnPy]+ ILs previously in our 

group,28 where a systematic calculation of the shake-up deduction has been carried 

out and confirmed to be 10%. Take [C8Py]+ cation as a representative example. The 
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C 1s region was fitted using three components: Chetero 1s, Cinter 1s and Caliphatic 1s. The 

Chetero 1s component represents the three carbon atoms bonded directly to the positively 

charged nitrogen; Cinter 1s component refers to the other three carbon atoms present 

within the pyridinium ring; Caliphatic 1s component represents all other carbon atoms. A 

detailed demonstration can be found in Ref. 28. 

Compared to the [C8Py]+ cation, the [C8Pic]+ cation contains an additional methyl 

group substituted on ortho-, meta- or para-position towards the nitrogen of the 

pyridinium ring. For all the three cases, according to the 13C NMR data, the signal 

originated from the methyl group shows the similar upfield shift with those of the 

aliphatic carbons. Therefore, this carbon signal should be included into the Caliphatic 1s 

component. 

C3

C2

N+
C6

C5
C4

R

N

R

+
N

R

+

N

R

+

N+

R  

Scheme 1 Resonating structure of the [C8Py]+ cation. 

Furthermore, by carefully considering the resonating structure of the [C8Py]+ cation, 

it is found that the positive charge can delocalise on the nitrogen, two ortho-carbons and 

the para-carbon, as shown in Scheme 1. It concludes that C2 (or C6) and C4 should be 

much more electropositive than C3 (or C5). As a result, the used fitting model can be 

modified accordingly. Figure 1 demonstrated the newly developed fitting model for the C 

1s region of a representative sample, [C8Pic2][PF6]. Where Chetero includes C2, C4 and C6; 

Cinter refers to C3, C5 and the carbon atom which is bonded directly to the nitrogen but is 

not within the pyridinium ring, i.e. C7; Caliphatic component corresponds to all other 

carbons, i.e. C8 to C15. The structure of the cation with detailed atoms numbering is also 

illustrated in Figure 1. 
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Figure 1 C 1s XP spectrum with fittings for [C8Pic2][PF6], including the structure of the 
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cation. A three-component model is used for the fitting: Chetero 1s (C2, C4 and C6), Cinter 1s 

(C3, C5 and C7) and Caliphatic 1s (C8 onwards). 

After constraining the area ratio of Chetero : Cinter : Caliphatic = 2.7: 2.8: 8, a very 

satisfactory fitting can be obtained, taking into account of a 10% shake-up deduction for 

the carbon signals originated from the pyridinium ring,28 i.e. C2-C6. For [Tf2N]- ILs, an 

additional resolved signal between 292.9 eV and 292.8 eV is also observed, which can be 

assigned to -CF3 group.28 However, the model is still applicable for the fitting. 

Consequently, this model can be used for all picolinium ILs studied herein. 

In order to make reliable comparisons, C 1s fitting procedures for [C8Py][Tf2N], 

[C8Py][PF6] and [C8Py]Br were also conducted according to the newly developed model. 

It must be noted that the fitting of C 1s region using the two models stated above brings 

no change for the Caliphatic 1s binding energy. Therefore, binding energies published in the 

previous work are reliable to be used directly for the data interpretation. Table 2 

summaries binding energies of all elements for the twelve ILs studied in this paper. 

3.2 Impact of the anion on the electronic environment of the nitrogen. 

Figure 2 compares the cationic N 1s binding energy for [C8Pic2]+ ILs, with three 

commonly used anions. It is found that the Ncation 1s binding energies for these three 

ILs follow the trend: [Tf2N]- > [PF6]- > Br-, which is inversely proportional to the 

anion basicity.35 
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Figure 2 N 1s XP spectra for (a) [C8Pic2][Tf2N], (b) [C8Pic2][PF6] and (c) [C8Pic2]Br. 

The less basic anions transfer less negative point charges to the cation, causing the 

cationic nitrogen centre being more positively charged and thus showing higher binding 

energy. It is found that the Ncation 1s binding energies for [C8Pic2][Tf2N] and [C8Pic2][PF6] 

are 402.3 eV and 402.2 eV, respectively. The opposite is also true for the more basic 

anion, i.e. Br-. Since the charge-transfer is more intense, the electron density on the 

cationic nitrogen is effectively increased. As a result, a much lower binding energy at 

401.9 eV is measured for [C8Pic2]Br. This trend is in good agreement with those 

observed for other families of ILs.27,36 
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3.3 Impact of the methylation on the electronic environment of the cation. A 

comparison of N 1s XP spectra between [C8Py][Tf2N]28 and [C8Pic2][Tf2N] is 

demonstrated in Figure 3. It shows that the Ncation 1s binding energy of [C8Pic2][Tf2N] 

shift 0.3 eV to the lower value, compared to that of [C8Py][Tf2N]; whilst, the Nanion 1s 

binding energy for these two ILs remains the same. Because of the inductive electron 

donating effect of the additional methyl group, the electron density on the nitrogen 

centre is increased, leading to the lowering of the Ncation 1s binding energy. It indicates 

that the electronic environment of the cationic nitrogen has been effectively tuned upon 

methylation of the pyridinium ring, with the anionic nitrogen staying in an identical 

electronic environment. 
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Figure 3 N 1s XP spectra for (a) [C8Py][Tf2N] and (b) [C8Pic2][Tf2N]. 

