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Two-stage least squares (TSLS) estimators and variants thereof are widely used to

infer the effect of an exposure on an outcome using instrumental variables (IVs). TSLS

estimators enjoy greater robustness to model misspecification than other two-stage es-

timators, but can be inefficient when the exposure is non-linearly related to the IV (or

covariates). Locally efficient double-robust estimators overcome this concern. These make

use of a possibly non-linear model for the exposure to increase efficiency, but remain con-

sistent when that model is misspecified, so long as either a model for the IV or for the

outcome model is correctly specified. However, their finite sample performance can be

poor when the models for the IV, exposure and/or outcome are misspecified. We there-

fore develop double-robust procedures with improved efficiency and robustness properties

under misspecification of some or even all working models. Simulation studies and a data

analysis demonstrate remarkable improvements.
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1 Introduction

An enormous body of research has developed in the econometrics and biostatistics lit-

eratures on how to assess the causal effect of an exposure X on an outcome Y in the

presence of confounding by unobserved variables U , when a vector of instrumental vari-

ables Z (IVs) is available (see e.g. Bowden and Turkington, 1985; Robins, 1994; Angrist

et al., 1996; Greenland, 2000; Wooldridge, 2002; Hernán and Robins, 2006; Didelez and

Sheehan, 2007). It is therefore not surprising that a variety of competing approaches

have been put forward. A simple and popular method is two-stage least squares (TSLS)

estimation where, in the first stage, the endogenous variables (e.g. exposure as well as

interactions between exposure and covariates) are predicted based on an ordinary least

squares regression of the exposure on the IVs and the covariates; in the second stage, the

outcome is regressed on the predicted exposure and covariates via ordinary least squares

regression, and the exposure coefficient is taken as the final IV estimator of the desired

causal effect. The simplicity of this approach has encouraged the development of other

two-stage estimators, which are obtained along the same lines, but employ possibly non-

linear regressions in the first or second stage (see e.g. Mullahy, 1997; or the review in

Didelez et al., 2010).

The TSLS estimator has attractive properties that justify its widespread use. We

provide an extensive review in Appendix S1 of the Supplemental Materials, along with

extensions to more general two-stage estimators. A concise summary follows. The TSLS
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estimator is a consistent estimator of the exposure effect on the outcome as soon as the

second stage model is correctly specified, even when the first stage model is misspecified

(Robins, 2000; Wooldridge, 2002, Theorem 5.1). Consistency is maintained, even when

the outcome’s dependence on covariates is misspecified in the second stage model, so long

as the IVs have an expectation that is linear in those covariates (and thus in particular

when the IVs are independent of covariates). Finally, the TSLS estimator of a constant

linear exposure effect (i.e., that does not depend on covariates) is semi-parametric efficient

under the model defined by additive effects of exposure and covariates on the outcome, and

additive effects of instrument and covariates on the exposure, when a homoscedasticity

assumption is satisfied (see Section 1.3 of the Supplemental Materials for specific detail).

In spite of this, there are important limitations. The TSLS estimator can be greatly

inefficient under misspecification of the first and/or second stage model, to the extent

that it may fail to be
√
n-consistent, even when the semi-parametric variance bound is

finite. Moreover, the TSLS estimator’s robustness against misspecification of the covariate

effects on the outcome is lost when the IV depends non-linearly on covariates, as is

for instance likely the case when the IV is dichotomous. Locally efficient double-robust

IV-estimators (Robins, 1994; Okui et al., 2012) overcome these concerns. They have

additional robustness against model misspecification: they are consistent if either a model

for the main effect of covariates on the outcome or a model for the distribution of the

IV, given covariates, is correctly specified, but not necessarily both (Okui et al., 2012).

Moreover, since also the TSLS estimator is a double-robust IV estimator when the IV is

linear in the covariates, locally efficient double-robust IV-estimators are at least as efficient

as the TSLS estimator in that case, when models for the IV, exposure and outcome are

correctly specified.

In simulation studies later in Section 6, the locally efficient double-robust IV estimator
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is observed to outperform the TSLS estimator when based on correctly specified exposure

and outcome models, but to perform sometimes much worse otherwise, making it unfit

for general purpose use. In view of this, we develop two adaptive estimation procedures.

The first makes use of empirical efficiency maximisation (Rubin and van der Laan, 2008)

which is designed to maximise precision even under misspecification of the exposure and

outcome model, and may result in drastic efficiency gains so long as the model for the

distribution of the IV, given covariates, is correctly specified. The second makes use

of bias-reduced double-robust estimation (Vermeulen and Vansteelandt, 2015), which is

designed to prevent bias amplification under additional local misspecification of the IV

distribution. Numerical results confirm the bias reduction and moreover demonstrate

favourable performance regarding efficiency.

2 Linear instrumental variable models

Let Z be a vector of IVs for the effect of a scalar exposure X on a scalar outcome Y ,

conditional on a vector of observed covariates C. The literature provides different ver-

sions of the defining properties for Z to be a valid IV, e.g. in econometrics these are often

stated in the context of linear structural equation models, while in biostatistics semipara-

metric structural models and potential outcomes are preferred. As we aim to investigate

properties of related estimators from different such traditions, we briefly address how the

assumptions relate to each other (for more details see e.g. Hernan and Robins (2006) and

Didelez et al. (2010)).

In analogy to Didelez and Sheehan (2007) but extending the definition to account for

covariates (see also Pearl, 2009, p.248), we formalise this by the following assumptions.

Let U be a (set of) latent variable(s) such that (U,C) would be sufficient to control

for confounding of the effect of X on Y were U observable; this formally means that
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Yx ⊥⊥ X | (U,C) (Robins, 1994), with Yx denoting the potential outcome that would be

observed when setting X to x. We then have the IV assumptions that

(a) Z is associated with X conditional on C,

(b) Z ⊥⊥ Y | (X,U,C) and

(c) Z ⊥⊥ U | C.

This formalisation of an IV is close to, but allows for greater flexibility than that in

the econometric literature on IVs in the context of linear structural equation models

(Wooldridge, 2002), where assumptions are usually in terms of no correlation instead

of independence. In the causal inference literature, conditions (b) and (c) are often

alternatively formalised as (and can be shown to imply) the assumption that (Robins,

1994) for all x

(b’) Yx ⊥⊥ Z | C.

The latter formulation avoids explicit reference to any specific unobserved confounders U .

