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Abstract 6 

This paper presents a data-driven control approach for maximizing the total power generation of the offshore wind farm by using a 7 

recently developed learning model predictive control (LMPC) algorithm. The control is designed by coordinating yaw angle control 8 

actions of wind turbines to mitigate the wake interactions among the turbines for increasing the total farm power production, which is 9 

termed as wake redirection. This paper mainly focuses on designing the architecture and methodology of the LMPC for wind farm, 10 

including a unified wind turbine wake interaction model, the LMPC for minimizing an iteration cost function, the recursive feasibility, 11 

stability and convergence analysis. Extensive comparative studies are conducted to verify the performance of the LMPC in comparison 12 

with the existing model predictive control (MPC) method under the same wind speed conditions. The results show that the wind farm 13 

yields up to 15% more power production by using the LMPC than the conventional MPC. 14 

Keywords: Wind farm; Learning model predictive control; Wake interaction; Wake redirection; FLORIS wind farm model. 15 

I. INTRODUCTION 16 

Wind energy is increasingly becoming one of the most popular renewable energy sources around the world and will fulfill one 17 

third of the world's electricity need by 2050 [1]. The global investment share of offshore wind in the wind energy has risen steadily 18 

from 10% in 2013 to 25% in 2016 [2]. An offshore wind farm is a cluster of wind turbines that are collected together in each other’s 19 

proximity to reduce maintenance costs. However, wind turbines in an offshore wind farm experience up to 40% power losses due 20 

to the aerodynamic wake interaction [3] which is generated from the upwind turbines and therefore can lower the wind power 21 

production of downwind turbines inside the wake region. The wake interaction is generally characterized by increased turbulence 22 

and reduced wind flow velocity, and is highly dependent on the number of wind turbines and atmospheric conditions including 23 

wind speed, wind direction, and turbine control settings such as blade pitch angles, generator torques, and yaw angles [4]. 24 

The challenges in mitigating complex wake effects in offshore wind farms and therefore increasing wind farm power production 25 

have motivated the development of a wide variety of approaches in the wind energy research area. One approach is to carefully 26 

optimize the wind farm layout by allowing  enough space between turbine locations in the design phase. However, this optimization 27 

may be limited due to the stochastic nature of continuously varying wind conditions. Besides the design optimization, another 28 

possible approach, is to down regulate individual turbines from their peak power points in order to maximize the wind farm power 29 

production as a whole. However, this turbine downregulation method maybe highly suboptimal due to the poor understanding and 30 
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mitigation of turbine-wake interactions in an offshore wind farm. Therefore, the efforts should be made towards joint setting of 31 

control variables or coordinating control settings of individual wind turbines for reducing power losses due to wake interactions 32 

and hence maximizing the total wind farm power generation. Actually, the axial induction factors and the yaw-offset angles of 33 

individual wind turbines can be employed as the control variables to mitigate the wake effects. The axial induction factor can be 34 

generally regulated by adjusting the generator torque and the blade pitch angle in a wind turbine. The yaw-offset angle, defined as 35 

the misalignment angle between the wind rotor and the wind direction, can be intentionally and intelligently yawed out of the wind 36 

direction to deflect the wake trajectory away from downwind turbines, thereby increasing the wind power productions of 37 

downstream wind turbines. The method of adjusting the yaw-offset angles can be generally termed as the wake redirection control. 38 

Although the control of both the induction factors and the yaw-offset angles can be conducted simultaneously, the wake redirection 39 

control is easy to implement and has much greater potential in maximizing the total wind farm power production. 40 

Recently, the active regulation of induction factor and yaw angle for mitigating the wake interference and improving the total 41 

wind farm power production have been a hot topic and different control perspectives have been reported in the literature. For 42 

example, the gradient ascent algorithm [5], the game-theoretic search algorithm [6], the simultaneous perturbation stochastic 43 

approximation method [7], and the maximum power point tracking methods [8] have been proposed for maximizing the wind farm 44 

power production, and some of them have been evaluated by using large eddy simulation model such as the Parallelized Large-45 

eddy simulation Model (PALM) [9]. In [10], an optimization approach was employed to determine the optimal control actions for 46 

maximizing the wind farm power based on the sequential quadratic programing. However, the optimization was designed based 47 

on analytical wind farm power functions with simplified wake models, which cannot precisely reflect the wind farm conditions. In 48 

