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Highlights 

 Composites of SrTiO3 with PBT and LLDPE were readily prepared by extrusion 

 SrTiO3 volume loadings as high as 50% achieved 

 SrTiO3 has a nucleating effect on both polymers, reducing crystalline content 

 The dielectric permittivity (') of PBT increased from 3.7 to 16.5 

 ' of LLDPE increased from 2.3 to 19.7 

 Good agreement between the Lichtenecker model and experimental values of ' 

 

Abstract 

 

Composites of strontium titanate (SrTiO3) at loadings up to 50vol.% with polar 

poly(butylene terephthalate) (PBT) and non-polar linear low density polyethylene (LLDPE) 

were prepared to investigate their dielectric responses in wireless frequency range. The 

SrTiO3 particles were uniformly dispersed in polymers at low loadings, but were more 

bead-like and agglomerated at higher SrTiO3 loadings. The SrTiO3 has strong nucleating 

effect on both polymers, increasing the crystallization and reducing the crystallinity of both 

polymers. Dielectric properties of composites were measured between 2.45-5 GHz. 

Dielectric permittivity (') of composites at 2.45 GHz increased with increasing SrTiO3 

content. ' increased by a factor of  5 for PBT, from 3.7 for unfilled PBT to 16.5 and by a 

factor of ~8.5 for unfilled LLDPE, from 2.3 to 19.7 for maximum SrTiO3 loading. The 

composites had similar dissipation factor values as the unfilled polymers. The 

Lichtenecker model was in good agreement with the experimental data. 

 

Keywords: Strontium titanate (SrTiO3); Polymer composites; Dielectric properties; 

Permittivity; Microwave frequency 
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1. Introduction 

 

Microwave characteristics of materials, particularly when used at high operating 

frequencies in electronic applicances like computers and smart phones are critically 

important. Dielectric materials are one of the most attractive candidates for such 

applications due to their high dielectric permittivities (real part permittivity-'), low 

dissipation factor (loss tangent-tan) as well as improved energy storage capacity and are 

utilized in many applications such as antennas, microwave absorbers, waveguides, sensors 

and capacitors [1-3].  

Conventionally, titanate (TiO2), barium titanate (BaTiO3, BT) barium 

strontium titanate (BaSrTiO3, BST), lead zirconate titanate (PZT), magnesium oxide 

(MgO), barium zirconate titanate (BZT) ceramics and metal phenylphosphonates are 

commonly preferred due to their promising electrical properties [4]. Perovskite type 

ceramics (general stoichiometry of ABO3) show unique crystalline structures that leads to 

superior dielectric properties. Strontium titanate (SrTiO3) is a member of the perovskite 

group of material and has mixed ionic-covalent bonding properties [5]. Barium titanate is 

the mostly studied perovskite as a potential capacitor material/component. However, 

with 7-10 times higher permittivity, relatively better thermal stability, higher break 

down strength and lower dissipation factor values of SrTiO3 has captured the 

attention of researchers [5-6]. 

While having remarkable optical, dielectric and thermal properties, perovskite 

synthesis requires high sintering temperatures as for other ceramics [7]. In various 

studies SrTiO3 is modified by introducing different components such as glass or 
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ceramic compounds to obtain exceptional properties for different applications [5]. For 

instance, Naidu et al. examined the dielectric effects of MgO doped SrTiO3 ceramic in 

the 0.1 kHz to 5 MHz frequency range [8]. The dielectric permittivity and  loss 

tangent values were determined as 45.43 and 0.162 at 5 MHz, respectively. Yang et al. 

investigated the SrTiO3-BNT-BLZT lead free ceramic films and based on their study 

the increase of BNT-BLZT content led to an increase in ' (4000) and tan (0.15) at 

1 MHz and room temperature [9]. Polycrystalline bismuth and lithium co-substituted 

strontium titanate Sr(1-x)(Bi,Li)xTiO3 was prepared via a solid-state method by 

Alkathy and Raju [6]. At 25C and 1 kHz when x=0.8, the dielectric permittivity was 

enhanced from 246 to 1173 while the loss tangent was 0.0167. As given in the examples 

above, many studies in the literature explore the doping effects of various elements 

and achieve interesting results. However, their manufacturing routes are relatively 

complicated and mass production is limited.  