We start by briefly addressing the relationship of different formulations of linear IV

models, i.e. models where the target causal parameter relates to the linear effect of X on

the expected outcome. Ultimately, we will assume the linear or additive structural mean

model (Robins, 1994) given below in equation (3), but point out how this is implied by

other typical models. Consider first the following assumption on the conditional mean of

the outcome:

E (Y | X,Z, U,C) = ω(C,U) +m(C;ψ∗)X. (1)

Here, ω(C,U) is an unknown (i.e., unspecified) function of measured and unmeasured

covariates. The term m(C;ψ) is a known function of observed covariates, smooth in ψ,

and ψ∗ is an unknown finite-dimensional parameter, e.g. m(C;ψ) = ψ or m(C;ψ) = ψTC,
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where with a slight abuse of notation, the vector C includes 1 to allow for a main effect.

When m(C;ψ) is parameterised such that m(C;ψ) = 0 when ψ = 0, as in the previous

examples, we have that m(C;ψ∗) captures the linear effect of X, which, crucially, does

not depend on U . In particular,

m(C;ψ∗)X = E (Y | X,Z, U,C)− E (Y | X = 0, Z, U, C)

= E (Y | X,Z, U,C)− E (Y0 | X = 0, Z, U, C)

= E (Y | X,Z, U,C)− E (Y0 | X,Z, U,C)

= E (Y | X,Z,C)− E (Y0 | X,Z,C) . (2)

This encodes the additive effect on the outcome of setting the exposure to zero in a

subgroup of individuals with exposure X, IV Z and covariates C, which we consider

the exposure effect of interest. In the above derivation, the second equality follows by

assumption (b) and the consistency assumption that Y = Y0 in subjects with X = 0, the

third from the fact that U and C are sufficient to control for confounding of the effect

of X on Y , and the fourth by averaging (conditional on X,Z and C) and the fact that

the left-hand side does not involve U . Note that the linear structural equation version

implies the above (1) and hence (2) but assumes more restrictively that ω(C,U) equals

β∗TC + U and m(C;ψ) = ψ or m(C;ψ) = ψTC.

The model defined by restriction (2), i.e.

E(Y | X,Z,C) = E(Y0 | X,Z,C) +m(C;ψ∗)X, (3)

is called a linear or additive structural mean model (Robins, 1994). Together with the

IV assumptions (a) and (b’) it can be regarded as the substantive model of interest, as

it merely parameterizes the exposure effect of interest. Note that Y0 ⊥⊥ Z | C as special

case of (b’) is sufficient. That the exposure effect is not modified by Z (or equivalently,
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that Z does not appear on the right-hand side of (1), but is included on the left hand

side) is known as ‘no effect modification’ by Z (Hernan and Robins, 2006; Clarke and

Windmeier, 2010). Although structural mean models can be formulated that do not

make this assumption, it is imposed here to enable identification of ψ∗. While it can

be motivated by the additivity in (1), it is often made in its own right avoiding explicit

reference to U and hence allowing greater generality.

Model (1) along with assumptions (a), (b) and (c) differs from model (3) along with

assumptions (a) and (b’) in its assumptions on unobservables, but both models impose

the same restrictions on the observed data law (see Appendix S2 of the Supplemental

Materials), namely that

E(Y −m(C;ψ∗)X | Z,C) = E(Y −m(C;ψ∗)X | C), (4)

i.e. the left-hand side does not depend on Z, given C. We will therefore focus on infer-

ence under model M defined by (4) throughout, supposing that a sample of i.i.d. data

(Yi, Xi, Zi, Ci) for i = 1, ..., n is available.

3 Two-stage estimation

Two-stage approaches for fitting model M are based on rewriting it as:

E (Y | Z,C) = ω(C) +m(C;ψ∗)E(X | Z,C), (5)

for ω(C) ≡ E(Y − m(C;ψ∗)X | C). When C is high-dimensional (e.g. continuous or

discrete with several components), the above cannot be fitted non-parametrically and

additional modelling assumptions are needed to obtain estimators of ψ∗ with adequate

performance in moderate sample sizes. Equation (5) suggests postulating two additional

models, one for E(X | Z,C) and one for ω(C), and thereby lays the basis of two-stage

estimation procedures.
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In the first stage, a parametric model Ax is postulated for the exposure, i.e.

E (X | Z,C) = mx(Z,C;α∗), (6)

where mx(Z,C;α) is a known function of instruments and covariates, smooth in α, and

α∗ is an unknown finite-dimensional parameter. An obvious choice would be a linear

or logistic regression model (e.g., mx(Z,C;α) = expit(αTz Z + αTc C)). The second stage

model supplements the structural model M with a parametric model Ay for the main

effects of covariates on the outcome:

ω(C) = my(C; β∗), (7)

where my(C; β) is a known function of covariates, smooth in β and β∗ is an unknown

finite-dimensional parameter. A general two-stage procedure is now obtained by fixing

α∗ at some estimate α̂ obtained from fitting model (6) and then fitting model (5) with

E(X | Z,C) substituted by mx(Z,C; α̂), using standard regression techniques at each

stage.

When Ax and Ay are chosen to be linear with the same covariates, then we use the

notation Alin
x ,Alin

y to make this explicit.

3.1 Two-stage least squares (TSLS)

Among the above two-stage methods, TSLS takes a prominent place (Wooldridge, 2002).

The principle of TSLS is that all ‘endogenous’ exposures (those that are confounded,

i.e. dependent on U) are replaced by their linear projections on all ‘exogenous’ variables

(these are the IVs, covariates, and possible other unconfounded exposures in the outcome

model). As the name suggests, TSLS is equivalent to explicit two-stage estimation because

the linear projections are equivalent to fitting a linear first stage model with ordinary

least squares, and these can then be plugged into the second stage model, again fitted
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by least-squares (for details see Wooldridge, 2002; Section 5). For the equivalence it is,

however, important to use the implied first stage model, i.e. a linear model for X (and

other endogenous variables) given all exogenous variables as determined by the choice of

IVs and Ay. A formal definition of TSLS is given in Appendix S1 of the Supplemental

Materials.

We illustrate this aspect of TSLS with an example. Consider the case where C =

(1, V )T with V a scalar, m(C;ψ)X = ψ1X + ψ2XV and my(C; β) = β0 + β1V + β2V
2.

There are two ‘endogenous’ variables, X and XV , as these both depend on U . For

identification it is necessary that there are at least as many instruments as endogenous

variables; hence, two instruments are needed, which could be Z and ZV . The linear

projections would be of X and XV each on all of Z, ZV , V and V 2. It follows that

the implied first stage models are E(X | Z,C) = α0 + α1Z + α2ZV + α3V + α4V
2 and

E(XV | Z,C) = α′0 +α′1Z+α′2ZV +α′3V +α′4V
2 where it is assumed that the coefficients

of the instruments in the projections are non-zero (more precisely, that the matrix with

first row α1, α2 and second row α′1, α
′
2 has full rank); the latter is a more specific version

of assumption (a).

