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Abstract

The solar atmosphere is known to host various modes of MHD waves. Transverse
waves are thought to play an important role in energy transfer in the atmosphere and
thus in solar coronal heating and the acceleration of the solar wind. The transverse
waves studied so far have predominantly been interpreted as standing kink waves and,
via coronal magneto-seismology, they can offer insight into the physical conditions
of coronal plasmas. In addition, the excitation of these standing kink waves are
associated with low coronal eruptions and thus need special conditions or drivers.

Propagating kink waves have been reported recently and have been found to
be ubiquitous in the solar corona including in the quiet Sun. It is imperative to
understand the mechanisms that enable their energy to be transferred to the plasma.
Carrying on the legacy of the standing kink waves, mode conversion via resonant
absorption is thought to be one of the main mechanisms for damping of these
propagating kink waves, and is considered to play a key role in the process of energy
transfer. The propagating kink waves are best observed in the Doppler velocity
images of the Coronal Multi-channel Polarimeter (CoMP). The damping is observed
using data from this instrument to study the energetics of the propagating kink waves
in quiescent coronal loops.

A coherence-based method is used to track the Doppler velocity signal of the
waves, enabling an investigation into the spatial evolution of velocity perturbations.
To enable accurate estimates of these quantities, the first derivation is provided of
a likelihood function suitable for fitting models to the ratio of two power spectra
obtained from discrete Fourier transforms. Maximum likelihood estimation is used
to fit an exponential damping model to the observed variation in power ratio as a
function of frequency. This also confirms earlier indications that propagating kink
waves are undergoing frequency-dependent damping. Additionally, it is found that
the rate of damping decreases, or equivalently the damping length increases, for
longer coronal loops that reach higher in the corona.

The analysis techniques are used to create a statistical sample of quiescent loops
to study the statistical properties of propagating kink waves and compare it to the
studies of standing kink waves. It is noted that the damping for the propagating
waves appears to be significantly weaker than that found from measurements of
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standing kink modes. The propagating kink waves also exhibit signatures of power
amplification of waves.
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Outline

MHD waves in the solar atmosphere are one of the most important and widely
studied features in the Sun. The MHD waves provide us with a unique opportunity
to measure the physical properties of the coronal plasma. The coronal magneto-
seismology techniques can be used to calculate the magnetic field of coronal loops.
This thesis focuses on the study of propagating kink waves, their damping mechanism
and their statistical properties. A comparative study of the propagating and standing
kink waves is also conducted. The thesis is outlined as follows:

Chapter 1: Introduction

This chapter introduces the vast field of solar physics. A brief overview of the history
of the field is presented. Some fundamental information about the Sun, the interior of
the Sun and the solar atmosphere is discussed briefly. The important developments
and the fundamentals of theory of magnetohydrodynamics are introduced. The
analytical discussion about the MHD waves is presented as well.

Chapter 2: Overview of data sources and analysis tech-
niques

The data sources and analysis are discussed in this chapter. The various instruments
and telescopes that were used to obtain data for the study are briefly discussed. The
analysis techniques such as the discrete Fourier transform, Fast Fourier transform,
parameter estimation, maximum likelihood estimation are introduced briefly.

Chapter 3: Damping of Propagating Kink Waves in
the Solar Corona

The propagating kink waves are explored and studied in this chapter. The statistics of
the power ratio of kink waves are explored. The likelihood function for the ratio of
two power spectra is derived, the use of this likelihood function is quite novel. The
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damping mechanism is investigated, the results of which further support the claim
that the damping of the propagating kink waves is via resonant absorption. The rate
of damping is found to be dependent on the loop length. The need for a statistical
study of these waves is emphasised.

Chapter 4: Statistical study of damping of kink waves

The statistics of the propagating kink waves is discussed. The distribution of various
oscillation parameters is presented for the first time. The study also compares the
statistics of propagating and standing kink waves in the solar atmosphere. The
relation between the rate of damping and the loop length is explored, also including
the standing kink waves.

Chapter 5: Conclusion and Future Work

The thesis is summarised and brief results are discussed. Future work and open
research questions are discussed.
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Chapter 1

Introduction

Gayatri mantra, a hymn from the ancient sacred vedic text of Rigveda, 3.62.10 [11].

General meaning: We meditate on that most adored Supreme Lord, the creator,
whose effulgence (divine light) illumines all realms (physical, mental and spiritual).
May this divine light illumine our intellect.



2 Introduction

1.1 The Sun

To our long lost ancestors, in whichever part of the globe they resided, the Sun would
have appeared nothing more than a big ball of light and fire in the sky providing
heat and causing day and nights. The motion of the Sun across the sky and its
association with several phenomena must have been of interest to even the earliest of
our civilisations, and they were based on several archaeological pieces of evidence
and calendars that they left behind. This dependence of several aspects of civilisations
on the Sun must have contributed to the Sun becoming the centre of mythology as it
is today, cutting across geographical distances from Mesopotamia to Egypt, India
to China, Inca to Maya. In recent times there has been an increasing interest in
archeoastronomy, and there are pieces of evidence that support the claim that the
ancient Chinese observers were probably one of the earliest to be able to record
sunspots. Quite a handful of the civilisations also developed calendars based on
the Sun. In Hindu mythology, the Sun (Surya) enjoys one of the most important
positions. He was one of the most powerful gods of the ancient gods (Rigvedic
gods). In the ancient religious Hindu texts, called Vedas, the Sun is mentioned as
a god called Surya. Surya represents the Sun god, Figure 1.1. Surya is depicted as
a red man with three eyes and four arms, riding in a chariot drawn by seven mares.
Surya holds water lilies with two of his hands. With his third hand, he encourages
his worshipers whom he blesses with his fourth hand. In India, Surya is believed
to be a benevolent deity capable of healing sick people. Even today, people place
the symbol of the Sun over shops because they think it would bring good fortune.
When Surya married Sanjna, his wife could not bear the intense light and heat.
Therefore, she fled into a forest where she transformed herself into a mare to prevent
Surya from recognizing her. But Surya soon discovered Sanjna’s refuge. He went
to the same forest disguised as a horse. Sanjna gave birth to several children and
eventually reunited with her husband. However, the heat and the light of Surya
were so intolerable that Sanjna was always exhausted doing her domestic duties.
Finally, Sanjna’s father decided to help her and trimmed Surya’s body reducing his
brightness by an eighth. Thus, Sanjna could more easily live close to her husband.
For a review of solar and stellar observations and mythologies, good sources include
Olcott (1914); Tassoul & Tassoul (2004).

The telescope is one of humankind’s most important inventions. The simple
device that made far away things look near gave observers a new perspective. When
curious men pointed the spyglass toward the sky, our view of Earth and our place in
the universe changed forever. The first person to apply for a patent for a telescope was
a Dutch eyeglass maker named Hans Lippershey (or Lipperhey). In 1608, Lippershey
laid claim to a device that could magnify objects three times. His telescope had a
concave eyepiece aligned with a convex objective lens. One story goes that he got
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Fig. 1.1 The Sun temple situated in Konark, India, was built sometime during
13th-century CE.

the idea for his design after observing two children in his shop holding up two lenses
that made a distant weather vane appear close. Others charged at the time that he
stole the design from another eyeglass maker, Zacharias Jansen. It was, however,
Galileo who changed the course of astronomy and arguably of our very civilisation
with his telescope (Tassoul & Tassoul, 2004). When Galileo pointed his telescope at
the Sun he could see it in great detail. The left panel in Figure 1.2 reveals some of
the features of the solar disk, and just like that Sun was no more just a big ball of
fire. The improvement in the technology of telescopes led to discoveries of various
layers of atmosphere of the Sun. These developments paved the way for further
discoveries including but not limited to, the sunspot cycle, active regions, solar flares
and many more as we know today, with implications not only for solar physics but
the early developments in astronomy as well. Even after the invention of telescopes,
astronomy was considered a benign science. The birth of quantitative astrophysics
can be attributed to Meghnad Saha who applied the concept of ionization equilibrium
to astronomy. He was able to show how the degree of ionization of an atomic species
is dependent on the temperature and pressure of the surrounding (Saha, 1921). The
solar chromosphere became the first laboratory for Saha to experiment with his new
theory.

Another such gem of astronomy is Cecilia Payne-Gaposchkin who, in her doc-
toral thesis (Payne, 1925), was able to accurately relate the spectral classes of stars
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Fig. 1.2 Left: The earliest known record of a sunspot drawing in 1128, by John of
Worcester. ‘In the third year of Lothar, emperor of the Romans, in the twenty-eighth
year of King Henry of the English...on Saturday, 8 December, there appeared from
the morning right up to the evening two black spheres against the Sun.’ Right:
Galileo’s sunspot observation, also including some details.

to their effective temperatures. The effective temperature is the photospheric temper-
ature that produces the general blackbody shape of the stars spectra. She showed
that the great variation in stellar absorption lines was due to varying amounts of
ionization at different temperatures and not due to different amounts of elements. She
found that silicon, carbon, and other common metals are seen in the Sun’s spectrum
were present in about the same relative amounts as on Earth, in agreement with the
accepted belief of the time, which held that the stars had approximately the same
elemental composition as the Earth. However, contrary to the belief at that time she
found that helium and particularly hydrogen were vastly more abundant. Her thesis
challenged the strongly held view of the scientific community by concluding that
hydrogen was the overwhelming constituent of stars, and thus is the most abundant
element in the universe (Payne, 1925). The scientific understanding of the Sun has
advanced by leaps and bounds, especially during the past six to seven decades. This
is mainly due to the access of space as a frontier for solar observations, starting
with Skylab and the more recent and ambitious missions focussed on the Sun. The
removal of the Earth’s atmosphere was a decisive step, allowing the observation of
spectral lines not possible on Earth and vastly improving the quality of observational
data. The progress in the solar physics community has been commendable, however,
the three longstanding problems are yet to be resolved.

The study of the Sun can be broadly classified into two parts for convenience,
the interior (Section 1.2) and the atmosphere (Section 1.3).
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1.2 Solar interior

The physical structure of the solar interior is mostly based on theoretical models
that are constrained (1) by global quantities (age, radius, luminosity, total energy
output), (2) by the measurement of global oscillations (helioseismology), and (3)
by the neutrino flux, which can constrain the elemental abundances in the solar
interior since the neutrino problem has been solved in the year 2001. The Sun’s
internal structure can be divided into four sections; the core, the radiative zone, the
tachocline and the convective zone. The regions are themselves hidden from our eyes.
Figure 1.3 showcases the layered structure of the solar interior. The innermost layer
called the core and follows all the other interior layers, the solar atmosphere and,
as one moves radially outwards, follows all the way to the interplanetary medium.
This understanding of the structure of the Sun and stars is built over decades of
observations and improved mathematical models. For a more holistic historical
perspective, Cowling (1966) is a very good place to start.

1.2.1 Core

The core is the innermost region of the Sun. The core holds more than 60% of the
total mass of the Sun and reaching up to 25% of the total solar radius. The core
has a density of around 1.5×105 kg m−3 and a temperature around 16 MK (Basu
et al., 2009). The intense pressure and temperature are strong enough to force the
hydrogen atoms together, leading to the fusion of hydrogen atoms and generation of
energy. Thus the core is a giant fusion reactor. The energy released as a consequence
of this reaction is what makes the Sun the life-giving force for the Earth.

1.2.2 Radiative zone

The radiative zone is the next layer in the solar interior as one moves radially
outwards. The energy generated in the core is transported towards the exterior by
the processes of radiative diffusion and thermal conduction. The photons’ mean free
path in this region is so small, it can take as much as 170,000 years for a photon to
reach up to the solar surface. The radiative zone extends to about 70% of the solar
radius (Cox et al., 1991).

1.2.3 Tachocline

The tachocline is the region that marks the transition from the radiative zone into
the Convection zone. It is thought to be quite thin, with a width of only 200-300
km (0.04% of R⊙) (Stix, 2004). This layer is at the heart of the debate in the solar
dynamo community and by extension stellar (Sun-like stars) community. There have
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been several studies looking into the possibilities of the origin of the magnetic field
within this layer due to a dynamo process (Ossendrijver, 2003; Soward et al., 2005).

1.2.4 Convection zone

Beyond the tachocline, temperature and pressure continue to drop. The ions now can
recombine with electrons as the temperature decreases leading to increased opacity
and the photons are absorbed by the atoms. This creates a temperature gradient
between the tachocline and the Sun’s surface, and convection starts taking place.
This layer has the characteristic properties of convection such as thermal columns
are formed, carrying plasma to the surface and as it gets cooled, the cool dense
plasma falls due to gravity (Eddington, 1942). This convection process is theorised
to be responsible for causing gravity waves in the solar interior (Schou et al., 1998),
although detection of these waves has eluded us so far. The solar granulation pattern
is a pronounced effect of convection, it can be seen in the continuum images of the
photosphere of the Sun.

1.3 Solar atmosphere

The solar atmosphere is significantly different from the terrestrial atmosphere we
encounter every day on Earth albeit with a few similarities. The similarity ends at
both of the atmospheres being multi-layered. These two atmospheres have vastly
different characteristics and scales. The top of the convection zone demarcates
the interior from the atmosphere, reaching up to the very first layer of the solar
atmosphere, called the photosphere. The photosphere and other layers become
visible as the optical depth becomes ≲ 1 at the top of the convection layer. Optical
depth is defined as the fraction of photons that can pass through a layer without
being scattered within that layer. For a value of ≲ 1, this means that approximately
a third of all photons will pass through this layer unhindered (Heintze et al., 1964;
Rouse, 1966). There are three layers of the solar atmosphere: the chromosphere,
the transition region and the corona (see Figure 1.3). Then the solar atmosphere
transitions into the solar wind which fills the interplanetary medium. One of the
popular semi-empirical models of the lower solar atmosphere is called the “VALIIIc”.
The model is illustrated in Figure 1.4 (Vernazza et al., 1981). The density and
temperature are represented in blue and red, respectively. The full model offers a
range of additional parameters such as number density, total pressure and optical
depth all as a function of height in the atmosphere.
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Fig. 1.4 The VALIIIc (Vernazza et al., 1981) model of the quiet Sun. The density
and temperature are shown in blue and red respectively. The temperature minimum
region and the transition region can be observed with these two parameters.

1.3.1 Photosphere

From the top of the convection zone, the temperature and density drop to 5700 K
and 0.0002 kg m−3 respectively (Page & Hirsch, 2000). This leads to the first visible
layer of the Sun called the photosphere. The word photosphere comes from the
ancient Greek word ‘photos’ meaning ‘light’. The photosphere has an approximate
thickness of 500 km. The photosphere starts with a temperature of 5700 K which
drops as you move away from the surface, reaching approximately 4500 K. The
photosphere has a granular pattern resulting from the ascending warmer gas in
the centres of the granules and descending cooler gas in the intergranular lanes
separating them. These are short-lived, with a lifetime less than 10 minutes, resulting
in a repeating pattern at small-scales (Rutten & Severino, 2012), they are on average
1 Mm in diameter as seen in Fig 1.5. The Fig 1.5 is a testament of how far we have
come in our imaging capabilities. These granules are clearly visible in Figure 1.5,
this is the most detailed image of any star that humankind has ever taken. On larger
scales, the photosphere is dominated by a cell-like flow pattern with diameters of 30
Mm, called supergranulation, which can last for a day or longer (Rieutord & Rincon,
2010).

The convective nature of the Sun offers us the possibility to use techniques similar
to seismological investigations of our own planet, to probe its interior. The turbulence
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Fig. 1.5 The Daniel K. Inouye Solar Telescope(DKIST) has produced the highest
resolution image of the Sun’s surface ever taken. In this picture taken at 789 nm,
features as small as 30 km can be seen, for the first time ever. The image shows a
pattern of turbulent, “boiling” gas that covers the entire Sun. The cell-like structures
– each about the size of Texas – are the signature of violent motions that transport
heat from the inside of the Sun to its surface. Hot solar material (plasma) rises in the
bright centres of “cells”, cools off and then sinks below the surface in dark lanes in a
process known as convection. In these dark lanes, one can also see the tiny, bright
markers of magnetic fields. These bright specks are thought to channel energy up
into the outer layers of the solar atmosphere called the corona. Image credits: NSO.

within the convection zone creates an entire spectrum of acoustic waves, named
p-modes, where p stands for pressure, which can be exploited with helioseismology
techniques. These acoustic waves penetrate into the solar interior and at certain fre-
quencies, they form standing waves. The line-of-sight (LOS) Doppler images of the
photosphere give an indication of these standing modes. These wave modes’ overall
properties are affected by the physical conditions where the maximum amplitude
for that mode occurs. This allows us to be able to build an image at varied depths
within the solar interior. Fourier transforms discussed in Chapter 2 are of great use
in carrying out these studies. For reviews on this topic, see Deubner & Gough (1984)
and Christensen-Dalsgaard (2002). The photosphere is quite a dynamic layer. The
dynamics of which are determined by two processes, 1) convection as discussed
above, and 2) the solar magnetic field, which is discussed in Section 1.4.

1.3.2 Chromosphere

The next layer is visible to the naked (human) eye only during a total solar eclipse.
It is seen as an intense red region which was given the name, the chromosphere,
from the Greek word ‘chroma’, meaning colour. This layer is visible during the total
solar eclipse as a ‘pink’ coloured layer (Frankland & Lockyer, 1869). The density
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of the chromosphere is just 10−4 times that of the photosphere. It is roughly 2 Mm
thick and is a highly complex layer and dynamic in nature. The temperature of the
chromosphere increases with height and reaches around 20,000 K at the boundary
where it meets the next layer, the transition region. To observe the chromosphere
from Earth, it is common to use either a Hα filter or a Ca II filter. The very large
range of structures and the inhomogeneity of the chromosphere are best revealed
when it is observed at different wavelengths, from the EUV to the radio domain.
The chromosphere is host to many small-scale structures, e.g. spicules, that have
been discovered due to the increasing resolution of solar telescopes over the past few
decades. Some of the structures in the chromosphere (see Figure 1.6) are (a) plages
(seen in EUV emission lines, or at longer wavelengths [Mg I h and k, or Ca II-H and
K], (b) Sunspots (lower chromosphere, seen in EUV He II), (c) spicules and surges
(best seen in Hα line) along with prominent fibrils and grains. This layer has been
under rigorous investigations, for an overview see Narain & Ulmschneider (1990,
1996); Sterling (2000); Rutten (2007, 2012); Jess et al. (2015).

1.3.3 Transition region

Above the chromosphere, is a thin (≈ 100 km) layer where the temperature rises
rapidly from 20,000 K to 1,000,000 K. This is called the transition region (TR).
This means that the TR is very non-uniform and Tian et al. (2009) suggests that
the height varies depending on what magnetic features are below the TR. Lower
transition region (T < 5×105K) shows structures similar to the chromosphere, with
network and plages. In the upper transition region structures are more similar to
the corona. Most of the energy from the corona is thermally conducted down to
the transition region where it is radiated away. Also, the brightness variability in
the (quiet) transition region is larger than in any other layer of the solar atmosphere.
This thin layer bridges a large difference in temperature. This layer also separates
the dilute coronal plasma (with number densities of n ≤ 1012m−3) from the dense
(n ≤ 1016m−3) chromosphere (Aschwanden, 2004, see chapter 1).

1.3.4 Corona

The next layer is the outermost atmosphere of the Sun, called the corona. The
observations studied within this thesis are of this region (Chapter 3 and Chapter 4).
Historically this was only visible during a total solar eclipse (see Figure 1.7). The
corona largely emits in Extreme Ultra-Violet (EUV see Figure 1.8) and X-ray
regions of the electromagnetic spectrum. These waves are absorbed by the Earth’s
atmosphere and thus studying the corona requires space-based observations. To
study the corona from Earth, the much brighter solar disk needs to be occulted by
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Fig. 1.6 Top left: Chromosphere seen during an eclipse. Top right: Chromosphere
seen in Hα . Bottom left: Photospheric sunspots and bright points. Bottom right:
Chromospheric view of Bottom left: (using Ca+) (Ayres et al., 2009).

a device called a coronograph. A coronagraph is required for optical and infrared
observations where brightness from the disk is too intense, i.e. the photosphere is
a stronger emitter at these wavelengths than the corona. The solar corona extends
many solar radii away from the solar surface and it is continuously expanding into
the solar system, known as the solar wind. The average temperature of the corona
is about 1-2 MK, however, it can reach temperatures as high as 8-10 MK, during
strong flares (Aschwanden, 2004). The physical processes that account for the high
temperature of the corona is an open problem still (one of the holy grails of solar
physics). There are two main hypotheses in contention, hoping to provide a solution
to the coronal heating problem. The first idea is based on magnetic reconnection.
This process is where magnetic field changes its topology and the magnetic energy
stored within the field is converted to kinetic and thermal energy. Thus the plasma
that is present in these regions will become heated. The second idea involves the
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Fig. 1.7 Corona during an eclipse (21-Aug-2017). The extent of corona and various
structures such as streamers are visible. The pink structure is the visible chromo-
sphere during eclipse. Image Credit & Copyright: Nicolas Lefaudeux.

magnetohydrodynamic (MHD) waves. The idea is that MHD waves can channel the
energy through the various layers of the solar atmosphere into the solar corona. It
requires that these MHD waves are able to dissipate their energy into the plasma
in order to heat the plasma. However, this has yet to be directly observed. This
thesis tries to further increase our understanding of these waves. Coronal heating has
been thoroughly investigated for many decades and reviews by various authors exist
Withbroe & Noyes (1977); Rosner et al. (1978); Erdélyi (2004); Klimchuk (2006);
Parnell & De Moortel (2012); Sakurai (2017); De Moortel et al. (2020, e.g.).

The magnetic field in the corona can be broadly classified into two configurations.
The field is either arranged in the form of closed loops of increased density (enhanced
emission), or in the form of open field lines seemingly not connecting back to the
solar surface (Wiegelmann et al., 2014). Arcades (ensembles) of bright coronal
loops connect regions of opposite magnetic polarity on the solar surface and are
mostly found to be rooted in an AR. Large-scale coronal loop systems can connect
the neighbouring ARs and/or ARs with their quiet Sun surroundings. The observed
coronal loop systems cover a wide range of length scales, from a few Mms up to
giant arches reaching up to 1000 Mm. Several loop arcades neighbouring each other
are often found in magnetically complex ARs and often host eruptive processes such
as flares or CMEs. Therefore, in the majority of cases, bright coronal loops are
concentrated around the regions of higher activity. Most of the quiet-Sun magnetic
fields that reach the corona are rooted in the magnetic network (see Section 1.4.1). At

https://apod.nasa.gov/apod/ap180430.html
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Fig. 1.8 (a-e) SDO/AIA 211 Å, 193 Å, 094 Å, 335 Å and 304 Å images of the
solar corona and chromosphere showing the different structures including active
regions and coronal holes. (f) SDO/HMI magnetogram of the magnetic field in the
photosphere (27-Aug-2011) (taken from (Parnell & De Moortel, 2012)).

greater heights, they fan out to form funnels and to fill the coronal volume. Open field
structures provide a highway for the plasma. The plasma is efficiently transported
outwards along the open field lines, which allows the charged particles to escape
from the solar atmosphere. Especially during minimum solar activity, open magnetic
flux is concentrated around the poles, causing depleted regions which emit less than
their surrounding temperatures above 1 MK and consequently appear dark in coronal
images, and are called coronal holes. At lower latitudes, the coronal structure is
dominated by “helmet streamers” and “pseudo streamers”, extending out to several
solar radii in height. For a review on coronal loops, a good resource is Reale (2010).

1.4 Magnetic field on the Sun

The solar magnetic field plays a key role in various solar phenomena and thus is
imperative to understand the behaviour of solar magnetic fields. The most prevalent
way to understand the magnetic field of stars is to use a method called the Zeeman
effect (Phillips, 1995). The Zeeman effect can be described as a phenomenon of
splitting of the spectral lines when placed in a magnetic field. Zeeman effect is
dependent on the field strength and polarization. This effect can mostly be used in
case of the photosphere, as only the photospheric magnetic field is strong enough to
cause measurable splitting via the Zeeman effect. The images generated using the
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Zeeman effect are called solar magnetograms. Magnetograms provide us with the
basic magnetic field structure of the photosphere.

The magnetic field on photosphere is very weak (≤ 40 Gauss) on average and
is very sparse (Domínguez Cerdeña et al., 2006; Viticchié et al., 2011). This is a
defining feature of the quiet Sun and is shown in Figure 1.5. The dominating feature
within this image is the granulation cells, which are evidence of convection, as well as
several small magnetic features. The flux emergence, as described in Section 1.4.3.1,
dominates the photospheric magnetic fields, the largest of the Ω loops form the
bipolar active regions. Coronal loops are a manifestation of the magnetic field, filled
with heated plasma, shaped by the geometry of the coronal magnetic field, where
cross-field diffusion is strongly inhibited (Ossendrijver, 2003; Jain et al., 2009).
A schematic diagram representing the magnetic field structure in the atmosphere
away from active regions is shown in Figure 1.9. The two different magnetic field
configurations have different properties and lead to different consequences. The
open-field regions connect the solar surface with the interplanetary field and are
the source of the fast solar wind (∼ 800 km s−1) (Levine et al., 1977; Levine,
1977; Bohlin & Sheeley, 1978; Levine, 1978; Pneuman, 1980; Barnes, 1979). A
consequence of the open-field configuration is efficient plasma transport out into
the heliosphere, whenever chromospheric plasma is heated at the footpoints. On
the other hand, closed-field regions (comprised of self-evident closed field lines)
reaching altitudes of up to one solar radius. These closed-field regions contain all the
bright and over-dense coronal loops, produced by filling with chromospheric plasma
that stays trapped in these closed field lines (Reale, 2010).

1.4.1 Quiet Sun

Traditionally the “quiet-Sun” (QS) regions got their name because they were assumed
to lack magnetic activity. However, while large-scale eruptions are mainly associated
with ARs, the QS is found to be not so quiet after all. Dynamic processes that occur on
smaller scales had simply not been resolved because of the technological limitations
of earlier telescopes and instruments. The smallest resolved bipolar features on the
solar surface are the internetwork magnetic loops emerging throughout the quiet
Sun. Although ARs are regions of high magnetic flux, they constitute a significantly
smaller proportion of the total magnetic flux on the surface, the majority of the
magnetic flux on the solar surface is brought by the smaller scale magnetic structures
that populate the photospheric surface. At photospheric levels, only a small fraction
of the solar surface is occupied by a strong magnetic field. The fields take the
form of kiloGauss fluxtubes, often seen as magnetic bright points in photospheric
images. The bright points are swept out from the internetwork by the supergranular
flows. The flux gathers at the boundaries of the super-granule flows, forming the
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Fig. 1.9 Schematic representation of the quiet-Sun magnetic field structure in a verti-
cal cross-section through the atmospheric layers of the Sun. Large-scale convective
flows (thick, large arrows at the bottom) at the edges of the supergranular cells
lead to the formation of intense magnetic network elements or sunspots. The small-
scale convective flows (thin, small arrows below dotted horizontal line representing
the photosphere) result in the photospheric granular pattern. The magnetic field
lines (solid lines) expand at chromospheric heights and form the nearly horizontal
magnetic canopy (dashed line) (Peter, 2001; Wiegelmann et al., 2014).

magnetic network. In contrast to that, the coronal magnetic field fills the entire
volume of the corona, due to the density stratification along the solar atmosphere.
It is distributed relatively uniformly in strength, not so much in the magnetic field
orientation. Consequently, the photospheric field must spread out with increasing
height in the solar atmosphere. The magnetic field expands until it either turns over
and returns to connect back to the photosphere or it meets the expanding field of the
neighbouring flux tubes. This forms the “magnetic canopy”, transversing the various
layers of solar atmosphere (see Figure 1.9).