Polymer based composites made of nano-size fillers generally show outstanding 

properties due to the unique features of nanoparticles such as high surface to volume 

ratio and large interfacial area forming between matrix and nanoparticle. The 

interface between the (nano)composite components govern the increases in 

mechanical, electrical and thermal properties [10]. Moreover, for electric/electronic 

and energy storage/conversion applications, nanocomposites have potential in 

aerospace, biochemistry, automative and packaging industries [11,12]. 

(Nano)composites combining the advantages of polymer and filler (ceramic) can be 

processed easier and are viable alternatives to single/doped ceramic materials [2]. 
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Composites of polymers and perovskites have been prepared previously to form 

structures with high dielectric permittivity and low loss tangent. The dielectic performance 

of composites of polymers and perovskites is determined from several parameters such as 

filler volume fraction, particle size and shape as well as the level of dispersion and 

distribution in the polymer matrix [13].  

Lee at el. compared the dielectric performance of BaTiO3/epoxy and 

SrTiO3/epoxy composite films between 2-10 GHz. For the same volume fractions (50 

vol.%) at 5 GHz, SrTiO3 based composites had a ' =20 and maintained stability over 

all the frequency range. However, BaTiO3 based samples had ' =25 which suddenly 

decreased above 5 GHz [14]. Composites of isophthalic polyester (IP) resin/styrene 

and nano-SrTiO3 were prepared by Khutia et al. and analysed at 150C and 10 Hz. 

The nanocomposite films displayed maximum permittivity as 20 for 20 wt.% particle 

loading [15]. Nisa et al. studied filler particle size on the dielectric properties of 

PEEK/SrTiO3 composites with constant 27 wt.% filler content at 1 MHz. The 

composites produced with nano-size SrTiO3 exhibited higher ' values whereas the 

tan values were 10 times higher than the corresponding composites produced with 

micro-size particles [16].  

Although there have been a relatively small number of studies on the 

electrical/dielectrical properties of SrTiO3 based composites, there has been limited 

research on the dielectric properites of composites of SrTiO3 filled thermoplastics at high 

frequencies (1 MHz). Rajesh and his co-workers concentrated on the dilectric 

properties of PTFE/SrTiO3 composites between 1 kHz-40 MHz and reported that a 60 
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wt.% loaded polymer displayed the highest ' (11) [17]. Thomas et al. studied the 

dielectric characteristics of composites of butyl-rubber and SrTiO3 at 1 MHz and 5 GHz as 

a function of SrTiO3 concentration, in the range 10% to 40% by volume. They showed that 

the composite sample with 0.42 volume fraction SrTiO3 exhibited ' and tan values of 

13.2 and 2.810-3 at 5 GHz [18]. Likewise, Xiang et al. demonstrated that the introduction 

of 40 volume percent SrTiO3 into a polyoxyethyelene (POE) matrix resulted in an increase 

in the dielectric constant from εr=2.1 (for pure POE polymer) to εr=11 with tan =0.01 at 5 

GHz [19].  

Polybutylene terephthalate (PBT) is a polar thermoplastic and particularly used in 

electrics/electronics and automative industry while linear low density polyethylene 

(LLDPE) is a widely known non-polar polymer with low cost and can be utilized in similar 

types of applications [20-21]. The chemical structures of linear LLDPE and PBT are given 

in Figure S1 (Supplementary Information).  

 In this work, hybrid composites of  either polar polybutylene terephthalate (PBT) or 

non-polar linear low density polyethylene (LLDPE) and nano-sized SrTiO3 at loadings up 

to 50 vol%. were prepared by melt compounding in a twin-screw extruder. In contrast with 

the majority of studies, the composites were prepared using a scalable and continuous 

extrusion process. The dispersion and distribution of the SrTiO3 particles in the polymer 

matrices were examined and the crystalline and thermal characteristics of the composites 

determined using a range of techniques. The dielectric properties of the composites were 

measured between 2.45-5 GHz (microwave frequencies) using a vector network analyzer 

(VNA) to study composite responses in the wireless frequency (WiFi) range. For an 
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ideal/optimum capacitor material used in telecommunication applications, an increase 

in dielectric permittivity and reduction of dissipation factor are required. In the 

present work, composites of PBT and LLDPE with SrTiO3 were prepared by 

extrusion and their dielectric properties were studied as a function of filler loading. 