3.2 TSLS versus general two-stage methods

When model M ∩ Ax ∩ Ay is correctly specified, general two-stage IV estimators are

consistent (see Appendix S1) but not necessarily efficient, in part because they are based

on separately fitting the exposure model and the outcome model. It is therefore somewhat

surprising that the TSLS estimator of ψ∗ is semi-parametric (locally) efficient in linear

exposure and outcome models, i.e. under M ∩ Alin
x ∩ Alin

y , when m(C;ψ) = ψ and a

homoscedasticity assumption is satisfied (for details see Section 1.3 of the Supplemental

Materials). General two-stage estimators (including TSLS estimators) can however be
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inefficient when the exposure effect depends on covariates (i.e. when m(C;ψ∗) = ψ∗TC),

even when the exposure and outcome obey simple linear models. For TSLS estimators, this

can be intuitively seen by considering the following example with m(C;ψ∗) = ψ∗0 + ψ∗1V

for C = (1, V )T . Then TSLS is based on separate least squares regressions of X and XV

on Z and V , without taking into account that the model for X implies the model for XV ,

and without considering that the postulated models may be incompatible (e.g., even when

the model for X includes a main effect of V , the model for XV may not allow for a main

effect of V 2). Moreover, two-stage estimators (including TSLS estimators) are generally

inefficient when the true exposure relation is nonlinear in Z or C (e.g. because it includes

an interaction between Z and components of C, or because it is of the logistic form), or

when the outcome is dichotomous so that there is heteroscedasticity. In particular, it may

happen under certain data laws that the TSLS estimator does not exist (more precisely,

is not
√
n-consistent), even though other two-stage estimators with small variance exist.

This is for instance the case when E(X | Z,C) = Z−ZV for a scalar variate V ∈ C which

takes the values 0 and 1 with probability 1/2, independently of Z, and when furthermore

m(C;ψ) = ψ and my(C; β) = β0 + β1V . In that case, the implied first stage model

would ignore the interaction between Z and V and thus result in the population linear

projection of X on (Z,C) equalling 0, thereby violating the necessary rank condition for

TSLS estimators. In those cases, a two-stage estimator based on a first stage model that

includes main effects of Z, V and their interaction, is indicated.

Besides being locally efficient, TSLS estimators also enjoy greater robustness com-

pared to more general two-stage estimators. The former are consistent for the exposure

effects on the outcome as soon as the second stage model is correctly specified, even when

the first stage model is misspecified (Robins, 2000; Wooldridge, 2002, Theorem 5.1). Con-

sistency is retained even when the outcome’s dependence on covariates is misspecified in
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the second stage model, so long as the IVs have an expectation that is linear in those co-

variates (and thus in particular when the IVs are independent of covariates) and m(C;ψ)

is linear in C (Okui et al., 2012). Thus, when E(Z | C) is linear in V and V 2 (with

C = (1, V )T ), then the TSLS estimator under model m(C;ψ) = ψ will be robust against

outcome model misspecification when the outcome model includes the term V 2 (regardless

of whether it is associated with the outcome). We show in Appendix S2 (Proposition 5)

of the Supplemental Materials that this property in fact still holds for the slightly more

general case where the first and second stage are fitted by least squares, but the first stage

model used is not the one implied by the second stage. Unfortunately, this robustness of

the TSLS estimator against misspecification of the second stage model does not extend to

general IVs, e.g. dichotomous IVs that obey a logistic regression model with main covari-

ate effect C, nor to general two-stage estimators that involve nonlinear exposure models

or effect heterogeneity (i.e. m(C;ψ∗) depending on C).

4 Double-robust estimation and TSLS

A general approach to robustness against misspecification of the second stage model is

double-robust estimation (Robins, 1994; Okui et al., 2012); we review this here with focus

on its relation to covariate adjusted TSLS. Double-robust estimation makes use of an

additional parametric model for the conditional IV distribution given the covariates, Az

defined by

f(Z | C) = f(Z | C; γ∗),

where f(Z | C; γ) is a known density function, smooth in γ, and γ∗ is an unknown finite-

dimensional parameter, which we will estimate by maximum likelihood (however, see

Section 5.2 for an alternative strategy). For instance, when Z is binary, we may assume

that P (Z = 1 | C) = expit(γ∗TC) and use standard logistic regression to estimate γ∗.
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Let γ̂ be the corresponding maximum likelihood estimator. Further, let β̂ be a consistent

estimator of β∗ inAy as obtained in the previous section. Then a consistent asymptotically

normal (CAN) estimator of ψ∗ under model M∩ (Ay ∪ Az) can be obtained by solving

0 =
n∑
i=1

[e(Zi, Ci)− E {e(Zi, Ci) | Ci; γ̂}]
{
Yi −my(Ci; β̂)−m(Ci;ψ)Xi

}
, (8)

for some conformable (i.e., of appropriate dimension) vector function e(Z,C). Because

the solution to (8) is a CAN estimator of ψ∗ when either working model Az or Ay holds,

in addition to the linear IV model M, it is called double-robust (Robins and Rotnitzky,

2001). Note that it follows from the remarks at the end of Section 3.2 that TSLS is

double-robust for particular choices of Ay and Az.

Double-robust estimators are especially attractive in studies where the law of Z given

C is (partially) known as this may guarantee robustness against misspecification of Ay,

while typical two-stage estimators fail to exploit this. Such knowledge, leading to correct

specification of Az, is for instance given in randomized experiments where Z denotes

randomization, or in Mendelian randomization studies where the genetic instrument is

often known to be independent of covariates C, in which case E {e(Z, c) | C = c} can be

consistently estimated as n−1
∑n

i=1 e(Zi, c).

In fact, the special case where it is known that Z ⊥⊥ C is of particular interest; if

additionally we have m(C;ψ) = ψ, one has the choice of whether to adjust for C at all.

We therefore consider the questions of whether it is worthwhile, i.e. more efficient, to

include covariates at all when there is the choice. To address this, we first recall how a

a semi-parametric (locally) efficient estimator of ψ∗ under modelM∩Az is constructed.

It follows from Robins (1994) (see also Okui et al., 2012) that such estimator is obtained

by choosing e(Z,C) in (8) equal to

eopt(Z,C) = σ−2(Z,C)
∂m(C;ψ∗)

∂ψ

[
E(X | Z,C)− E {σ−2(Z,C)E(X | Z,C) | C}

E {σ−2(Z,C) | C}

]
(9)
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with σ2(Z,C) ≡ Var {Y −m(C;ψ∗)X | Z,C}. Since modelM∩ (Az ∪ Ay) is less restric-

tive, this is also delivering the (locally) efficient estimator of ψ∗ in modelM∩ (Az ∪ Ay).