The expansion of the magnetic field with height is a consequence of the small gas-
pressure scale height (∼100 km in non-magnetic regions). From the lateral pressure
balance, it follows that the field strength must rapidly decrease with height. (The
lateral pressure balance neccesitates the gas pressure inside to be lower than outside
of the fluxtube.) As the height increases, the magnetic field strength decreases due to
the falloff of the gas pressure and flux conservation imply that the magnetic field must
spread out, i.e., the extension of the magnetic structures must increase rapidly. Since
magnetic features are hotter than their surroundings in the middle/upper photosphere
and chromosphere, the internal gas pressure drops more slowly with height than the
external gas pressure. As a consequence, at certain heights, the internal pressure
force exceeds the external. This removes the lateral confinement of the magnetic
structures and allows the structures to expand unhindered until it hits the field from
another photospheric source. This implies a significant horizontal component of the
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field over a large part of the volume ( see Figure 1.9 for magnetic canopy Solanki &
Steiner, 1990; Bray et al., 1991)

1.4.2 Plasma-β

One of the important physical parameters in the study of plasma is the plasma-β .
Plasma-β is defined as

β =
plasmapressure

magneticpressure
=

nkBT
B2

2µ0

, (1.1)

where µ0 is the permeability in vacuum, and other symbols have the usual meaning.
The solar atmosphere can also be classified based on the value of this β parameter
(see Figure 1.10). In case of solar corona the plasma-β << 1 and thus the processes
in the solar coorna are magnetically dominated, whereas in the Photosphere β > 1,
and thus is hydrodynamically dominated. for a detailed review on the magnetic field
and the plasma-β behaviors a good review paper is Wiegelmann et al. (2014).

1.4.3 Active Sun and the Solar Cycle

The active sun magnetic field is dominated by the large scale, concentrated mag-
netic flux such as in the active regions (see Section 1.4.3.1) or the sunspots (see
Section 1.4.3.2). One of the defining features of the active sun is the solar cycle.
The solar cycle is on average an 11-year variation in the activity of the Sun. This
cycle manifests itself as a variation in the number of sunspots, the amount of solar
irradiance and the levels of other solar activity (Burroughs, 2007). A full magnetic
cycle, however, takes 22 years, which includes the reversal of magnetic polarity of
the Sun. Each cycle has a solar maximum and a solar minimum. A solar maximum
and a solar minimum refer to periods of maximum and minimum sunspot counts,
respectively and cycles span from one minimum to the next. As of May 2020, we
are heading towards the end of the solar cycle 24 and the solar cycle 25 is thought to
be just around the corner (Petrovay, 2020; Bhowmik & Nandy, 2020; Nandy et al.,
2020). Nomen est omen, there is a considerably large amount of magnetic activity
towards the solar maximum, while this is significantly reduced in a solar minimum.
However, it must be noted that solar activity being at a minima does not mean the
Sun is no longer dynamic. Each solar cycle can be characterised by the magnetic
activity, one of the most common and longest observations as a proxy for magnetic
activity are the sunspots (see Subsection 1.4.3.2). This has been recorded not much
after the invention of the telescope and the discovery of ‘spots on the Sun’. These
continuous observations date as far back as the 17th century. These observations
are called the sunspot number catalogue. Figure 1.11 displays this catalogue with
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Fig. 1.10 A model of plasma-β at different altitudes in the solar atmosphere (Gary,
2001).

the raw count as the blue line and a running average in red. The main conclusion
is that each cycle has a different duration and will produce a differing amount of
sunspots. Since each solar cycle differs in its characteristics, strength (number of
sunspots), there is also a significant variation in the number of “extreme/explosive”
events, namely flares and coronal mass ejections (CMEs).

The solar cycle can even directly impact the Earth’s climate, as evidenced by the
long period minimas, such as Maunder and Dalton minima. The Maunder minima
was an abnormally low amount of sunspots during the late seventeenth century and
were the prime suspect for the Little Ice Age (Eddy, 1976; Friis-Christensen &
Lassen, 1991; Burroughs, 2007) in Europe. There have been studies indicating that
the solar cycle might influence the relationship between the atmospheric oscillations
affecting the temperatures in the northern hemisphere (Gimeno et al., 2003; de La
Torre et al., 2007; Lockwood et al., 2010).
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Fig. 1.11 The sunspot number record as it currently stands since continuous observa-
tions of the Sun began. The blue line is the 12 month running average of the Wolf
sunspot number and the red line is the group sunspot number. The eleven year solar
cycle is visible within both datasets (Jiang et al., 2011).

Fig. 1.12 Ca II K butterfly diagram. Grey triangles depict centroids of plages with
area ⩾ 1arcmin2. The red, blue, and green symbols depict the centroids of plages
with area ⩾ 4arcmin2, ⩾ 7arcmin2, and ⩾ 10arcmin2 respectively. Obtained from
the long term archaic images obtained from Kodaikanal Observatory. (Chatterjee
et al., 2016)

1.4.3.1 Active regions

One of the most recognisable features on the solar disk are the Active Regions (ARs).
They also form a significant part of the properties of the photospheric magnetic
features. These are areas of large magnetic field concentrations visible on the solar
surface. They are important for the study of solar activity and space weather and
hence have been catalogued regularly by various observatories and organisations.
The most noticeable features in the ARs are sunspots (see Subsection 1.4.3.2) and
pores. They vary in scale, lifetime and what magnetic structures are found.

ARs generally form within a latitude band of ±30◦ of the equator. These are
generated from a large flux bundle that is formed deep in the convective zone that
rises as a Ω-shaped loop that breaks through the photosphere (Meyer et al., 1974;
Solanki, 2003a; Toriumi et al., 2014). The flux bundle rises through the convective



1.4 Magnetic field on the Sun 19

zone because of magnetic buoyancy. A schematic diagram of how magnetic flux
is transported from the convective zone to the photosphere in order to form ARs is
shown in Figure 1.13. The process can be classified into two distinct processes: 1)
the solar dynamo to create the magnetic field and 2) formation and transport of the
flux bundle on the solar surface. Active region formation takes up to a few days and
a cluster of sunspots in an AR are surrounded by regions of enhanced brightness
in the photosphere. Sunspots will keep forming as long as magnetic flux emerges
but most sunspots decay before a single rotation. Sunspots have been found to be
moving faster than the surrounding local plasma, implying that they are anchored
below the surface where the rotation rate is faster (Engvold et al., 2019). Figure
1.14 shows a complex AR that was observed with the Solar Dynamics Observatory’s
(SDO) Helioseismic and Magnetic Imager (HMI) instrument. The top image is a
white light view of the AR while the bottom image is a LOS magnetogram where
blue represents positive polarity and red represents negative polarity. It has been
found that the more complex the magnetic geometry is the more active the region is
(source of large flares/eruptions).

ARs are the regions that play a dominant role in the dynamic behaviour of the
Sun. Almost all of the solar activity originates in these regions. Most of the flares
or coronal mass ejections originate from ARs since they contain large amounts of
stored magnetic energy. These seemingly distant events have impacts that are felt
even in our terrestrial environment, from creating spectacular auroras near the poles
or in certain situations the disruption of radio transmissions, damage to satellites and
electrical transmission lines.

1.4.3.2 Sunspots

Sunspots appear as dark areas on the otherwise bright Sun’s surface. A sunspot is
formed as a result of the internal magnetic field bursting through the visible surface
and out into the corona (Romanchuk, 1963; Meyer et al., 1974). Sunspots appear
dark because the magnetic fields suppress the convective process, which in turn
results in a suppression of energy and heat transport to the surface. Because these
areas are heated less, they can be a few thousands of degrees Kelvin cooler than the
surrounding photosphere (10, 000K), making them appear dark in comparison to the
rest of the surface.

The first known record of the sunspot is found in a chronicle by John of Worcester
in 1128 as seen in Figure 1.2. The advantage the Sun provides is being the closest
star to study, however, it was not until the invention of the telescope that sunspots
were studied in detail. Early observations of sunspots were able to identify the two
regions of sunspots namely, umbra and penumbra and that sunspots always appear
near the solar equator. Sunspots were still an enigma in the nineteenth century.
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Fig. 1.13 Schematic diagram of magnetic flux emergence. The red sphere represents
the Sun’s inner radiative zone and the blue mesh the photosphere. The solar dynamo
is located between these two layers (a) The shearing of the magnetic field due
to Sun’s differential rotation. (b) Formation of the toroidal magnetic field as a
consequence of differential rotation. (c) Magnetically buoyant loops rise to the
surface when the magnetic field is strong enough and twist as they arise due to
differential rotation. sunspots are formed from these loops. (d,e) More magnetic flux
emerges. (f) Magnetic flux spreads in latitude and longitude from decaying sunspots.
(g) Meridional flows (yellow circulation) carries surface magnetic flux towards the
poles, polar fields get reversed. (h) Flux gets transported downwards towards the
equator, changing the orientation of the poloidal field from an initial configuration
(a). (i) Reversed poloidal field sheared again and the cycle continues. Reproduced
from Dikpati & Gilman (2007) and is available online from http://www.arrl.org/
w1aw-bulletins-archive/ARLP018/2013.

http://www.arrl.org/w1aw-bulletins-archive/ARLP018/2013
http://www.arrl.org/w1aw-bulletins-archive/ARLP018/2013
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Fig. 1.14 A complex AR seen by Solar Dynamics Observatory’s (SDO) He-
lioseismic and Magnetic Imager (HMI) instrument. The top image is a white
light image of the AR. The bottom image displays the line-of-sight (LOS)
magnetic field of this AR, where blue indicates positive polarity and red in-
dicates negative polarity. Source: https://www.spaceweatherlive.com/en/help/
the-magnetic-classification-of-sunspots.

Alexander Wilson also noticed that the penumbra that is farthest from the limb is
narrower which led him to deduce that sunspots are on the surface of a moving
sphere (Loughhead & Bray, 1958). He also discovered that a sunspot is a saucer-like
depression (500-700 km) in the visible surface and this was named the Wilson effect.
This effect is a result of umbra being more optically transparent. Thus light from the
umbra comes from a deeper level than the photosphere itself (Priest, 2014). Many
astronomers thought that sunspots were ‘holes’ in the photosphere, but because the
Sun was presumably hotter beneath the photosphere, the sunspots should appear
bright rather than dark. Then in 1872, Angelo Secchi suggested that matter was
ejected from the surface of the Sun at the edges of a sunspot. This matter then cooled
and fell back into the centre of the spot, so producing its dark central region. In 1843,
Heinrich Schwabe found that the number of sunspots varied with a period of about
10 years (Schwabe, 1844). A little later Rudolf Wolf analyzed historical records that
showed periods ranging from 7 to 17 years, with an average of 11.1 years (Wolf,
1859). Then in 1852, Sabine, Wolf, and Gautier independently concluded that there
was a correlation between sunspots and disturbances in the Earth’s magnetic field.
There were also various unsuccessful attempts to link the sunspot cycle to the Earth’s
weather. But toward the end of the century, Walter Maunder pointed out that there

https://www.spaceweatherlive.com/en/help/the-magnetic-classification-of-sunspots
https://www.spaceweatherlive.com/en/help/the-magnetic-classification-of-sunspots
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had been a lack of sunspots between about 1645 and 1715. He suggested that this
period, now called the Maunder Minimum, could have had a more profound effect
on the Earth’s weather than the 11-year solar cycle. In 1858, Richard Carrington
discovered that the latitude of sunspots changed over the solar cycle (Carrington,
1858). In the following year, he found that sunspots near the solar equator moved
faster than those at higher latitudes, showing that the Sun did not rotate as a rigid
body. This so-called differential rotation of the Sun was interpreted by Secchi as
indicating that the Sun was gaseous. In the same year, Carrington and Hodgson
independently observed two white light solar flares moving over the surface of a
large sunspot. About 36 hours later, this was followed by a major geomagnetic storm
(McFadden et al., 2007).

Sunspots form the heart of an active region. Sunspots and sunspot groups are
classified according to their morphology. The brightness and thus the temperature
of a sunspot is a function of spatial position within the spot. The sunspot can
be classified into two regions the darker umbra and relatively brighter penumbra.
The umbra is 1000-1900 K cooler than the quiet Sun, the penumbra is 250-400 K
cooler. The magnetic field strength in the photosphere is approximately 1000-1500
G averaged over a sunspot. The magnetic field varies gradually from 1800-3700 G
in the darkest part of the umbra to 700-1000 G at the outermost part of the penumbra.
The field strength also decreases with altitude in the atmosphere. At the same time,
the field fans out very rapidly. Sunspots are reviewed in Solanki (2003b); Borrero &
Ichimoto (2011), and for a review of the historical sunspot observations refer to Arlt
& Vaquero (2020).

1.5 Magnetohydrodynamics (MHD)

MHD is a framework that combines the fluid motions with Maxwell’s equations to
describe the physics of plasma (an electrically charged neutral fluid). It is one of
the primary mathematical frameworks used to describe the dynamics of plasma in
general and solar plasma in particular.

The displacement current is neglected in the Ampére’s law, which gives,

∇× B⃗ = µ0 j⃗ , (1.2)

where B⃗, µ0, and j are the magnetic field vector, magnetic permeability, and current
density vector, respectively. Charge neutrality is also assumed, which implies that an
electric field can only be induced by a changing B⃗ field and ∇ · E⃗ = 0, since excesses
of charge are not allowed to accumulate.
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Faraday’s law dictates this induced electric field behaves as follows,

∂ B⃗
∂ t

=−∇× E⃗. (1.3)

Currents are generated in the plasma by a non-zero E⃗ or a changing B⃗ and are
determined by the generalized Ohm’s law,

j⃗ = σ(E⃗ + v⃗× B⃗) , (1.4)

where σ and v⃗ are the electrical conductivity and plasma velocity, respectively.
Solving for E⃗ in Equation 1.4 and substituting it in Equation 1.3, results in,

∂ B⃗
∂ t

=−∇×

(
j⃗

σ
− v⃗× B⃗

)
. (1.5)

Thus, currents can be defined in terms of B⃗ alone. Equation 1.2 can then be rearranged
and substituted for j⃗,

∂ B⃗
∂ t

= ∇× (⃗v× B⃗)−∇×

(
∇× B⃗
µ0σ

)
. (1.6)

Using vector identities and ∇ · B⃗ = 0 and simplifying Equation 1.6 gives us the
“induction equation".

∂ B⃗
∂ t

= ∇× (⃗v× B⃗)+η∇
2B⃗, (1.7)

where, σ is constant and magnetic diffusivity (η), is defined by η ≡ 1/µ0σ . The
induction equation is of serious consequence in the dynamics of the magnetic field
in the plasma.

The first term on the right-hand side is the advective term which describes
magnetic field dynamics due to plasma flows, and the second is the diffusive term
which describes diffusion of the field due to gradients in the magnetic field itself. The
advective timescale (Equation 1.8) is often much shorter than the diffusive timescales
(Equation 1.9), so movement of the plasma via the plasma velocity tend to dominate
the magnetic field dynamics. By dimensional analysis of Equation 1.7, characteristic
timescales may be derived,

∆B
∆t

=
vB
∆l

⇒ τadv = ∆l∆BvB , (1.8)

∆B⃗
∆t

= η
B⃗

∆l2 ⇒ τdi f f =
∆l2∆B⃗

ηB⃗
, (1.9)
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where ∆l is a characteristic length scale, ∆t is the characteristic time scale, ∆B is
the difference in magnetic field between the start and end of the time-scale which is
roughly equivalent to the characteristic field, B, τadv is the advection time scale and
τdi f f is the diffusion time scale. For typical values in the solar corona with ∆l ∼ 109

m, ∆B ∼ 1 G, η ∼ 104 m2s−1, V ∼ 103ms−1, the typical advection and diffusion
timescales are 105 s and 1013 s, respectively.

If the conductivity (σ ) is assumed to be infinite, the equations give rise to ideal
MHD. In ideal MHD, Equation 1.7 becomes,

∂ B⃗
∂ t

= ∇× (⃗v× B⃗) (1.10)

The ratio of the diffusive and advective terms in the induction equation yield the
magnetic Reynolds number,

Rm =
V ∆l

η
, (1.11)

where V is a characteristic fluid speed and ∆l is a characteristic length scale. This
number indicates the relative importance of fluid motions (advection) to magnetic
diffusion in the evolution of the magnetic field. In most cases for the Sun Rm >> 1,
(taking the values for the two timescales we get the Rm ∼ 108 ) so the magnetic
diffusion term in Equation 1.7 can be neglected. There are a few cases where this is
far from true, such as in flares or in any reconnection process. This approximation of
infinite conductivity is valid for astrophysical plasmas due to the large spatial scales
that we deal with. In this ideal MHD plasma with Rm >> 1 Alfvén’s frozen-flux
theorem holds. This implies (a) magnetic flux is conserved; (b) magnetic field lines
are conserved or in other words magnetic field lines are permanently embedded in the
plasma they inhabit. Thus the field is advected with plasma motions or equivalently
plasma is constrained to flow along field lines.

1.5.1 MHD equations

The complete set of ideal MHD equations are given as follows:

∂ρ

∂ t
+∇ · (ρ v⃗) = 0, (Mass Conservation)

ρ
D⃗v
Dt

=−∇p+
1
µ0

(∇× B⃗)× B⃗+ρg, (Equation of Motion)

D
Dt

(
p

ργ

)
= 0, (Energy Equation)

∂ B⃗
∂ t

= ∇× (⃗v× B⃗), (Induction Equation)
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subject to,

∇ · B⃗ = 0, (Solenoid Equation)

p = kB
ρ

m
T, (Ideal Gas Law)

E⃗ = −⃗v× B⃗, (Ohm’s Law)

j⃗ = ∇× B⃗/µ. (Electric Current)

Here ρ is the density, v⃗ is the velocity, D
Dt is the convective derivative

(
∂

∂ t +(⃗v ·∇)
)

,
p is the pressure, γ is the ratio of specific heats (5/3 for an ideal mono-atomic gas),
kB is Boltzmann’s constant, m is the mass of the gas, T is the temperature, and µ0 is
the magnetic permeability in vacuum.

These constitute eight partial differential equations for eight variables. Both v⃗

and B⃗ have three components each and there is also the density and temperature.
The energy density of a magnetic field is given by,

uB =
B2

2µ0
. (1.12)

The total magnetic energy in a region of space is given by integrating over volume,

UB =
∫
V

B2

2µ0
dV. (1.13)

Considering the time evolution of the total energy and using a dot-product identity,

dUB

dt
=

1
2µ0

∫
V

d
dt
(B⃗ · B⃗)dV. (1.14)

Using the product rule,

dUB

dt
=

1
2µ0

∫
V

B⃗ · dB⃗
dt

+
dB⃗
dt

· B⃗dV =
1
µ0

∫
V

B⃗ · dB⃗
dt

dV. (1.15)

Equation 1.6 is then substituted for dB⃗/dt,

dUB

dt
=

1
µ0

∫
V

B⃗ · (⃗∇× (⃗v× B⃗)− ∇⃗× (η∇⃗× B⃗))dV. (1.16)

The following equation can be derived from this by using a vector identity and
substituting for current density,

dUB

dt
=−

∫ j2

σ
dV −

∫
v⃗ · ( j⃗× B⃗)dV. (1.17)
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The first term on the right-hand-side represents energy lost through the dissipation
of currents. This is also known as ohmic or Joule heating. The second term on
the right-hand-side represents energy lost through work done on the plasma by the
Lorentz force.

In addition to separating magnetic energy losses into components, the same can
be done with magnetic forces. By combining Equation 1.2 and the Lorentz force in
(Equation of Motion),

F⃗L =
(∇× B⃗)× B⃗

µ0
. (1.18)

is obtained. The force can then be split into two components using vector identities,

F⃗L = −∇
B2

2µ0︸ ︷︷ ︸
magnetic pressure

+
1
µ0

(B⃗ ·∇)B⃗︸ ︷︷ ︸
tension

. (1.19)

The Lorentz force is perpendicular to the field: the magnetic pressure has a
component along the field that cancels out the component of the magnetic tension
that is along the field. Magnetic pressure1, and a component acting along the field,
magnetic tension. These forces can conveniently be attributed to many dynamic
phenomena independently. Magnetic pressure is attributed to the apparent expansion
of coronal loops as they reach higher into the atmosphere, while tension explains
the restoring force that allows a coronal loop to spring back into place after it is
disturbed by an external force.

Another quantity of importance is the plasma -β , it is the ratio of gas pressure to
magnetic pressure,

β =
PG

PB
=

nekBTe

B2/2µ0
. (1.20)

In the solar interior, β >> 1 and magnetic fields’ dynamics are dominated by plasma
motions, while in the corona β << 1 and magnetic fields determine plasma motion.
The change in plasma β above an active region is shown in Figure 1.10.

1.6 MHD waves

Magnetic tension, magnetic pressure and gas pressure are restoring forces that allow
oscillations to take place along magnetic field lines in plasma. There are several
types of waves that may result from these. To understand the behaviour of these
waves, the case of small perturbations for the MHD quantities should be considered,

1The magnetic pressure, B2/2µ0 is numerically equivalent to the magnetic energy density.
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i.e.,

B⃗ = B⃗0 + B⃗1(⃗r, t),

v⃗ = 0⃗+ v⃗1(⃗r, t),

p = p0 + p1(⃗r, t),

ρ = ρ0 +ρ1(⃗r, t).

Here, subscripts are used to separate out the background (B⃗0) and perturbation (B⃗1)
quantities. There is assumed to be no background flow and that all perturbations are
much smaller than the background value (e.g., B⃗0 ≫ B⃗1).

This leads to the linearised ideal MHD equations,

∂ρ1

∂ t
+(⃗v1 ·∇)ρ0 +ρ0(∇ · v⃗1) = 0, ( Mass Conservation)

ρ0
∂ v⃗1

∂ t
=−∇p1 +

1
µ0

(∇× B⃗1)× B⃗0 +ρ1⃗g, ( Equation of Motion)

∂ p1

∂ t
+(⃗v1 ·∇)p0 − v2

s

(
∂ρ1

∂ t
+(⃗v1 ·∇)ρ0

)
= 0, ( Energy Equation)

∂ B⃗1

∂ t
= ∇× (⃗v1 × B⃗0), ( Induction Equation)

∇ · B⃗1 = 0, ( Solenoid Equation)

where it is possible to define the first characteristic speed in MHD, the sound speed,
v2

s = γ p0/ρ0. There is another important characteristic speed and that is the Alfvén
speed, v2

A = B2
0/µ0ρ0. The type of waves supported by the plasma depends on the

background plasma conditions and the geometry of the magnetic fields.

1.6.1 Waves in a uniform magnetic field

The model, in this case, is an infinite atmosphere with a background magnetic field
that is purely vertical. Alfvén waves are incompressible transverse waves and with
magnetic tension being the restoring force. The plasma motion due to the waves
occurs perpendicular to the wave vector and the magnetic field. The group velocity
ω/|k| at which Alfvén wave energy travels along field lines is the Alfvén speed,
where k is the wave numnber,

vA =
B

√
µ0ρ

. (1.21)
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When the ratio of gas to magnetic pressure, β ≪ 1, then vA ≫ vs. The phase speed
of the wave pattern is given by,

ω

|k|
=±vA cosθ , (1.22)

where ω is the angular frequency of the wave, k⃗ is the wave vector, and θ is the
angle between B⃗ and k⃗. Alfvén waves allow for energy to be transported into the
corona. They are thought to be partially responsible for heating and accelerating the
fast solar wind (Akasofu, 1981; Goldreich & Sridhar, 1995; Schwenn, 2006).

Magnetoacoustic waves come in two forms: “fast" and “slow". Fast waves
propagate near isotropically and are governed by magnetic tension in media where
β ≪ 1 or by gas pressure when β ≫ 1. The phase speed is given by,

vp, f ast =
ω

k
=

(
1
2
(v2

A + v2
s )+

1
2

√
(v2

A + v2
s )

2 −4v2
Av2

s cos2 θ

)1/2

, (1.23)

where vs is the speed of sound in the plasma. For waves propagating parallel to B⃗,
vp, f ast = vA or perpendicular to B⃗, vp, f ast =

√
v2

A + v2
s . Slow waves mostly propagate

along B⃗ and are governed by gas pressure when β ≪ 1. Their phase speed is given
by,

vp,slow =
ω

|k|
=

(
1
2
(v2

A + v2
s )−

1
2

√
(v2

A + v2
s )

2 −4v2
Av2

s cos2 θ

)1/2

. (1.24)

Table 1.1 summarises how various MHD wave modes behave within this model.
Three wave modes are present in this model, the Alfvén mode, the fast mode and the
slow mode.

1.6.2 MHD waves in flux tubes

Magnetic flux tubes are modelled as cylindrical structures. In the context of a
magnetic flux (cylindrical) tube, only the fast and slow modes are discussed. The
seminal work in this study was undertaken by Edwin & Roberts (1983). The analysis
is based on the slender flux tube, where the tube radius is greater or equal to the
wavelength of the oscillations, the effects of gravity are ignored there.

It is important to note that in thin flux tubes, there are two other characteristic
wave speeds. One is a subsonic, sub-Alfvénic speed, vT (Equation 1.6.2), and the
other is the kink or “mean” Alfvén speed, vk.

The model is as follows, a cylindrical magnetic flux tube of radius a with its
own density (ρ0), pressure (p0) and magnetic field (B0ẑ) is embedded in a magnetic
environment with a similar profile (Beẑ, ρe and pe). The density and pressure are
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Fig. 1.15 The equilibrium conditions used to model wave behaviour in a magnetic
flux tube. Image is a modified version of Figure 1 from Edwin & Roberts (1983).

uniform throughout the external medium. Figure 1.15 is a schematic drawing of this
model.

This is the starting point for deriving the dispersion relation for MHD waves in a
magnetic flux tube. It is assumed that this system is in equilibrium. Perturbations
to the equilibrium conditions then add extra terms to the ideal MHD equations
(the equations in Section 1.5.1). By introducing the Fourier decomposition of the
perturbations, they show that the amplitude of the waves obeys the Bessel equation.
When bound on the axis of the cylinder (r = 0), two solutions exist for either the
body or surface wave. In the external atmosphere, the assumption of no propagation
of energy away from or towards the cylinder allows the solution for the amplitude
to be found. Furthermore, the kinetic and magnetic energy density tends to zero as
r → ∞. Continuity of perturbations at the boundary (r = a) has to be kept (radial
velocity component vr, and the total pressure) which yields the dispersion relations
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for surface waves and body waves (Edwin & Roberts, 1983). These are,

ρ0(k2v2
A −ω)me

K′
n(mea)

Kn(mea)
= ρe(k2v2

Ae −ω)m0
I′n(m0a)
In(m0a)

,Surface, m2
0 > 0 (1.25)

ρ0(k2v2
A −ω)me

K′
n(mea)

Kn(mea)
= ρe(k2v2

Ae −ω)n0
I′n(n0a)
In(n0a)

,Body, m2
0 =−n2

0 < 0

(1.26)

where, Kn and In are modified Bessel functions of order n, K′
n and I′n are the derivatives

of the modified Bessel functions, m0 and me are the internal and external wavenumber,
defined as,

(k2v2
s −ω2)(k2v2

A −ω2)

(v2
s + v2

A)(k
2v2

T −ω2)
,

and vT is the tube speed,

v2
T =

v2
s v2

A

v2
s + v2

A
.