[11], the optimal turbine yaw-offset angles were derived by using a parametric wind farm power function that was constructed 49 

from a high-fidelity Computational Fluid Dynamics (CFD) simulation. However, a large amount of wind turbine parameters and 50 

environmental variables need to be specified in the CFD model. 51 

In [12], the feasibility of using the Bayesian Ascent (BA) algorithm for determining the coordinated optimal control actions for 52 

a wind farm was evaluated with different number of wind turbines and time-varying wind conditions. However, this parametric 53 

study was based on analytical wind farm power function, and the used BA algorithm may incur an excessive number of iterations 54 

when scaling up to optimize a large number of wind turbines. In [13], the Bayesian optimization (BO) was used to find the optimal 55 

inputs for a wind farm in the context of exploration and exploitation based sequential decision-making. However, the BO needs 56 

the prior description of the target function using Gaussian process and requires a large amount of data points to reach the optimal 57 

operational conditions. In addition, the BO may not perform well with noisy measurement data and cannot be used in real-time 58 

control applications due to constraints in the  (conventional) sampling strategies in BO. In [14], the game theory and cooperative 59 

control were used to optimize wind farm energy production based on the framework of enmeshed decision making where individual 60 
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turbines represent the decision makers. In [15], a constrained time efficient closed-loop wind farm control approach was introduced 61 

and evaluated in a parameter-varying realistic wind farm flow model. In [16], two decentralized discrete adaptive filtering 62 

algorithms were proposed to optimize the total wind farm power output with only limited information sharing among neighbor 63 

turbines and without using the wind farm power generation model. The fast convergence to the optimal total power generation and 64 

high efficiency of the algorithms were demonstrated by simulation. In [17], the influence of optimal control parameters on wind 65 

farm optimization was quantified and the simulation results indicated that up to 21% gain in wind farm power production could be 66 

achieved by using optimization. In [18], an optimization under uncertainty (OUU) method was formulated to find the optimal wake 67 

redirection strategy in the presence of yaw angle uncertainty. A utility-scale two-turbine test case was used to demonstrate the 68 

method, and the results indicated that the OUU solution improved the overall annual average energy by 0.2% and produced fewer 69 

extreme yaw situations than the deterministic solution when considering the realistic uncertainty. 70 

In [19], a constrained model predictive control (MPC) was proposed for maximizing the total wind farm power production by 71 

using a two-dimensional dynamic wind farm model to predict wake interactions. The wind turbine axial induction factors were 72 

used as control inputs and an adjoint approach was utilized to compute the optimal induction factors. The control effectiveness of 73 

the approach was demonstrated based on a 2×3 wind farm. In [20], a control algorithm was proposed to maximize the wind farm 74 

power reserve by distributing the power contribution of each wind turbine. The evaluation of the algorithm was conducted by 75 

simulations of 12 wind turbines. In [21], a closed-loop receding horizon controller was proposed based on a time-varying one-76 

dimensional wake model to provide secondary frequency regulation in a wind farm. The controller was designed by using wind 77 

speed measurements of each wind turbine as feedback and was then tested in large eddy simulations of an 84-turbine wind farm. 78 

In [22], a distributed MPC scheme was proposed and solved by distributed optimization at every time step. Two MPC versions 79 

respectively with hard constraint and soft constraint of the farm-wide power output were implemented and compared. An 80 

alternating direction method of multipliers and a dual decomposition scheme were compared in the distributed optimization. Four 81 

exemplary scenarios was used to test the performance of the distributed MPC controller and the distributed optimization methods. 82 

The results implied that the use of the distributed MPC in wind farms is viable. In [23], a distributed MPC was presented for the 83 

optimal active power control of a wind farm that was equipped with fast and short-term energy storage system. A gradient method 84 

via dual decomposition was used to implement the distributed MPC. Case studies were performed to evaluate the effectiveness of 85 

the distributed MPC whose efficiency is independent from the wind farm size. 86 

This paper aims to develop a new wake redirection control strategy based on the recent learning model predictive control 87 