Additionally, a number of analytical models were used to predict the dielectric permitivitty 

of the composites and the values obtained compared with those measured experimentally. 

Among the models applied, Lichtenecker’s approach provided the best convergence 

and matched very well with the experimental results.  

 

2. Experimental Section 

 

2.1. Materials 

Strontium titanate (SrTiO3) perovskite powder with a 600-800 nm average particle 

size (density 4.70 g/cm3 and 2060C melting temperature) was purchased from TPL™, 

USA. The SrTiO3 had a 100% cubic structure, see X-ray diffractograms in Figure S2. 

Pocan B polybutylene terephthalate (PBT) pellets, density  of 1.3 g/cm3 density and melting 

temperature, Tm=225C was purchased from Lanxess™, Germany and dried as per the 

manufacturers guidelines before use. The linear low density polyethylene (LLDPE), density 

=0.9 g/cm3 and Tm=120-125C was supplied by Terplast™, Italy.  

2.2. Fabrication of Composites 

Composites of PBT and LLDPE with SrTiO3 at loadings of 10vol.%, 20vol.%, 30vol.%, 

40vol.% and 50vol.% were prepared and the following composite nomenclature adopted 
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depending on polymer type and filler volume fraction, e.g. PBTST20 is 20vol.% SrTiO3 in 

PBT or LLDPEST50 is 50vol.% SrTiO3 in LLDPE. In the first instance, the as-received 

granulated polymers were placed into a special vial and cryo-milled in a liquid N2 

environment using a  Freezer Mill (SPEX™) and converted to a powder. The SrTiO3 

particles were then dry mixed with the PBT or LLDPE powders manually in the desired 

ratios. The dry blend mixes were then mixed using a mechanical mixer before extrusion. 

The PBTST was extruded applying a temperature profile of  215C-250C using a co-

rotating 24 mm twin screw extruder (Thermo Scientific, TSE 24 MC). The LLDPEST were 

compounded with the same machine but with a temperature profile of 135C-145C along 

the extruder barrel. In both instances, a screw speed of  40 rpm was employed and the 

resultant composite materials were cooled in a water bath before pelletising.  

 

2.3. Characterization 

The morphology of the composites and the extent of the distribution of the SrTiO3 

particles in the polymer matrices were investigated using a Carl Zeiss™ Sigma Field 

Emission Gun–Scanning Electron Microscope (FEG-SEM) under an accelerating voltage 

between 2-10 kV with a back scattering electron (BSE) detector. Composite samples were 

sputter coated with Au prior to imaging.The thermal properties of neat polymers and all 

composites were studied using Differential Scanning Calorimetry (DSC) using a Mettler 

Toledo DSC instrument in air and a heating rate of 10 K/min. In the first stage of the DSC 

measurements, all the specimens were kept at a maximum temperature for 5 minutes to 
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remove the thermal history due to extrusion. The degree of crystallization was determined 

from: 

𝑋𝑐 =
∆𝐻𝑚

∆𝐻𝑚
0 (1 − 𝑋𝑓)

× 100       (𝟏) 

where,Xf, ∆𝐻𝑚 and ∆𝐻𝑚
0  are weight fraction of filler, the melting enthalpy of the sample 

and for a theoretically 100% crystalline polymer ∆𝐻𝑚
0  for PBT and LLDPE were taken as 

140 J/g and 290 J/g, respectively [22-23]. In order to determine the dielectric properties of 

the composites in the 2.45-5 GHz frequency range, a two-port Vector Network Analyzer 

(VNA, Keysight Agilent N1500A) was used via transmission line and free space method 

and co-axial probe measurement. The dielectric specimens with 7 mm cylindirical 

geometry were prepared with a bespoke hot pressing technique at 10 bar pressure using a 

mould and cut to precise dimensions. The PBTST and LLDPEST composites were pressed 

at 230C and 145C, respectively. The Nicolson-Ross-Weir model was used to estimate the 

dielectric properties, including real dielectric permittivity () and loss tangent (tan) [24]. 

Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis 

was also performed on all materials and the experimental detail is given in Supplemenatary 

Information. 

 

3. Results and Discussions 

3.1. Morphological Characterization 

The morphology and extent of SrTiO3 dispersion as a function of loading (by 

volume)  in PBT was examined and imaged by SEM, see Figure 1(a)-(f). Firstly in Figure 1 

(a), the as-received nano-SrTiO3 particles tended to be agglomerated from 600nm up to a 
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few microns in size. Unsurprisingly, with increasing SrTiO3 loading the number of SrTiO3 

agglomerates increased, Figure 1 (b) to (f). Indeed, up to theoretical loadings of 40vol.% 

and 50vol.% the SrTiO3 particles homogeneously cover the surface of the PBT. At higher 

magnification (see images inset in Figure), some cavities can be observed which can be 

attributed to the SrTiO3 particles being pulled out of the PBT matrix during fracturing and 

the limited wetting between SrTiO3 particles and PBT. The extent of SrTiO3 dispersion in 

LLDPE was also investigated by SEM, see Figure 2. From Figures 2 (a) and (b), the 

LLDPEST composites with theoretically 10vol.% and 20vol.% SrTiO3 exhibited more 

striated ‘fibral-like’ structures and micropores on the polymer surface. The SrTiO3 particles 

appear to be preferentially located between these structures which can be seen more clearly 

at higher magnifications, see inset Figures. There appears to less agglomeration of the 

SrTiO3 when mixied with LLDPE. With increasing SrTiO3  content, particularly in the case 

of the LLDPEST40 and LLDPEST50 composites, it appears that the particles are 

embedded more uniformly in the LLDPE matrix. High shear forces applied during 

extrusion breaks down the harsh agglomerates and a relatively homogeneous distribution of 

SrTiO3 particles was obtained. The agglomeration of ceramic particles can be hindered 

by applying surface modification techniques such as silane coupling treatment [4, 11, 

25].  

The FTIR spectra of the composites suggest there are no clear interactions between 

SrTiO3 and either polymer, see Figure S3.      
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Figure 1. SEM micrographs of a) as-received SrTiO3 powder and b) PBTST10, c) 

PBTST20, d) PBTST30, e) PBTST40 and f) PBTST50 composites. Inset images are taken 

at higher magnification. 
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Figure 2. SEM micrographs of a) LLDPEST10, b) LLDPEST20, c) LDPEST30, d) 

LDPEST40 and e) LDPEST50 composites. 

 

 3.2. Thermal Properties  

The thermal properties of SrTiO3 and all composites were studied using DSC (Figure 3) 

and TGA (Figure S4 and Table S1). Figure 3 (a) and (b) show the cooling and heating 

curves of PBTST composites obtained from the first cooling and second heating cycles, 

respectively, from which the following parameters were determined, melting temperature 

(Tm), crystallization temperature (Tc), crystallization enthalpy (Hc), melting enthalpy (Hm) 

and degree of cristallinity (Xc%), and are listed in Table 1. Inclusion of SrTiO3 to PBT 

resulted in an increase in Tc by ~8C, from ~192C for neat PBT to ~200C for the 

composite with 10vol% SrTiO3 before decreasing to 196C for the 50vol% composite but 

still higher than PBT itself. There was no significant change in Tm of the composites 

relative to unfilled PBT, but all composites displayed a doublet of melting peaks, which is 

related to the process of melting-recrystallization-remelting. The presence of this doublet of 

endothermic peaks is derived from the different PBT crystal structures, size and packing 

perfections as well as the variation  in crystallite thicknesses [22,30]. The PBT crystallinity 

(Xc%)  decreased significantly with increasing addition of SrTiO3. For PBT, post extrusion,  