Finally, these dispersion relations are solved under coronal conditions (plasma-
β << 1, such that, vs ≪ vA < vAe) and the solutions are displayed in Figure 1.16.

These dispersion relations are important as they detail the way in which waves
propagate through numerous flux tube sizes. It shows the limits of the wave solutions
indicating in what regimes they cannot exist.

If one can measure the phase speed of an observed wave and the kz of the flux
tube, one can also likely identify the observed waves. One factor that has been
neglected is the azimuthal mode number (n), its value governs the way in which
the wave perturbs the flux tube. This gives us the names: sausage (n = 0), kink
(n = 1) and fluting (n > 1) (See Figure 1.17). These different wave modes cause
characteristic physical effects which can be used to identify each different wave
mode, by using the observational resources available.

1.7 Observation of MHD waves

The launch of the Transition Region And Coronal Explorer (TRACE Strong et al.
1994; Handy et al. 1999a) satellite changes the study of waves in plasma forever.
The discovery of waves is of interest in its own right, but the topic gained its
spotlight because of the role it played in the development of coronal magneto-
seismology (Edwin & Roberts, 1983). The notion of local seismology was not
explored until the work of (Roberts et al., 1984), which exploited the wave diagrams
as shown in Figure 1.16 and explicitly stated that “magneto-acoustic oscillations
provide a potentially useful diagnostic tool for determining physical conditions
in the inhomogeneous corona”. They argued that the combination of theory and
observations provides “a valuable diagnostic tool for in situ conditions in the corona”,
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Fig. 1.16 The dispersion diagram derived from the MHD equations under coronal
conditions (vs ≪ vA < vAe). The hatched areas are the excluded values of ω and
kz. The diagram gives the phase speed c(= ω

kz
) as a function of the dimensionless

wavenumber kz a for fast and slow magnetoacoustic body modes in a coronal mag-
netic flux tube. Solid curves correspond to sausage waves, dashed curves to kink
waves. Image is a modified version of Figure 2 from Edwin & Roberts (1983).
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Fig. 1.17 Cartoon illustrating for the MHD waves in a magnetic flux tube. Left:
Sausage wave with, m = 0 is characterized with an axisymmetric contraction and
expansion of the tube’s cross-section producing periodic compression/rarefaction
of both the plasma and magnetic field. Right: The kink wave has an azimuthal
wavenumber m = 1. It is the only value of m that can cause a transverse displacement
of the flux tube. In contrast to the sausage wave, the kink wave displacement/velocity
field is not axi-symmetric about the flux tube axis. The red lines indicate the
perturbed flux tube boundary and thick arrows show the corresponding displacement
vectors. The thin arrows labelled B show the direction of the background magnetic
field. Image courtesy Morton et al. (2012a).

allowing determination of the local Alfvén speed and spatial dimension of the coronal
inhomogeneity that forms a loop. There is, of course, no reason why such concepts
cannot be equally applied to other magnetic features of the Sun e.g. sunspots, leading
to magneto-seismology.

The dispersion diagram shown in Figure 1.16 is applicable to both propagating
modes and standing modes, it can be used to aid the interpretation of observations
of coronal waves. Standing waves occur in closed structures such as coronal loops,
provided the wave has had time to travel the length of the loop and back again; for
shorter times, the wave has not reached the ends of the loop, where it is reflected
from the dense lower atmosphere, and thus the wave propagates freely as if the
structure were open.

Since since the launch of SoHO and TRACE, a plethora of wave modes have
been observed in the solar atmosphere. A non exhaustive list is provided as follows:
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• Standing fast kink waves (Aschwanden et al., 1999; Nakariakov et al., 1999;
Schrijver et al., 1999; Ofman & Aschwanden, 2002; Verwichte et al., 2005),

• Standing slow magnetoacoustic modes (Wang et al., 2003),

• Fast sausage waves (Williams et al., 2001, 2002; Katsiyannis et al., 2003),

• Propagating slow magnetoacoustic modes (Ofman et al., 1997; DeForest &
Gurman, 1998; De Moortel et al., 2000; Marsh et al., 2002),

• Torsional modes (Erdélyi et al., 1998; Jess et al., 2009; Kohutova et al., 2020),
and

• Propagating kink waves (Tomczyk et al., 2007; Tomczyk & McIntosh, 2009;
Morton et al., 2012b, 2016; Morton et al., 2019).

Coronal magneto-seismology provides us with tools that allow the estimation of the
background properties of coronal loops using the observed properties of these waves.
For a review of coronal magneto-seismology, measuring magnetic field strength and
density please see De Moortel (2005); Nakariakov & Verwichte (2005); Banerjee
et al. (2007); Nakariakov (2007); De Moortel et al. (2016); Nakariakov et al. (2016b);
Wang (2016); Van Doorsselaere et al. (2020); De Moortel et al. (2020).

1.7.1 Standing kink waves

Transverse waves created a buzz in the solar physics community since their first
discovery after the launch of the TRACE (Handy et al., 1999b). These observations
were very exciting for solar observations as one could directly measure displacement
of coronal loops. These waves were interpreted as the coronal standing fast kink
mode waves and were initially modelled in terms of linearized waves in (straight)
homogeneous cylindrical flux tubes, but more realistic models include the effects of
gravitational stratification, geometric expansion with height, curvature of the guiding
magnetic field, non-circular cross-section, geometric loop shape, (helical) magnetic
twist, and wave damping have been investigated since (Ruderman & Erdélyi, 2009;
Hindman & Jain, 2013). For the observational signatures of transverse MHD modes,
including sausage and Alfvén modes see (Hinode Review Team et al., 2019, chapter
6.1).

These observations found the wave speed to be larger than the sound speed sug-
gesting that a fast magnetoacoustic or Alfvén wave was involved. The observations
make clear that the loop as a whole (i.e. central axis) is disturbed, in a manner
akin to the kink mode rather than an Alfvén wave. Thus, the observations were
interpreted to be associated with the kink mode of oscillation. This observation
established the presence of standing kink waves and led to several follow up studies.
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Fig. 1.18 Examples of observations of standing kink oscillations (SDO). The left
panels show time-distance diagrams of the kink oscillations. The blue curves show
best-fit exponential decay model. The inset images shows the active region with
loops, and the red line corresponds to the slit used to generate the time-distance
diagram. Image borrowed from Nechaeva et al. (2019)).
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Fig. 1.19 A cartoon diagram of the fundamental of the standing kink oscillations. This
simple model represents a vast majority of the standing kink waves in observations
(Zimovets & Nakariakov, 2015). Image credits Nakariakov et al. (1999).

The common feature of these observations was the excitation mechanism, all of these
standing kink waves were excited sporadically in coronal loops after a nearby flare
(e.g. Aschwanden et al., 1999; Nakariakov et al., 1999).

For standing kink mode (for observations see Figure 1.18),

vk =
2L

NPk
, (1.27)

where vk is the kink speed, L is the observed loop length, N is the mode of oscillation
and Pk is the period of the kink wave, a schematic representation of loop used for
modelling is shown in Figure 1.19. The kink speed is determined by,

v2
k =

ρ0v2
A +ρev2

Ae
ρ0 +ρe

, (1.28)

where the vA is the Alfvénspeed within the slab, vAe is the Alfvénspeed in the
environment, ρ0,ρe are the external and internal densities of the loop respectively.
Assuming the low β in corona, the outer magnetic field (|B0|) is similar to the inner
magnetic field (|Be|) that reduces the the kink speed to,

v2
k =

2B2
0

µ0(ρ0 +ρe)
. (1.29)

Using this equation of kink speed with the Equation 1.27 provides us with an equation
to measure the magnetic field,

B2
0 = 2µ0ρ0

(
1+

ρe

ρ0

)(
L

NPk

)2

. (1.30)

The Equation 1.30 forms the basis of coronal magneto-seismology using standing
kink waves.
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Fig. 1.20 Cartoon illustration of resonant absorption for a propagating transverse
footpoint motion. Snapshots of the transverse velocity (taken from (Pascoe et al.,
2010)) at two different timesteps in the simulations, for a density contrast and a
boundary layer. This shows the accumulation of energy from the axial component to
the azimuthal component.

Since the early observations from TRACE, there have been several studies to
understand the excitation mechanism, damping mechanism, and the statistics of
the standing kink waves. It was immediately recognized that the measurement of
the fast kink mode period P, the length of the oscillating loop L, and the electron
density (ne), provides a measurement of the mean magnetic field |B| in an oscillating
loop, which became the most prominent tool of the coronal magneto-seismology
method (Nakariakov & Ofman, 2001). The rapid damping was attributed to resonant
absorption, a phenomenon present in inhomogeneous plasmas converting the energy
in transverse motions to azimuthal motion via resonant coupling (e.g. Ruderman &
Roberts, 2002; Goossens et al., 2002; Aschwanden et al., 2003; Hindman & Jain,
2018). In the presence of structuring in the direction perpendicular to the magnetic
field (i.e. the loop plasma is considered denser than the ambient plasma), transverse
motions generate an intrinsic coupling between the kink (transverse) and torsional
Alfvén (azimuthal, n = 1) modes. The coupling takes place in a dissipative layer at
the loop boundary, located at the resonant point where the kink frequency, which lies
between the internal and external Alfvén frequencies, matches the local Alfvén wave
frequency (e.g. Aschwanden et al., 2003; Goossens et al., 2006; Antolin et al., 2015).

Due to the TRACE, SoHO and SDO instruments there has been a constant
coverage of the sun. These observations have provided a large sample of damped kink
oscillations. Recently there has been several attempts to understand the excitation
mechanism, damping mechanism, and the statistics of the standing kink waves
(Stepanov et al., 2012; Goddard et al., 2016). The statistics of the standing waves
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Fig. 1.21 An example of time-distance diagram used to study the damping of standing
kink waves. The image is borrowed from (Duckenfield et al., 2018). The top panel
represents the time-distance diagram at the loop footpoint and the bottom panel
shows the time-distance diagram from the loop apex.

provide important clues about the excitation of these waves. Zimovets & Nakariakov
(2015) reported that the kink oscillations were excited by the deviation of loops from
their equilibria by a nearby low coronal eruption in 95% of their sample of 58 events
under study. It should be noted that these refer to the large amplitude standing kink
oscillations.

Recently various harmonics of the kink waves have been observed. The period
ratio P1/(2P2) in a uniform loop is unity, as it is for waves on a uniform string.
However, in a non-uniform loop, the period ratio departs from unity; this provides a
potentially useful diagnostic tool for the analysis of the extent of longitudinal struc-
turing in coronal loops where multiple harmonics have been detected (Verwichte
et al., 2004; Van Doorsselaere et al., 2007; De Moortel & Brady, 2007; Pascoe et al.,
2016a; Duckenfield et al., 2018). The third harmonic of the decaying kink oscilla-
tions was detected by studying the distribution of spectral power of the oscillatory
transverse displacements throughout the loop. The presence of two harmonics, a
fundamental(P1 ∼8 min) and the third harmonic( P3 ∼2.6 min). The node of the third
harmonic was reported to be found at approximately a third of the way along the
length of the loop (see Figure 1.21), and cross-correlations between the oscillatory
motion on opposing sides of the node showed a change in phase behaviour.
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Fig. 1.22 AIA/SDO obervations of decayless standing kink waves. Time-distance
maps of the oscillating loops found in the analysed active regions. Image courtesy
(Anfinogentov et al., 2015).

1.7.2 Decayless standing kink waves

A new kink wave mode was recently discovered using the AIA/SDO. These wave
modes are called the decayless standing kink oscillations. Unlike the damped
standing kink oscillations these transverse oscillations are not associated with any
external phenomena. These wave modes have significantly lower amplitudes (< 1
Mm) than the decaying oscillations (Anfinogentov et al., 2013; Nisticò et al., 2013).
A statistical study of these waves was performed by Anfinogentov et al. (2015),
revealing the nature of these waves. There have been some numerical studies to
reproduce such decayless oscillations in the form of footpoint driven standing waves
in coronal loops. A set of observations from the AIA/SDO images are shown in
Figure 1.22.

The interpretation of these waves has changed over years. Some of such inter-
pretations are a.) self-oscillatory process due to the interaction of the loops with
quasi-steady flows (Nakariakov et al., 2016a), b.) continuously driven kink waves
with a footpoint driver (Afanasyev et al., 2019; Karampelas et al., 2019) or as a
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line of sight (LOS) effect from the development of the Kelvin-Helmholtz instability
(KHI) in impulsive standing loop oscillations (Antolin et al., 2016).

1.7.3 Propagating kink waves

In contrast to the standing waves, there has been fewer observational studies on
propagating kink waves. Nonetheless, there have been some observations which
seem to have a natural interpretation in terms of propagating kink waves. These
were only identified a decade ago (e.g. Okamoto et al., 2007; Tomczyk et al., 2007;
McIntosh et al., 2011a; Thurgood et al., 2014; Morton et al., 2015) and they are
found to be ubiquitous throughout the corona (see Figure 1.23). The excitation
mechanism(s) of the propagating kink waves are still not evident. It is believed
that horizontal motions of magnetic elements in the photosphere are a key driver
of relatively high-frequency ( f > 1 mHz) Alfvénic modes (e.g. Cranmer & Van
Ballegooijen, 2005; Van Ballegooijen et al., 2011), although CoMP observations
(see Section 2.2.1) (Tomczyk et al., 2007; Morton et al., 2016; Morton et al., 2019)
suggest that the observed Alfvénic waves are, at least partially, excited by p-modes
(Cally, 2017).

The role of resonant damping of propagating transverse waves is substantiated in
3D, full MHD numerical simulations (e.g. Pascoe et al., 2010, 2012; Magyar & Van
Doorsselaere, 2016; Pagano & De Moortel, 2017, 2019). A schematic representation
of the phenomenon of resonant absorption in numerical simulations is shown in
Figure 1.20. The analytic treatment of damping of propagating kink waves along the
magnetic flux tubes is attributed to the work done by Terradas et al. (2010). Several
equations from this analytical treatment are used in this thesis, and are detailed below.
Tomczyk & McIntosh (2009) noted that the propagating kink modes observed in
a quiescent coronal loop were damped, with Terradas et al. (2010) and Verth et al.
(2010) suggesting that resonant absorption provides a reasonable description of the
observed damping.

The assumptions of the model that is used for this thesis results in an exponen-
tially damped profile for the wave, which is assumed throughout the data analysis.
Some studies suggest a role of Gaussian damping, especially during the initial phase
(Pascoe et al., 2016b). CoMP observed waves that fall under the long-wavelength
regime (ka << 1, tube radius is much much smaller than the wavelength), implying
the damping length, LD for these waves is given by

LD = υphξ
1
f
, (1.31)

where υph is the phase speed, f is the frequency, and ξ is the equilibrium parameter
(named as it can be calculated precisely for a particular equilibrium model). The ξ
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Fig. 1.23 CoMP observations of time-averaged intensity (A), Doppler velocity (B),
line width (C), 3.5-mHz filtered Doppler velocity snapshot (E), and POS azimuth
(F), The SOHO/EIT 195 Åimage averaged over the same time as CoMP observations
(10747 Å). Dot-dashed lines representing distances of 5 and 25% of R⊙.

Fig. 1.24 Illustration of the observed semi-circular geometry of the coronal loop
system. The integrated wave paths are approximately only half the length along the
total loop system. The direction of outward and inward wave propagation is shown
by the solid and dashed lines, respectively (Verth et al., 2010).
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incorporates the physical conditions of the flux tube and can be written as

ξ = α
1
n

R
ℓ

ρi +ρe

ρi −ρe
, m > 0 (1.32)

where n is the mode number, R is loop radius, ℓ is the thickness of the density
inhomogeneity layer, ρi and ρe are internal and external densities of the magnetic
flux tube, respectively, and α is a constant whose value describes the gradient in
density across the resonant layer. The equilibrium parameter is a dimensionless
quantity, and can be written in terms of the wavelength λ ,

ξ =
LD

λ
, (1.33)

hence ξ can also be interpreted as the quality factor of the wave damping. Higher
quality factor implies a lower rate of damping. Verth et al. (2010) used the CoMP
observations of Tomczyk & McIntosh (2009) to estimate the equilibrium parameter
(see Figure 1.25). In Verth et al. (2010), the study was performed on half of a coronal
loop and assuming the kink waves at the coronal footpoint of the segment (driven
by a non-specific mechanism) have a certain power spectrum, Pout( f ), where the
subscript out refers to the fact they are outwardly propagating along this segment.
They propagate along the loop and are damped to some degree when they reach the
loop apex, at a distance L from the coronal base (considered the half-loop length).
Waves are also excited at the other footpoint, likely with a similar power spectrum,
Pin( f ), and are denoted as inwardly propagating. By the time they have reached
the apex they have already travelled a distance L, and are damped further as they
propagate down towards the first footpoint (see Figure 1.24).

Assuming exponential damping, average power spectra of the outward and inward
waves along the half-loop segment of interest can be calculated, and the ratio of the
two integrated power spectra is found to be

⟨P( f )⟩ratio =
Pout( f )
Pin( f )

exp
(

2L
υphξ

f
)
. (1.34)

The fit of the equation as obtained by Verth et al. (2010) is shown in Figure 1.26.
This expression provides the underlying model for further analysis of propagating

kink waves. Utilizing data from CoMP enables us to provide estimates for: the values
of the inward and outward power spectra as a function of frequency, the half-loop
length and the propagation speed of the waves. This, in combination with Equa-
tion (1.34), provides us with a means to measure the quality factor (ξ ) if ⟨P( f )⟩ratio

is known. Despite their ubiquity, there have been relatively few observational studies
of the propagating kink waves. The focus of this thesis is these propagating kink
waves and the statistical properties of these waves to advance our understanding
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Fig. 1.25 (A) CoMP space-time diagram for a sample wave path, (B) the k−ω

diagram for that space-time diagram, and (C) the averaged k−ω diagram for the
region around the sample wave path.

of these ubiquitous propagating kink waves, utilising the CoMP observations of
the Doppler velocity images of the solar corona in the near infrared part of the
electromagnetic spectrum. Chapter 3 discusses the role of power ratio in studying
the damping of the propagating kink waves. It also demonstrates that the analysis of
power spectra and their ratio requires the use of Maximum Likelihood Estimation
(MLE) techniques in order to provide accurate parameter estimates and uncertainties.
In Chapter 4 a statistical study of coronal loops observed in CoMP is undertaken to
examine the typical properties of damped propagating kink waves. The results are
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Fig. 1.26 Power ratio against frequency, showing the frequency-dependent damping.
Solid line shows the best fit using Equation 1.34 with CoMP data (using lease-
squares-estimate). The 95 % confidence intervals for the simultaneous functional
bounds are shown by the dashed lines.

then compared to the statistical properties of the damped standing kink waves. For

a recent review on the study on the waves in the solar corona, see (Roberts, 2019;
Van Doorsselaere et al., 2020). This chapter tried to introduce the Sun and solar
physics, for further details on the structure and fundamental features of the Sun, see,
Priest (1984); Aschwanden (2004); Priest (2014) (Stix, 2004; Aschwanden, 2019).

1.7.4 Damping mechanisms of MHD waves

To understand the energy content carried by waves it is important to understand
the damping mechanism of these waves. Study by Montes-Solís & Arregui (2017)
explores the various damping mechanisms and the significance of these mechanisms
in the coronal oscillations. The various damping mechanisms that try to explain
damping of the MHD waves are:

Resonant absorption in the Alfvén continuum

The mechanism of resonant absorption consists of an energy transfer between the
global kink mode of a magnetic flux tube to the Alfvén mode at the tube boundary
(Hollweg, 1984). This is the consequence of transverse variation of Alfvén speed
within a layer that separates the flux tube and the background plasma. Resonant
absorption has been studied extensively (Goossens et al., 2002; Ruderman & Roberts,
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2002) and studies have shown that this mechanism is able to explain the time and
spatial damping scales in the observations.

The model setup focuses on the fundamental kink mode (m = 0) of a cylindrical
density tube of length L and radius R with a uniform magnetic field along the axis of
the tube and a non-uniform variation of the cross-field density length-scale l. The
thin tube (L ≫ R) and thin boundary (l/R ≪ 1) assumptions are considered giving
rise to the equilibrium parameter as in Equation 1.32.

Equilibrium parameter in the case of resonant absorption is a function of ρi/ρe

and l/R. Goossens et al. (2002) showed that the mechanism is able to explain
observed damping timescales for values of l/R in between 0.1 and 0.5, for a a typical
density contrast of ρi/ρe = 10. Considering the typical values for density contrast
(ρi/ρe ∈ (1,10]) and l/R ∈ (0,2], the equilibrium parameter predicted by theory lie
in a wide range τd/P ∼ (0.5–104). This mechanism is assumed with the implicit
underlying assumptions for the studies carried out in this thesis.

Phase mixing of Alfvén waves

The fundamental idea of phase mixing is that Alfvén waves propagating along the
magnetic field through a medium with a transverse gradient of Alfvén speed become
rapidly out of phase producing increasingly shorter spatial scales at the loop/tube
boundary (Heyvaerts & Priest, 1983). This mechanism has been explored as a
possible candidate to explain the observed rapidly damping of standing kink waves
(Roberts, 2000; Ofman & Aschwanden, 2002; Nakariakov & Verwichte, 2005). The
analytic expression for the equilibrium parameter in case of phase mixing is found
to be,

ξE =
τd

P
=

(
3

π2ν

)1/3

w2/3P−1/3, (1.35)

where ν = 4×103 km2 s−1 is the coronal shear viscosity coefficient and w the
transverse inhomogeneity length scale. The equilibrium parameter is a function of the
period. Considering typical values of the period in the range of P ∈ [150,1250]s and
w ∈ [0.5,20] Mm, equilibrium parameters in the range of ξE ∼ [0.3–6] are obtained,
so this mechanism has the potential to explain the damping timescales observed in
case of the damped standing kink waves (Nechaeva et al., 2019).

Wave leakage of the principal leaky mode

The basic idea for this mechanism consists of a radiating wave, which oscillates with
the kink mode frequency and looses part of its energy to the background corona
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Fig. 1.27 Formation of KHI vortices at the loop boundary. The figures show the
cross-section at the center of the loop. The top and bottom rows correspond to the
emission line flux (at Fe IX 171.073 Å), and the flow velocity field, respectively. The
columns represent snapshots of the simulation at four different times (Antolin et al.,
2014).

(Cally, 2003). The analytical solution for the equilibrium parameter is of the form

ξE =
τd

P
=

4
π2

(
R
L

)−2

. (1.36)

In this model also the thin tube approximation is taken into consideration along
with the assumptions that ρi ≫ ρe. For the typical values of R/L ∈ [10−4,0.3], this
model predicts equilibrium parameters in the range of ξE ∼ (0.5–105).

All these theoretical models of damping have some or the other implicit assump-
tions for simplicity. One of the major concerns for these models is the fact that
these models treat all loops as having same physical features (radial density profile,
temperature, viscosity, and density contrast) which need not necessarily true.

1.7.5 Dissipation of energy at kinetic scales

Energy budget calculation from damping does not mean that this energy is available
for heating. The energy from damping needs to be dissipated. In numerical solutions
and some observational studies Klevin-Helmholz Instability (KHI) induced vortices
offer a possible way to dissipate the energy at the kinetic scales (Browning &
Priest, 1984; Ofman et al., 1994). These KHI vortices have also shown to lead to
a redistribution of the loop plasma during kink oscillations (Terradas et al., 2008;
Soler et al., 2010; Antolin et al., 2014; Karampelas & Van Doorsselaere, 2018).
A simulated loop showing the formation of these fine scale vortices at the loop
boundary are shown in Figure 1.27.
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Both the models of coronal heating require the dissipation at these kinetic scales
making KHI votices one of the most important mechanism for dissipation (Karpen
et al., 1993; Ofman et al., 1994; Antolin et al., 2014). This hydrodynamic instability
has been directly observed in the large scale magnetic structures of the Sun e.g.
coronal mass ejections (Foullon et al., 2011; Ofman & Thompson, 2011).





Chapter 2

Overview of data sources and
analysis techniques
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2.1 Introduction

The last two decades should be considered as the golden age of solar physics.
The launch of several solar missions such as Solar Dynamics Observatory (SDO,
launched 2010), Solar Terrestrial Relations Observatory (STEREO-A & B, launched
2006), Hinode (launched 2006), Interface Region Imaging Spectrograph (IRIS,
launched 2013), Deep Space Climate Observatory (DSCOVR), Parker Solar Probe
(PSP, launched 2019) and Solar Orbiter (SolO, launched 2020) and others, gives us
unprecedented temporal, spectral and spatial resolution. PSP and SolO are going
to provide us with a unique opportunity to study the Sun as never before. The
commissioning of the various ground-based observing facilities such as GREGOR
at Teide Observatory, Goode Solar Telescope (GST) at Big Bear Solar Observa-
tory, Swedish 1-m Solar Telescope (SST), Richard B. Dunn Solar Telescope (DST),
Daniel K. Inouye Solar Telescope (DKIST), GREGOR Solar Telescope, and other
high-resolution solar telescopes including European Solar Telescope (EST), and
National Large Solar Telescope (NLST, a proposed 2-metre class solar telescope)
provide us with high-resolution images from the ground, with most advanced de-
velopment in adaptive optics, optics and imaging technologies. Apart from these
large and ambitious solar missions, several balloon experiment and rocket missions
are providing us with very rich data to analyse and have a much closer look at our
nearest star. As an example of how much we have achieved in solar observations,
see Figure 2.1. DKIST is currently the largest solar telescope in the world. With
a focus on understanding the Sun’s explosive behaviour, observations of magnetic
fields are at the forefront of this innovative telescope. A combination of an off-axis
design, to reduce scattered light, and cutting edge polarimetry produces the first
ongoing measurements of the magnetic fields in the Sun’s corona. The DKIST’s
4-metre mirror provides views of the solar atmosphere as we have never seen before
(see Figure 1.5. DKIST has already created a buzz in the scientific community as
well as the general public with its first light revealing the solar photosphere and the
convective cells with an unimaginable resolution from Galilean times. These are
indeed very exciting times for a solar physicist.

Not only the various high-quality observations are taken, but they are also put
in the public domain. Several such data sources are used in the analysis presented
in successive chapters. The details of the instrumentation and data used within this
thesis, as well as discussing the details of some of the methodology employed to
analyse the data are presented in this chapter. These analysis techniques will be used
in the subsequent chapters.
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Fig. 2.1 Sunspot observations almost 400 years apart. Left: Historical observation of
sunspot. Sunspots were tracked using the same solar disk. The closeup panel shows
sunspot observations by Hevelius. Credit: Library of the Astronomical Observatory
of the Spanish Navy Right: Solar observation using SDO launched in 2010. Image
borrowed from (Muñoz-Jaramillo & Vaquero, 2019).

2.2 Data sources

2.2.1 COronal Multi-channel Polarimeter (CoMP)

The CoMP instrument (Tomczyk et al., 2008) is a ground-based telescope, situated at
Mauna Loa Solar Observatory (MLSO), on the island of Hawaii. This is operated by
the High Altitude Observatory (HAO)/ National Center for Atmospheric Research
(NCAR). CoMP is a combination tunable filter and polarimeter. It is comprised of a)
an occulting disk, to block the light from the solar disk; b) collimator lens for the solar
image; c) a filter wheel holding three order-blocking filters corresponding to each of
the three observable emission-line regions; d) the package of polarimeter/tunable
filter; e) a re-imaging lens to generate the final solar image, and f) 1024 x 1024
pixel HgCdTe infrared detector array. CoMP equips us with the possibility to learn
more about the magnetic field, plasma density and motions of the plasma in the solar
corona. The measured polarization state is parameterized by a Stokes vector [I, Q, U,
V], where I is the intensity, Q and U describe net linear polarization states, and V
describes the net circular polarization. CoMP instrument summary:

• 1.3 Å filter bandpass.
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• Fe XIII coronal emission line at 10747 Å and 10798 Å and also 1083.0 Å HeI
chromospheric line.