For instance, assuming that E(X | Z,C) = α∗T1 C+α∗T2 ZC for scalar Z and C, my(C; β) =

βTC and σ2(Z,C) = σ2 for unknown parameters α∗1, α
∗
2 and β∗, we have

eopt(Z,C) = σ−2α∗T2 C {Z − E(Z | C)} . (10)

A locally efficient estimator may now be obtained by substituting α∗2 by the ordinary least

squares estimator in the above expression, setting σ2 to 1 (as it is just a proportionality

constant), and next solving (8) for the resulting choice of e(Z,C) = eopt(Z,C). These

expressions suggest a way to optimally include covariates and, in a similar vein, to op-

timally combine multiple instruments (see e.g. Bowden and Vansteelandt, 2011). Since

eopt(Z,C) as well as my(C) = E(Y − ψ∗X | C) are generally dependent on the covariate

data C, this suggests in particular that the covariate-adjusted analysis will be at least

as efficient in large samples as the unadjusted analysis, provided the working models for

E(Y − ψ∗X | C), E(X | Z,C) and σ2(Z,C) are correctly specified. While an efficiency

gain is not generally guaranteed when these working models are misspecified, the follow-

ing proposition demonstrates that covariate adjustment is guaranteed not to increase the

asymptotic variance of the TSLS estimator under certain conditions.

Proposition 1 Efficiency of covariate adjusted TSLS estimators

When Z ⊥⊥ C and m(C;ψ) = ψ under modelM, if Y −ψ∗X is conditionally independent

of Z given C, then adjustment for C does not increase the asymptotic variance of the TSLS

estimator of ψ∗; it decreases it when Y − ψ∗X depends on C.

Proof: see Appendix S3 of the Supplemental Materials. �

Fisher and Goetghebeur (1999) also observed that covariate adjustment is typically

beneficial in a linear IV context; however, their results are specific to the case of partial
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compliance with full compliance in the control arm, where by design there is a correspond-

ing interaction in the exposure model and where the IV model is specific to the treatment

arm.

5 Improved double-robust estimation

Consistency of the double-robust estimator of ψ∗ demands correct specification of either

the outcome model Ay or the IV model Az; local efficiency demands correct specifica-

tion of both these models, and additionally of models for the exposure distribution and

conditional outcome variance. In practice all these models are typically somewhat mis-

specified. In Section 5.1, we therefore propose a strategy to guarantee efficiency within

a subclass of double-robust estimators as soon as the IV model Az is correctly specified.

In Section 5.2, we propose strategies that aim to minimise locally the bias of the double-

robust estimator when both the outcome model Ay and the IV model Az are misspecified.

Throughout these sections, results are confined to the main effect structural model M

with m(C;ψ) = ψ.

5.1 Empirical efficiency maximisation

The semi-parametric efficient estimator of ψ∗, obtained by substituting the conditional

expectations in (9) by estimates under parametric models, is not guaranteed to outperform

simpler CAN estimators (e.g. obtained by solving (8) for e(Z,C) = Z or by ignoring

covariate information) under model misspecification, as we will see in the simulation study

of Section 6. Okui et al. (2012) proposed regression double-robust estimators that have

an asymptotic variance no larger than a given double-robust estimator, even under model

misspecification. In this Section, we generalise their results with the potential for bigger

efficiency gains in return. We will realise this by building on and extending the ideas
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behind empirical efficiency maximisation, a procedure originally proposed by Rubin and

van der Laan (2008) and Cao, Tsiatis and Davidian (2009) in the missing data literature.

In this subsection, we assume that model Az is correctly specified.

Let ψ̂(α, β) be the double-robust estimator of ψ∗ obtained by solving estimating

equation (8) for a user-specified parameterisation e(Z,C;α) of e(Z,C), evaluated at the

given values α (and β indexing my(C; β)). This parameterisation may, but need not be

guided by the form of the efficient index function given in (9). For instance, for a scalar

Z, one may postulate that e(Z,C) is of the form αTCZ for some α. When the law of Z

given C is known, then the asymptotic variance of ψ̂(α, β) under model M∩Az equals

Var ([e(Z,C;α)− E {e(Z,C;α) | C}] {Y −my(C; β)− ψ∗X})
nE ([e(Z,C;α)− E {e(Z,C;α) | C}]X)2

. (11)

Let α̃ and β̃ be the values of α and β, respectively, that minimise the empirical analog

of (11) with ψ∗ substituted by a preliminary consistent estimator under model M ∩

Az, e.g. a double-robust estimator based on the choices e(Z,C) = Z and model Alin
y .

The proposition below then shows that ψ̂(α̃, β̃) is a double-robust estimator which is

(asymptotically) at least as efficient as ψ̂(α, β) for arbitrary α and β. Key properties that

underlie the validity of the proposition are (a) that β̃ is CAN for β∗ under model Ay; and

(b) that ψ̂(α̃, β̃) and ψ̂(α̃∗, β̃∗) have the same asymptotic variance under model M∩Az,

with α̃∗ and β̃∗ being the probability limits of α̃ and β̃ (provided α̃ and β̃ converge at

faster than n1/4 rate).

Proposition 2 Efficiency within a subclass of double-robust estimators

Let α̃ and β̃ minimise the empirical analog of (11). Then the estimator ψ̂(α̃, β̃) solving

(8) is CAN under modelM∩ (Ay ∪ Az).

Moreover, when the law of Z given C is known, then we have that for all α and β

lim
n→∞

Var
[√

n
{
ψ̂(α̃, β̃)− ψ∗

}]
≤ lim

n→∞
Var

[√
n
{
ψ̂(α, β)− ψ∗

}]
.
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Proof: see Appendix S3 of the Supplemental Materials. �

In Appendix S3 of the Supplemental Materials, we further discuss the case where the

law of Z given C is known only up to a finite-dimensional parameter.

Consider for instance the choices e(Z,C;α) = αTCZ and my(C; β) = βTC. Then

by construction, ψ̂(α̃, β̃) is at least as efficient as the estimator obtained by solving (8)

for the simple choices e(Z,C) = Z and my(C) = 0, i.e. the estimator which ignores

covariates. Hence, when Z ⊥⊥ C, then the resulting approach will deliver a covariate

adjustment strategy that is guaranteed to be at least as efficient as an unadjusted analysis.

More generally, efficiency is - by construction - always attained within the subclass of

estimators allowed by varying α and β in the models for e(Z,C) and my(C). However,

semi-parametric efficiency under modelM∩ (Az ∪ Ay) is only attained when the efficient

index function (9) happens to equal e(Z,C;α) for some α and when E(Y − ψ∗X | C)

equals my(C; β) for some β.

Minimising the empirical analog of (11) can generally be done numerically, but in

special cases also by suitably modified regression techniques. For example, we show in

Appendix S3 of the Supplemental Materials that when e(Z,C) = αTCZ, then under

certain assumptions minimising (11) w.r.t. α can be done by letting α̃ be the ordinary

least squares estimator of α in the regression model E(X | Z,C) = αTC {Z − E (Z | C)}.