Xc% = 44.2% but for the PBTST50 composite Xc%=12.1%. The addition of such a large 

volume of SrTiO3 to the PBT matrix significantly retards polymer chain mobility and 

hindering PBT crystallization [20,31].  
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Similar behaviour in Tc was obtained for the LLDPEST composites, Figure 3 (c) 

and (d), in that Tc of LLDPE increased with increasing SrTiO3 content by ~5C from 

~105C for unfilled LLDPE to ~110C for the composite with 50vol.% SrTiO3. As was the 

case for PBT, the Tm of LLDPE was unchanged irrespective of the SrTiO3 loading. Again, 

Xc% decreased with increasing SrTiO3 content, from 33.2% for unfilled LLDPE to 21.8% 

for LLDPEST50, see Table 1. The reduction in LLDPE crystallinity can again be related 

with the confinement of polymer chains by the SrTiO3 particles with increasing volume 

fractions [32]. Increasing addition of filler prevents the molecular movement of chains into 

the crystal lattice and resulting in a decrease in Xc%, as in this work [33-34].   
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Figure 3. DSC curves showing a) crystallization exotherms and b) melting endotherms of 

extruded PBT and PBTST composites, c) crystallization exotherms and d) melting 

endotherms of extruded LLDPE and LLDPEST composites 
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Table 1. Thermal parameters for composites of SrTiO3 with PBT and LLDPE, from DSC 

measurements.  

 

3.3 Dielectric Properties 

In an applied electric field, polarization occurs and leads to the enhancement of charge 

storage ability of dielectric materials. This ability is represented by complex permittivity, *  

and can be exhibited in the frequency domain as in Eq. (2). In this formula, * corresponds 

Material  Tm (C) 

Hm 

(j/g) 

Tc 

(C) 

Hc 

(j/g) 

Xc% 

PBT 222.7 61.9 192.1 35.9 44.2 

PBTST10 223.7 48.7 200.6 50.9 40.8 

PBTST20 224.7 28.8 199.2 27.2 28.5 

PBTST30 224.3 15.2 198.6 18.1 19.3 

PBTST40 223.4 6.7 197.7 7.9 13 

PBTST50 223.3 6 196 6.3 12.1 

LLDPE 124.2 96 105.3 100.7 33.1 

LLDPEST10 124 64.4 107.1 64.5 31.5 

LLDPEST20 123.6 42.5 107.9 44.7 24.8 

LLDPEST30 123.7 26.7 108.3 28.8 23.7 

LLDPEST40 123.4 23.1 108.4 28.1 24.1 

LLDPEST50 123.6 16 110.1 15.1 21.8 

a b 
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to the complex permittivity while ' and '' describe the real part of permittivity (i.e. 

dielectric permitivitty) and imaginary part permittivity (i.e loss factor or dielectric loss 

factor), respectively [36].  

                                                               𝜀∗ = 𝜀′ − 𝑗𝜀′′                                                      (2) 

The dissipation factor (loss tangent) is a measure of energy loss in the dielectric during AC 

operation, expressed as tan  and can be formulated by Eq. (3) [37]. 

                                                                 𝑡𝑎𝑛𝛿 =
𝜀′′

𝜀′                                                          (3) 

In this study, the variation in the dielectric constant as a function of frequency was 

investigated between 2.45 and 5 GHz to reveal the dielectric characteristics of SrTiO3 based 

polymer composites. This frequency range was selected to accurately understand the 

performance of the composites with different filler concentrations for wireless 

communication applications. Both dielectric (real) permitivitty and the loss tangent values 

were specified by considering the measured S-parameters based on the Nicolson-Ross-Weir 

(NRS) approach by utilizing VNA. A co-axial probe method was used to characterize the 

dielectric properties since the measurements are relatively simple to do. ' for PBT, LLDPE 

and SrTiO3 was measured to be  3.7, 2.3 and 300, respectively [38-39,7]. Figure 4 (a) and 

(b) shows the variation in ' and 𝜀′′ for PBTST and LLDPEST as a function of frequency. It 

is known that ceramic perovskite particles contribute to the increase in permitivitty of 

polymer based composites due to their high polarity [40-41]. Here, ' for neat PBT 

increased from 3.7 to 16.5 on inclusion of 50vol.% SrTiO3 (0.35 actual volume fraction) at 

2.45 GHz. Similarly, ' of LLDPE increased from 2.3 to 19.7 for addition of 50vol.% 
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SrTiO3 (actual volume fraction 0.46) at 2.45 GHz. The permitivitty values remain almost 

constant and independent of frequency.  