• Field-of-view (FOV) 1.03 to 1.5 R⊙.

• Platescale of 4.5 ′′ per pixel.

• Temporal resolution 30 sec.

The CoMP polarimeter is formed by a pair of Liquid Crystal Variable Retarders
(LCVRs) followed by a linear polarizer that allows the selection of a polarization
state parameterized by a Stokes vector [I, Q, U, V], where I is the intensity, Q and U
describe net linear polarization states and V describes the net circular polarization.
The CoMP polarimeter selects a Stokes state I±S where S is Q, U, or V. The CoMP
filter is a four-stage, wide-field calcite birefringent filter with a bandwidth of 0.13 nm.
It is tuned in wavelength by four additional LCVRs. The final element of the filter
is a Wollaston prism, which splits the beam into the emission line and continuum
band-passes. The line and continuum image pair are focused simultaneously onto
the detector along the diagonal with a full field of view of 2.8 solar radii (R⊙).
The exposure time for the images is 250 ms and the image groups have a temporal
cadence of 29 seconds. Once the images are taken, it needs to be reduced to be able
to use for analysis. To reduce the images, the following steps are performed

• subtract a dark image;

• divide by an image taken with a calibrated diffuser in front of the objective
lens to remove pixel-to-pixel detector gain variations;

• normalize the relative transmission of the filter bandpasses and normalize the
intensity into units of the solar disk central intensity;

• determine the location of the images on the detector, translate to a common
centre, and rotate to orient solar north up;

• subtract the continuum emission from the line emission;

• combine the images to produce Stokes I, Q, U and V images at each wave-
length.

These steps result in images of the corona in the four Stokes parameters. The
three-point data at, I1, I2 and I3 are measured intensities at known wavelength
(spectra positions), in this case the three wavelengths (10745.0 Å- I1, 10746.2 Å-
I2 and 10747.4 Å- I3) centered around 10747 Å(the Fe XIII emission line). These
wavelengths have a peak formation temperature ∼ 1.6 MK. For each pixel in the
CoMP FOV in each time frame the central intensity, Doppler shift and Doppler width
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of the line profile is calculated using an analytic fit of a Gaussian to the intensity
values at each wavelength position (Tian et al., 2013; Morton et al., 2016). The
equations for these quantities are as follows:

v =
w2

4d
(a−b), (2.1)

w =

√
−2d2

a+b
, (2.2)

i = I2 exp
ν2

w2 , (2.3)

where v is the Doppler velocity, w is the Doppler width (Doppler width is defined
as

√
2σ , with sigma the standard deviation of the Gaussian) and i is the line centre

intensity and d is the spectral step size. The a and b are functions of I1, I2 and I3.

a = ln
I3

I2
,b = ln

I1

I2
(2.4)

Once the line parameters are derived for each intensity profile. The maps for intensity,
Doppler shift, and line width are generated for observations, to study the dynamics of
the solar corona. The effects of the rotation of the Sun are also visible in the Doppler
images. The east limb shows predominantly blue shift and the west limb shows a
redshift. To correct for this, the median value of Doppler shift at each solar-x location
is calculated to produce the East-West trend. A median filter is then applied to this
trend to eliminate possible outliers. Then a fifth-order polynomial fit is applied to the
filtered trend. The resulting smooth trend is then subtracted from the map of Doppler
shift (Tian et al., 2013).

The data is preprocessed and is available in the public domain at the MLSO.
1 The data obtained from here is processed to the level-2 (suitable for scientific
use), a sample of the available data products is shown in Figure 2.2. There are
various pre-processing steps as discussed previously in this section, involved in
getting the data to this level. All the data used for the analyses use these level-2 data
sets. Further processing steps are required to study the waves. The intensity maps
obtained from CoMP are then aligned using cross-correlation, because the images
are not always centered properly due to the motion of telescope while tracking the
Sun. As this study is about the study of waves, the aligning of the intensity image
sequence is important, misaligned images can give rise to spurious periodicities
in the observations. This was done by manually identifying a sharp contrast and
stable feature, after applying an edge enhancing filter (Sobel filter) to the images.
This feature serves as the basis for aligning successive images. The same shifts are

1https://mlso.hao.ucar.edu/mlso_data_calendar.php?calinst=comp

https://mlso.hao.ucar.edu/mlso_data_calendar.php?calinst=comp
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Fig. 2.2 Sample data products available from COMP instrument webpage. Credit:
MLSO CoMP website.

applied to the Doppler velocity cubes as well. The results of the cross-correlation
are such that the residual motions of the co-aligned cubes are less than 0.1 pixels.

2.2.2 Solar and Heliospheric Observatory

The Solar and Heliospheric Observatory (SOHO) is the only solar mission to have
seen the full magnetic cycle of the Sun (22 years). This was launched in December
1995 (Domingo et al., 1995). It continues to provide solar physicists with various
data products until today. SOHO has been the centre of several discoveries in its
lifetime so far including, but not limited to 1) first images of the convection zone of
a star, 2) measuring acceleration of slow and fast solar wind, 3) Identifying sources
of the fast solar wind, 3) discovery of coronal waves and solar tornadoes. SOHO has
also been particularly outstanding in discovering comets. SOHO comprises of 12
scientific payloads, each with a focus on different aspects of the solar observations.
The Ultra-Violet (UV) Imager, Extreme ultraviolet Imaging Telescope (EIT) is used

https://mlso.hao.ucar.edu/mlso_datasum_comp_Drup.php?2012&7&19&comp
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in the study. EIT is capable of providing full disc images at four different wavelength
bands in the extreme ultraviolet range. The wavelengths are 171, 195, 284, and 304
Å, corresponding to emission from highly ionized iron (Fe XI)/(Fe X), (Fe XII), (Fe
XV), and helium (He II), respectively. This corresponds to plasmas of temperatures
of 80000 K (corresponding to the transition region and the He II line) and 2 million
K, in the low corona and transition region. Coronal EUV images from SOHO are
used as the background images for the CoMP data during studies where there were
no SDO data available.

2.2.3 Solar Dynamics Observatory

Solar Dynamics Observatory (SDO) is a more recent space-based solar observatory,
launched by National Aeronautics and Space Administration (NASA Pesnell et al.
2012). It is a replacement for the earlier SOHO mission (2.2.2). It was launched
in 2010, with a large volume of data generated by its instruments, it has put us
in an abundance of high-resolution data to analyse. The spacecraft comprises of
three instruments: the Extreme Ultraviolet Variability Experiment (EVE Woods
et al. 2012):, the Helioseismic and Magnetic Imager (HMI Schou et al. 2012):
measuring LOS velocities, LOS and Vector magnetic field of the photosphere, and
the Atmospheric Imaging Assembly (AIA Lemen et al. 2012; an image of the Sun
in multiple wavelengths of AIA is shown in Fig 2.3 ): which is a multi-wavelength
instrument, drawing upon the legacy of SOHO (see Section 2.2.2). It captures the
full disk images of the Sun in high resolution across multiple channels with a high
temporal cadence of up to 12 sec.

2.3 Analysis techniques

After the crucial process of data acquisition in a scientific usable format, the data
can be analysed. The analysis method very much depend on the scientific question
being asked. This section focuses on the various well established and regularly used
tools in the astronomical and solar physics community such as Fourier analysis,
Maximum Likelihood Estimation (MLE) and Potential Field Source Surface (PFSS)
extrapolation. These methods are used for specific analysis done in the successive
chapters.

2.3.1 Fourier analysis

Fourier Transform

The Fourier transform is one of a class of integral transforms which converts a
function from one form to another. The Fourier transform is a reversible, linear
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Fig. 2.3 Sun in the different wavelengths of the AIA instrument on board SDO.
Image credit: NASA/SDO/GSFC

transform with several key properties, originally developed by Gauss and then later
reintroduced by Cooley & Tukey (1965). The Fourier transform of the function f (x)

is then defined as F(k),

F(k) =
∫

∞

−∞

f (x)exp(−ikx)dx,

such that the inverse Fourier transformation is given by f (x),

f (x) =
∫

∞

−∞

F(k)exp(ikx)dk,

where k = 2π

x is called the wavenumber.
The Fourier transform of a function is a complex value function.

Fourier properties

Linearity

F(k) = αG(k)+βH(k),

where
f (x) = αg(x)+βh(x).

https://www.nasa.gov/content/goddard/how-sdo-sees-the-Sun
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Translation

For a real x0, h(x) = f (x− x0), the Fourier transform is given by

H(k) = exp(−iwx0)F(k),

where, F(k) is the Fourier transform of the function f (x).

Modulation

For a real number k0,
H(k) = F(k− k0),

Scaling

For any real number a ̸= 0, h(x) = f (ax), the Fourier transform is such that,

H(w) =
1
|a|

F(w/a).

Differentiation

For the derivative of a function h(x) = dn

dxn f (x), the Fourier transform is

H(w) = (iw)nF(w).

Convolution

The convolution of two functions f (x) and g(x) is defined as,

f (x)⊛g(x)≡
∫

∞

−∞

f (x− y)g(y)dy,

The Fourier transform of the convolved function h(x) = f (x)⊛ g(x) is given by,
H(k) = F(w)G(w), or simply the product of the transformed functions.

Continuous and Discrete transformations

The equations for the Fourier transformations are so far about the continuous func-
tions in time f (t). In real world when dealing with data the time series that is
obtained is a discrete time series f (ti). The integral sign is replaced with a discrete
summation to get the Fourier transformation of discrete time series. This is called
the Discrete Fourier Transform (DFT).

Xk =
N−1

∑
j=0

f (t j)exp(−i2πνkt j∆t),
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where k identifies the complex discrete Fourier coefficient, Xk, while the index j is
the summation over the waveform spaced at a distant ∆t. The nature of the Nyquist
criterion, limits the information on frequencies up to νs/2. The smallest frequency
that can be resolved is given by, ∆ν = νs/N.

Fast Fourier Transform (FFT)

Fast Fourier transform is one of the most widely used algorithms in data analysis of
time series. It unites several seemingly different disciplines. Several fields such as
mathematics, engineering, and the physical sciences use and rely on the continuous
Fourier transform. DFT is calculated by the so-called fast Fourier transform (FFT).
The use of FFT to calculate DFT has revolutionized modern science and engineering,
as it has become a ubiquitous algorithm in digital electronics and signal processing,
thus transforming the society as well. It can decompose a signal (assumed to be
periodic) into the constituent frequencies. The FFT is a specific algorithm for
computing a DFT which uses certain symmetries in the problem to speed up the
execution time to at most (N lnN).

Nyquist Frequency

The discretisation of the continuous Fourier transform gives rise to the Nyquist
frequency. It is always assumed that the sampling is done at a constant rate νs =

1
∆t

.
νs is called the sampling frequency. The Nyquist-Shannon sampling theorem states
that the fastest real signal that can theoretically be reconstructed accurately is given
by the Nyquist (or the critical) frequency which is given by νc = νs/2. This is
the motivation behind the audio CDs being encoded at a bit rate of 44 kHz. To
accurately reproduce sounds through the range of human hearing (up to 20 kHz) a
Nyquist frequency which is slightly above 20 kHz is needed, which leads to sampling
frequency at twice the Nyquist or critical frequency (44 kHz).

Aliasing

One of the interesting (and potentially a pitfall) arises from undersampling of a
signal. If a signal is sampled at a frequency which violates the Nyquist condition
νc > νs/2. An intuitive example of this is sampling a sinusoidal signal at a sampling
frequency slightly below the actual signal frequency. If the frequencies were the
same, the sampling frequency would always pick a point of constant phase with
respect to the signal, and the result would be a constant value every time. If the
sampling frequency is slightly less than the signal by an amount ∆ν , the sample picks
a point on the signal waveform with a phase shift ∆φ = 2π∆ν∆t = 2π(νs −ν)/νs.
The resultant sampled waveform is a slowly varying function as each successive
sample picks a point shifted by ∆φ which has an apparent frequency (νs−ν) instead
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of actual frequency (ν). In the limit of ν → νs, the sampled signal does not show
any oscillation. This effect is called aliasing. It is impossible to distinguish between
an accurate measurement of a frequency and an aliased measurement of a higher
frequency below the Nyquist frequency, with any discretely sampled data.

Leakage

For a discrete set of time (discretised into N temporal points) the function f (ti) is
defined, but outside that range, no information is available about the function. A
finite sampling of a continuous function, then, looks to the FFT operation like a
continuous function multiplied by a square rectangle such that outside the sampling
window the function is zero. The fact is that all observations of a signal (time series)
are always sampled in a finite window. This introduces higher-order harmonics into
the observed sample. The observation always has some finite window applied to it
and the edges of the window are very sharp and lead to lots of higher-order frequency
terms. This general feature is called frequency leakage.

Windowing

The total amplitude of a signal remains constant, but because of frequency leakage,
this amplitude gets split amongst all of the frequency components. This results in
the apparent height of the central “spike” (in the spectrum) vary up and down as the
signal frequency moves around. The width of the spike varies similarly, making it
difficult to use the FFT to measure either amplitude or width of a signal. This results
from the implicit assumption of the DFT, namely, the signal is periodic, i.e. that the
time series of length N repeats itself infinitely in a cyclic manner gives rise to an
interesting problem when using FFT for analysis of a time-series data. If a stretch
of length N is taken out of a time series containing a sinusoidal signal at random
and an FFT is performed, the sinusoidal signal which is naively expected to result
in a sharp peak in only one frequency bin instead shows as a distribution of various
periodicities. If the frequency of the sinusoidal input signal is not an exact multiple
of the frequency resolution fres, i.e. does not fall in the exact centre of a frequency
bin, this assumption is not true, and the DFT ‘sees’ a discontinuity between the last
sample and the first sample due to the cyclic continuation. That discontinuity spreads
power all across the spectrum. One solution is to convolve the time series with a
‘windowing function’ in the time domain before applying the DFT. This window
function starts near or at zero, then increases to a maximum at the centre of the
time series and decreases again. Thus the discontinuity is removed. Many window
functions have been defined and given names such as Hamming, Hanning, and
Gaussian. The selection of a window function involves some compromise between
the width of the resulting peak in the frequency domain, the amplitude accuracy and
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Fig. 2.4 An example of spectral leakage and application of windowing to find
periodicities in the signal. Top: Hamming window function. Right: Absolute value
of the DFT after windowing showcasing the advantages of using the Hamming
window. Left: Absolute value of the DFT without windowing showcasing spectral
leakage and difficulty in identifying periods that are close..

the rate of decrease of the spectral leakage into other frequency bins. The Hamming
window is probably the best general-purpose window for finding specific frequencies,
as it gives a nice sharp spike without too much leakage.
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FFT example:

To showcase the effect of spectral leakage a sample signal with the superposition of
two exponential signals with different amplitudes and frequencies is considered,

xN [k] = A1 · ejΩ1k +A2 · ejΩ2k (2.5)

where A1,A2 ∈R. In 2.4 the left panel shows the the magnitude spectrum of xN [k]

for the signal with close frequencies (Ω1 = 10.3,Ω2 = 10.9) without applying the
Hamming window (shown in top panel of 2.4), the right panel shows the magnitude
spectrum for the same function with the window applied before takingf the FFT.
Form the figures it is evident that the leakage effect limits the spectral resolution of
the DFT.

Power spectrum

The power spectrum is a plot of the power of a time series as a function of the
frequency. This is given by the absolute value of the Fourier transform (F(w)).
The power spectrum (|F(w)|2) calculated in this way as the periodogram. The
periodogram are often averaged, which, introduces changes into the statistics of the
periodogram (Appourchaux, 2003; Vaughan, 2005; Barret & Vaughan, 2012). The
measured power spectra, I( fi) at each frequency ordinate, fi; i = 0,1,2,3, ...,n, from
the DFT are distributed about the true power value, P( fi) as

I( fi) = P( fi)
χ2

2
2
. (2.6)

Here χ2
2 represents a random variable from the chi(χ)-squared distribution with two

degrees of freedom, distributed as

χ
2
2 =

1
2

exp
(
−x

2

)
. (2.7)

By averaging M periodograms that average follows a χ2
2M distribution, this needs

to be considered when trying to fit the power spectra.

2.3.2 Maximum likelihood estimation

Parameter estimation is one of the most fundamental tasks in data analysis. The data
that is obtained lacks information about the distribution and the parameters of the
distribution are also unknown. There are several methods of parameter estimation
two of the most commonly used are: least-squares estimation (LSE) and Maximum
Likelihood Estimation (MLE). The method of least squares is about estimating
parameters by minimizing the squared discrepancies between observed data, on the
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one hand, and their expected values on the other. LSE assumes that the data has
normally distributed noise, which is not true for all observations. χ2-minimisation
is a measure of the mean squared deviations between the model and the data. It is
used as a goodness of fit test. Recently there have been several studies which point
towards the large biases that occur in the standard χ2-minimisation (Mighell, 1999;
Bergmann & Riisager, 2002; Fowler, 2014) in case of LSE. LSE is equal to the
MLE parameter estimates if the data to be fitted is normally distributed. MLE was
developed by R.A.Fisher in the early 1900s. Once there is a model and the data is
collected, it is needed to validate the model. The first step is finding the best model
parameters, given the data. The second step is evaluating the goodness of fit. To
quote Fisher; ‘the desired probability distribution is the one that makes the observed
data “most likely,” which means that one must seek the value of the parameter vector
that maximizes the likelihood function L(w|y)’. MLE has several useful advantages
over LSE in the estimation, namely

• Sufficiency: It provides complete information about the parameter of interest
contained in its MLE estimator.

• Consistency: A true parameter value that generated the data is recovered
asymptotically, for data of sufficiently large samples.

• Efficiency: The lowest-possible variance of parameter estimates is achieved
asymptotically.

• Parameterization invariance: Same MLE solution is obtained irrespective of
the parametrization used.

The basic steps of MLE can be described as follows (Myung, 2003):

• Model specification: Obtain the probability density function.

• Find the likelihood function, which represents the likelihood of the parameter
given the observed data.

• Solve the likelihood equation to find local maxima.

• The parameters that lie in the local maxima are the MLE fit parameters.

These steps are illustrated using an example where the parameters for a normal
distribution are estimated using an MLE approach.

Model Specification

Let us assume there is some data and the problem is to find the mean and standard
deviation of the data. The data is believed to be normally distributed about its
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true value. Hence, the normal distribution N(µ,σ) is chosen as the model. The
probability density function for the normal distribution is given by,

Pr(x|θ) = 1
σ
√

2π
e−

(x−µ)2

2σ2 . (2.8)

Here, θ is a vector with two values, the first is the mean (µ) parameter (θ0). The
second is the variance (σ2) parameter (θ1). The probability of drawing value xi from
the distribution f (x|θ) is f (xi|θ).

Likelihood function

The N samples are drawn from this distribution which are N independent and identi-
cally distributed (i.i.d), thus the likelihood function can be written as the product of
individual likelihoods. The likelihood function of these N draws (x1,x2, ...xN) from
a model or distribution f (x|θ) as L .

L (x1,x2, ...xN |θ)≡
N

∏
i=1

f (xi|θ), (2.9)

which in this case becomes,

L (x1,x2, ...xN |θ) =
N

∏
i=1

1√
2πθ1

exp−(xi −θ0)
2

2θ1
. (2.10)

Numerically it is sometimes difficult to maximise a product of small numbers, it
is recommended to use the log of the likelihood function (log-likelihood function)
ln(L ).

ln
(
L (x1,x2, ...xN |θ)

)
≡

N

∑
i=1

ln
(

f (xi|θ)
)
, (2.11)

following which the log likelihood for the normal distribution N(µ,σ) becomes,

ln
(
L (x1,x2, ...xN |θ)

)
=

N

∑
i=1

ln
(

1√
2πθ1

exp−(xi −θ0)
2

2θ1

)
=

N

∑
i=1

[
− ln

√
2πθ1 −

1
2θ1

(xi −θ0)
2
]
.(2.12)

Likelihood equation to find maxima

The maximum likelihood estimate θ̂MLE is the following:

θ̂MLE = θ : max
θ

lnL = max
θ

N

∑
i=1

ln
(

f (xi|θ)
)
. (2.13)

This equation can be solved using partial derivative with respect to parameters θ0

and θ1, setting both the equations to 0 and solve for the values of θ .
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∂ lnL (x|θ)
∂θi

= 0. (2.14)

This equation represents a necessary condition for the existence of an MLE estimate.
For the existence of maxima another condition needs to be satisfied.

∂ 2lnL (x|θ)
∂ 2θi

< 0, (2.15)

in computation this is computed using a Hessian Matrix (H ).

H (x|θ) = ∂ 2lnL (x|θ)
∂ 2θi

(2.16)

The expected value of Hessian (H ) defines the Fisher Information Matrix (F ).
The associated confidence intervals on the model parameters can be estimated by
using the Fi j.

Fi j =

〈
−∂ 2 lnL

∂θi∂θ j

〉
, (2.17)

where θ represents the model parameters (Pawitan, 2001; Bevington & Robinson,
2003). The Fisher matrix is a N ×N matrix for N model parameters. The variance-
covariance matrix is calculated using the inverse of the Fisher Information Matrix.
Cramer-Rao Theorem, shows that the variation of any unbiased estimator of a
parameter θ must be at least as large as the inverse of the expectation value of the
Hessian Matrix.

var(θ)≥−⟨H (θ)⟩−1, (2.18)

which means that any unbiased estimator that achieves this lower bound is efficient
and no better-unbiased estimator is possible. The variance-covariance matrix by
definition meets the criteria of the Cramer-Rao theorem. Thus, proving MLE to be
efficient.

The curvature of the likelihood function indicates the level of certainty about the
estimates of the parameters. The more curved the likelihood function is the more
certain about the estimation of the parameter. The second derivative of the likelihood
function is a measure of the curvature. Intuitively this shows that the standard errors
are linked to the curvature of the likelihood function. The diagonal elements of the
variance-covariance matrix give the standard error squared on each model parameter,
σ2. The off-diagonal matrix elements provide the covariances between parameters.
The Fisher Matrix only gives reliable uncertainties when the likelihood surface can
be approximated by a multi-dimensional Gaussian. When linkelihood function is
evaluated for each point in the parameter space, a likelihood surface is obtained. The
confidence limits on the MLEs can also be calculated from ∆S = S(θ)− S(θ̂) in
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the same manner ∆χ2 method, where S ≡−2lnL (Bevington & Robinson, 2003).
∆S = 1 corresponds to the 68.3 % confidence limits on one parameter (Vaughan,
2005; Barret & Vaughan, 2012, see discussion). The Fisher matrix method is fast
but is reliable only when the likelihood surface is Gaussian; the ∆S method is slower
but gives reasonable confidence intervals even for non-Gaussian likelihoods and can
even be used to search for local minima. The standard methods of calculating the
confidence intervals can be used after the Fisher matrix has been calculated, such as;
Wilks confidence intervals (Bevington & Robinson, 2003) or point-wise Wald 95%
confidence intervals (Bevington & Robinson, 2003) for the model.

Finding parameters

The parameters after the maximising the log-likelihood functions for this example
are

µ̂ =
1
N

N

∑
i=1

xi,

and,

σ̂2 =
1
N

N

∑
i=1

(xi − µ̂)2.

This is the expected value of mean and variance of a normal distribution. In
practice, however, it is usually not possible to obtain an analytic form solution for the
MLE estimate, especially when the model has multiple parameters and/or if the PDF
is highly nonlinear. In such situations, the MLE estimate must be sought numerically
using non-linear optimization algorithms. The basic idea of nonlinear optimization
is to quickly find optimal parameters that maximize the log-likelihood. This is
achieved by searching much smaller subsets of the multidimensional parameter
space rather than exhaustively searching the whole parameter space. Searching the
parameter space becomes increasingly computationally expensive as the number
of parameters increases. The “intelligent” search proceeds by trial and error over
the course of a series of iterative steps. Specifically, on each iteration, by taking
into account the results from the previous iteration, a new set of parameter values is
obtained by adding small changes to the previous parameters in such a way that the
new parameters are likely to lead to improved performance. Different optimization
algorithms differ in how this updating routine is conducted. The iterative process
continues until the parameters are judged to have converged on the optimal set of
parameters or an appropriately predefined criterion. The stopping criterion can be
the maximum number of iterations allowed or the minimum amount of change in
parameter values between two successive iterations.
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2.3.3 PFSS modelling

Solar observations pose a unique set of remote sensing problems as gathering the
data in-situ is not possible. The magnetic properties of coronal loops is studied by
extrapolating the magnetic field from photospheric magnetic field (magnetograms)
observations and comparing the result to loop observations. The static solution can
be obtained by balancing the forces in the coronal loops, gas pressure, gravity and
magnetic forces

∑ F⃗ =−∇P+ j⃗× B⃗+ρ g⃗ = 0 (2.19)

Additionally, the “force-free" approximation is used, where each force is assumed
to be negligible. In case of coronal loops the gravitational force and the pressure
gradient are negligible, the Lorentz force dominates over the other forces,

0 = j⃗× B⃗ (2.20)

Only two solutions to this equation are either j⃗ = 0 or j⃗ is parallel to the B⃗. In the
case of, j⃗ = 0,

∇× B⃗ = 0 , (2.21)

is obtained. This is the called the current-free solution and results in “potential
fields". The curl and divergence of which are zero. In the case of latter the currents
are aligned with the magnetic field,

∇× B⃗ = µ0 jB̂ = αBB̂ , (2.22)

∇× B⃗ = αB⃗ , (2.23)

where α is a scalar derived from Equation 2.22,

α =
jµ0

B
(2.24)

These fields can be “non-potential" and result in a twist in the field.
If α equal to zero is called the ‘potential’ case,

∇× B⃗ = 0 , (2.25)

and using vector algebra, B⃗ can be written as the gradient of some scalar potential
field,

B⃗ = ∇Ψ (2.26)
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Fig. 2.5 An example of a ‘Hairy Sun’ image is shown. An example of a spherical
PFSS extrapolation using MDI line-of-sight magnetogram as boundary layer (using
PFSS pack in SSWIDL). Closed field lines are shown in black, positive and open in
green and negative and open in magenta Image source.

One can also verify that the scalar field Ψ satisfies Laplace’s equation (take diver-
gence of both sides of Equation 2.26),

∇
2
Ψ = 0 (2.27)

A solution to Equation 2.27 in spherical coordinates is superposition of spherical
harmonic series (Riesebieter & Neubauer, 1979; Rudenko, 2001),

Ψ(r,θ ,φ) = ∑
ℓ,m

(
Am
ℓ rℓ+Bm

ℓ r−(ℓ+1)
)

Y m
ℓ (θ ,φ) , (2.28)

where r is the radius from solar center, Am
ℓ and Bm

ℓ are coefficients determining the
significance of each harmonics, and Y m

ℓ (θ ,φ) are the pure harmonic modes. The
subscripts m and ℓ define the number of sectors in the longitude (nφ = m+1) and

https://svs.gsfc.nasa.gov/4124
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latitude (nθ = ℓ+1) direction, respectively. The spherical harmonics are given by,

Y m
ℓ (θ ,φ) = C ℓ

mPℓ
m(cosθ)eimφ , (2.29)

where Pℓ
m(cosθ) are the Legendre polynomials and,

C ℓ
m = (−1)m

[
2ℓ+1

4π

(ℓ−m)!
ℓ+m)!