Minimising (11) w.r.t. β is possible by letting β̃ be the weighted least squares estimator of

β in the regression model E(Y −ψ∗X | C) = βTC using weights (α̃TC)2 {Z − E (Z | C)}2.

The above procedure needs some modification when the law of Z given C is unknown and

the model Ay is (possibly) misspecified (see Appendix S3 of the Supplemental Materials

for detail).

The regression double-robust estimator of Okui et al. (2012) may be viewed as a

special case of the above proposal. It fixes α at some given value (which may not minimise
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the asymptotic variance) and chooses my(C; β) = βmy(C) for some given my(C).

5.2 Bias-reduced double-robust estimation

The efficiency results of Section 5.1 are especially attractive when model Az is known

to hold, as is the case in certain study designs. In other cases, bias becomes, arguably,

a more dominant concern. Although there seems little hope that one can avoid bias in

the estimation of ψ∗ when both working models Az and Ay are misspecified, Vermeulen

and Vansteelandt (2015) found that for quite a general class of double-robust estimators,

surprisingly, the nuisance parameters indexing Az and Ay can be estimated so as to target

bias reduction. Briefly, they note that the asymptotic bias (Stefanski and Boos, 2002) of

an estimator for ψ∗, evaluated at fixed nuisance parameters β and γ, equals the expected

value of its influence function U(ψ∗, β, γ); for given α, this is here:

U(ψ, β, γ) =
[e(Z,C;α)− E {e(Z,C;α) | C; γ}] {Y −my(C; β)− ψX}

E ([e(Z,C;α)− E {e(Z,C;α) | C; γ}]X}
.

Minimising the squared bias in the direction of β thus amounts to setting the gradient

2E {U(ψ∗, β, γ)}E
{
∂U

∂β
(ψ∗, β, γ)

}
to zero. Although the first component cannot generally be made zero without knowing

aspects of the data-generating law, interestingly, the second component delivers an unbi-

ased estimating function for γ (Vermeulen and Vansteelandt, 2015). This is so because, by

the double-robustness, U(ψ∗, β, γ) is mean zero for all β at γ∗ when model Az holds. The

second component can thus be made zero empirically, by using it as a basis for estimation.

We will illustrate this for the case where the instrument Z is dichotomous with work-

ing model P (Z = 1 | C; γ) = expit(γTC) and where my(C; β) = βTC. Further, let the

index function e(Z,C;α) be of the form Ze(C;α) for some e(C;α) (as is the case for the

efficient score for ψ∗ under model M∩ (Az ∪ Ay) when E(X | Z,C) is linear in Z and
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Var(Y | Z,C) does not depend on Z). Taking the gradient of U(ψ, β, γ) with respect to

β then results in estimating equations

0 =
n∑
i=1

∂Ui(γ, β)

∂β
=

n∑
i=1

e(Ci;α) {Zi − P (Zi = 1 | Ci; γ)}Ci, (12)

which are unbiased for γ. Since γ and β are of the same dimension, γ can thus be

estimated as the solution to this equation. Solving equation (12) ensures that

n∑
i=1

e(Ci;α) {Zi − P (Zi = 1 | Ci; γ)}my(Ci; β) = 0

so that the estimating equation for ψ reduces to

0 =
n∑
i=1

e(Ci;α) {Zi − P (Zi = 1 | Ci; γ)} {Yi −my(Ci; β)−m(Ci;ψ
∗)Xi}

=
n∑
i=1

e(Ci;α) {Zi − P (Zi = 1 | Ci; γ)} {Yi −m(Ci;ψ
∗)Xi}

which no longer involves β. The considered choice of estimator of γ thus overcomes the

need to estimate β.

Solving (12) may not be straightforward for certain data sets. We therefore extend

the logistic regression model for Z to

P (Z = 1 | C; γ) = expit
{
γTC + θTCe(C;α)

}
.

This model contains the original working model Az (corresponding to θ = 0). Moreover,

fitting this model using the default maximum likelihood procedure has the effect of making

the identity (12) hold, as the latter corresponds with the score for the coefficient of

e(C;α)C. The resulting procedure will be referred to as BRγ.

In Appendix S4 of the Supplemental Materials, we show that the above procedure

reduces the order of the asymptotic bias of the double-robust estimator when model Az is

grossly misspecified and model Ay is locally misspecified (local in the sense of resulting in
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a bias in β̂ of the order n−1/2). This is important because it prevents bias in the nuisance

parameter estimators from propagating into the estimator of the target parameter. In

particular, it suggests that the considered bias-reduced double-robust estimator will likely

have little bias when model Az is grossly misspecified, so long as model Ay is only mildly

misspecified. Under gross misspecification of both working models, one can obviously

not exclude that other nuisance parameter estimators happen to deliver less biased effect

estimators under some data-generating mechanisms.

When using the procedure BRγ, we continue to estimate α indexing e(C;α) as ex-

plained in Section 5.1. Although now, we no longer assume that model Az is correctly

specified, estimating α in this manner still has the effect of minimising the asymptotic

variance of the double-robust estimator across all values of α. This is because the proce-

dure BRγ sets the gradient of the influence function w.r.t. β equal to zero, so that there

is no need to account for the estimation of β in the calculation of the asymptotic variance

(see Vermeulen and Vansteelandt, 2015; see also Appendix S4).

We also considered a related approach whereby we estimated γ using maximum like-

lihood and β by setting the gradient of the influence function U(γ, β) with respect to γ

to zero. This results in the following unbiased estimating equations for β:

0 =
n∑
i=1

∂Ui(ψ
∗, γ, β)

∂γ
=

n∑
i=1

e(Ci;α) {Yi −my(Ci; β)− ψ∗Xi}Γi (13)

for

Γi = {Zi − P (Zi = 1 | Ci; γ)}E [e(Ci;α)P (Zi = 1 | Ci; γ)P (Zi = 0 | Ci; γ)CiXi]

−P (Zi = 1 | Ci; γ)P (Zi = 0 | Ci; γ)CiE [e(Ci;α) {Zi − P (Zi = 1 | Ci; γ)}Xi]

It can be verified that the effect of the factor Γi is to eliminate ψ∗ from the estimating

equation so that knowledge of the true ψ∗ is not needed for estimating β. This approach
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is designed to locally minimise the bias of the double-robust estimator in the direction of

γ, at the maximum likelihood estimate γ̂. In Appendix S4 of the Supplemental Materials,

we show in particular that the above procedure, which will be referred to as BRβ, reduces

the order of the asymptotic bias of the double-robust estimator when model Ay is grossly

misspecified and model Az is locally misspecified (local in the sense of resulting in a bias

in γ̂ of the order n−1/2). To solve (13), we jointly fit an extended linear model for the

outcome Y − ψ∗X with covariates C and e(C;α)P (Z = 1 | C; γ̂)P (Z = 0 | C; γ̂)C using

ordinary least squares (where, again, the choice of ψ∗ does not affect results), and the

(double-robust) estimating equation for ψ. This has the effect of making the identity (13)

hold. Indeed, ordinary least squares estimation of the extended linear model ensures the

following restrictions:

0 =
n∑
i=1

e(Ci;α)P (Zi = 1 | Ci; γ̂)P (Zi = 0 | Ci; γ̂)Ci

{
Yi − ψ∗Xi − β̂TCi

}
,

which amounts to setting one component of (13) to zero; the remaining component is

proportional to the (double-robust) estimating equation for ψ, which is made zero in the

estimation process.