Under an electrical field, a dielectric material displays one of four types of 

polarization mechanisms: electronic, ionic, dipole and interfacial (Maxwell-Wagner-

Sillars,MWS) polarization. The structure of the material and frequency range govern 

the polarization characteristics. In hybrid materials/heterogeneous systems, interfacial 

polarization (Maxwell-Wagner-Sillars or space charge polarization) is the dominant 

mechanism, particularly at low frequencies [4,25]. If one of the components of a 

composite is conductive, space charge polarization is also observed even at microwave 

frequencies (300 MHz-300 GHz) [42-43]. 

In our study, the presence of mini-capacitors with high dielectric permitivitty (i.e. the 

SrTiO3) [44] in the composites and the atomic polarization effect [24] give rise to the 

improved permittivity at the high frequency band. The increase to high filler loadings, 

results in an increase in ', which can be related to the finer dispersion of SrTiO3 particles 

in the composite microstructures [44]. The variation in tan with frequency is also shown 

in Figure 4. Independent of polymer type, no consistent relationship was observed between 

SrTiO3 content and loss tangent values of the composites. Unfilled PBT and LLDPE had 

tan values of 0.0083 and 0.0003, which changed little during measurement, particularly 

for lower filler loading. At 5 GHz, the composites exhibited similar tan values close to 

that of the neat polymer. However, the tan values for the LLDPE composites were 

generally higher than the unfilled LLDPE at the same frequency. 
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One of the major motivations for this study was to compare the dielectric performance of 

composites of SrTiO3 with a polar polymer (PBT) and non-polar polymer (LLDPE). From 

experimental TGA and density measurements (Archimedes), see Figure S4 and Table S1 

the actual SrTiO3 content in the composites did not fit with the theoretical volume fractions. 

However, composites with similar actual filler loading, e.g. PBTST30 and LLDPEST20, 

the values of ' were 7.87 and 5.25, respectively. Likewise, for PBTST50 and LLDPEST40 

(i.e. with very similiar actual SrTiO3 content - 36.3-36.7 vol.%) '  was 16.05 and 12.75, 

respectively. Therefore,  composites of SrTiO3 with the more polar PBT yield higher ' 

values. Table 2 lists the dielectric properties of various filler/polymer matrix 

composites with different particle size and concentration. It is known that several 

parameters such as production conditions, particle distribution, polymer properties, 

filler concentration and frequency have major affects on dielectric response of 

composites. It is clearly seen from Table 2 that the composites below 10 MHz 

generally had higher values depending on filler content and grain size. Based on the 

literature, in the high frequency domain the dipoles do not have sufficient time to 

align with the applied electrical field and this results in a reduction in permittivity 

[45]. Therefore, it is probable that the composites described in this study should 

achieve improved permittivities at lower frequeny band. From Table 2, the silicon 

rubber/BaTiO3 composite exhibited favorable ' at 5 GHz. However, the tan value of 

this composite was relatively high when compared to those described in this work 

[46]. The dielectric performance of BaTiO3/epoxy composites with two different filler 

sizes (100 mm and 200 nm) were given in the same table. Although ' of these latter 
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samples displayed similar values with the LLDPEST composites in this study (for 

similar volume fractions), their loss tangent values were pretty high at 5 GHz. The 

PBTST composite showed better dielectric permittivity and tan when compared to 

[45] at the same frequency. In comparison with BaTiO3 counterparts, SrTiO3 based 

composites generally show lower loss tangent values (below 0.02) [5], further evidence 

for an ideal capacitor material, as seen in Table 2.  