(LMPC) approach [25], [26] to improve the performance of the traditional MPC in maximizing the total offshore wind farm power 88 

production. The LMPC is a data driven approach that can iteratively improve the wind farm power production and minimize the 89 

control action burden by learning the input trajectories and state cost from previous iterations. The LMPC is designed and 90 
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implemented iteratively by solving a finite-time constrained optimization problem that can minimize a finite-time predicted cost 91 

while handling state and inputs constraints. The LMPC scheme is reference-free and is able to improve its performance (in 92 

comparison with MPC) by learning from previous iterations. A convex safe set and a terminal cost function, learnt from previous 93 

iterations, are used in the LMPC to allow for the consideration of the long term planning and can guarantee the stability, recursive 94 

feasibility and performance improvement of the control object. Moreover, the converged steady-state trajectory is locally optimal 95 

for an approximation of the infinite horizon control problem. 96 

The solution of the LMPC in the wind farm control is a sequence of optimized joint yaw angles that can be used to minimize 97 

the cost function while satisfying the recursive stability and convergence performance. By using extensive co-calculations based 98 

on the data-driven FLORIS (FLOw Redirection and Induction in Steady-state) tool developed by NREL (National Renewable 99 

Energy Laboratory) and the MATLAB software, greatly improved performance of the LMPC method in maximizing the offshore 100 

wind farm power capture has been demonstrated based on a comparison with the existing MPC method.  The former results in up 101 

to 15% more power production than the latter. 102 

The rest of the paper is organized as follows: in section II, the wind farm model and the control problem are formulated. In 103 

section III, the LMPC design and related stability proof are presented. In section IV, the validations and discussions of the 104 

developed LMPC wind farm control strategy are presented, based on the FLORIS model. Section V includes the conclusion of this 105 

paper. 106 

II. WIND FARM MODEL AND PROBLEM FORMULATION 107 

In order to derive and implement the LMPC for a wind farm, it is necessary to formulate a wind farm model based on the wind 108 

turbine wake model and wake interaction model among the turbines. Also, it is essential to study the effects of yaw offset angles 109 

on the wind farm power production to formulate the predictive control problem. 110 

A. Wind Turbine Wake Model 111 

The commonly used and computationally efficient wind turbine wake model is the Jensen model (or the Park wake model) [24] 112 

which assumes that the wind velocity in a wake is uniform and expands proportionally to the axial downstream distance from the 113 

turbine rotor. As shown in Fig. 1, for a turbine i within a wind farm, the wake behind this turbine can be divided into three separate 114 

regions, i. e. near wake (q = 1), far wake (q = 2), and mixing regions (q = 3), while each region has a diameter Dw,i,q, (q=1, 2, 3) 115 

[11]. The near-wake region is influenced by the local chord Reynolds number and the turbine tip speed ratio. In the far wake region, 116 

the wind velocity deficits with the distance from the turbine rotor. In the mixing region, due to the turbulence-induced mixing, the 117 

wind velocity will gradually recover to the free-stream velocity. 118 

The wind velocity behind a turbine i  is modeled as 119 
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 , ( , ) 1 2 ( , )w i i iV x y V a c x y   (1) 120 

where V∞ is the free-stream inflow wind velocity, 
ia  is the axial induction factor of the turbine i that can be defined as the relative 121 

amount of velocity drop at the turbine rotor with respect to the inflow velocity, ( , )ic x y  is a piecewise wake decay coefficient that 122 

can be defined as follows 123 
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where 
, ( ), 1,2,3i qc x q   is the local wake decay coefficient for each region, 

, ( )w iy x  is the position of the wake centerline when 125 

x>Xi. 126 

The local wake decay coefficient 
, ( ), 1,2,3i qc x q   is 127 
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 (3) 128 

where 
iD  is the rotor diameter of the turbine i, 

ek  and 
, ( )v q im u  are the wake expansion coefficients, ui(t) is the control input for 129 

the turbine, which is the yaw angle of the turbine in the wake redirection control.  130 
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ui(t)
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y

x

V∞
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Far wake
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(Xi, Yi) (Xj, Yj)