The original proposal of bias-reduced double-robust estimation (Vermeulen and Vanstee-

landt, 2015), which we refer to as BR, amounts to estimating γ and β by jointly solving

(12) and (13). This seems preferable, in that it reduces the order of the asymptotic bias of

the double-robust estimator when one working model is grossly misspecified and the other

is locally misspecified, regardless of which. However, we did not pursue this approach in

the numerical evaluations in Section 6 because of the difficulty in solving equations (12)

and (13).
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5.3 Standard errors

For all considered double-robust estimators ψ̂, it follows by standard M-estimation argu-

ments that the asymptotic variance can be straightforwardly estimated as 1 over n times

the sample variance of the influence function[
n∑
i=1

[e(Zi, Ci)− E {e(Zi, Ci) | Ci; γ̂}]
{
∂m(Ci; ψ̂)/∂ψ

}
Xi

]−1
× [e(Zi, Ci)− E {e(Zi, Ci) | Ci; γ̂}]

{
Yi −my(Ci; β̂)−m(Ci; ψ̂)Xi

}
,

when both working models Az and Ay are correctly specified. Under misspecification of

at least one of these models, the above variance estimator must be corrected for the un-

certainty in the nuisance parameter estimators as detailed in Vermeulen and Vansteelandt

(2015), with the exception of the procedure BR. For the procedure BRγ, the above vari-

ance calculation delivers a conservative estimator of the asymptotic variance of ψ̂ when

model Ay is misspecified (Rotnitzky, Li and Li, 2010), and an asymptotically unbiased

estimator otherwise. The degree of conservatism of this procedure is influenced by the

choice of β̂, even though the bias-reduced double-robust estimator does not make use of

an estimator of β. We recommend basing the calculation of the asymptotic variance on

the ordinary least squares estimator of β in a regression of Y − ψ̂X on C, as we did in

the simulation study of Section 6. Alternatively, robust sandwich standard errors can

be calculated (Vermeulen and Vansteelandt, 2015), or the bootstrap can be used. For

the procedure BRβ, the above variance calculation can be both liberal and conservative

as a result of ignoring the uncertainty in β̂. When this procedure is used, we therefore

recommend the bootstrap.

21



6 Simulation study

We conducted a simulation experiment with n = 500 independent measurements on

mutually independent and standard normal covariates U and V , Z dichotomous with

P (Z = 1 | V ) = expit(−1+V/2+λzV
2/3), X normal with mean Z+U+V−ZV+λxV

2 and

Y normal with mean X −U −V +λyV
2. Assuming a linear IV model with m(C;ψ) = ψ,

we then evaluated the following estimators:

1. TSLS: the TSLS estimator using (Z, V Z)T as IV vector, based on a linear model for

the exposure, involving main effects of V, Z and their interaction, and a linear model

for the outcome involving main effects of V and the fitted value from the first stage

regression. Including the V Z interaction in the first stage model ensures a fairer

comparison with the subsequent estimators so that for all estimators misspecification

of the exposure model is only due to omitting V 2.

2. Loc Eff: the locally efficient double-robust estimator (assuming homoscedasticity)

based on a logistic model for Z with a main effect of V , a linear model for X with

a main effect of Z and V and their interaction, and a linear outcome model (i.e.,

my(C) = βTC with C = (1, V )T ), all fitted using maximum likelihood.

3. Emp Eff: the locally efficient double-robust estimator using the same fitted model

for Z as before, but using working models e(Z,C) = αTCZ and my(C) = βTC

fitted using empirical efficiency maximization (ignoring estimation of the model for

Z, which is suboptimal when the outcome model is misspecified; see Appendix S3

in the Supplemental Materials).

4. BRβ, BRγ: the double-robust estimator with α∗ estimated using empirical efficiency

maximization, but with either the outcome model or the IV model fitted using bias-
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reduced estimation.

To obtain the estimators Loc Eff and Emp Eff, the TSLS estimator was used as a starting

value; the obtained estimate was then updated a single time.

Table 1 and Figures 1 and 4 show the simulation results based on 1000 simulations.

When all working models are correctly specified (i.e. λz = λx = λy = 0), then all

estimators have nearly identical performance to TSLS. This is theoretically expected,

because they are based on correctly specified working models in the calculation of the

efficient score and are therefore asymptotically equivalent. When only the outcome model

is misspecified (i.e. λz = λx = 0, λy 6= 0), then the TSLS estimator is biased (as the

instrument expectation is not linear in the covariates) with larger standard deviation

than the double-robust estimators, which were all unbiased. Bias-reduced estimation of

the outcome model (BRβ) resulted in major efficiency gains in this case. This is likely the

result of the orthogonality to (some of) the nuisance parameter estimators, brought about

by this strategy (see also Vermeulen and Vansteelandt (2015)). When only the exposure

model was misspecified (i.e. λz = λy = 0, λx 6= 0), then as theoretically predicted,

the TSLS estimator and the double-robust estimators continue to be unbiased, but the

performance of the locally efficient double-robust estimator was sometimes very poor

because its efficiency is only attained at a correctly specified model for the exposure.

In this case, drastic improvements were obtained via empirical efficiency maximization,

because this strategy guarantees efficiency within a subclass of estimators, regardless

of correct specification of an exposure model. The efficiency of the resulting double-

robust estimator was sometimes better, sometimes worse than that of TSLS. When only

the IV model was misspecified (i.e. λx = λy = 0, λz 6= 0), then all estimators were

unbiased because of the double-robustness of the estimators and the fact that the TSLS

estimator does not rely on correct specification of an IV model; all estimators had nearly
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identical performance in this case. When both the exposure and outcome model are

misspecified (i.e. λz = 0, λx 6= 0, λy 6= 0), then again TSLS is biased, unlike the double-

robust estimators. The locally efficient estimator behaved poorly in this case and is

greatly outperformed by empirical efficiency maximisation, which again performs best

in combination with bias-reduced estimation of the outcome model. When all models

were misspecified, then also the double-robust estimators were subject to bias. However,

bias-reduced estimation of either the outcome model or the IV model resulted in bias

reductions and efficiency gains. This is not surprising for BRγ because the extended IV

model happened to contain the truth: indeed, the inclusion of the covariate e(C;α)TC in

the instrument model was tantamount to the inclusion of V 2. For BRβ, where the extended

outcome model did not contain the truth, this confirms that the proposed procedure

reduces bias under model misspecification.