 

 

Figure 4. Variation in real permitivitty (') and loss tangent (tan) for composites of 

SrTiO3 with a) PBT b) LLDPE. 
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Table 2. Comparison of the dielectric properties of composites of SrTiO3 or BaTiO3 

with different polymers 

 

Filler 

 

Filler loading 

& size 

 

Matrix 

 

' 

 

tan  

 

Reference 

BaTiO3 
40 vol.%  

(100 nm) 

Epoxy 

11 

@ 5 GHz 

0.05 

@5 GHz 

 

 

  45 

 

 

BaTiO3 
40 vol.%  

(200 nm) 

15 

@ 5 GHz 

0.06 

@5 GHz 

BaTiO3 
28 vol.%  

(900 nm) 

 Silicone     

rubber 

13 

@ 5 GHz 

0.04 

@ 5 GHz 
      46 

BaTiO3 
45 vol.%  

(1 m) 
Epoxy 

34.9 

@1 kHz 

0.011 @1 

kHz 
    47 

SrTiO3 
50 vol.% 

(1 m) 

30.2 

@1 kHz 

0.013 

@1 kHz 

SrTiO3 

(heat treated) 

55 wt.%  

(100 nm) 

Unsaturted 

polyester 

12 

@ 10 MHz 

0.015 

@ 10 

MHz 

    48 

BaTiO3 60 vol.% (7 nm) 
PVDF-

HFP 

25 

@ 1 MHz 

0.12 

@ 1 MHz 
   49 

Ba0.7Sr0.3TiO3 
50 vol.%  

(300 nm) 
PS 

10.34 

@5 GHz 

0.03 

@5 GHz 
   50 

SrTiO3 

36.3 vol% 

(600-800 nm) 
PBT 16 @ 5GHz 

0.011 

@ 5GHz 
This work 

46.7 vol.% 

(600-800 nm) 
LLDPE 20 @5 GHz 

0.012 

@ 5 GHz 
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To precisely determine the dielectric responses of composites, particularly at high 

frequencies is critical. Several different mathematical models, including, the Lichtenecker, 

Maxwell-Garnet, Jayasundere, Poon-Shin and Clausius-Mossotti models have been 

proposed to predict permitivitty [51-54] and have been applied here. Figure 5 (a) and (b) 

compare the experimental dielectric permitivitty values for PBTST and LLDPEST with 

those determined theoretically for various volume loadings at 2.45 GHz. In all models, 

“eff”, “f” and “m” represent the permitivitty of the composite, filler and matrix, 

respectively and, “f” is the volume fraction of filler.  

  

ln 𝜀𝑒𝑓𝑓 = 𝑓 𝑙𝑛(𝜀𝑓) + (1 − 𝑓) ln(𝜀𝑚)    (Lichtenecker equation)                                 (4) 

𝜀𝑒𝑓𝑓 =
𝜀𝑚(𝜀𝑓+2𝜀𝑚+2𝑓𝜀𝑓−2𝑓𝜀𝑚)

𝜀𝑓+2𝜀𝑚−𝑓𝜀𝑓+𝑓𝜀𝑚
         (Maxwell-Garnet equation)              (5) 

𝜀𝑒𝑓𝑓 =
𝜀𝑚(1−𝑓)+𝜀𝑓𝑓[3𝜀𝑚/(𝜀𝑓+2𝜀𝑚)][1+(3𝑓(𝜀𝑓−𝜀𝑚)/(𝜀𝑓+2𝜀𝑚))]

1−𝑓+𝑓[3𝜀𝑚/(𝜀𝑓+2𝜀𝑚)][1+(3𝑓(𝜀𝑓−𝜀𝑚)/(𝜀𝑓+2𝜀𝑚))]
     (Jayasundere equation)   (6) 

𝜀𝑒𝑓𝑓 = 𝜀𝑚 [1 +
𝑓((𝜀𝑓/𝜀𝑚)−1)

𝑓+(1−
𝑓

3
)[(

𝜀𝑓
𝜀𝑚

⁄ )(1−𝑓)+𝑓+2]
]    (Poon-Shin equation)                            (7) 

𝜀𝑒𝑓𝑓 = 𝜀𝑚 [1 + 3𝑓 (
(𝜀𝑓−𝜀𝑚)

(𝜀𝑓+2𝜀𝑚)
)]       (Clausius-Mossotti equation)                                (8) 

 