Wake centerline

Di

Dj

 131 

Fig. 1 Schematic of the wake regions behind the turbine i 132 

The coefficient , ( )v q im u  is directly related to the yaw angle offset via the following relationship 133 

,

, ( ) , 1,2,3
cos( ( ))

v q

v q i

v v i

M
m u q

a b u t
 


 (4) 134 

where ,v qM , va , and vb  are constant. 135 

The diameters of the wake regions Dw,i,q in (2) is 136 

 , , ,( ) max 2 ( ),0w i q i e e q iD x D k m x X    (5) 137 
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where the scaling parameter 
, , 1,2,3e qm q   denotes the wake expansion rate of the three regions. 138 

The position of the wake centerline is determined by combining the yaw-induced and rotation-induced wake lateral offsets with 139 

respect to the hub coordinate of the turbine i as follows 140 
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  (6) 141 

where 
, , ( )w rot iy x  and 

, , ( , , )w yaw i i iy x u a  are respectively the rotation and yaw induced offsets of the wake centerline position. The 142 

coefficients 
da , 

db  and 
dk  are constant in determining the centerline position. 143 

B. The Wake Interaction Model 144 

Considering a turbine j in the wake regions of the turbine i, the overlapping areas between the turbine rotor and the three wake 145 

regions is shown in Fig. 2. Then, the effective inflow wind velocity of the turbine j is readily calculated by weighting the wake 146 

regions by the overlapping areas with the turbine rotor. Therefore, the effective inflow speed 
jV  of the downstream turbine j takes 147 

the following form [11] 148 

3
, ,

,

: 1

1 2 ( ) min ,1
i j

ol

i j q

j i i q j

i X X q j

A
V V a c X

A


  

   
     

   
   

   (7) 149 

where (Xj, Yj) denotes the coordinate of the turbine j, 
, , , 1,2,3ol

i j qA q   is the overlapping areas of the three wake regions with the 150 

turbine rotor, 
jA  is the turbine rotor area. 151 

 152 

Fig. 2 Schematic of the overlapping areas of the turbine j 153 
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As illustrated in (7), the inflow wind velocity of the turbine j is not only related to its own yaw angle, but also is influenced by 154 

the yaw angle of the upstream turbine i, which clearly indicates that the inflow wind power of the downstream wind turbine j is 155 

affected by the yaw angle control inputs of itself and the upstream turbines. Therefore, the changes of the operational conditions 156 

of upstream turbines influence the inflow wind velocity of a downstream wind turbine through wake interactions, which therefore 157 

influence the power extraction of downstream turbine. The wind velocity of upstream turbines that are located in the front of a 158 

wind farm and that are not influenced by other turbines can be determined as 
jV V . 159 

C. The Control Problem Formulation 160 

For a large-scale wind farm with N wind turbines denoted by the set  1,2,..., N , each wind turbine j is characterized by its 161 

rotor diameter 
jD , induction factor 

ja , inflow wind velocity ( )jV t  and yaw angle offset ( )ju t . 162 

Based on the actuator disc theory, the power extracted from a single turbine j is equivalent to the amount of power extracted by 163 

the rotor disc as follows [12] 164 

   
2

3

( ) ( )cos ( ) , ( )
8

j

j j j pj j j

D
P t V t u t C a u t


 
 

 (8) 165 

where ( )jP t  is the power extracted from the turbine j, ρ is the air density,  and [16] 166 

2 2( , ) 4 (1 ) cos( ( ))pj j j j j jC a u a a u t   (9) 167 

is the power coefficient of the turbine. 168 

The total wind power extraction ( )x t of the wind farm is an aggregation of the powers produced by all the wind turbines  169 
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    (10) 170 

In the case of wake redirection control, by assuming the constant induction factor 
ja  and the constant variation rate of the yaw 171 

angle offset ( )ju t , the time derivative of the wind farm power is determined based on (8)~(10) as follows 172 
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 (11) 173 

Therefore, by using a constant time interval Δt for the time differential operation in (11), the time derivative of the wind farm 174 

power in (11) can be reasonably represented as 175 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ), ( ) ,p j

x t t x t
x t x t t x t x t t x t t f x t u t j

t

  
          