]1/2

(2.30)

The boundary conditions are specified such that at r = R⊙, the magnetic field is
determined by LOS magnetic field observations (HMI magnetograms) and an upper
boundary is determined by an arbitrary “source surface" where the field becomes
radial. Conventionally, this is usually 2.5R⊙. These conditions form a unique
solution for the field with these initial conditions. The coefficients can be solved by
substituting Equation 2.28 into Equation 2.26 and applying the boundary conditions;
this is called Potential Field Source SUrface (PFSS) extrapolation. An example of
a PFSS extrapolation for the whole Sun, using the SSWIDL package,2 is shown in
Figure 2.5.

2.3.4 Wave propagation angle determination

The CoMP Doppler velocity image sequences show coherent fluctuations propagating
through the corona, which are interpreted as propagating kink waves after much
debate in the community (for a discussion on interpretation see Van Doorsselaere
et al., 2008). The initial step in the investigation is to determine the direction
of the propagation of the observed waves. The coherence between the velocity
time-series of each pixel and its neighbouring pixels is calculated using a Fast
Fourier Transform (FFT, discussed in Section 2.3.1)-based method (McIntosh et al.,
2008; Tomczyk & McIntosh, 2009) and correlation maps are derived. Selecting
pixels in the neighbourhood where the coherence value is greater than 0.5 defines
a coherence island, as shown in Figure 3.3. This coherence island has a distinct
direction following the apparent trajectory of the propagating waves. The direction
of wave propagation is then taken to be aligned with the island, determined by fitting
a line that minimizes the sum of perpendicular distances from the points to the
line. This is performed for each pixel in the field-of-view enabling us to create a
wave-angle map, an example of which is displayed in the right panel of Figure 3.1.
The shown angle gives the direction of propagation measured counterclockwise from
a due East direction. Given that the kink mode propagates along the magnetic field,
this angle should also represent the magnetic field orientation in the plane-of-sky
(POS), and this method does indeed show excellent agreement with polarimetric

2From http://www.lmsal.com/~derosa/pfsspack/#usersguide.

http://www.lmsal.com/~derosa/pfsspack/#usersguide
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Fig. 2.6 (A) Coherence-island (B) Phase travel time calculation (C) Relationship
between phase travel time and the distance to the reference pixel; the phase speed
of the wave in this region is estimated from a least-squares linear fit. Image credit:
(Tomczyk et al., 2007).

measurements of the POS orientation of the magnetic field (Tomczyk & McIntosh,
2009).





Chapter 3

Damping of Propagating Kink Waves
in the Solar Corona1

1This chapter is based on Tiwari, A. K., Morton, R. J., Régnier, S., & McLaughlin, J. A. 2019,
The Astrophysical Journal, 876, 106.

http://dx.doi.org/10.3847/1538-4357/ab164b
https://ui.adsabs.harvard.edu/abs/2019ApJ...876..106T
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3.1 Introduction

Ubiquity of Magnetohydrodynamic (MHD) waves is already established in the
solar corona. MHD waves are discussed in Section 1.6.There have been numerous
observations of the different wave modes as the available instrumentation has become
significantly sophisticated over the years as discussed in Chapter 2, offering higher
spatial, spectral and temporal resolutions. To consolidate our understanding of these
waves in the Sun, several reviews are available, for exhaustive information, (e.g.
Nakariakov, 2003; Aschwanden, 2004; Nakariakov & Verwichte, 2005; Banerjee
et al., 2007; Nakariakov et al., 2016b; Wang, 2016; Roberts, 2019; Van Doorsselaere
et al., 2020).

Of all the different MHD wave modes proposed and observed, Alfvénic waves
are considered one of the most elusive and important ones. They are also one of
the promising candidates for explaining the solar coronal heating and solar wind
acceleration. The term ‘Alfvénic waves’ should not be confused with ‘Alfvén waves’.
The former refers to MHD wave modes that share properties similar to the idealized
Alfvén wave in a homogeneous plasma (the latter), namely a.) they are transverse,b.)

highly incompressible, and c.) dominant restoring force is the magnetic tension
(Goossens et al., 2009). The standing kink (transverse) waves were the first to be
observed by the Transition Region And Coronal Explorer (TRACE Strong et al.
1994; Handy et al. 1999a). This observation was very exciting for solar observations
as one could see the coronal loops, establishing the presence of standing kink waves
and leading to the development of the field of coronal magneto-seismology. Since
the TRACE observations there has been a constant coverage of the solar disc and
corona and a number of similar events have been reported using the AIA/SDO. One
of the prominent excitation mechanisms of these waves is understood to be low
coronal eruptions (Zimovets & Nakariakov, 2015). The standing kink waves are
rapidly damped, with periods of ≈ 4 minutes and damping times of ≈ 14 minutes
(e.g. Aschwanden et al., 2002; Verwichte et al., 2013b; Goddard et al., 2016). There
is an increasing body of evidence suggesting the damping mechanism of these waves
to be mode coupling via resonant absorption. Resonant absorption is present in
inhomogeneous plasmas, converting the energy in transverse motions to azimuthal
motion via resonant coupling (e.g. Ruderman & Roberts, 2002; Goossens et al., 2002;
Aschwanden et al., 2003). The propagating kink waves are fairly recent observations
with not enough studies to understand the nature of these waves. The observations
so far have already established the prevalence of these waves in the corona. The
excitation mechanism(s) of the propagating kink waves are still not resolved with
some studies suggesting the role of horizontal motions of magnetic elements in
the photosphere (e.g. Cranmer & Van Ballegooijen, 2005; Van Ballegooijen et al.,
2011; Pascoe et al., 2015; Jafarzadeh et al., 2017; Matsumoto & Shibata, 2010),
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and others suggesting the role of p-modes (Tomczyk et al., 2007; Morton et al.,
2016; Cally, 2017; Morton et al., 2019). Moreover, the origin of the low-frequency
velocity fluctuations is still unclear. It was suggested by (Cranmer, 2018) that
reconnection resulting from the evolution of the magnetic carpet may excite waves
at such frequencies.

Tomczyk et al. (2007); McIntosh et al. (2011a); Tomczyk & McIntosh (2009);
Thurgood et al. (2014); Morton et al. (2015) noted that the propagating kink modes
observed in a quiet-sun coronal loop were damped, with Terradas et al. (2010)
and Verth et al. (2010) suggesting that resonant absorption provides a reasonable
description of the observed damping. The role of resonant damping of propagating
transverse waves is substantiated in 3D, full MHD numerical simulations (e.g. Pascoe
et al., 2010, 2012; Magyar & Van Doorsselaere, 2016; Pagano & De Moortel, 2017,
2019). The analytical framework of the resonant absorption is provided by (Terradas
et al., 2010), which was used in the study by Verth et al. (2010).

The expression in Equation 1.34 provides the underlying model for further
analysis of propagating kink waves. Utilizing data from CoMP enables us to provide
estimates for: the values of the inward and outward power spectra as a function of
frequency, the half-loop length and the propagation speed of the waves. This, in
combination with Equation (1.34), provides us with a means to measure the quality
factor (ξ ) if ⟨P( f )⟩ratio is known.

To accurately measure the quality factor, the model in Equation (1.34) is fitted
to the power ratio as a function of frequency, as undertaken in Verth et al. (2010).
Verth et al. (2010) used the least-squares method to achieve this, which assumes
that the individual ordinates of the power spectra ratio are normally distributed
about their true value, which is shown to not be the case in Section 3.3.4. The
statistics of the power spectrum obtained via the discrete Fourier transform (DFT) is
well-studied ( e.g. Jenkins & Watts, 1969; Groth, 1975; Geweke & Porter-Hudak,
1983; Appourchaux, 2003; Vaughan, 2005); where the ordinates are known to be
distributed about the true values as χ2 with ν degrees of freedom (ν depends on the
number of power spectra averaged). Hence, it should not be expected that ordinates
from the ratio of two power spectra are normally distributed. In this study the
appropriate distribution for the ratio of two χ2

ν distributed power spectra is derived,
demonstrating that the assumption of normality, and therefore the utilization of the
least-squares method, is inappropriate.

The chapter is structured as follows: Section 3.2 discusses details of the data
used. The method of analysis is described in Section 3.3, where a discussion on the
statistics of a power spectrum obtained from DFT and derive the applicable likelihood
function required for the maximum likelihood estimation of model parameters
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from the measured power ratio of damped propagating kink waves is provided. In
Section 3.4, a discussion of the main findings are presented and a conclusion is given
in Section 3.5. A modified model for future analysis of damping is also derived in
Section 3.6.

3.2 Observation

The data were obtained using the Coronal Multi-channel Polarimeter (CoMP, dis-
cussed in Subsection 2.2.1) (Tomczyk et al., 2007, 2008). CoMP is a combination
polarimeter and narrow-band tunable filter that can measure the complete polariza-
tion state in the vicinity of the 10747 Å and 10798 Å Fe XIII coronal emission lines.
The data were taken on 30 October 2005, with a temporal cadence of 29s, and a pixel
size of 4.5 arcsec/pixel. The spectroscopic data from the 10747 Å Fe XIII line, is
chosen for this study. The same dataset has been previously used by Tomczyk et al.
(2007) and Verth et al. (2010). The data set consists of Doppler velocity images of
the corona between 1.05 R⊙ and 1.35 R⊙. An example image is shown in the centre
panel of Figure 3.1. The study focuses on the same region studied previously in
Tomczyk & McIntosh (2009) and Verth et al. (2010). These are quiescent off-limb
coronal loops. To provide context images and magnetic field measurements, data
from the Solar and Heliospheric Observatory (SOHO) (St. Cyr et al., 1995) is also
utilized. Data from the Extreme Imaging Telescope (EIT) (Delaboudinière et al.,
1995) provides a context to the loops observed using CoMP. The background image
in the left panel of Figure 3.1 is obtained from EIT 195 Å passband. Line-of-sight
(LOS) magnetograms from the Michelson Doppler Imager (MDI) instrument (Scher-
rer et al., 1995) provide information on the photospheric magnetic field for potential
field extrapolations.

3.3 Analysis

3.3.1 Extrapolation of the loops

The extrapolation of loops were performed using the PFSS extrapolation method, as
discussed in Subsection 2.3.3. It is important to understand the orientation of the
loops before further analysis. To provide some insight, the potential field source
surface (PFSS - Schrijver & DeRosa, 2003) extrapolation package available in
SolarSoft (Freeland & Handy, 1998) is used to indicate the local magnetic field
structure in the corona (Figure 3.1: left). To determine the validity of the obtained
field extrapolations, several attempts to generate extrapolations in the neighbourhood
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Fig. 3.2 PFSS extrapolated magnetic field lines following the coronal loops under
investigation, tracked later using wave angles. The field lines are projected on the
photospheric magnetogram (edge-on view).

of the footpoints are undertaken. The footpoints are chosen manually based on the
location of the coronal loop bundles as seen in the Doppler velocity images obtained
from CoMP. Repeating this process of tracing loops in the region of interest for the
loops we are satisfied that these are the the best extrapolated loops. It is found that
the given PFSS loops are indeed unique solutions for the extrapolations. Further
extrapolations were undertaken to examine the solution for constant latitudinal points
to ascertain that the loops obtained from the initial extrapolations are the most
suitable representation for the observed CoMP loops. The extrapolated field lines
obtained after these initial checks are shown (Figure 3.1: left) and visually represent
the coronal structures well. There is also close agreement with the direction of
wave propagation determined from CoMP, which is believed to follow the magnetic
field lines (Figure 3.1 centre and right panels, see Section 3.3.2 for further details).
The projection of the field lines onto the photospheric magnetogram is shown in
Figure 3.2.

3.3.2 Wave propagation angle determination

The CoMP Doppler velocity image sequences show coherent fluctuations propa-
gating through the corona, which are interpreted as propagating kink waves after
much debate in the community (Van Doorsselaere et al., 2008, for a discussion on
interpretation.). The initial step in the investigation is to determine the direction of
the propagation of the observed waves. The coherence between the velocity time-
series of each pixel and its neighbouring pixels is calculated using a Fast Fourier
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Fig. 3.3 (A) Coherence-island (B) Phase travel time calculation (C) Relationship
between phase travel time and the distance to the reference pixel; the phase speed
of the wave in this region is estimated from a least-squares linear fit. Image credit:
(Tomczyk et al., 2007).

Transform (FFT, discussed in Section 2.3.1)-based method (McIntosh et al., 2008;
Tomczyk & McIntosh, 2009) and correlation maps are derived. Selecting pixels in
the neighbourhood where the coherence value is greater than 0.5 defines a coher-
ence island, as shown in Figure 3.3. This coherence island has a distinct direction
following the apparent trajectory of the propagating waves. The direction of wave
propagation is then taken to be aligned with the island, determined by fitting a line
that minimizes the sum of perpendicular distances from the points to the line. This
is performed for each pixel in the field-of-view enabling us to create a wave-angle
map, an example of which is displayed in the right panel of Figure 3.1. The shown
angle gives the direction of propagation measured counterclockwise from a due East
direction. Given that the kink mode propagates along the magnetic field, this angle
should also represent the magnetic field orientation in the plane-of-sky (POS), and
this method does indeed show excellent agreement with polarimetric measurements
of the POS orientation of the magnetic field (Tomczyk & McIntosh, 2009).

3.3.3 Determining Wave Power

Calculating wave angle propagation at each pixel in the method described in Sec-
tion 3.3.2. The image thus generated is called a wave-angle map. The wave-angle
map is then used to determine the path of the wave propagation through the corona,
enabling the kink wave packets to be followed and to determine how they evolve as
they propagate. Five different wave paths with increasing lengths (centre panel of
Figure 3.1) were identified for the study. The selected paths are assumed to follow
the quiescent coronal loops and, to satisfy the restrictions of Eq. 1.34 assumed to rep-
resent half the total loop length (this assumption is discussed further in Section 3.4).
The velocity signal along the wave paths is extracted to create time-distance maps,
where cubic interpolation is used to map the velocities from the selected wave paths
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onto (x, t) space2 For each wave path is shown in Figure 3.1, five wave paths on
either side of the original wave path are also extracted. Each additional path is
calculated using the normal vector to the original, and are separated by one pixel in
the perpendicular direction.

These velocity time-distance maps are composed of both the inward and outward
propagating kink waves. Taking a Fourier transform of the velocity time-distance
maps enables us to produce the k−ω spectra for velocity power, shown in Figure 3.4.
The wave power is separated for the inward and outward components of the wave
propagation, and it is evident from all k−ω spectra that the outward wave power
dominates over the inward wave power. By taking the inverse Fourier transform of
the inward and outward halves of the k−ω spectra separately (Tomczyk et al., 2007;
Tomczyk & McIntosh, 2009; Morton et al., 2015), filtered time-distance diagrams
are created. The filtered time-series are used to obtain the wave propagation speed
along the wave path for both outward and inward propagating waves. The time-series
at the centre of the wave path are cross-correlated to the neighbouring time-series
along the path. The lag of the cross-correlation is determined by fitting a parabola
to the peak of the correlation function. The propagation speed is then calculated by
fitting the slope of the observed lags as a function of the position along the wave
path.

Finally, the wave power as a function of frequency for the inward and outward
components is calculated by summing the spectra in the k-direction. For each loop,
the inward and outward spectra are averaged over the neighbouring wave paths to
suppress the variability (see Section 3.3.4). From this one dimensional averaged wave
power, the ratio of the outward and inward power, ⟨P( f )⟩ratio, is determined. For
each of the coronal loops studied, the ratio of power spectra displays an increase in
magnitude as frequency increases (Figure 3.4). It is this signature that demonstrates
the frequency dependence of the change in outward and inward power, indicating
that a frequency-dependent process is in action to attenuate the waves, e.g., resonant
absorption. These observations indicate low-frequency waves are more damped.

As discussed in the introduction, to estimate the quality factor from the obtained
power ratio, the model power ratio given by Eq. (1.34) should be fit to the data in a
robust manner. At this point the statistics of the power ratio must be discussed.

3.3.4 The Statistics of the Power Ratio

In Verth et al. (2010) the ratio of the outward and inward spectra was fitted with the
model given by Equation (1.34) using a least-squares minimization. The assump-

2IT should be noted that due to the relatively coarse spatial resolution of CoMP, and because
of the optical thin nature of coronal plasma, each wave path likely represents the integration over
multiple individual loop structures (De Moortel & Pascoe, 2012; McIntosh & De Pontieu, 2012).
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Fig. 3.4 Averaged k−ω diagrams for three selected tracks as shown in Figure 3.1(cen-
ter). Top is 100 Mm; Middle is 326 Mm; Bottom is 552.6 Mm. The left column
shows the averaged k−ω diagrams. The right column show the fitted power ratio.
The measured power ratio for three coronal loops is shown here by the blue stars,
for loops with increasing length. The results from the MLE fitting of the resonant
absorption model are over-plotted (red solid), with point-wise Wald confidence
bands shown at 95% (red dotted). As a comparison, the results of the model fit using
least-squares (black) is also shown (solid black).

tion that the power ratio values at each frequency ordinate are normally distributed
(implicit in least-squares) is not appropriate and leads to a poor estimate of model
parameters and their uncertainties. This study presents a new method for the maxi-
mum likelihood estimation of model parameters from the ratio of two power spectra
obtained via a discrete Fourier transform (DFT).
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The power spectra, I( fi) at each frequency ordinate, fi; i = 0,1,2,3, ...,n, from
the DFT are distributed about the true power value, P( fi) as

I( fi) = P( fi)
χ2

2
2
. (3.1)

Here χ2
2 represents a random variable from the chi(χ)-squared distribution with two

degrees of freedom, distributed as

χ
2
2 =

1
2

exp
(
−x

2

)
(3.2)

(see e.g., Vaughan, 2005). If the ratio of the values x and y, drawn from two
independent χ2

2 distributions X and Y is taken, the associated probability distribution
function (PDF) is Z = X/Y and the distribution of Z is then given by

ψz =
∫

∞

0
yψxy(zy,y)dy. (3.3)

Given that x and y are independent, ψxy is given by

ψxy =
1
4

exp
(
−x+ y

2

)
. (3.4)

Hence,
ψz =

1
(1+ z)2 , (3.5)

and the distribution of the ratio of any two given power spectra, z (i.e. ratio of χ2
2

distributions) is given by the log-logistic distribution (Eq. 3.5). For a non-normalized
random variable, r, one can obtain the probability distribution by change of variable,
introducing

z =
r
s

(3.6)

where s is the appropriate normalizing factor. The resulting PDF is given by

g(r) = ψ

(r
s

) dz
dr

. (3.7)

Hence,
g(r) =

1
s

1( r
s +1

)2 . (3.8)

For the power spectra ordinates, it is known that 2I/P is χ2
2 . Hence, if x = 2I1/P1

and y = 2I2/P2 then, z = I1P2/I2P1, and r = I1/I2, s = P1/P2. Thus, the PDF of the
ratio of the power spectra ordinates is calculated to be

g(Ri) =
1
Si

1(
Ri
Si
+1
)2 , (3.9)
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where Ri = I1i/I2i , is the power spectra ratio and Si = P1i/P2i is the true ratio of the
spectral power.

In this study, several power spectra are summed, which changes the distribution
by altering the number of degrees of freedom. The ratio of two χ2

ν distributed
variables can be shown to be distributed following the F-distribution, given by

F(z;ν ,ϕ) =
1

β (ν

2 ,
ϕ

2 )

(
ν

ϕ

) ν

2

z
ν

2 −1
(

1+ z
ν

ϕ

)− ν+ϕ

2

. (3.10)

where ν and ϕ are the degrees of freedom (number of parameters), and β is the beta
function. The log-logistic distribution is recovered for ν = ϕ = 2. For ν = ϕ , the
F-distribution simplifies to

F(z;ν ,ν) =
1

β (ν

2 ,
ν

2 )
z

ν

2 −1 (1+ z)−ν . (3.11)

The F-distribution is an asymmetric distribution with a minimum value 0 and no
maximum value. In Figure 3.5 the nature of the distribution for various values
of the degrees of freedom ν and ϕ is shown. There is a different F-distribution
for each combination of these two degrees of freedom. The distribution is heavily
right-skewed for smaller values of ν and ϕ , which means there are a long tail and an
increased chance of more extreme large values. As the degrees of freedom increase,
the F-distribution is more localized.

As before, substituting in the normalized variables gives

gν ,ν

(
Ri

Si

)
=

1
Si

1
β (ν

2 ,
ν

2 )

(
Ri

Si

) ν

2 −1(
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Ri

Si

)−ν

. (3.12)

Assuming a model S(θ) for the true power ratio, with unknown parameters θ , the
joint probability density of observing N periodogram ratio points Ri is given by the
likelihood function, L , where

L =
n

∏
i=1

p(Ri|Si) =
n

∏
i=1

1
Si

F
(

Ri

Si
;ν ,ν

)
. (3.13)

Maximizing the likelihood is equivalent to minimizing the negative of the log of
the likelihood function, namely

−2lnL = 2
n

∑
i=1

[
lnSi + lnβ

(
ν

2
,
ν

2

)
+

(
1− ν

2

)
ln
(
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)
+ν ln
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)]
. (3.14)
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Fig. 3.5 Probability density function for F-distribution with different degrees of
freedom for a random variable, x. In the case of ν = ϕ = 100, the density function is
log-normally distributed.

3.3.5 Maximum Likelihood Estimation

The observed power ratios shown in Figure 3.4 are then used to estimate the model
parameters for the power ratio, i.e. the power ratio scaling factor, Pout/Pin and the
factor in the exponential, 2L/vphξ given in Eq. (1.34). The minimisation is done
using the Powell minimisation method using the IDL POWELL function (e.g., Barret
& Vaughan, 2012).

The associated confidence intervals on the model parameters can be estimated by
utilizing the Fisher Matrix (F ). The components of Fi j are defined as the expected
value of the Hessian (H )

Fi j =

〈
−∂ 2 lnL

∂θi∂θ j

〉
, (3.15)

where θ represents the model parameters (Pawitan, 2001; Bevington & Robinson,
2003). The Fisher matrix is a N ×N matrix for N model parameters. The inverse of
the Fisher Matrix (Equation 2.17)gives the covariance matrix, the diagonal elements
of which give the standard error squared on each model parameter, σ2. The off-
diagonal matrix elements provide the covariances between parameters. The Fisher
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Matrix only gives reliable uncertainties when the likelihood surface can be approxi-
mated by a multi-dimensional Gaussian. The values obtained from the covariance
matrix as the estimated parameter uncertainties are given, and have been checked that
they are in close agreement with more involved methods of calculating confidence
levels, e.g., Wilks confidence intervals (Bevington & Robinson, 2003). At best, the
given uncertainties and confidence intervals should be taken as a lower limit.

The standard errors are used to calculate the point-wise Wald 95% confidence
intervals (Bevington & Robinson, 2003) for the model. The likelihood surface and
covariance matrix suggest covariance between the model parameters and this is
included in the confidence interval calculation. For the measured power ratios given
in Figure 3.4, the likelihood surfaces are close to a bivariate Gaussian, thus the
corresponding confidence bands calculated are reliable. It is noted that in the case
of the ratio of two single (i.e., non-averaged) power spectra (ν = 2), the likelihood
function is irregular and the Fisher Matrix will likely provide a poor coverage of the
confidence intervals.

3.4 Results and Discussion

3.4.1 Potential Field Extrapolation

Potential field extrapolations are undertaken with PFSS to determine the geometry
for the quiescent coronal loop system shown in Figure 3.1. In particular, the focus is
on whether the wave paths determined from following the Alfvénic fluctuations are
situated in the LOS, which has been the implicit assumption in previous analyses
(Tomczyk & McIntosh, 2009; Verth et al., 2010). This assumption has an impact on
the measured propagation speeds and lengths of loops, both of which are important
quantities for determining the equilibrium parameter ξ from the data (see Equa-
tion 1.34). The plotted magnetic field lines in Figures 3.1 and 3.2 are not supposed
to represent the specific coronal loops along which the waves propagate. However,
it is expected that the extrapolated field represents the general behaviour of the
magnetic field in the region, and as such, describe the oscillating loops. Moreover, as
mentioned earlier, the spatial resolution of CoMP essentially precludes identifying
individual coronal structures. The extrapolated field demonstrates that the loops are
approximately situated in the POS, with a maximum angle between the loops and
POS found to be 20◦ (see Figure 3.2).

The loops in EIT images are identified and using the corresponding location of
these loops in the CoMP observations the loops are extrapolated. Furthermore, it can
be inferred from the extrapolated field lines plotted in the left panel of Figure 3.1 that
the geometry of the coronal loops is not symmetric about the apexes. Given that the
model used for fitting the wave damping is derived under the assumption that both
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the outward and inward waves have propagated along half of the loop (Eq. 1.34),
this will likely affect the estimates for ξ (discussed further in Section 3.4.3). In
Section 3.6, a more general model is provided for the exponential damping that can
be fit to the data when measuring over a segment of the loop, although knowledge of
total loop length and the segment length is required, and for this data set there are
no stereoscopic data available that would help us achieve this. Moreover, it would
be risky to determine any one-to-one correspondence between the extrapolated field
lines and the wave angle guided tracks. Given that the main purpose of this work
is to present a more appropriate method for fitting the observed power ratio and
demonstrate that the least-squares method gives incorrect model parameters, such a
limitation does not invalidate this aim.

3.4.2 Wave Power Analysis

Using two-dimensional Discrete Fourier transforms, the inward and outward compo-
nents of the wave power corresponding to the Alfvénic waves propagating along five
wave paths of increasing length (wave paths are shown in Figure 3.1 centre panel) are
identified. The k−ω diagrams for three of the wave paths are displayed in Figure 3.4
(left column) and indicate the relative strength of the outward and inward propagating
Alfvénic waves in the segment of the loop under consideration. The k−ω diagrams
have the distinct ridges reported in previous observations, corresponding to the near
dispersion-less kink mode, where the negative frequencies correspond to outward
waves and positive are inward waves. Given that the spatial frequency-resolution
is lower for the shorter loops (Figure 3.4 top left) compared to the longer loops
(Figure 3.4 bottom left), the k−ω diagrams are less well resolved for the shorter
loops. Despite this, it can be noticed that as the length of the loop increases, the
relative power in the outward propagating Alfvénic waves to the inward propagating
waves increases. Assuming that the Alfvénic waves entering the corona at both
footpoints of the loops have the same power spectra, then this potentially has a trivial
explanation: For longer loops, the inward propagating waves will have travelled
further distances and they should be expected to have been damped to a greater
degree, as suggested by Eq. (1.34). Upon collapsing the spectra in the wavenumber
direction and taking the ratio of the outward to inward spectra, the plots in the right
columns of Figure 3.4 are obtained. The power ratio shows an apparent upward trend
as a function of frequency indicating wave damping, with the relative magnitudes
of the power ratio supporting the visual impression from the k−ω diagrams and
indicates greater wave damping for the longer loops. The ratio of power spectra up
to 4 mHz is shown following Verth et al. (2010). This is largely since the signal
drops below the noise level for the inward propagating waves beyond this frequency
and leads to a turnover in the power spectra.
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3.4.3 Maximum Likelihood Analysis

Using the derived likelihood function (Eq. 3.14) the power ratio model (Eq. 3.1)
is fitted to the data points shown in Figure 3.4. The maximum likelihood model
parameters are used to define the model power ratio curve (red solid line right column
of Figure 3.4), with the values in the covariance matrix enabling us to generate the
point-wise Wald confidence bands at 95% via bootstrapping. The confidence bands
demonstrate that in each case, there is a clear trend in the power ratio as a function
of frequency and supports the idea that frequency-dependent wave damping is in
action along each wave path (Verth et al., 2010).