From another point of view, it is found that the binding energy difference between 

[C8Py]+ and [C8Pic2]+ ILs for each anion family decreases with increasing the anion 

basicity. It is well known that cations and anions of ILs interact with each other through 

charge-transfer from the anion to the cation. For the more basic anion, i.e. Br-, the 

charge-transfer effect is more intense, resulting in a negligible inductive effect from alkyl 

chain towards cation headgroup. As a result, in the case of Br-, the methylation only 

causes subtle change in electronic environment of the nitrogen centre, which cannot be 

reflected on binding energy. The opposite is also true for the two less basic anions, i.e. 

[Tf2N]- and [PF6]-. Since the charge-transfer effect is weak, the inductive effect from alkyl 

chain towards cation headgroup is significant. The increased electron density of the 

nitrogen centre upon methylation can thus be measured by XPS. This observation is 

illustrated in detail in Figure 4. It concludes that the N 1s binding energy differences in 

the cases of [Tf2N]- and [PF6]- are 0.3 eV and 0.2 eV, respectively, meaning that both are 

noticeable by XPS; however, the shift for Br- is less than 0.2 eV, which is within the 

experimental error of XPS and considered as negligible. 

Meanwhile, the Chetero 1s binding energies for [C8Pic2]+ ionic liquids are found 

identical with those of [C8Py]+ analogues, for all the three anion-based families. It 



9 

explains why there is only subtle influence in stability by methylation on the 

N-alkylpyridinium cation, as the methylation gives rise to negligible changes in 

electronic environment of the hetero carbons and more importantly the protons bonded 

therein. 

 

Figure 4 N 1s Binding energy shift between [C8Py]+ and [C8Pic2]+ ionic liquids. 

3.4 Impact of methylation position on the electronic environment of the 

cation. Upon methylation on the [C8Py]+ cation, there are three types of [C8Pic]+ cations: 

[C8Pic2]+, [C8Pic3]+ and [C8Pic4]+. Herein, nine ILs by combinations of these three 

picolinium cations and three commonly used anions, i.e. [Tf2N]-, [PF6]- and Br-, are 

analysed by XPS.  

Figure 5 shows the cationic N 1s binding energy for all picolinium ILs. In order to 

make visual comparisons, literature data for [C8Py]+ ILs are also included.28 It concludes 

that there is an apparent trend of Ncation 1s binding energy for each anion family: 

[C8Py]+ > [C8Pic3]+ > [C8Pic4]+ > [C8Pic2]+. This trend is in good agreement with that of the 

cation acidity,37 according to Kamlet Taft hydrogen donating ability (). 
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Figure 5 Comparisons of Ncation 1s binding energies for all ionic liquids. 

Due to the presence of π-π conjugation system, the positive charge is delocalised 

across the pyridinium ring. However, by carefully considering the resonating structure of 
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the [C8Py]+ cation, it is found that the positive charge has more probability delocalising 

on the nitrogen, two ortho-carbons and the para-carbon within the pyridinium cation, as 

has been demonstrated in Scheme 1. Therefore, the methylation on 2- (or 6-) and 4- 

position can surely stabilise the positive charge, reducing the electron density on the 

nitrogen centre, when compared to that on 3- (or 5-) position. Meanwhile, in the case of 

[C8Pic2]+, the methyl group locates more closed to the nitrogen centre, causing a slightly 

stronger inductive effect than that of [C8Pic4]+, which gives rise to a further subtle 

decrease of the binding energy. 

3.5 Impact of the methylation on the electronic environment of the anion. The 

methylation of the pyridinium cation not only affects the electronic environment of the 

nitrogen centre but also decreases the cation acidity. Therefore, the interaction between 

the anion and the proton present in the pyridinium ring should be shielded. According to 

 values,37 [C8Pic2]+ is less acidic than the other three cations. Therefore, the charge 

shielding effect should be more intense in the case of [C8Pic2]+. For [Tf2N]- and [PF6]-, 

since the charge-transfer effect for the less basic anion is weak, for most of the 

anion-based components, such a shielding effect is not measurable by XPS, as 

demonstrated in detail in Table 2. For example, the F 1s, O 1s and Nanion 1s binding 

energies for the four [Tf2N]- ILs are identical; shifts for Canion 1s and S 2p3/2 are within the 

experimental error. For [PF6]- ILs, shifts for F 1s and P 2p3/2 are also within the error. 