 (12) 176 

By observing (9)-(12) and the wake model in (1)-(7), the wind farm power can be generally characterized by the function 177 
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 ( ), ( )p jf x t u t  in (12) and is only directly related to the joint yaw angle offset of the turbines within the wind farm in the wake 178 

redirection control case. Therefore, by properly regulating the joint yaw angles of the turbines, the state of the wind farm power 179 

extraction can be varied accordingly, which forms the control problem of yaw angel redirection control in maximizing the wind 180 

farm power generation. 181 

In practice, the nonlinear function  ( ), ( )p jf x t u t  in (12) can be well parameterized and accurately represented by using the 182 

FLORIS wind farm model with each wind turbine represented by the offshore 5 MW NREL wind turbine model. As a consequence, 183 

with the power function being explicitly defined above, the LMPC scheme can be employed to solve the wind farm power 184 

maximization problem. 185 

III. THE LMPC FOR WIND FARM 186 

In this section, the LMPC approach [25], [26] is explored for developing the wake redirection control to maximize the total wind 187 

farm power production. The LMPC is designed and implemented iteratively by solving a finite-time constrained optimization 188 

problem. The solution is a sequence of optimized joint yaw angles that can be used to minimize an iteration cost function of the 189 

wind farm power generation. Then, the LMPC is proved to be recursively feasible and stable at each successive iteration, and the 190 

iteration cost is guaranteed to be non-increasing at all time instants and iterations. 191 

A. The LMPC Design 192 

The wind farm power maximization problem formulated in the above section is equivalent to the minimization of its reciprocal 193 

1

( )x t t 
 or 

1

( )x t
. 194 

In order to transform the continuous time domain wind farm state equation in (12) into the discrete time domain to facilitate the 195 

LMPC design, the following variables are defined 196 
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 (13) 197 

where 1tx   and tx  denote the state variables at time instants t and t+1, respectively, tu  denotes the joint set of the yaw angles at 198 

time instant t. 199 

Based on (13), (12) can be transformed into the discrete time domain as follows 200 
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 (14) 201 

Therefore, based on (10)-(14), the state equation of the wind farm is represented as 202 

1 ( , )t t tx f x u   (15) 203 

where ( )f   represents the nonlinear relationship between the control input 
tu  and state variable 

1tx 
, and can be characterized by 204 

the function  ( ), ( )p jf x t u t  in (12) or represented by using the FLORIS wind farm model. 205 

In general, the nonlinear function ( )f   is continuous at all time instants, and the state and inputs are subject to necessary 206 

constraints. 207 

At the jth iteration of the LMPC task, the state trajectory and the associated control input sequence are 208 
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 (16) 209 

where j

tx  and j

tu  denote the state trajectory and control input at the time instant t of the jth iteration, Tj is the time instant at which 210 

the control task is completed. 211 

At each jth iteration, the state trajectory is assumed to start from the same initial state. Then, by using the stored data in (16), a 212 

convex safe set 
jCS  at the jth iteration can be constructed [25]. Thus, 213 

0 0
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ij T
j i

k

i t

CS x
 

 
   

 

 (17) 214 

Actually, the convex safe set 
jCS  can be defined as the convex hull of the union of the stored data as follows 215 

0 0 0 0

: 0, 1,

i ij jT T
j i i i i

k k k k

i t i t

CS x x x  
   

  
      
  

 R  (18) 216 

where i

k  denotes the Lagrange multiplier associated with each recorded data in the convex safe set. 217 

Also, based on the stored data in (16), a continuous cost-to-go function can be defined as 218 

1( , )j j j j

k k k kQ h x u Q    (19) 219 

where j

kQ  is the cost-to-go function defined at the k time instant of the jth iteration. At the time instant Tj when the control task is 220 

completed, the cost to go function can be defined as 221 

( ,0), 0j j

j j

T T
Q h x j    (20) 222 

For the wind farm control task, the cost function in (19) and (20) can be defined as 223 
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T T( , ) ( ) ( )j j j j j j

k k k k k kh x u x Qx u u  R  (21) 224 

where Q=10000, R=IN (IN is a N×N dimension identity matrix) are the constant coefficients, respectively. 225 