Given that previous work has employed the least-squares method for fitting
the power ratio model, the differences between the parameter estimates from least-
squares and MLE methods are also demonstrated. In Figure 3.4 (right column) the
model curves obtained from the least-squares (black solid line) are over-plotted and
demonstrate that they underestimate the amount of damping present, i.e., correspond-
ing to flatter curves, when compared to the MLE method.

Fig. 3.6 Variation of equilibrium parameter ξ with loop length, with associated error
bars. The longer loops have higher value of ξ .

To estimate the equilibrium parameters (quality factor), ξ , for each selected wave
path, the length of the wave path used is also required which is taken to be the half-
loop length (L), and the propagation speed of the Alfvénic waves (υph). The values
are summarized in Table 3.1. The measured propagation speeds of ≈680 km s−1

are consistent with the values obtained in previous studies (Tomczyk & McIntosh,
2009; Morton et al., 2015). This value is averaged over the outward and inward
wave propagation speeds, as the potential influence on damping from flows along
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the loop is not considered in this study. The presence of flows leads to modification
of the TGV relation (Soler et al., 2011).3 Furthermore, studies of the interaction
between the flows (namely the solar wind) and Alfvén waves suggest wave action
conservation is important, which can result in dissipation-less waves undergoing
apparent damping (Jacques, 1977; Heinemann & Olbert, 1980; McKenzie, 1994; Li
& Li, 2007; Cranmer et al., 2007; Chandran et al., 2015). In the case of coronal loops
estimating flows is not a trivial endeavour; although the corona is likely to be in a
state of thermal non-equilibrium and flows are expected to be present throughout.
Several studies have tried to quantify the flow speeds, largely in active region loops,
which are typically of the order of 10-50 km s−1 (Reale, 2010). Moreover, speeds
of 74-123 km s−1 have also been found in a single event (Ofman & Wang, 2008).
These studies suggest the axial flow speed is potentially small compared to the local
Alfvén speed, and thus this should have little effect on this result. However, further
examination of flows in coronal loops is required to assess their impact.

The increase in loop length between the wave paths corresponds to loops reaching
higher altitudes in the corona. In Figure 3.6, the measured values of ξ as a function
of loop length are demonstrated, and the observations suggest that for the longer
loops that reach higher up in the corona, the quality factors increases and, hence, the
damping length increases, suggesting the Alfvénic waves are subject to a reduced
rate of damping. This is in contrast to the k−ω diagrams and power ratios, which
show a greater difference between the outward and inward wave power. This is
naturally explained by the fact that the inward waves have propagated further along
the longer loops and have been damped to a greater degree than those in the shorter
loops, despite the apparent reduced rate of damping in the longer loops. This result
is present in both the MLE and least-squares fitting, however, the least-squares
approach tends to overestimate the fitted values of power ratio and equilibrium
parameter.

Given the aforementioned problems with this data set, related to identifying
whether the selected wave paths are truly half the loop length, it is important to be
cautious in the interpretation of this variation in quality factor with loop length. A
physical explanation for the decrease in damping rate can be made in terms of the
density ratio between the internal and external plasmas. If it is assumed that the
coronal loops are subject to similar rates of heating, and the rate of chromospheric
evaporation is similar, then the average density of the longer loops is likely to be less
than those of shorter loops. Hence, compared to the ambient plasma the density ratio
(ρi/ρe) for longer loops is, on average, less than for the shorter loops. Eq. (1.32)

3It should be noted that any density stratification along the loop will not impact upon the measured
power ratio, has any effect on the average amplitude will be the same for both outward and inward
waves.
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then implies the equilibrium parameter will increase as the density ratio decreases
and matches the observed behaviour.

Moreover, the fact that potentially the wave path along half a loop is not measured
will change the model that should be fit to the power ratio (Eq. 3.18) and alter the
measured values of the parameters. Considering the magnetic field extrapolation,
there is the possibility that a loop segment measured is less than half the loop length.
In such a scenario, the average power over this shorter segment, compared to a half
loop segment, will be greater for outward waves (as the wave amplitudes averaged
over have been damped less over this distance) and less for the inward waves (as
the wave amplitudes averaged over will have been subject to greater damping).
Hence, the power ratio will be artificially enhanced, giving the appearance of greater
damping. This would lead to an underestimation of ξ compared to its true value.
Hence, the observed effect of increasing ξ with height would be more pronounced.

Finally, it is also worth commenting on the measured value of the factor Pout/Pin,
which represents the power of the waves input into the corona at each footpoint
of the loop, called the ‘footpoint power ratio’. The input power ratio at footpoint,
obtained is almost equal to unity in the case of least-squares estimation, consistent
to the previous study of Verth et al. (2010) and was interpreted as the wave power
being generated was the same at both the footpoints. In the case of MLE estimation,
it is obtained that the footpoint power ratio is less than unity, implying that the wave
power generated at the footpoint associated with inward waves is larger than the
other. The current level of uncertainties associated with the measurements does
not permit us to rule out that the input power is equal at both footpoints. However,
it would not be surprising if the magnitude of the wave power is different at both
footpoints, given the physical conditions at the wave source region are likely to be
dissimilar.

3.5 Conclusion

In this study, the methodology for investigating the damping of propagating Alfvénic
waves from spectroscopic data is advanced further. The main goal was to provide an
improved and more robust method for fitting the ratio of two power spectra, taking
into account the statistical properties of the expected distributions of the power
ratio for each frequency ordinate. Upon application to a previously studied CoMP
data set, the previous conclusions are confirmed, namely, that the Alfvénic waves
are subject to damping, with resonant absorption suspected as the main damping
mechanism. However, it is also found that the previously used methodology for
fitting the power ratio, i.e., least-squares, has the potential to provide bias estimates
of the model parameters, namely the quality factors, ξ , and footpoint power ratio
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Fig. 3.7 Simple illustration of the observed semi-circular geometry of the coronal
loop system. The direction of outward and inward wave propagation is shown by the
arrows.

Pout/Pin. Importantly, the least-squares fit likely overestimates ξ , leading to an
underestimation of the strength of the wave damping. An accurate estimate of the
quality factor is key in quantifying the rate of energy transfer and the amount of
wave energy that might be contributing to plasma heating.

Despite issues with determining the true geometry of loops in this study, by
looking at different wave paths in the data this study can find the first potential
piece of evidence that the damping length increases as the loop length of loops
that reach higher up in the corona increases. The result appears consistent with the
result obtained in the case of damped, standing kink waves, where the damping time
increases as the loop length increases (Verwichte et al., 2013b). While it is unclear
what may be the underlying cause of this, it could potentially be explained by a
decreasing average density ratio between the loop and ambient plasma as loop length
increases.

Given the ubiquity of propagating kink waves in the corona has been established,
there is a clear need to accurately estimate the damping of propagating kink waves
to understand the transfer of energy and the contribution of Alfvénic wave energy
towards plasma heating. The results presented here highlight the need to further
investigate the damping of coronal kink waves and provide a robust methodology to
achieve this. Future studies should aim to overcome some of the shortfalls associated
with the current work.

3.6 A Modified Model

A modified model for the power ratio is presented taking into account the fact that
it might not always be possible to observe full loops that are oriented in the plane-
of-sky. A schematic of physical situation is shown in Figure 3.7, where one is only
able to measure wave behavior in the shaded section of the loop, from the footpoint,
s = 0, to s = a. The average power over the segment associated with the outward
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propagating waves is given by

⟨P( f )⟩out =
1
a

∫ a

0
Pout( f )exp

(
− 2 f

υphξE
s
)

ds. (3.16)

Similarly the average power associated with the inward propagating waves is
given by,

⟨P( f )⟩in =
1
a

∫ 2L

2L−a
Pin( f )exp

(
− 2 f

υphξE
s
)

ds. (3.17)

The ratio for the power ratio ⟨P( f )⟩out
⟨P( f )⟩in

is obtained as

⟨P( f )⟩ratio =
Pout

Pin

exp
(
−2 f a
υphξ

)
−1

exp
(
−4L f
υphξ

)
− exp

(
−2 f (2L−a)

υphξ

) . (3.18)

This equation can then be used as the model for MLE to obtain an estimate of
damping length when examining only a segment of the loop, only if a reasonable
estimate for a is known.
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Statistical properties of damping of
kink waves
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4.1 Introduction

The presence of MHD waves in the solar atmosphere is well established by now.
The previous chapters provided a broad introduction to various MHD modes. The
advancement in instrumentation has brought us closer and closer to discovering new
wave modes in the atmosphere. However, the transverse waves have been observed
and study for less than three decades. There have been several attempts to consolidate
the understanding of the damped standing kink waves, an exhaustive numerical study
is performed in Pascoe et al. (2019), to use these observations in coronal magneto-
seismology to estimate the physical properties of the plasma in which these loops
reside in. More recently, it was demonstrated that there are persistent and ubiquitous
fluctuations in the Doppler velocities of coronal emission lines, which propagate at
Alfvénic speeds and follow magnetic field lines (Tomczyk et al., 2007; Morton et al.,
2019).

Finally, there has been the more recent discovery of ‘decayless’ standing kink
wave modes (Anfinogentov et al., 2013; Nisticò et al., 2013; Anfinogentov et al.,
2015) in the solar active region loops. These low-amplitude (< 1 Mm) oscillations
do not appear to damp in time and are seen for a number of cycles. In some cases, the
amplitude are shown to gradually grow Wang et al. (2012). The connection between
the standing ‘decay-less’ kink waves and the propagating waves is not understood yet.
There is a clear lack of statistical study of these propagating kink waves, observed
in the quiescent coronal loops. This paper attempts to fill that gap of knowledge
and provides with a catalogue of suitable quiescent coronal loops for which we can
study the propagating kinks waves. It has been done for the damped standing mode
(Nechaeva et al., 2019), decayless standing mode (Anfinogentov et al., 2015) , so we
now do it for propagating. We also provide an overview of some of the basic wave
properties. This study also serves as a natural extention to the study by Tiwari et al.
(2019).

Currently, the best way to study the propagating waves is through the analysis
of CoMP data, as it is one of the few instruments that takes observations of the
LOS Doppler velocity. This makes the analysis of damping of propagating waves
possible through the power ratio. In Chapter 3 the analysis of power spectra and
their ratio required the use of MLE techniques in order to provide accurate parameter
estimates and uncertainties, is demonstrated. Here the initial study is advanced and a
large-scale study of coronal loops observed in CoMP is undertaken to examine the
typical properties of damped propagating kink waves. A comparison of these results
to the existing results from the analysis of standing kink modes is also presented.

The chapter is structured as follows: in Section 4.2 the details of the data used
are given. The next Section 4.2 describes the analysis methods used. In Section 4.3,
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a discussion of the main findings of the study are presented and the chapter is
concluded with a section on conclusions presented in Section 4.4.

4.2 Data and analysis

4.2.1 Data: CoMP

The data used in this chapter were obtained from multiple sources. The primary data
is from the Coronal Multi-channel Polarimeter (CoMP Tomczyk et al., 2007, 2008),
the details of which are discussed in Chapter 2.2.1. The three-point measurements
of the 10747 Å Fe XIII coronal emission lines are used for this study (for details
see Subsection 2.2.1). The data were selected from CoMP observations between
2012-2016. The dates on which there were more than 135 (near)-contiguous frames
were identified by a manual inspection on the CoMP data webpage and are given
in Table 4.1. The Doppler velocity image sequence of the corona between 1.05 R⊙

and 1.35 R⊙ for each selected date has a temporal cadence of 30 seconds, and spatial
sampling of 4 .′′5. The details of data acquisition and the data reduction steps are
discussed in Subsection 2.2.1.

4.2.2 Data: SDO

As well as examining the propagating kink waves, we want to provide a comparison
with the measured properties of the standing modes. To this end, the standing kink
waves catalogue generated by Nechaeva et al. (2019, Table 01) is utilised. This cata-
logue was compiled by identifying the oscillation events found via the Heliophysics
Events Knowledgebase (Hurlburt et al., 2012) using the AIA instrument on board
SDO. These were checked for the period from 2014 May 20 to 2018 December 26.
Besides, the time interval from 2017 August 1 to October 31, including the period of
high solar activity at the beginning of 2017 September, was looked through manually
using JHelioviewer (Müller et al., 2017). This compiled catalogue covers almost
the entire 24th solar cycle. A table of the most relevant properties is reproduced
in Table A.2. The kink wave speed is calculated assuming the fundamental mode
of oscillation. The wave properties here are not calculated using the MLE method,
described for the propagating wave case.

The difference between the FOV of these two instrument changes what one
means by looplength. AIA observations are full-Sun images, it is possible to see the
footpoints of coronal loops in the corona and thus it is easier to observe a complete
coronal loop. However in the case of CoMP observations the looplength of the
coronal loop refers to the partial looplegth as seen by the CoMP FOV. CoMP loops

https://mlso.hao.ucar.edu/mlso_data_calendar.php?calinst=comp
https://www.lmsal.com/hek/index.html
https://www.lmsal.com/hek/index.html
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footpoints are identified as the observations at the starting point of the coronal loops
as seen in the CoMP FOV.

4.2.3 Selection of loops for study

Fig. 4.1 A sample observation for the loops observed on 19-July-2012. The Left
panel shows the calculated wave angle at each pixel position, determined using a
coherence based method (see Section 3.3.2) on each pixel of the Doppler velocity
image. This wave angle serves as the guide for the tracks shown in yellow in the
Right panel.

The looplength incase of CoMP observations referes to the half looplength as
seen in the comp FOV. The selection of the loops from the CoMP data is a key
step in the analysis of the waves. For each of the datasets, we identified suitable
systems of coronal loops that were at least longer than 50 Mm. This is done to
preserve a high signal to noise level as the smaller loops suffer from a greater impact
of noise due to being closer to the occulting disk, and the imposition of a minimum
loop length also provides a reasonable sampling in the k-direction in Fourier space.
A few such selected loops are shown in the Right panel of Figure 4.1. The loops
are chosen by manually identifying closed-loop structures in the wave angle map.
A point is selected on the wave angle map and the wave angles are followed until
the wave path reaches the occulting disk present in the CoMP data. The second
criteria for loop selection were that the loops should be orientated such that they
are close to being positioned in the plane-of-sky. The PFSS extrapolations do not
provide one-one correspondence with the observerd loop structures as it is difficult
to observe the the CoMP resolution. The geometry and orientation of the loops are
identified by performing magnetic field extrapolations. The extrapolations provide
us with a schematic geometry and orientation of the loops in the plane-of-sky. The
extrapolations were performed using the Potential Field Source Surface (PFSS -
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Schrijver & DeRosa 2003). The extrapolated field lines visibly agree with the loop
structures visible in the coronal EUV images obtained by AIA/SDO. Furthermore,
the loops are selected to avoid loops within the cores of active regions (i.e. rooted
in or near sunspots), as we are interested in the loops that are rooted in-quiet Sun.
Some of the trans-equatorial loops identified were located in the extended plage
region of ARs on the visible solar disk. The loops observed are assumed to be
rooted in network regions and are not part of active region loop systems. Figure 4.2
represents the comprehensive list of loop apex positions of all the loops analysed for
the analysis presented here.

Fig. 4.2 Position of all loops analysed. The black dots denote the location of the loop
apex for the loops with ξ < 0 and the blue dots correspond to the loop apex for the
loops with ξ > 0. The solar disk is represented by the red dashed lines.

4.2.4 Parameter Estimation

The identification of the wave propagation direction is an important step in the
analysis. A coherence based approach described by McIntosh et al. (2008) and
further used by (Tomczyk & McIntosh, 2009; Morton et al., 2015, 2016; Morton
et al., 2019; Tiwari et al., 2019) forms the basis of the wave angle calculation (see
Section 3.3.2 in the thesis). The strategy is to use the coherence between the Doppler
velocity time-series of each pixel and its neighbouring pixels to obtain islands of
coherence above a threshold value. The direction of wave propagation is calculated
by a straight line fit, which minimises the sum of perpendicular distances from the
points to the line. Doing this for each pixel of the Doppler-velocity time series
images gives the wave angle map. A sample wave angle map is shown in the Left
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panel of Figure 4.1. The wave angle maps obtained are further used to determine the
path of the wave propagation through the corona as discussed in Section 3.3.2.

As discussed above, for each of the chosen dates the various wave paths are
assumed to follow the quiescent coronal loops. The loops are difficult to trace
automatically as the loop length changes for a coronal loop system with altitude. A
median filter of box size having a width two pixels was applied to the wave angle
map to try and suppress some of the noise in the wave angle maps. This led to the
improved tracing of wave-paths. For each loop, the half loop length, is defined,
which is obtained by finding the point of inflexion for the traced trajectory of the
wave path. The longer loop lengths cause additional issues in tracing them because
the wave angle suffers from larger uncertainties closer to the apex of larger loops.
This arises due to wave angle being poorly estimated and sometimes due to poor
data quality. In such cases where the whole loop was difficult to trace, only the wave
path for half a loop is obtained.

The Doppler velocity signal along the wave paths is extracted and time-distance
maps are created. A cubic interpolation maps the velocities from the selected wave
paths onto (x, t) space. For each wave path, the neighbouring five wave paths on
either side of the original wave path are also extracted. An FFT of these Doppler
velocity time-distance map produces the k−ω spectra which are used to separate
the inward and outward components of the wave propagation as shown in left panels
of Figure 4.3. The propagation speed for the waves is calculated in a manner similar
to (Tomczyk et al., 2007; Tomczyk & McIntosh, 2009; Morton et al., 2015; Morton
et al., 2019; Tiwari et al., 2019), using the lag of the cross-correlation of the time-
series at the centre of the wave path to the neighbouring time-series along the path.
This is determined by fitting a parabola to the peak of the correlation function. The
fit of the slope of the observed lags as a function of the position along the wave path
gives the propagation speed of the wave. The median of this propagation speed is
calculated for each wave path which is then added to the table.

The wave power for the inward and outward component of the waves are obtained
by summing the spectra in the k-direction. For each loop, the inward and outward
spectra are averaged over the neighbouring wave paths to suppress the variability
in the power spectra (see Section 3.3.4). From this one dimensional averaged wave
power, the ratio of the outward and inward power, ⟨P( f )⟩ratio, is determined.

The quality factor (equilibrium parameter ξ ) is obtained by fitting the model
power ratio given by Equation (1.34) to the data, using a maximum likelihood
approach (Equation 3.14). For a detailed discussion on statistics of power ratio
and maximum likelihood, fitting see Section 3.3.4 of the thesis. The log likelihood
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function that is minimised is given by,

−2lnL = 2
n

∑
i=1

[
lnSi + lnβ

(
ν

2
,
ν

2

)
+

(
1− ν

2

)
ln
(

Ri

Si

)
+ν ln

(
1+
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The associated confidence intervals on the model parameters were estimated by
utilizing the Fisher Matrix (F ).

The equilibrium parameter is then calculated for each of the selected wave-tracks.
The equilibrium parameter is found for 108 individual loops observed with CoMP.
The various parameters that were obtained are shown in the corresponding Table 4.1.

Fig. 4.3 Averaged k−ω diagrams for few selected tracks for the observations of
19-July-2012 as shown in Figure 4.1 (right). The left column displays the averaged
k −ω diagrams. The right column shows the fitted power ratio. The measured
power ratio for the coronal loops is shown here by the blue stars, for loops with
increasing length. The results from the MLE fitting of the resonant absorption model
are over-plotted (red solid), with point-wise Wald confidence bands shown at 95%
(red dotted).

As an example of some of the typical results obtained, the power spectra corre-
sponding to three different loops identified on 19th July 2012, is shown in Figure 4.3.
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The loop 1, 2, 3 corresponds to the half loop lengths of 61.44 Mm, 103.47 Mm, and
336.28 Mm, respectively. Loop 1 shows faster damping with a small equilibrium
parameter of 0.89±1.12, a phase speed of 402±4.62 km s−1 and a footpoint power
ratio of 1.37± 0.58. Loop 3 which is about 3 times the length of loop 1 however
shows a weaker damping with ξ =28.29±6.51, phase speed of 428±6.64 km s−1

and footpoint power ratio of 1.08±0.45. The loop 2 however exhibits a negative
equilibrium parameter (−13.89±11.01), this is discussed later in Section 4.3.5. As
an example, these 3 values are different from the value of the equilibrium parameter
found in Chapter 3, representing large positive and small negative values of ξ . How-
ever, as will be seen in the following section, these loops are representative of the
wide variety of wave properties that are found in the CoMP loops (see Figure 4.3).

4.3 Results and Discussion

The observed equilibrium parameters along with other details of the oscillations
were recorded and are listed in Table 4.1. In the following, a summary of the main
properties of the propagating kink waves is provided.

Date
Half loop

length (in Mm)

Equilibrium
parameter

(ξ )

ξ

error

Footpoint
Power
Ratio

Footpoint
Power
Ratio
Error

Phase
speed

km s−1

Phase
speed
error
kms−1

20120423 42.04 -1.53 1.27 2.1 0.61 291.31 1.94

20120626 45.27 -0.95 2.07 2.51 1.07 561.24 11.36

20120410 54.97 2.49 3.23 1.47 0.63 372.71 4.37

20120810 61.44 32.12 30.81 1.38 0.56 343.34 6.24

20120719 61.44 0.89 1.12 1.37 0.58 401.91 4.62

20120410 77.6 24.06 29.71 1.81 0.78 511.77 7.51

20120626 80.84 1.74 1.61 1.43 0.61 388.59 8.46

20120410 84.07 -0.9 1.08 2.01 0.87 566.49 9.8

20120410 84.07 -3.74 2.96 1.64 0.71 365.0 3.61

20120423 87.3 2.65 1.21 1.38 0.4 299.56 7.35

20120810 90.54 -8.96 5.19 1.5 0.61 307.87 3.58

20120120 97.0 4.36 2.35 1.36 0.57 285.47 5.28

20120719 97.0 -13.89 11.01 1.71 0.72 427.45 5.83

20130717 97.0 -2.0 2.37 2.04 0.88 630.42 36.31

20130717 100.24 13.13 13.96 1.49 0.65 557.26 8.54

20120121 103.47 1.55 1.3 1.19 0.44 536.67 8.31

20120719 103.47 -4.14 2.58 1.7 0.72 361.25 6.7

20120410 109.94 7.49 4.02 1.22 0.52 314.72 4.07

20120120 109.94 -5.19 4.18 1.88 0.79 506.88 16.85
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Table 4.1 continued from previous page

Date
Half loop

length (in Mm)

Equilibrium
parameter

(ξ )

ξ

error

Footpoint
Power
Ratio

Footpoint
Power
Ratio
Error

Phase
speed

km s−1

Phase
speed
error

km s−1

20130717 113.17 -3.03 2.44 2.38 1.03 488.96 8.61

20120626 116.41 -5.9 3.53 1.34 0.56 383.53 4.62

20120410 119.64 22.03 15.14 1.67 0.72 439.37 6.85

20120810 122.87 -3.87 2.74 1.79 0.74 512.05 10.54

20120719 126.11 6.64 3.88 1.33 0.56 404.47 4.67

20120410 126.11 4.13 4.17 1.33 0.57 675.47 14.67

20120410 126.11 1.5 1.54 0.94 0.4 676.75 14.57

20120423 129.34 9.54 4.12 1.42 0.41 440.01 8.24

20120121 129.34 -2.32 1.22 1.61 0.6 444.87 5.45

20120121 129.34 -7.48 5.8 1.88 0.69 643.48 11.03

20120410 129.34 -5.57 3.28 1.35 0.58 414.64 6.26

20130717 129.34 26.71 18.19 1.71 0.75 461.09 11.0

20120423 132.57 2.91 1.46 1.1 0.32 514.91 9.27

20120120 135.81 -29.54 14.93 1.39 0.58 387.7 12.51

20120120 142.27 -3.49 1.7 1.65 0.69 403.03 11.18

20120121 142.27 1.02 0.55 0.58 0.22 444.82 6.48

20120810 142.27 3.11 1.55 1.25 0.51 402.07 9.15

20120810 142.27 1.4 1.02 0.97 0.4 577.09 12.32

20130717 145.51 -1.62 0.84 2.09 0.91 417.53 9.02

20120120 148.74 1.76 1.63 1.17 0.5 737.83 16.8

20120121 151.98 19.48 4.99 1.59 0.59 245.92 2.75

20120410 155.21 30.14 14.85 1.36 0.59 409.04 6.3

20140102 158.44 -12.38 6.96 1.43 0.6 498.78 19.78

20120121 158.44 7.01 4.22 1.51 0.56 597.7 9.4

20120120 161.68 -3.62 2.15 1.78 0.76 549.74 16.21

20120810 168.14 -3.1 2.23 1.62 0.66 716.36 22.22

20120121 168.14 6.3 2.6 1.38 0.51 433.09 9.52

20120120 171.38 -3.13 2.49 1.67 0.7 799.42 70.73

20120121 171.38 5.04 2.05 0.95 0.35 441.44 5.5

20120423 171.38 1.73 0.69 0.78 0.23 507.04 7.17

20120810 174.61 13.36 8.16 1.22 0.49 618.95 11.35

20120719 174.61 12.01 4.59 1.7 0.73 362.22 5.79

20120410 174.61 -18.74 7.81 1.45 0.62 393.82 6.32

20120719 181.08 69.39 49.75 1.73 0.73 716.81 18.28

20120410 184.31 -54.5 22.13 1.36 0.58 404.54 7.39

20120423 184.31 -99.76 32.84 1.18 0.34 484.64 6.86
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Table 4.1 continued from previous page

Date
Half loop

length (in Mm)

Equilibrium
parameter

(ξ )

ξ

error

Footpoint
Power
Ratio

Footpoint
Power
Ratio
Error

Phase
speed

km s−1

Phase
speed
error

km s−1

20120423 197.24 23.79 7.75 1.17 0.33 510.59 7.66

20130717 200.48 12.85 5.53 1.46 0.62 461.13 12.44

20120410 203.71 10.04 3.7 1.19 0.51 399.93 6.66

20120120 203.71 32.08 13.29 1.31 0.55 475.1 10.65

20120410 210.18 5.07 1.67 1.01 0.43 365.25 5.14

20120719 216.64 12.92 4.46 1.16 0.48 413.5 4.55

20120120 216.64 12.48 5.93 1.35 0.57 580.08 10.39

20120423 223.11 -14.75 3.96 1.32 0.38 483.38 7.87

20120120 226.34 20.93 7.69 1.31 0.55 463.74 14.44

20120121 229.58 5.03 1.83 0.97 0.36 528.73 8.27

20120423 232.81 -162.2 45.2 1.27 0.36 517.81 11.11

20120121 236.05 42.89 14.95 1.15 0.42 530.61 7.57

20120719 245.75 5.29 2.77 1.26 0.53 699.38 16.72

20120423 245.75 37.74 9.51 1.12 0.32 492.48 9.21

20120719 248.98 -15.86 6.6 1.53 0.64 575.31 15.9

20120121 252.21 3.81 1.6 0.96 0.35 663.14 12.34

20120120 252.21 -45.93 13.29 1.32 0.55 412.36 17.01

20120120 258.68 -58.42 19.08 1.4 0.59 478.06 8.67

20130717 265.15 4.7 1.82 1.12 0.49 528.11 10.3

20120410 268.38 147.31 44.37 1.22 0.52 436.26 7.06

20120121 271.61 4.5 1.41 1.04 0.39 521.58 15.2

20120410 274.85 9.81 2.78 0.99 0.42 416.89 5.33

20120810 278.08 15.81 3.79 0.99 0.4 387.52 4.26

20120120 281.32 9.08 2.96 0.94 0.4 509.44 14.44

20120423 297.48 9.52 1.96 0.96 0.27 482.33 7.03

20130410 316.88 7.43 2.33 1.18 0.5 532.45 15.77

20120120 323.35 10.56 2.95 0.94 0.4 503.41 9.48

20120120 323.35 -16.11 4.3 1.45 0.61 491.09 8.54

20140102 323.35 34.65 6.62 1.0 0.42 338.2 33.32

20120121 333.05 3.01 0.87 0.77 0.28 593.49 11.78

20120719 336.28 28.29 6.51 1.08 0.45 428.4 6.64

20120719 349.22 10.71 3.55 1.21 0.51 631.58 17.06

20120719 362.15 11.2 2.42 0.96 0.4 429.38 6.3

20120121 384.79 3.7 0.59 0.61 0.22 381.05 3.92

20120121 407.42 22.89 4.62 1.07 0.39 529.96 9.26

20120121 413.89 12.22 0.98 0.63 0.24 201.86 5.24
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Table 4.1 continued from previous page

Date
Half loop

length (in Mm)

Equilibrium
parameter

(ξ )

ξ

error

Footpoint
Power
Ratio

Footpoint
Power
Ratio
Error

Phase
speed

km s−1

Phase
speed
error

km s−1

20130717 430.06 8.41 1.95 0.97 0.41 525.23 11.23

20120121 430.06 2.64 0.48 0.45 0.17 475.31 8.01

20120120 449.46 4.18 1.08 1.04 0.48 582.28 15.13

20120120 472.09 147.4 31.01 1.09 0.45 559.62 59.81

20120120 472.09 4.29 1.19 1.04 0.48 595.97 75.93

20120121 472.09 12.4 2.22 0.74 0.28 522.93 15.05

20120719 475.32 58.08 8.96 1.05 0.44 407.08 7.16

20120526 475.32 5.49 0.99 1.7 0.5 595.96 19.96

20120423 478.56 11.75 1.81 0.74 0.22 566.52 10.21

20140102 485.02 4.17 1.23 1.03 0.47 704.22 26.74

20120121 507.66 4.54 0.56 0.53 0.2 376.37 5.92

20120120 523.83 3.2 0.64 0.92 0.41 522.49 15.31

20120121 523.83 51.98 10.25 0.89 0.33 640.8 12.51

20120120 523.83 147.33 30.93 1.09 0.45 621.22 16.87

20120121 527.06 5.32 0.95 0.64 0.24 588.94 9.35

20120121 569.1 35.24 2.95 1.0 0.37 296.59 5.98

20120121 601.43 5.45 0.75 0.61 0.22 517.46 8.6

Table 4.1 Measured loop parameters and wave parameters obtained from MLE. The
uncertainties shown correspond to the standard deviation of the mean for MLE
parameters and standard deviations for loop parameters. The error in loop length
corresponds to the pixel uncertainty of the instrument, the PFSS extrapolation
provides us with another uncertainty namely a projection between 5-25◦ (In the error
estimation for looplength the maximum value of the angle of deviation is taken into
account as the PFSS extrapolation and the observed loops do not have a one-one
correspondence).