The accuracy of the models given above depend on parameters such as the size and shape 

of the filler powder, microstructural homogenity, porosity, properties of the composite 

components and interfacial properties [51]. As seen in Figure 5 (a), when the SrTiO3 

loading is at a minimum in the PBT matrix (0.05 actual volume fraction), the models and 

experimental results are in good agreement. However, after this volume fraction, the 
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Maxwell-Garnet, Clausius Mossotti and Poon-Shin models show siginificant divergence 

while Lichtenecker and Jayasundere approaches have a better fit with the experimental 

data. As reported in the literature, Maxwell-Garnet (MG) [54-55], Clausius Mossotti (CM) 

[56] and Poon-Shin (PS) [57] approaches assume that the spherical dielectric fillers are 

uniformly dispersed in the continuum medium (polymer phase) without any interactions. 

For instance, for LLDPEST10 the actual volume fraction of SrTiO3 is 0.09 and Maxwell-

Garnet, Clausius Mossotti and Poon-Shin models underestimate the permitivitty. With 

increasing SrTiO3 loading, this variation becomes more prominent. Therefore these 

approaches are generally appropriate at lower particle loading. In case of higher loadings, 

the three models mentioned above can not predict the dielectric permitivitty values of 

neither PBTST nor LLDPEST composites. The Jayasundere equation is a modified version 

of Kerner’s expression and it takes into account the interactions between neighbouring 

spherical fillers [58]. Although, this model provides better approximations compared to the 

other models, it shows a divergence at relatively higher SrTiO3 volume fraction (0.2-0.3) 

as well. Indeed, Lichtenecker’s model describes a binary system composed of randomly 

oriented uniform spherical shaped particles that show equivalent volumetric distribution 

[59]. In spite of its simplicity, this logarithmic formulation exhibits the best convergence 

with experiemental data even at high SrTiO3 loadings. Due to the higher actual amount of 

SrTiO3 in the LLDPE, model results show slight differences in comparison with PBTST 

counterparts as seen in Figure 5 (b). In summary, of all the models tested, the 

Lichtenecker’s model matched best with the experimental results for both PBT and 

LLDPE composites, as seen in Figure 5.  
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Figure 5. Comparison of dielectric constants determiend experimentally and theoretically 

for composites of SrTiO3 with a) PBT and b) LLDPE at 2.45 GHz. 

 

 

4. Conclusions 

Composites of SrTiO3 (100% cubic structure) with polar PBT and non-polar linear LDPE 

were readily produced at ceramic loadings up to 50 vol.% (i.e. 0.5 volume fraction) via 

melt compounding (extrusion). SEM imaging showed that the SrTiO3 particles were 
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uniformly dispered and distributed in each polymer matrix. FTIR spectra of the composites 

suggested there is little interfacial interaction between components. The SrTiO3 particles 

acted as a nucleation agent for both polymers and increased the crystallization temperature. 

With increasing SrTiO3 content the crystalline content of both polymers significantly 

decreased due to major hindering of polymer chain folding. Dielectric measurments in the 

micorwave frequency range (2.45-5 GHz) revealed that the dielectric (real part) permitivitty 

(' ) of PBT and LLDPE increased significantly with increasing SrTiO3 volume fraction 

and that the values of ' remained almost constant, independent of frequency. ' increased 

from 3.7 for unfilled PBT to 16.5 for PBTon addition of 50vol.% SrTiO3 (actual volume 

fraction 0.35) and for unfilled LLDPE from 2.3 to LLDPEST50 to 19.7 (actual volume 

fraction 0.46). The tan  of the composites fluctuated slightly but overall exhibited similar 

tan magnitudes to the respective unfilled polymer particularly at 5 GHz. Therefore, 

SrTiO3 based composites can be considered as potential candidates for capacitor 

materials due to their lower loss tangent and improved permittivity values. The 

Lichtenecker and partly the Jayasundere models were in good agreement with the 

experimental dielectric permitivitty values of the composites. For PBTST and LLDPEST 

with similar filler loading, the PBT based composites had higher ' values. SrTiO3 based 

polymer composites displayed stable dielectric properties over the microwave frequency 

range.                                                                                                                                                                                                                                   
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