Then, the Q-function to be optimized can be defined based on (19)-(21) as follows 226 
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 (22) 227 

The above Q-function defined in (22) can be used as the terminal cost in an infinite horizon optimal control problem. Therefore, 228 

the control problem defined in the section II-C can be equivalently transformed into the infinite horizon optimal control problem 229 

at each jth iteration as follows [26] 230 
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  (23) 231 

where n is the prediction time horizon. 232 

The cost function defined in (23) includes a running cost 
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 . The control 233 

problem is also subject to the constraints of initial condition, dynamics constraint, state and input constraints that can be represented 234 

as 235 
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 (24) 236 

where minu  and 
maxu  represent the upper and lower bounds on the yaw control inputs. The constraints defined in (24) also enforce 237 

the latest predicted state t n tx   into the convex hull of the recorded states. 238 

By solving (23) and (24), the optimal control sequence of the yaw angle offset can be obtained at the time instant t of the jth 239 

iteration as follows 240 

,* ,* ,*

1,...,j j j

t t t t n tU u u  
     (25) 241 

Consequently, the optimal control input applied to the wind farm at the time instant t of the jth iteration is obtained as 242 
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,*j

t t tu u  (26) 243 

Then, the infinite horizon optimal control problem proceeds and is repeated at the time instant t + 1 based on the optimal control 244 

signal in (26) and the new state variable 
1 1 1

j

t t tx x    until the maximum iteration number is exceeded. 245 

The above infinite horizon optimal control problem defined in (23) and (24) is generally difficult to solve by using the traditional 246 

semidefinite programming and linear matrix inequalities especially when considering that the FLORIS wind farm model is 247 

implicitly involved in the problem. The constraints defined by the FLORIS wind farm model cannot be explicitly described by 248 

linear equations and many nonlinear relationships actually exist in the optimization problem. Therefore, the commercial or non-249 

commercial semidefinite programming (SDP) solvers cannot be used. Then, the genetic algorithm (GA) is used to find the global 250 

optimal solution of the control input ,*j

t tu  at time instant t of the jth iteration. As a derivative free and powerful optimization tool 251 

inspired by evolutionary biology, the GA is designed based on the natural selection mechanism that includes the operators of 252 

selection, crossover, mutation, and inversion in a population candidate [27]. After a sufficiently high number of generations and 253 

population evolutions, the GA is capable of the global optimal solution with a satisfactory fitness level. In order to eliminate the 254 

heavy computational burden in the GA, the GA parameters including the generation number, the population size and the tolerance 255 

constraint can be carefully chosen to save time. 256 

B. The Recursive Feasibility and Stability 257 

The recursive feasibility and stability of the LMPC controlled wind farm system can be proved based on the designed convex 258 

safe set and the cost-to-go function. Also, there exists an asymptotically stable equilibrium  point for the closed loop system at 259 

every iteration j ≥ 1 [26]. 260 

Considering the system (15) controlled by the LMPC in (26) and state update in (15), one obtains 261 

*,

1 1

j j

t t tx x   (27) 262 

Given the related optimal input sequence and the optimal trajectory obtained by using (23) and (24), the cost function is obtained 263 

as 264 

*

0 1 0 1( ) ( )j j j

n t t n tJ x J x     (28) 265 

Therefore, by defining 
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  and based on (27) and (28), the optimal cost can be used as a Lyapunov function 266 

as follows 267 
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where (i∗, t∗) in (29) is defined as 269 

0( *, *) arg min ( ),i i i

ti t J x x CS    (30) 270 

Therefore, 271 

,* ,* ,*

0 1 0 / /( ) ( ) ( , ) 0j j j j j j

n t t n t t t t tJ x J x h x u       (31) 272 

Due to the positive definitiveness of h(·) in (21) and the continuity of 
0 ( )j

nJ   , it is obvious that the cost function in (31) is non-273 

increasing along the closed loop trajectory and will reach an asymptotically stable point when t→∞. 274 