Table 2 evaluates the performance of the proposed sandwich standard error estima-

tors, along with the coverage of 95% Wald confidence intervals. As predicted by the theory

in Section 5.2, by ignoring nuisance parameter estimation, these intervals are slightly con-

servative in the case of BRγ, but may undercover in the case of BRβ.

To further evaluate the bias-reduced estimation strategy, we additionally ran simula-

tions under extreme misspecifications, such that both extended outcome and IV models

did not contain the truth. In particular, we generated n = 500 independent measure-

ments on mutually independent and standard normal covariates U and V , Z dichotomous

with P (Z = 1 | V ) = 1− exp {− exp(−1 + V/2− V 2/2 + λzV
3/8)}, X normal with mean

Z+U+V −ZV +2V 2+2ZV 2+2λxV
3 and Y normal with mean X−U−V −2V 2+2λyV

3.

The working models were the same as before. The results are visualised in Figure

3 for all combinations of λx, λy and λz in {−1, 1}, and confirm the previous findings

(see also Figure 4 which zooms in on the bias-reduced double-robust estimators). The
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locally efficient double-robust estimator had very poor performance and, while empirical

efficiency maximization resulted in major efficiency gains, it was still much worse than

TSLS estimation. For instance, in the setting of Figure 3 (top, left), the locally efficient

double-robust estimator had bias and standard deviation of -32.7 and 450, as opposed to

-0.61 and 4.1 with empirical efficiency maximization, and -0.54 and 3.1 with TSLS. In

combination with bias-reduced estimation, most of the bias disappeared and variance was

often greatly reduced (see Figure 3 and 4).

All tables and figures about here.

7 Illustration

We illustrate the proposed methodology on a sample of 3010 working men aged between

24 and 34 who were part of the 1976 wave of the US National Longitudinal Survey of

Young Men (Card, 1995). In particular, we will estimate the effect of years of education

on the log of hourly wages in 1976 (Y ). Following Card (1995), we use as an IV an

indicator if the individual lived close to a college that offered 4 year courses in 1966 (Z).

All reported analyses are adjusted for covariates (C) years of labour market experience

and its square, marital status, an indicator if the individual is black, as well as various

measures of geographical location in 1966 and 1976. Twelve years of education was most

common (33%) in this study and was therefore used as a reference class by defining X to

be the difference between the years of education and 12.

The log of hourly wages is reasonably normally distributed with mean 6.3 (SD 0.44),

and is on average 0.075 (95% CI 0.068 to 0.082) higher per extra year of education, after

linear regression adjustment for years of labour market experience, marital status, race

and geographical location in 1966 and 1976. The partial correlation between education

and the IV is 0.066. Below, we will report the results from IV analysis with 95% percentile-
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based confidence intervals based on the nonparametric bootstrap with 1000 resamples.

TSLS analysis yields an education effect of 0.13 (SE 0.067, 95% CI 0.029 to 0.28) on

the average log of the hourly wage, corresponding with a one-year increase in education.

Because the instrument is dichotomous and strongly associated with covariates, its ex-

pectation is likely nonlinear in the covariates. The TSLS estimator is therefore sensitive

to correct specification of the role of covariates in the outcome model. We thus eval-

uate the double-robust estimators based on a logistic regression model for the IV. The

locally efficient double-robust estimator equals 0.10 (SE 0.044, 95% CI 0.025 to 0.18).

Like the double-robust estimator based on empirical efficiency maximization (0.088, SE

0.045, 95% CI 0.0063 to 0.18), it is much more efficient than the TSLS estimator. Further,

more minor efficiency gains are obtained through the proposed bias reduction strategies.

In particular, we find that BRγ equals 0.092 (SE 0.041, 95% CI 0.010 to 0.18) and BRβ

equals 0.095 (SE 0.043, 95% CI 0.0063 to 0.19).

8 Discussion

In this article, we have argued that TSLS estimation, unlike many variations of the two-

stage approach to estimation with an IV, is often robust against misspecification of the

working models for the exposure and outcome. However, this robustness may come at the

expense of a loss of precision, which can be considerable when, for instance, the exposure

mean is nonlinear in the instrument and/or covariates, e.g. when the exposure is binary,

multinomial or count data. Moreover, the suggested robustness of the TSLS estimators

is limited to specific data-generating mechanisms: robustness against misspecification of

the outcome model is for instance lost in TSLS estimators when the IV is nonlinear in

covariates. We also demonstrated that another strength of TSLS, not generally shared by

other two-stage estimators, is that including covariates will asymptotically not reduce, and
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typically improve, efficiency when instrument and covariates are known to be independent

and in the absence of effect modification.

In contrast, locally efficient double-robust IV estimators confer robustness against

model misspecification in a wider class of data generating mechanisms. For instance, an

attractive alternative, when instruments and covariates are known to be independent, is

the estimator obtained by empirical efficiency maximisation: it is guaranteed consistent

and efficient relative to a subclass of all CAN estimators. In other situations one should

arguably worry more about bias than efficiency. We have shown that major improve-

ments can be achieved by combining empirical efficiency maximisation with bias-reduced

double-robust estimation. The resulting estimators have a very stable performance with

considerable robustness against misspecification of all models for the instrument, expo-

sure and outcome; their standard errors can be computed relatively easily using sandwich

estimators. We are hopeful that by extending these results to double-robust estimators

in nonlinear IV models (Robins, 1994; Vansteelandt et al., 2010), we will be able to im-

prove the performance of IV estimators in these more complex settings where difficulties

of estimation are common (Vansteelandt et al., 2011; Burgess et al., 2014). R-code for

the considered estimators is given in Appendix S5 of the Supplemental Materials.

There are some limitations to our work. Our results are asymptotic and do not take

into account the problem of ‘weak instrument / small sample’ bias (Bound et al., 1995).

This may in practice exacerbate the problem of bias due to model misspecification. There

are a number of variations on two-stage estimators that are designed to address this prob-

lem, such as e.g. limited information maximum likelihood (Anderson, 2005), but these will

not generally exhibit comparable robustness towards model misspecification. It would be

an important area for future research to tackle both sources of bias simultaneously. Re-

lated to this, although the results on empirical efficiency maximisation appear to suggest
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that it is beneficial to adjust for all available covariates C when Z ⊥⊥ C, the performance

of the resulting estimators may be affected in the presence of high-dimensional covariates.