This observation suggests that the mono-methylation of the pyridinium cation only 

causes subtle change in cation-anion interactions for the less basic anions. 
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Figure 6 Br 3d XP spectra for (a) [C8Py]Br and (b) [C8Pic2]Br. 

An extreme case is for the IL with the more basic anion, Br-. Br- is one of the most 

basic anions studied herein, and can transfer large magnitude of negative point charges 

to the cation. As a result, the methylation of the pyridinium cation can significantly 

shield the charge-transfer effect from Br- to the cation, giving rise to a more negatively 

charged Br- anion. As shown in Figure 6, it is observed that the Br 3d5/2 binding energy 

for [C8Pic2]Br is 0.2 eV lower than that of [C8Py]Br. It concludes that the 
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mono-methylation of the pyridinium cation can also impact the electronic environment 

of the anion, by shielding the interaction between the anion and the more acidic proton 

within the cation through charge-transfer effect. This observation may provide a 

strategy to design ILs with specific physicochemical properties in the future. 

4. Conclusions 

In conclusion, we use XPS to systematically study [C8Pic]+ ILs. The fitting model 

for the carbon region is modified by carefully considering the 13C NMR result, 

according to an established model published previously. The effect of the anion 

basicity on the electronic environment of the cationic nitrogen is studied by 

employing three common anions, [Tf2N]-, [PF6]- and Br-. It is found that Ncation 1s 

binding energy follows the trend as [Tf2N]- > [PF6]- > Br-, which is in agreement with 

other families of ILs. The methylation on [C8Py]+ cation can significantly affect the 

electronic environment of the cationic nitrogen centre. It shows that the binding 

energy gap between [C8Py]+ and [C8Pic2]+ ILs for each anion family decreases with 

increasing the anion basicity. The shifts for [Tf2N]- and [PF6]- are 0.3 eV and 0.2 eV, 

respectively. The shift for Br- is within the experimental error of XPS. The impact of 

methylation position on the electronic environment of the cationic nitrogen is also 

studied. It concludes that the Ncation 1s binding energy for the four types of cations 

follow the trend as [C8Py]+ > [C8Pic3]+ > [C8Pic4]+ > [C8Pic2]+, which is in agreement 

with the cation acidity. The methylation also causes the decrease of the cation 

acidity, which subsequently affects the cation-anion interactions by shielding the 

charge-transfer effect from the anion to the cation. However, such a shielding effect 

is only measurable in the case of Br-, which can transfer large magnitude of negative 

point charges to the cation. It indicates that the Br 3d5/2 binding energy of 

[C8Pic2]Br is 0.2 eV lower than that of [C8Py]Br. The results may be helpful for the 

future design of ionic liquids with specific physicochemical properties. 
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Table 2 Binding energies in eV of all elements for all ionic liquids in this study. Note that data for [C8Py]+ ionic liquids are not measured herein but 

can be found in a previous work published by our group.28 

ILs 
Binding energy / eV 

Ncation 1s Chetero 1s Cinter 1s Caliphatic 1s Canion 1s Nanion 1s F 1s Oanion 1s S 2p3/2 P 2p3/2 Br 3d5/2 

[C8Py][Tf2N]28 402.6 287.0 286.1 285.0 292.9 399.4 688.8 532.6 169.0   

[C8Pic3][Tf2N] 402.4 287.0 286.1 285.0 292.9 399.4 688.8 532.6 168.9   

[C8Pic4][Tf2N] 402.3 287.0 286.1 285.0 292.8 399.4 688.8 532.6 168.9   

[C8Pic2][Tf2N] 402.3 287.0 286.0 285.0 292.8 399.4 688.8 532.6 168.9   

[C8Py][PF6]28 402.4 286.9 285.9 285.0   686.7   136.5  

[C8Pic3][PF6] 402.4 286.9 285.9 285.0   686.6   136.5  

[C8Pic4][PF6] 402.3 286.9 285.9 285.0   686.6   136.4  

[C8Pic2][PF6] 402.2 286.9 285.9 285.0   686.6   136.4  

[C8Py]Br28 402.1 286.6 285.7 285.0       67.5 

[C8Pic3]Br 402.1 286.5 285.7 285.0       67.4 

[C8Pic4]Br 402.0 286.6 285.7 285.0       67.4 

[C8Pic2]Br 401.9 286.6 285.7 285.0       67.3 
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