C. The Convergence Analysis 275 

The convergence property of the LMPC controlled wind farm can be analyzed based on the proof of the recursive feasibility 276 

and stability in section III-B. The cost defined in (23) will be non-increasing along the closed loop LMPC controlled wind farm 277 

system and will converges to a steady state trajectory x∞ when time t→∞ and the iteration j→∞. Then, the steady state yaw angle 278 

control input will be u∞ = limj→∞ uj  which is the global optimal solution for the infinite horizon optimal control problem in (23) 279 

and (24). 280 

The interested readers can refer to [28] for more details about the convergence analysis of the LMPC. 281 

IV. VALIDATIONS AND DISCUSSIONS 282 

In order to investigate and ascertain the efficiency and effectiveness of the LMPC designed for wake redirection control, 283 

computational experiments are conducted by using the NREL FLORIS tool and the MATLAB software. The experiments have 284 

been conducted under eleven different scenarios with different freestream wind speed inputs. A traditional MPC has been designed 285 

for comparison. 286 

A. Computational Experiments 287 

The computational experiments are carried out based on the co-calculations of MATLAB and the FLORIS tool when the inflow 288 

freestream wind speeds vary from 6 m/s to 11 m/s. 289 

The FLORIS wind farm model is written in Python language and is designed to provide a controls-oriented and computationally 290 

inexpensive tool that models the turbine interactions and the steady-state wake characteristics in a wind farm. The FLORIS model 291 

is designed based on the Jensen model and the wake deflection by Jiménez et al., and hence is sufficiently fast to perform wake 292 

redirection control while retaining enough accuracy [29], [30]. The NREL 5 MW offshore wind turbine model with the rated wind 293 

speed of 12 m/s has been adopted in the FLORIS tool and the turbine yaw angles are bounded from 0° to 15°. 294 

As shown in Fig. 3, the simulated wind farm consists of four wind turbines aligned in two rows with 800 m spacing in the 295 

downwind direction and 630 m spacing in the crosswind direction. The freestream wind speed comes from the front-left with the 296 
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direction of 270°, and turbines 1 and 3 are in the upstream direction while the turbine 2 and 4 are in the downstream wind direction. 297 

The four turbines can interact fully through the wakes of the upstream turbines and therefore represent the realistic scenario for 298 

wake redirection control. The incoming freestream wind speed varies from 6 m/s to 11 m/s and has the turbulence intensity of 5% 299 

at the hub height, which represents the below-rated wind speed condition for the wind farm power optimization. 300 

 301 

Fig. 3 The FLORIS wind turbine layout and wind speed distribution 302 

The LMPC algorithm has been designed and implemented in the MATLAB which calls the FLORIS tool by using the function 303 

“py.importlib.import_module” while the FLORIS tool defines an objective function with the turbine yaw angle vector as input and 304 

the total wind farm power as output. 305 

The genetic optimization tool (gatool) in the MATLAB has been used to solve the optimal control problem defined in (23) and 306 

(24) for the LMPC implementation. The parameters of the genetic optimization have been carefully chosen in the “gaoptimset” 307 

such that the LMPC problem can be solved efficiently with enough accuracy. For example, the number of generations has been set 308 

as 30, the number of population size has been set as 50, and the operation parameters for crossover and mutation can be set as 0.6 309 

and 0.2, respectively. The gatool calls the FLORIS tool for objective function evaluations at each time step with turbine yaw 310 

settings as input and the calculated total wind farm power from the FLORIS tool as output. Other key parameters for the LMPC 311 

have been set as: the controller horizon is 3 while the iteration number is 5. In order to further verify the effectiveness of the LMPC, 312 

a traditional MPC has been designed for comparison. 313 

B. Results and Analysis 314 

As shown in Fig. 4, the total wind farm power increases with the increasing incoming wind speed from 6 m/s to 11 m/s with 0.5 315 

m/s interval . it is obvious that the designed LMPC produces more power than the traditional MPC in the whole wind speed range. 316 

At 6 m/s, LMPC increases the power capture by around 7.8% compared with the conventional MPC via the optimal turbine yaw 317 

angle settings. This increase becomes more significant in the high-speed range of the wind and it reaches around 15% at 11 m/s. 318 

Turbine 1 Turbine 2

Turbine 3 Turbine 4
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The increase may be attributed to the fact that the LMPC can be used to find the optimal partial-wake operational point (through 319 

iterative learning) where the wake-induced power losses are reduced due to less wake interactions among wind turbines. The results 320 

also indicate that the LMPC method may be more suitable for the case of higher inflow wind speed. 321 