Whether and how to best select covariates in such cases, as well as in settings where it is

not known whether Z ⊥⊥ C, constitutes an important area for future research.
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Table 1: Empirical bias and standard deviation of the two-stage estimator (TS), the
locally efficient double-robust estimator (Loc Eff), the double-robust estimator based
on empirical efficiency maximization (EEM) and these same estimators that employ bias-
reduced nuisance parameter estimators (BRγ and BRβ). The superscript number between
brackets refers to the number of severely outlying estimates that were eliminated in the
calculation of bias and empirical standard deviation; λx 6= 0, λy 6= 0 and λz 6= 0 refer to
specific misspecifications of the exposure, outcome and instrument model, respectively.

λx λy λz TS Loc Eff EEM BRβ BRγ

Bias 0 0 0 +0.0033 +0.0043 +0.0044 +0.0041 +0.0042
0 1 0 −0.55 −0.0092 −0.035 +0.0024 −0.017
0 -1 0 +0.56 +0.018 +0.044 +0.0059 +0.026
1 0 0 +0.000073 +0.013 +0.0058 +0.0037 +0.0046

-1 0 0 +0.0013 +0.0074 +0.0043 +0.0048 +0.0044
0 0 1 −0.00057 −0.00033 +0.00009 −0.00009 +0.00029
0 0 -1 +0.0053 +0.0055 +0.0095 +0.0050 +0.0045
1 1 0 +0.15 +0.11(2) −0.040 +0.0039 −0.019

-1 1 0 −0.41 +0.012 −0.021 +0.0016 −0.013
1 -1 0 −0.15 −0.095(4) +0.051 +0.0038 +0.028

-1 -1 0 +0.41 +0.0030 +0.030 +0.0079 +0.022
1 1 1 +0.34 +0.36 +0.11 +0.021 −0.00028

-1 1 1 −0.35 −14(2) −0.40 +0.024 +0.00073
1 -1 1 −0.34 −0.36 −0.11 −0.023 −0.00059

-1 -1 1 +0.35 +15(2) +0.86 −0.023 +0.0015
1 1 -1 −0.94 +0.59(1) −0.48 +0.019 +0.0057

-1 1 -1 −0.36 −0.084 −0.085 +0.018 +0.0048
1 -1 -1 +0.94 −0.20(2) +0.50 −0.0081 +0.0039

-1 -1 -1 +0.37 +0.10 +0.10 −0.0086 +0.0036
SD 0 0 0 0.11 0.11 0.11 0.11 0.11

0 1 0 0.24 0.18 0.17 0.12 0.17
0 -1 0 0.28 0.19 0.19 0.12 0.18
1 0 0 0.18 0.82(4) 0.12 0.12 0.12

-1 0 0 0.068 0.12 0.11 0.11 0.11
0 0 1 0.094 0.097 0.11 0.097 0.097
0 0 -1 0.13 0.13 0.14 0.13 0.13
1 1 0 0.46 1.9(2) 0.19 0.12 0.17

-1 1 0 0.11 0.23 0.17 0.12 0.17
1 -1 0 0.48 1.2(4) 0.20 0.12 0.18

-1 -1 0 0.14 0.22 0.17 0.12 0.17
1 1 1 0.15 0.12 0.16 0.10 0.14

-1 1 1 0.15 120(2) 8.30 0.11 0.14
1 -1 1 0.14 0.10 0.16 0.099 0.13

-1 -1 1 0.16 140(2) 12 0.10 0.13
1 1 -1 1.3 11(1) 0.85 0.13 0.17

-1 1 -1 0.098 0.17 0.18 0.14 0.17
1 -1 -1 1.5 5.6(2) 0.98 0.13 0.17

-1 -1 -1 0.12 0.17 0.18 0.13 0.16
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Table 2: Empirical standard deviation (ESD), average of the (näıve) sandwich standard
errors (ESE) and coverage (Cov) of 95% Wald intervals for the bias-reduced double-robust
estimators. λx 6= 0, λy 6= 0 and λz 6= 0 refer to specific misspecifications of the exposure,
outcome and instrument model, respectively.

λx λy λz BRβ BRγ

ESD ESE Cov ESD ESE Cov
0 0 0 0.11 0.12 96.1 0.11 0.12 96.7
0 1 0 0.12 0.12 96.1 0.17 0.22 97.7
0 -1 0 0.12 0.12 95.4 0.18 0.22 98.5
1 0 0 0.12 0.12 95.3 0.12 0.12 96.9

-1 0 0 0.11 0.12 95.0 0.11 0.12 97.7
0 0 1 0.097 0.12 98.5 0.097 0.10 95.9
0 0 -1 0.13 0.10 88.6 0.13 0.14 96.0
1 1 0 0.12 0.12 95.4 0.17 0.22 98.6

-1 1 0 0.12 0.12 95.0 0.17 0.22 95.3
1 -1 0 0.12 0.12 94.8 0.18 0.22 97.8

-1 -1 0 0.12 0.12 94.6 0.17 0.21 96.3
1 1 1 0.10 0.094 91.1 0.14 0.18 97.7

-1 1 1 0.11 0.42 99.7 0.14 0.19 98.3
1 -1 1 0.099 0.093 90.7 0.13 0.19 97.5

-1 -1 1 0.10 0.42 99.6 0.13 0.18 98.5
1 1 -1 0.13 0.12 89.8 0.17 0.20 97.5

-1 1 -1 0.14 0.099 85.3 0.17 0.20 96.4
1 -1 -1 0.13 0.12 88.8 0.17 0.20 97.0

-1 -1 -1 0.13 0.097 84.9 0.16 0.20 98.1
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Figure 1: Boxplots of the two-stage estimator (TS), the double-robust estimator based on
empirical efficiency maximization (EEM) and bias-reduced nuisance parameter estimators
(BRβ and BRγ) under the model misspecifications considered in Table 1. λx 6= 0, λy 6= 0
and λz 6= 0 refer to specific misspecifications of the exposure, outcome and instrument
model, respectively.
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Figure 2: Boxplots of the two-stage estimator (TS), the double-robust estimator based on
empirical efficiency maximization (EEM) and bias-reduced nuisance parameter estimators
(BRβ and BRγ) under the model misspecifications considered in Table 1. λx 6= 0, λy 6= 0
and λz 6= 0 refer to specific misspecifications of the exposure, outcome and instrument
model, respectively.
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Figure 3: Boxplots of the two-stage estimator (TS), the double-robust estimator based on
empirical efficiency maximization (EEM) and bias-reduced nuisance parameter estimators
(BRβ and BRγ) under extreme model misspecification.
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Figure 4: Boxplots of the bias-reduced nuisance parameter estimators (BRβ and BRγ)
under the same settings with extreme model misspecification as considered in Figure 3.
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