4.3.1 Distribution of oscillation parameters

The loop lengths for the traced coronal loops are in the range of 50-600 Mm.
In Figure 4.4 the histogram distribution of all the loop lengths observed is shown.
The distribution peaks at around 150-200 Mm, and most of the loops observed are
between 50-250 Mm. The distribution after this tapers out, as it becomes increasingly
difficult to trace the longer loops due to the limited FOV of the CoMP instrument.

The measured propagation speeds for the waves, are distributed between 200-
800 km s−1. The distribution is shown in Figure 4.5, which peaks around 400-
600 km s−1. This is consistent with the various propagation speeds reported in the
literature around 500-600 km s−1 (Tomczyk et al., 2007; Tomczyk & McIntosh,
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Fig. 4.4 Distribution of measured loop lengths of the traced loops for standing and
propagating kink waves. The red bars and line represent the distribution and Kernel
Density Estimate (KDE) of loop length for the propagating kink waves respectively.
The grey bars and line represent the distribution and Kernel Density Estimate (KDE)
of loop length for the standing kink waves respectively.

2009; Verth et al., 2010; Liu et al., 2014; Morton et al., 2015; Tiwari et al., 2019). The
propagation speed values obtained are averaged over the outward and inward wave
propagation speeds. There is some evidence that the inward and outward velocities
are different (Tomczyk et al., 2007), which can be explained by the presence of flows
along the coronal loops. However, the methodology for the measurement of the
wave propagation speed is currently not sensitive enough to confirm this apart from
in extreme cases, (e.g. in coronal holes Morton et al., 2015). The presence of flows
leads to modification of the TGV relation described by Soler et al. (2011), which
changes the model for power ratio that is used for the study. However, the influence
of flows has been neglected in this study.

The power ratio, is obtained from fitting the ratio of outward and inward power,
to the model equation of power ratio as provided in Equation (1.34). The distribution
of the calculated input footpoint power ratio is shown in Figure 4.6. The footpoint
power ratio does not provide any information about the driving mechanism, however,
it can be used as a proxy for measuring the energy input at each footpoint of the loop.
The driving mechanism of these waves is thought to be global, due to the ubiquitous
nature of these waves. It is expected that the energy entering the corona through
each footpoint will be approximately equal. The mean value of footpoint power ratio
of 1 supports this hypothesis and strengthens the previous claims (Verth et al., 2010;
Tiwari et al., 2019). The scatter around the value of 1 could indicate that in some
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regions of the atmosphere the driver is weaker/stronger than in others, or due to the
asymmetries in the loop particularly in the presence of flows.

Fig. 4.5 Distribution of phase velocities for the observed waves. Right Y-tick-marks
represent the normalised probability density and the left Y-tick-marks represent the
normalised frequency

Fig. 4.6 Distribution of measured footpoint power ratios, after performing fitting for
the observed waves

The most interesting parameter from the study is the equilibrium parameter
or quality factor (ξ ), which quantifies the damping rate in the model that is used
(Ruderman & Roberts, 2002), it is distributed as presented in Figure 4.7. The ξ

values for propagating kink waves are distributed in between the values of -162.2
and 147.4. The histogram shows only the positive values, and the negative values,
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Fig. 4.7 KDE of distribution of derived equilibrium parameter ξ , after performing
fitting for the observed waves. The red coloured bars represent the distribution of
ξ for the damped propagating kink waves and the grey bars corresponding to the
distribution of ξ for standing kink waves.

mentioned before, will be discussed separately (see Subsection 4.3.5). It can be seen
that the equilibrium parameters occupy a wide range of values. The distribution
illustrates that 85 % of the positive ξ observations fall in the range of (0.89,30).
Hence, the propagating kink waves can be strongly damped or very weakly damped.
The equilibrium parameter for the standing kink wave is calculated by taking the
ratio of period and the damping time (Nechaeva et al., 2019). The median value
is 9.08 and a mean value of 18.4, which is greater than that found for the standing
kink modes (see discussion in Subsection 4.3.6). The implications of this result
will be discussed in the Subsection 4.3.6. There are also some negative values of ξ

measured, these are discussed in a later section (see Subsection 4.3.5).
The following sections deal with the relations between various parameters ob-

served. These highlights some important properties of the waves.

4.3.2 Variation of equilibrium parameter with loop length

One of the results from the previous study (in Chapter 3) suggested a dependence
between the equillibrium parameter (ξ ) and the loop length. The statistical study
of this chapter provides the opportunity to test this dependence. The chosen loop
lengths correspond to loops being visible in the POS. This implies that the longer
loops reach higher altitudes in the corona. The equilibrium parameter ξ shows a
distinct behaviour with increasing loop length. It is shown in Figure 4.8. The scatter
plot shows that a range equilibrium parameters are possible for all loop lengths.
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Fig. 4.8 Variation of equilibrium parameter ξ with loop length, with associated error
bars. Left: Propagating kink waves and Right: Standing kink waves

However, it is possible to see a trend in the smallest possible value of ξ in the loops.
It would appear that as loop length increases, their is an increase in the smallest
value of ξ allowed. Smallest possible values of ξ for the loops show some increasing
trend up to 200 Mm. After that, as loop length increases, the smallest value of ξ

reaches a plateau region. This behaviour of the quality factor with loop length has
been reported previously by Tiwari et al. (2019). However, there were only seven
loops analysed in the previous study (see Chapter 3, Tiwari et al. 2019), motivating
us to create a statistical study for the damping of propagating kink waves. The
measured values of ξ suggest that for the longer loops that reach higher up in the
corona, the quality factors increases, suggesting the propagating kink waves are
subject to a reduced rate of damping, potentially due to resonant absorption. A
physical explanation for the apparent decrease in damping rates can be made in
terms of the changes in the plasma environment the loop is situated. Reiterating from
Chapter 3, the key factor could be the density ratio between the internal and external
plasmas. If the coronal loops are subjected to similar rates of heating, and the rate of
chromospheric evaporation is similar, then the average density of the longer loops
is likely to be less than those of shorter loops. This will lead to the density ratio
(ρi/ρe) for longer loops is, on average, less than for the shorter loops, compared to
the ambient plasma.

As previously discussed in Chapter 3 with relation to the observed loop length
of the CoMP loops, there is the possibility that the measured loop length does not
represents the true half of the loop length. In that case, the average power measured
for such a short segment, the outward power will be greater than the power measured
for inward propagating waves. Thus the power ratio can be artificially enhanced,
giving rise to apparent greater damping. This would lead to an underestimate of ξ
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compared to its true value. Hence, the observed effect of increasing ξ with height is
expected to be more pronounced. The modified power ratio equation can be only
applied if it is known what segment of the coronal loop is observed, based on the
observation tools available to us it is almost impossible to determine the segment of
loop observed.

The observed values of the damping parameters, assuming that the mechanism
for damping is resonant absorption, shed some light into the dissipation of the waves
into smaller scales as well. After the kink mode is converted to torsional Alfvén
modes via resonant absorption, then the dissipation can occur via phase mixing,
as a natural consequence of imhomogeniety of the plasma. Phase mixing leads
to small-scale gradients which are formed in the resonant layer (e.g. Heyvaerts &
Priest, 1983; Soler et al., 2011; Soler & Terradas, 2015; Soler & Luna, 2015; Cargill
et al., 2016). The small scale KHI vortices at the boundary offer another way for the
energy to dissipate (Howson et al., 2017). The larger values of damping rate implies
a weaker resonant absorption. If the mode conversion via resonant absorption is
happening at a lower rate then the heating due to phase mixing will also be reduced.
The damping length is obtained by taking the typical values of period (P) of waves
observed by CoMP (100-1000 s), and the measured phase speed (see Table 4.1).
For the results in this study, the damping length (Ld) of the waves is calculated as
Ld = ξ λprop, where λprop = vphP. Figure 4.9 shows the variation of damping lengths
with period for three increasing values of vph. The values of damping length reported
in (Hahn & Savin, 2014) would appear at the shorter end of the values we measure.
Although the assumed values of propagation speed (i.e. the Alfvén speed) are not
reported in the Hahn & Savin (2014) study, the energy flux equation can be inverted
using the given values of energy flux (4.5×105 ergs cm−2 s−1), non-thermal widths
(30 km s−1) and electron density (5×108 cm−3) to find vph = 450 km s−1. Hence
ξ ∗P = 220 - 400 s. The Hinode/EIS data used in their study is integrated over 60 s.
Assuming that only waves with periods less than that of 60 s contribute to the line
broadening in their observations (which is a very conservative assumption), then ξ =
3.7 -7.4. These values are overestimates for their study, but are broadly in agreement
with the range of values presented in Table 4.1.

4.3.3 Variation of footpoint power ratio with loop length

The power ratio is fitted following the power ratio model (Verth et al., 2010; Terradas
et al., 2010) using MLE. The obtained values of footpoint power ratio exhibit a
decreasing trend with loop length, as shown in Figure 4.10. The shorter loop
lengths exhibit higher values of footpoint power ratio (>1). This could be explained
by taking into consideration the wave power injected at each footpoint might be
different, possibly due to different excitation mechanism or due to difference in the
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Fig. 4.9 Vdamping lengths with period for three increasing values of phase
velocity(vph).

resonance between the driver and the loop footpoint motion. The trend, however,
settles very quickly near the footpoint power ratio of 1, it also implies that for a
majority of these loops the wave power injected at one footpoint is similar to the
wave power injected at the other footpoint (Verth et al., 2010; Tiwari et al., 2019).
There is a possibility that this could be an artifact of the analysis method. If the
spatial wavelength of the oscillation is on the order of or greater than the length of the
time-distance diagram, then there can be a leakage of power into negative/positive
values of k. The wavelength of the kink modes is vph ×P, where vph is the phase
velocity and P is the period, so for example if a wave with a period of 300s (and
phase speeds of 200-600 km s−1) the wave length is 60,000 - 180,00 km. Hence,
the wavelengths are comparable to the loop lengths that are typically studied here.
This might explain the observed deviation from 1. This deviation needs to be studied
further using numerical simulations.

4.3.4 Variation of different parameters

Variation of propagation speed with loop length

The measurement of phase speed of kink waves is very important to perform coronal
magneto-seismology (Edwin & Roberts, 1983). The kink speed is given by

v2
k =

B2
i +B2

e

µ0(ρi +ρe)
, (4.2)
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Fig. 4.10 Variation of footpoint power ratio at the loop footpoint with respect to the
loop length. The red circles represent the footpoint power ratio and the corresponding
errorbars are shown in pink.

Assuming the internal Bi and external Be as the same and taking an average of the
density, a lower estimate of the magnetic field can be obtained (Long, D. M. et al.,
2017). From the observations, there appears to be weak dependence of the phase
speed on the loop length (with a Pearson cross-correlation coefficient of 0.2) for the
propagating kink waves (see Figure 4.11) and not so much for the standing kinkw
aves (with a Pearson cross-correlation coefficient of 0.08). However the narrow
distribution of the phase speed distribution, observed in the case of the propagating
kink waves is a matter of investigation for now. One of the possible reasons is the
averaging effect of the reduced spatial resolution of the CoMP instrument. The
CoMP FOV averages over multiple loops visible in SDO, thus the speed that is
calculated is an averaged phase speed over multiple structures in the corona.

Dependence of footpoint power ratio on phase speed

The footpoint power ratio for the propagating waves does not seem to show any
dependence on the phase speed, evident from Figure 4.12. This indicates that the
phase speed of the waves is independent of the wave power injected at the loop
footpoints, which is expected.

Dependence of equilibrium parameter on phase speed

The equilibrium parameter and the phase speed do not show any relation as shown
in Figure 4.13. This implies that the phase speed of the propagating kink wave does
not affect the damping of the observed waves.
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Fig. 4.11 Variation of phase speed with the loop length. The red dots correspond to
the observations of the propagating kink waves. The black triangle corresponds to
the observations of the standing kink waves. The error bars are shown in a lighter
shade of red and black respectively for propagating and standing kink waves.

Fig. 4.12 Variation of footpoint power ratio with phase speed (red circles), with
associated error bars (pink).

Dependence of equilibrium parameter on footpoint power ratio

The equilibrium parameter does not show any evidence of dependence on the foot-
point power ratio, as evidenced in Figure 4.14. The rate of damping seems to be
independent of the wave energy input at the loop footpoints.

4.3.5 Amplification of waves

Of the 108 loops identified and studied, 31 of them show signs of power amplification
(see Figure 4.15), with a negative value of ξ . These are observed only for small
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Fig. 4.13 Variation of equilibrium parameter ξ with phase speed, (associated error
bars are shown in a lighter shade). Left: the red circle corresponds to the propagating
waves. Right: the black triangles correspond to the standing waves.

Fig. 4.14 Variation of equilibrium parameter ξ (red circle) on the footpoint power
ratio length, with associated error bars (pink).

loops (less than half loop length of 350 Mm). In smaller loops flows can play an
important role and can lead to amplification of waves (Soler et al., 2011; Antolin &
Verwichte, 2011). The smaller loops being close to the solar disk have larger errors
associated with estimating their power. The ξ of these loops seem to be dependent
on the footpoint power ratio of these loops. These shorter loops with very small
negative ξ need further investigation as discussed in Subsection 4.3.3.



4.3 Results and Discussion 111

Fig. 4.15 Distribution of negative values of ξ , implying amplification of waves.

4.3.6 Comparison with the damped standing kink waves

This work utilises the large volume of available studies of damped standing kink
waves to draw comparisons. The comparison focuses on the statistical work done by
Goddard et al. (2016); Goddard & Nakariakov (2016); Nechaeva et al. (2019). The
table generated from their work is used and modified for our study. The entries in
tehe table which did not have any mention of either the damping time or the period
were dropped. The equillibrium parameter was calculated from the table by taking a
ratio of the damping time and the period. We also assumed all oscillations to be in
the fundamental mode and calculated the kink speed as vkink = 2L/P, where L is the
looplength and P is the period.

The loop length is estimated under the assumption that the loops are close to
the semicircular shape, by either measuring the projected distance between the
footpoints or by the apparent height. For each of the TD map, the amplitude of the
initial displacement and initial oscillation amplitude was recorded. The semi-circular
approximation for the loop was taken into account thus L = πR. The data points
for each oscillation were identified and a sinusoidal function of the form (assuming
exponential damping)

y = A(sin2πt/P+φ) (4.3)

The initial displacement is the difference between the initial loop position and the
first maximum, and the initial amplitude is defined between the first maximum and
minimum. In this case, the displacement of the loop’s upper edge was estimated.
The kink speed which is not provided in the catalogue of Nechaeva et al. (2019) is
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calculated as follows:
νkink =

ω

k
=

2L
P
, (4.4)

where νkink is the kink speed, L is the loop length and P is the period of the waves
observed. The loop lengths along with the other parameters including calculated
kink speed for the damped standing kink waves are listed in Appendix A.2. Due
to missing values of damping time, period or loop length some observations from
Nechaeva et al. (2019) are dropped and the total number of loops after this selection
is 103 over the course of solar cycle 23.

The selected damped standing waves AIA/SDO loops have a loop length distribu-
tion akin to the loop length distribution for the propagating kink waves observation
from CoMP, as seen in grey in Figure 4.4. The loop lengths measured were in
between 50- 650 Mm. The most common loop length is in the range of 220-260 Mm.
However, it must be noted that the loop lengths measured by CoMP and SDO/AIA
are different. The CoMP instrument has a coronagraph and the observations start
at 1.05 R⊙, the loop lengths measured do not necessarily measure the footpoint
of the loops, due to the limitation of instrument FOV, which varies depending on
the orientation of the loops. The loop lengths measured in Table 4.1 in case of
CoMP observations are half of the loop length measured. The SDO/AIA images
the solar-disk, making the loop footpoints visible in the instrument field of view
as opposed to the CoMP instrument (True when one observes the images in the
photospheric spectral lines but then the loops are not visible as the apex lies in the
corona). The projected loop length is estimated for each loop. The major radius
(using the apparent loop height) or diameter (using the distance between footpoints)
is measured manually, depending on the orientation of the loop with respect to the
line-of-sight (LOS).

The difference in the histograms of the propagation speed and the kink speed of
the propagating and the standing kink waves point towards the difference between
these observations of the loops in which these two different wave modes are observed
(see right panel of Figure 4.5). In case of standing waves, the kink speeds observed
have mean of 1481.9 km s−1 which is greater than the mean value of propagation
speed for propagating waves 486.7 km s−1. The difference in propagation speeds
reflects the difference between the magnetic field strengths in each region. The
typical magnetic strength found in the active region coronal loops lies in the range of
4-30 Gauss (e.g. Nakariakov & Ofman, 2001; White & Verwichte, 2012), while the
magnetic field of the quiet sun loops are estimated to be between 1-9 Gauss (Morton
et al., 2015; Long, D. M. et al., 2017)1 The differences in the measured speeds could

1It should be noted that the magnetic field measurements obtained by coronal magneto-siesmology
provide an underestimate of the magnetic field values (Verwichte et al., 2013a).
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potentially be explained by this difference in the strength of magnetic field at the
location of the footpoints.

A comparison of the distributions of equilibrium parameters for the standing and
propagating waves is also provided, which is shown in Figure 4.7. The standing
waves (ξmedian 1.8) have smaller values of quality factor implying that the standing
kink waves are damped at a faster rate than the propagating waves (ξmedian 9.08).
In case of loops with a footpoint in the active region the loops undergo increased
heating. The greater the heating, larger contribution of chromospheric evaporation is
expected (Aschwanden, 2004). Moreover, the larger density of active region loops
can be inferred from EUV observations, where the AR loops appear significantly
brighter than quiescent loops (as the intensity is proportional to ρ2). The measured
ξ values for the standing waves are evenly distributed with a mean value of 2.28
and a median value of 1.8. The active regions have been modelled to understand the
role of resonant absorption and phase mixing in the thermal equillibrium of these
loops. The active region environment (larger values of density contrast and smaller
values of ξ ) show that the loop heating via phase mixing appears to be insufficient
for balancing the radiative losses (De Moortel & Nakariakov, 2012; Howson et al.,
2019; Prokopyszyn et al., 2019; Howson et al., 2020), which implies that in case of
quiet Sun loops (smaller values of density contrast and larger values of ξ ), the wave
heating would not be sufficient to support the radiative losses.

The kink speed of the standing kink waves show a positive correlation with the
quality factor. A linear trend is observed between the phase speed and equilibrium
parameter with a Pearson correlation coefficient of 0.56 (see Figure 4.13). The rate
of damping decreases depends on the measured kink speed of the waves, this might
be due to non-linear effects (Goddard et al., 2016).

4.4 Conclusion

This work provides a statistical study of the damped propagating kink waves. This is
the first such attempt to study the statistical properties of damped propagating kink
waves. This work also does a comparative study with the long observed standing kink
waves and highlights some stark differences between the propagating and standing
kink waves. These differences occur most likely due to the difference in the magnetic
environment of these observed loops. The standing kink waves have been reported
predominantly in loops that have at least one footpoint in the active region, however,
the propagating kink waves have been reported to be ubiquitous in the solar corona.
The excitation mechanism of these waves is also starkly different. The origin of the
standing kink waves is found to be the flaring activity nearby however the ubiquity
of the propagating kink waves hint a potential global driver (Morton et al., 2019).



114 Statistical study of damping of kink waves

The study gives further credibility to the notion of frequency-dependent damping of
the propagating kink waves and resonant absorption as the damping mechanism. The
data, however, suffers from averaging effects due to the poor spatial sampling of the
CoMP instrument. The LOS effect has a significant effect on the observation of these
waves, numerical simulations by (De Moortel & Pascoe, 2012; Pant et al., 2019) have
shown this discrepancy reducing the energy budget of wave damping by 2-3 orders
of magnitude. This study further proves the damping behaviour of loops with loop
length or the height in the corona. As the loop length increases (loops reaching higher
altitudes in the corona) the rate of damping decreases verifying claims of Tiwari et al.
(2019). In case of standing waves an opposite behavior is observed from the study of
damped standing kink waves, in contrast to claims by Verwichte et al. (2013b), where
they found that the equilibrium parameter increases with the increased looplength.
The study also reports the amplification of waves (amplification is suggested only for
the negative ξ ), the source of which are unclear at this time. The measured values of
ξ suggests a decrease in the heating due to phase mixing. The damping length of the
propagating kink waves is also calculated, which is found to be broadly comparable
to the the previous estimates of (Hahn & Savin, 2014). This study raises doubts
about wave heating as an efficient heating mechanism for coronal loops in the quiet
Sun. The larger damping length (Ld) and larger values of measured (ξ ) makes the
dissipation of energy via phase mixing less effective in the quiet sun atmosphere.
Further studies, especially 3D MHD simulations in quiet Sun conditions are needed
to understand the role of resonant absorption in the wave damping of propagating
transverse waves. These full numerical 3D-MHD simulations can shed the light on
the dependence of flows and the interplay between the density and the magnetic field
on the behaviours of resonant absorption in these different family of coronal loop
observations.



Chapter 5

Conclusion and Future Work
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5.1 Conclusion

This thesis starts with the discussion of the Sun and the solar atmosphere. As
discussed previously in Chapter 1, understanding the solar coronal heating is one of
the holy grails of solar physics and of plasma physics. The long-standing problem
has motivated some very elegant studies conducted to understand the underlying
heating mechanism of the solar corona. The various coronal heating models can be
broadly classified into two main categories, a) reconnection-based models and b)
wave based models. The recently observed ubiquity and diversity of the MHD waves
in the solar corona present a strong case to study these wave modes. MHD waves
could provide part of the solution to the long-standing coronal heating problem.
Section 1.7 discusses the various MHD wave modes observed so far.

Of these MHD waves, the transverse MHD waves are of particular interest due
to their ability to carry large amounts of energy, and thus potentially to contribute
significantly to coronal heating (e.g. Uchida & Kaburaki, 1974; Wentzel, 1974;
McIntosh et al., 2011b). The transverse waves were first observed in the solar corona
(Aschwanden et al., 1999; Nakariakov et al., 1999) in active region loops following
flaring activity. The observation of these waves revealed periods of 5-3 minutes and
rapid damping, and led to various follow-up studies to explain the rapid damping of
these waves. The damping of these large amplitude waves is thought to be explained
by the mechanism of resonant absorption (Goossens et al., 2002; Aschwanden et al.,
2003; Van Doorsselaere et al., 2004; Goossens et al., 2011). Resonant absorption
(and mode coupling), is an ideal candidate for energy transfer between different wave
modes (Ionson, 1978; Hollweg, 1984). In the presence of density inhomogeneity,
resonant absorption predicts that the global kink mode can resonantly couple with
azimuthal Alfvén waves. The global kink mode, which consists of a purely transverse
displacement of the loop, is transferred to the local azimuthal Alfvén waves at the
resonance layer where the kink speed matches the Alfvén speed. The 3D MHD
numerical simulations (e.g. Pascoe et al., 2012; De Moortel & Nakariakov, 2012)
provide evidence for the efficient and robust energy transfer via resonant absorption.

The propagating kink waves were discovered in the seminal paper by Okamoto
et al. (2007); Tomczyk et al. (2007); Tomczyk & McIntosh (2009). These observa-
tions which were interpreted as propagating kink waves (Van Doorsselaere et al.,
2008) and were found to be ubiquitous throughout the corona, as LOS Doppler
velocity fluctuations. The damping mechanism for these waves was also thought to
be resonant absorption (e.g. Terradas et al., 2010; Verth et al., 2010). Phase mixing
via resonant absorption can explain the dissipation of this energy in the corona.

The study of MHD waves also complement the magnetic reconnection models by
providing a measure of the magnetic field in the corona, using techniques of coronal
magneto-seismology. Coronal magneto-seismology is at its infancy, there have been
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several developments on trying to estimate the magnetic field measurements, the
TRACE observation (Aschwanden et al., 1999) paved the way for the development
of coronal magneto-seismology. However, the standing kink waves were found to
be always associated with some low-coronal eruptions (e.g.flares) and thus posed a
difficulty in getting continuous measurements of coronal parameters (Nakariakov &
Ofman, 2001; Nakariakov, 2003). This problem can be mitigated with the discovery
of ubiquitous propagating kink waves (Yang et al., 2020). The propagating kink
waves have made the measurement of the strength of magnetic field possible for
quiet Sun corona (Long, D. M. et al., 2017). The measurement of magnetic field
in the corona (plasma β ≪ 1) is crucial for understanding the physical processes
on the sun in general and solar corona in particular. The LOS magnetic field of
a flaring coronal loop has been measured by Kuridze et al. (2019), fairly recently.
They report coronal magnetic field strengths up to 350 G at heights reaching 25
Mm above the solar limb, with implications for our understanding of the Sun. The
values of magnetic field strength measured by them are considerably higher than
previous estimates for the coronal fields (Nakariakov & Verwichte, 2005; Tomczyk
et al., 2007). The low values reported by previous studies is attributed to the effects
of spatial and temporal resolution with an underestimation of up to 80% for previous
low resolution studies to determine the magnetic field values.