 322 

Fig. 4 The total wind farm power generations by using the two control algorithms 323 

Fig. 5 demonstrates the evolution of the iteration cost of the LMPC under the incoming freestream wind speed of 8 m/s, which 324 

is the typical result of all the wind speed scenarios. As shown in this figure, the iteration cost decreases almost monotonically with 325 

the iterations and reaches the steady value of 858.2 in two iterations. This result demonstrates the recursive stability and 326 

convergence of the LMPC, as mentioned in the sections III-B and C. 327 

 328 

Fig. 5 The evolution of the iteration cost of the LMPC under the incoming freestream wind speed of 8 m/s 329 

Fig. 6 illustrates the LMPC of wind farm energy extraction with the evolution of the total wind farm power production over the 330 
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prediction horizon at wind speed of 8 m/s. As shown in this figure, the total wind farm power evolves from 6.5 MW to 5.2 MW 331 

with the decreasing iteration cost in Fig. 5. Although the 6.5 MW wind farm power is greater than the converged value of 5.2 MW, 332 

its iteration cost involving the yaw angle actions is  higher than the case at 5.2 MW as shown in Fig 6.  It is clear that the LMPC 333 

can be used to achieve a good trade-off between the control action cost and the optimal wind farm generation via executing several 334 

trial expenses as shown in Fig. 6. 335 

 336 

Fig. 6 The total wind farm power generation using the LMPC under the wind speed input of 8 m/s 337 

Fig. 7 depicts the calculated time series of the optimal yaw angle settings in the four-turbine example at freestream wind speed 338 

V∞=8 m/s. As shown in the figure, the trajectories of the yaw angles of the wind turbines 1, 2, 3 and 4 respectively evolve to the 339 

optimal and steady values of 15°, 0.2238°, 14.83° and 3.4697° after the time step 5, which further demonstrates the stability and 340 

convergence properties of the LMPC in section III. The yaw angles for front wind turbine 1 and 3 are set around the maximum 341 

value of 15° so that their blades can be yawed out of the incoming wind and more wind energy can be captured by wind turbine 2 342 

and 4 that have very small yaw angles. In this case, the total wind farm power output can be improved. The fluctuations of the 343 

turbine yaw angles after the time step 5 may be caused by the self-similar Gaussian model in the new version FLORIS model, 344 

which may have an impact on the total wind farm power output. Despite this, the converged values of the yaw angle settings are 345 

required to sufficiently minimize the iteration cost function defined in (23) for the wind farm in a desirable manner in particularly 346 

for wind farm system with fast dynamics. 347 

 348 
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 349 

Fig. 7 The wind turbine yaw angles in the LMPC under the wind speed input of 8 m/s 350 

V. CONCLUSIONS 351 

The data-driven LMPC has been proposed for increasing the total wind farm power production of offshore wind farm over a 352 

prediction horizon by iteratively executing the yaw angle control actions when considering the aerodynamic wake interactions 353 

among wind turbines. The LMPC can ensure the desired closed-loop control performance and improve execution efficiency 354 

simultaneously by learning from previous iterations. The detailed dynamic wake model and wake interaction model in a wind farm 355 

have been presented. The design details have been presented by recursively constructing the convex safe set and a terminal cost 356 

function for guaranteeing the control performance at each iteration. The convergence and global stability of the LMPC have also 357 

been proved. The effectiveness of the LMPC approach has been validated based on the co-calculations of the NREL FLORIS tool 358 

and the MATLAB. The results demonstrated that the LMPC converged fast to the optimal control set points of the yaw angles. In 359 

comparison to the conventional MPC, the wind farm yielded up to 15% more power production by using the LMPC. 360 

We mention that the FLORIS model is a control-oriented steady-state wake model, which only provides information for the 361 

wake at a given wind condition. Therefore, the results in the work can be further improved by using dynamic CFD simulation tools 362 

like PALM or SOWFA. In the future work, we will investigate how to implement the control by using these dynamic CFD 363 

simulation tools for a large-scale wind farm. 364 
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