The thesis outlines the various types of waves and focuses on the study of
propagating kink MHD waves in the solar corona. The focus of this thesis lies with
the propagating kink waves observed using the CoMP instrument (Tomczyk et al.,
2007; Tomczyk & McIntosh, 2009; Morton et al., 2015, 2016; Tiwari et al., 2019).

In the first study, the method to analyse the Doppler velocity image sequences is
presented in full detail (see Chapter 3). The coherence based method to track the
propagation of waves in the solar corona is found to be particularly well suited to the
study of propagating kink waves. The first observational evidence for the damping of
propagating kink waves via resonant absorption was provided in the study of Verth
et al. (2010). However, as it is shown in Subsection 3.3.4, the statistics used in that
study was inadequate and biased. Motivated by this, in Chapter 3, the statistics of
the power ratio (ratio of two χ distributions) is discussed for the first time (Tiwari
et al., 2019). The likelihood function is also derived using the derived probability
density function (p.d. f ). The results of Verth et al. (2010), that the damping is
frequency dependent was also confirmed by the study. It is also noted that energy
injected in the loop at the footpoint is similar, which was also previously reported
in (Verth et al., 2010). This along with the ubiquity of the propagating kink waves
support the excitation of these waves via a global driver. There have been various
studies to understand how the photospheric motion can lead to waves in the loops
observed in the solar corona (Jain et al., 2009, 2011; Hindman & Jain, 2008). Studies
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by Morton et al. (2019) suggest p-mode as a possible driving mechanism for these
waves. The result in the study also highlights the importance of the loop geometry
and the changes in the loop plasma environment. The damping of these waves are
found to be frequency dependent, consistent with the resonant absorption as the
damping mechanism (Verth et al., 2010) for propagating kink waves. The study find
that the damping rate decreases for longer loops that reach higher up in the solar
corona, which means that the longer loops are damped at a decreased rate. The
observations consisted of analysis of just seven wave-tracks (loops) which is not a
reasonable statistical size to comment on this behaviour. This necessitates the need
for studying these waves in a statistical manner which is achieved by Chapter 4. The
limitations of the CoMP observations (namely the poor spatial sampling) and the
relevance of accounting for flows in the study of damping of waves in solar corona
is also highlighted.

The work presented in Chapter 3 motivates the need for a large scale statistical
study of damped propagating kink waves. This is explored in Chapter 4, where a
total of 108 loops were observed between 2012-2014. To be consistent with the study
discussed in Chapter 3, the same analysis techniques were adopted for the statistical
analysis of damped propagating kink waves. This study provides an understanding
of statistical properties of damped propagating kink waves and further confirms
the results from Chapter 3. In addition to this, some interesting new findings are
also reported. The results reaffirm the role of resonant absorption as the damping
mechanism for the propagating kink waves. The rate of damping was found to be
decreasing for longer loops that reach higher up in the solar corona, consistent with
the results from Tiwari et al. (2019). This difference in the damping rates could be
attributed to the difference between the density of the plasma inside and outside the
coronal loops. Under the assumption that the coronal loops are subjected to similar
rates of heating, and the chromospheric evaporation rate is also similar, then the
average density of the longer loops is likely to be less than those of shorter loops.
This leads to the density ratio (ρi/ρe) for longer loops to decrease than for the shorter
loops, compared to the ambient plasma.

One of the other key features of this study was the comparative study of damped
propagating kink waves and damped standing kink waves. The composed table of
damped propagating kink waves parameters (see Table 4.1) are compared to the
damped standing kink waves parameters (see Table A.2). The data for the damped
standing waves was taken from the study by Nechaeva et al. (2019). The analysis for
damped standing waves analyses 101 loops across the solar cycle 24, using data from
AIA/SDO. The standing kink waves are found to be associated by a low coronal
eruptive event (Zimovets & Nakariakov, 2015), hinting at the excitation mechanism
of these standing waves. The equilibrium parameters, phase speed are studied across
the distributions of loop length for both the standing and propagating kink waves.
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The rate of damping varies in between these two different modes of kink waves. By
comparing the Equilibrium parameter (quality factor) of these two modes of kink
waves, it is found that for loops with similar loop lengths, the rate of damping is
significantly higher in case of standing kink waves as compared to the propagating
kink waves. The median of the quality factor is 9.08 and 1.8 for damped propagating
and damped standing kink waves, respectively. It is also observed that in case of
standing kink waves the rate of damping increases with increasing loop lengths
which is contrary to the observation for the propagating kink waves. This could
be due to the difference in the excitation mechanism of these waves, but further
studies needs to be done to understand this behaviour. The differences between
the phase speed of propagating kink waves and the kink speed of standing kink
waves become evidently similar from the distribution for these two waves. It also
highlights the difference between these two kinds of waves. On one hand the kink
speed of the standing waves can go up to a few thousands of km s−1 and on the other
the speed for propagating kink waves are distributed around 600-800 km s−1. The
phase velocity depends on the magnetic field of the plasma, which might be able to
explain the vastly different values of phase velocities measured for the propagating
and standing kink waves. It should also be noted that the excitation of the standing
kink waves in the coronal loops due to eruptive processes in corona makes them
biased and very selective as opposed to the ubiquitous propagating kink waves. The
catalogue of the propagating kink waves, provide us with another tool for coronal
magneto-seismology independent of eruptive processes on the Sun. This is also
important as the direct magnetic field measurement of quiet Sun corona is very
difficult, the observations and understanding of damping of the propagating kink
waves can provide a diagnostic tool to study quiet sun coronal magnetic fields.

The damping length (Ld) for propagating kink waves is also estimated, and found
to be broadly consistent with previously reported values of 100-200 Mm (Hahn
& Savin, 2014). Using the data provided in the Hahn & Savin (2014) study ξ is
calculated and found to be in between 3.7 -7.4. The values obtained are overestimates
for their study, but are broadly in agreement with the range of values obtained in the
statistical study.

The comparative study of damping of standing kink waves, which are found in
loops with footpoints in the active region (strong magnetic field) and the propagating
kink waves found in the loops with footpoints assumed to be in the inter-network
regions (weak magnetic field) also helps us understand the heating of these loops.
3D MHD simulations of heating of active region loops (De Moortel & Nakariakov,
2012; Howson et al., 2019; Prokopyszyn et al., 2019; Howson et al., 2020) show
that the loop heating via phase mixing appears to be insufficient for balancing the
radiative losses. The difference between the quality factor of standing kink waves
(representing active region environment, larger values of density contrast and smaller
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values of ξ ) and propagating kink waves (representing quiet Sun region environment,
lower values of density contrast and larger values of ξ ) implies that in case of quiet
Sun loops the wave heating would not be sufficient to support the radiative losses,
and thus a different heating mechanism is at play.

Lastly another interesting feature from this study (see Chapter 4) is the observa-
tion of amplification of waves. Out of 108 observed loops, 31 loops have a negative
value of equilibrium parameter (ξ ), which implies that these waves were amplified.
The amplification of these waves is of unknown origin. However, some of the
statistical properties might be helpful in explaining the origin of this amplification.
The equilibrium parameter (ξ ) for these observations seem to be dependent on the
footpoint power ratio of these loops as seen in Figure 5.1. The amplification is
typically observed in smaller loops.There is a possibility that this could be an artifact
of the analysis method. Further studies using numerical simulations are needed to
explain the amplification of these waves.

Fig. 5.1 Variation of equilibrium parameter with footpoint power ratio, in case of
propagating kink waves. the positive X-axis shows the damped propagating kink
waves and the negative X-axis shows amplified kink waves.

The thesis furthers our understanding of the damping of waves in the solar
atmosphere, with the implications for coronal magneto-seismology and wave heating
of the solar coronal loops and the solar corona.

5.2 Future work and questions

Within this thesis the analysis method for studying propagating waves in the solar
corona is developed. The interesting properties of the decrease in the damping rate
with the increase in loop length is presented and a possible explanation is provided.
There are however some unanswered questions, such as a) What is the source of
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these ubiquitous wave phenomenon? b) The energy budget of these waves in the
corona? These are important questions in their own merit and require future studies.

Some of the studies that can contribute to our understanding of the solar in
particular and stellar atmospheres in general are briefly discussed. These studies
can benefit from the work done in this thesis. Some future expectations are also
discussed.

5.3 Open questions

5.3.1 Energy budget of corona

The various studies however have huge discrepancies in the energy budget for ex-
ample Tomczyk et al. (2007) suggested an energy budget that is several orders of
magnitude too small to account for coronal heating. However using the SDO/AIA
observation, McIntosh et al. (2011b) suggests that the observed small amplitude
oscillatory displacements contain sufficient energy to account for the heating require-
ments of the quiet Sun and coronal holes ( 1−2×105 erg cm−2 s−1). However, in
active region loops the energy budget is estimated to be at least an order of mag-
nitude too small (105 erg cm−2 s−1 vs 2× 105 erg cm−2 s−1 needed to account
for the heating of coronal loops. This vast discrepancies could arise from the the
effects of superposition of Doppler velocities. This superposition can be a result
of integration along the line of sight and/or a result of lower spatial sampling by
instruments. This superposition results in a significant proportion of the wave energy
flux being “hidden” in the large (observed) nonthermal line widths (McIntosh &
De Pontieu, 2012; Gupta et al., 2019). 3D numerical Simulations to explain the
“hidden” energy suggest (De Moortel & Pascoe, 2012; Pant et al., 2019) that the
observed wave energy is only 0.2%-1% of the true wave energy, which explains the
2-3 order-of-magnitude energy discrepancies. In addition, The interpretation of wave
mode from the observations of waves is not an easy task, this further complicates the
estimation of energy budget (Goossens et al., 2013). Complications also arises due to
the highly active nature of the solar atmosphere. The presence of wave energy does
not guarantees local heating due to the various phenomena such as wave damping
and dissipation. The Parker Solar Probe (PSP) and and the SOlar Orbitor along
with new generation of large aperture telescopes such as DKIST have hopes of the
solar physicists up to understand the energy budget of solar corona via the study and
validation of both wave and reconnection based heating models.
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5.3.2 Wave damping and dissipation

The mechanism for damping of these waves is considered to be either resonant
absorption (Verth et al., 2010; Terradas et al., 2010) or mode coupling (Pascoe et al.,
2012; De Moortel et al., 2016). Mode coupling and resonant absorption can aid in
transferring energy from one wave mode to another. This might be observed as rapid
damping of observable transverse oscillation. However, the presence of damping does
not necessarily implies dissipation (and hence heating) on the same rapid timescale.
The heating of solar plasma requires the wave energy to be transferred into the
kinetic energy of plasma. However, the dissipation is inefficient in the the solar
atmosphere unless very short spatial scales are involved. This is naturally achieved
by the by phase mixing of Alfvén waves. Phase mixing leads to small-scale structures
forming in the resonant layer (boundary of the loops) (Soler et al., 2011; Soler &
Luna, 2015; Soler & Terradas, 2015; Cargill et al., 2016; Howson et al., 2017). The
existence of small scale structures in the boundary layers of the loops (flux tubes) was
predicted by Heyvaerts & Priest (1983). The small scale structures that have been
observed in numerical simulations and satisfy the conditions of wave dissipations at
small-scales are the Transverse Waves Induced Kelvin-Helmholtz (TWIKH) rolls
(Antolin et al., 2014; Okamoto et al., 2015; Antolin et al., 2015; Antolin et al., 2017).
Kelvin-Helmholtz Instability (KHI) benefits significantly from the resonance, from
which it extracts kinetic energy. (Karampelas et al., 2017) has shown that resonant
absorption is key to energize TWIKH rolls and spread them all over the loop. These
KH instability leading to smaller-scale structures have also been analytically and
numerically predicted from the shear flow of other transverse waves, such as torsional
Alfvén waves (Zaqarashvili & Erdélyi, 2009). The DKIST (Tritschler et al., 2016)
has created a buzz in the scientific community about observations of these small
scale structures using the vastly improved spatial resolution of the instruments. The
energy discrepancy between different observations of propagating transverse waves
is an perplexing question. The resolved measurements of the propagating transverse
waves is provided by the chromospheric and transition region observations using
imaging data from the Solar Optical Telescope (SOT) on board Hinode (De Pontieu
et al., 2007) and the AIA/SDO observations (McIntosh et al., 2011b). These studies
reported waves with amplitudes of 20 km s−1 suggesting the energy flux of 100-
200 W m−2 to accelerate and balance the fast solar wind and balance radiative
losses in the quiet corona. However the coronal counterpart of this propagating
transverse waves was seen using Doppler velocity data from CoMP (e.g. Tomczyk
et al., 2007; Tomczyk & McIntosh, 2009; Morton et al., 2016). The measured
Doppler velocities however suggest an energy flux of 0.01 W m−2, a reduction of
3-4 orders of magnitudes. The CoMP data also provides measures of coronal line
widths, providing estimates of the non-thermal component that are comparable to
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previously reported values. There have been various studies to measure the non-
thermal components using the coronal line widths data (e.g McIntosh & De Pontieu,
2012; Hahn et al., 2012; Gupta et al., 2019). The studies have demonstrated an
increase in the amplitude of non-thermal line-widths as one radially moves away
from the solar disk. The line width observed in coronal holes by (e.g Hahn & Savin,
2014; Morton et al., 2015) vary from 30-60 km s−1 for distances up to 1.4 R⊙. These
observations provide evidence for the role of these propagating kink waves in the
acceleration of the solar wind.

5.4 Future work

One of the limitations as highlighted throughout Chapter 3 and Chapter 4 is the
lower spatial sampling and the effect of line of sight integration effect on the obser-
vation and measurement of wave properties in the solar corona. The increasingly
complex and detailed 3D MHD numerical simulations can provide a pivotal role in
understanding and interpreting these observations. The validity of these numerical
simulations as already been established (e.g. Reale, 2010; De Moortel et al., 2016;
Pascoe et al., 2016b, 2017, 2018). To this end one of the future work is to understand
and validate the model that is used to interpret the damping of propagating kink
waves (Equation 1.34). A numerical simulation has been designed study the influence
of spatial averaging on observations of damping in propagating kink waves and to
validate the analysis method developed as part of this thesis. The 3D multi-stranded
coronal loop (MHD) simulations with colleagues from KU Leuven are performed,
to study the damping behaviour in forward modelled loops. The numerical setup
has a dimensions of 200 Mm × 5 Mm × 5 Mm (See Figure 5.2), with multiple
random Gaussian density enhancements across the straight magnetic field, while
along the magnetic field the plasma was homogeneous. The obtained simulation
was forward modelled using the FoMo1 tool (Van Doorsselaere et al., 2016). The
forward modelled loops were ’degraded’ to match the CoMP spatial resolution of
4.5′′. The same steps as performed in Chapter 3 and Chapter 4 can then be used to
estimate the damping in the simulated loops and the same can be obtained for the
high resolution simulated loops. This can provide a test for the analysis method used
in this thesis at the same time.

The results from Chapter 4 also highlight the need for performing simulations
for quiet Sun conditions to understand the role of wave damping and dissipation in
the heating of the quiet Sun coronal loops and the solar corona.

The exponential damping profiles is assumed in the study throughout, however
there some evidences supporting a Gaussian profile for damping, especially during

1FoMo

https://homes.esat.kuleuven.be/~tomvd/fomo-c/html/index.html
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Fig. 5.2 Flux tubes in the multi-stranded 3D numerical simulation setup. The red
dense regions correspond to the fluxtubes and the blue region corresponds to the
background ambient medium.

the initial phases of damping (e.g. Pascoe et al., 2016b, 2017, 2018). Further analysis
should take these into consideration. The poor spatial samping of CoMP instrument
limits the possibilities of inferences from the data, which has been discussed in
Chapter 3 and Chapter 4, it has been shown that the line-of-sight integration has
a significant impact on observations (De Moortel & Pascoe, 2012). The DKIST,
which boasts to be the world’s largest solar telescope with a 4-m aperture has the
potential to mitigate this issue. DKIST begins science operation from July 2020.
The CoMP instrument is being upgraded as well which will improve the spatial
sampling of the instrument (called uCoMP). This upgrade provides near constant
ground based coverage of the solar corona. These improvements will help address the
questions that could not be addressed in this thesis and this can be used to constrain
the results regarding damping of the waves further. The recent study by Morton et al.
(2019) suggest the excitation of these waves by a contribution of solar p-modes,



5.4 Future work 125

the connection between the observed propagating kink waves and the solar wind
warrants a study by itself.

Future studies should also try to include the role of background flow to try to
measure the background flow speeds in coronal loops in the solar corona. The work
in the thesis can also be used to estimate the magnetic field of the corona and create
a magnetic field map of the solar corona.

The coming decade is going to be particularly exciting as DKIST observations
would coincide the first encounter missions aimed at mapping the physical condi-
tions in the vicinity of the Sun, the NASA/PSP (launched, August 2018) and the
ESA/NASA mission Solar Orbiter (launched, February 2020). DKIST, PSP, and So-
lar Orbiter will form an unprecedented solar corona and inner heliospheric campaign
addressing the long standing problems of coronal heating and acceleration of solar
wind. These observations will also further our understanding about how stars create
and maintain their magnetic environments.
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Appendix A

Tables from (Chapter 4)

A.1 Positions of loop

The following Table A.1 notes the positions of the identified loop tracks as discussed
in Section 4.2.3. The points represent the loop apex identified by finding the inflexion
point.

Table A.1 Position of loop apexes identified as shown in Figure 4.2

Loop

No.

Solar-X

(arcsecs)

Solar-Y

(arcsecs)
Date

1 -836.749 702.485 20120423

2 -989.575 460.7 20120626

3 1143.01 -191.493 20120410

4 589.619 884.311 20120810

5 -905.257 -626.738 20120719

6 -1100.37 -219.12 20120410

7 -917.755 -600.778 20120626

8 581.283 940.528 20120410

9 -1013.47 -675.221 20120410

10 1120.27 -156.174 20120423

11 922.341 480.758 20120810

13 337.831 1128.28 20120719

14 -961.839 586.351 20130717

12 551.719 985.554 20120120

15 -991.906 463.986 20130717

16 -1098.83 194.083 20120121

17 -1081.26 -190.223 20120719

18 842.873 -661.366 20120410

19 -934.339 481.913 20120120

20 -984.19 478.482 20130717
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Table A.1 continued from previous page
Loop

No.

Solar-X

(arcsecs)

Solar-Y

(arcsecs)
Date

21 -1063.73 -103.316 20120626

22 -1023.75 486.778 20120410

23 610.279 -928.917 20120810

24 -374.774 1048.45 20120719

25 -952.975 418.094 20120410

26 -1064.34 -111.295 20120410

31 1069.03 68.5343 20130717

30 1085.54 77.3289 20120410

27 875.421 -633.739 20120423

28 -1092.94 -88.1161 20120121

29 -694.081 828.018 20120121

32 -1088.95 -108.385 20120423

33 1209.13 -128.97 20120120

34 631.645 -874.571 20120120

35 -960.584 -455.081 20120121

36 1184.89 -154.668 20120810

37 602.033 -892.791 20120810

38 669.385 -872.151 20130717

39 -975.912 -480.902 20120120

40 -1086.52 24.9296 20120121

41 -974.841 -464.217 20120410

43 -1017.25 -483.423 20120121

42 563.485 -991.248 20140102

44 1111.66 -128.335 20120120

45 -1022.27 -472.45 20120810

46 -1049.69 -487.588 20120121

47 -1126.27 55.5354 20120120

48 -316.995 1032.62 20120121

49 -316.995 1032.62 20120423

50 -322.679 1050.09 20120810

51 -322.679 1050.09 20120719

52 596.258 -935.787 20120410

53 596.258 -935.787 20120719

55 -105.355 1031.59 20120423

54 -111.158 1030.64 20120410

56 -149.926 1036.9 20120423

57 -149.927 1036.9 20130717

58 1003.38 278.568 20120410
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Table A.1 continued from previous page
Loop

No.

Solar-X

(arcsecs)

Solar-Y

(arcsecs)
Date

59 -974.841 -464.217 20120120

60 -339.561 1007.43 20120410

61 -1048.32 40.1427 20120719

62 -418.59 1004.38 20120120

63 1102.7 -207.835 20120423

64 1098.0 -220.957 20120120

65 1139.13 203.939 20120121

66 565.977 -942.744 20120423

67 1057.52 264.131 20120121

69 -364.738 1059.9 20120423

68 -1149.07 -37.3129 20120719

70 583.793 -974.754 20120719

71 993.548 532.001 20120121

72 559.775 -1031.05 20120120

73 1127.22 -127.23 20120120

74 -1094.45 -56.8706 20130717

75 1111.05 -63.6959 20120410

76 -1062.69 9.00183 20120121

77 1039.45 230.53 20120410

78 1049.77 -168.193 20120810

79 564.797 -953.776 20120120

80 -369.515 1028.94 20120423

81 1101.27 268.271 20130410

84 -419.756 1012.89 20140102

82 -1077.38 -109.119 20120120

83 274.92 -1004.83 20120120

85 -1137.79 -80.0138 20120121

86 1030.3 206.402 20120719

87 566.204 -934.279 20120719

88 1097.27 317.643 20120719

89 -343.386 1002.95 20120121

90 1052.04 -79.3839 20120121

91 1077.84 -104.255 20120121

92 1077.95 -192.267 20130717

93 1042.74 366.635 20120121

94 749.017 821.448 20120120

96 991.107 484.019 20120120

97 961.987 510.705 20120121
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Table A.1 continued from previous page
Loop

No.

Solar-X

(arcsecs)

Solar-Y

(arcsecs)
Date

95 1144.3 138.301 20120120

98 512.391 -931.485 20120719

99 -1081.16 191.915 20120526

100 1075.96 -40.2086 20120423

101 -1093.74 44.2791 20140102

102 568.06 -961.379 20120121

103 594.952 -974.778 20120120

104 -1141.3 81.3959 20120121

105 1012.32 415.887 20120120

106 528.502 -944.595 20120121

107 974.839 496.024 20120121

108 504.412 944.643 20120121

A.2 Damping of standing kink waves

The table obtained for the statistical study of damping of standing kink waves.

Table A.2 Table obtained from Nechaeva et al. (2019), this analyses damping of
standing kink waves in the solar corona using SDO in the solar cycle 24.

Serial Date Period Period Loop Loop length Loop displ- Amplitude Amplitude Damping Damping ξ Kink
No. (Mins) error length error acement (Mm) error time time error speed

(Mins) (Mm) (Mm) (Mm) (Mins) (Mins) (Mins) km s−1

1 2010-Aug-2 1.69 0.05 78.0 7.0 1.2 10.76 2.79 2.62 632.67

2 2014-Sep-10 2.17 0.46 87.0 19.0 12.8 1.7 1.0 8.2 4.6 2.38 843.0

3 2013-Feb-17 2.29 0.04 92.0 0.7 3.1 7.82 1.66 3.15 1236.5

4 2016-Feb-12 2.32 0.27 94.0 11.0 3.4 1.6 0.7 3.3 1.0 1.14 1080.5

5 2014-Sep-8 2.46 0.09 115.0 12.0 1.8 3.0 0.8 6.0 1.8 2.08 1326.34

6 2011-Feb-13 2.48 0.05 118.0 3.1 3.7 8.84 1.5 3.4 1512.84

7 2016-Feb-12 2.79 0.23 127.0 18.0 3.2 2.1 0.6 14.8 6.8 3.05 872.84

8 2012-May-26 2.9 0.09 138.0 13.0 9.1 17.57 2.35 1.83 479.67

9 2011-Aug-11 2.95 0.07 146.0 17.4 3.2 2.69 0.64 1.14 2071.0

10 2017-May-24 3.04 0.51 147.0 9.0 2.7 3.7 1.2 10.9 4.6 1.82 818.0

11 2015-Apr-23 3.22 0.13 148.0 12.0 0.3 0.8 0.3 6.9 3.6 3.18 2273.5

12 2016-Oct-29 3.38 0.43 150.0 10.0 9.2 2.4 1.1 7.6 2.7 1.29 850.34

13 2011-Sep-6 3.42 0.04 153.0 9.5 3.4 9.99 4.59 4.83 2463.84

14 2012-May-8 3.47 0.05 154.0 7.4 5.3 7.83 0.62 2.11 1383.67

15 2011-Dec-22 3.58 0.11 156.0 2.0 3.0 8.0 5.0 1.56 1013.67

16 2012-May-26 3.62 0.04 162.0 19.6 9.4 24.22 2.02 3.16 704.0

17 2011-Feb-10 3.71 0.02 162.0 2.9 3.2 7.23 1.3 4.28 3195.34

18 2011-Feb-9 3.81 0.03 181.0 1.4 1.2 7.44 1.0 2.14 1738.67

19 2016-Jul-10 3.81 0.42 181.0 10.0 5.1 6.2 1.5 17.3 5.4 1.99 692.67

20 2017-Jan-12 4.11 0.33 183.0 15.0 4.6 1.5 0.8 4.4 2.2 1.49 2067.84

21 2011-Feb-9 3.96 0.03 183.0 2.9 4.4 7.18 1.5 3.14 2663.84

22 2015-Apr-2 3.85 0.07 183.0 10.0 8.9 4.7 0.9 27.3 10.2 6.13 1370.84

23 2013-Oct-11 4.38 0.18 191.0 10.4 13.0 9.37 1.22 1.17 792.83

24 2011-Feb-10 4.59 0.07 207.0 1.2 1.6 10.0 1.0 2.67 1845.0

25 2010-Nov-3 4.69 0.03 213.0 1.4 4.7 8.8 1.8 3.58 2886.17

26 2010-Aug-2 5.09 0.06 232.0 5.1 1.7 5.34 1.12 1.56 2261.17

27 2012-May-30 5.14 0.02 233.0 4.0 5.3 19.11 4.85 5.65 2297.84

28 2012-May-30 5.16 0.02 234.0 2.2 8.8 15.55 1.22 3.63 1822.5

29 2015-Oct-27 5.2 0.18 236.0 12.0 1.6 2.3 0.5 32.0 14.8 5.14 1264.67

30 2012-Oct-20 5.27 0.08 238.0 10.3 12.1 9.01 2.16 2.08 1832.17

31 2013-Jan-7 5.39 0.03 241.0 9.7 3.1 9.44 0.92 2.62 2231.5

32 2011-Nov-14 5.56 0.23 253.0 2.6 3.7 16.19 7.67 3.02 1573.34

33 2015-Sep-21 5.56 0.05 254.0 12.0 1.1 2.1 0.4 14.4 7.0 6.05 3557.51
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Table A.2 continued from previous page
Serial Date Period Period Loop Loop length Loop displ- Amplitude Amplitude Damping Damping ξ Kink

No. (Mins) error length error acement (Mm) error time time error speed
(Mins) (Mm) (Mm) (Mm) (Mins) (Mins) (Mins) km s−1

34 2017-Aug-27 5.61 0.31 254.0 14.0 8.4 5.7 1.4 8.6 2.4 0.92 908.5

35 2017-Sep-7 5.67 0.31 255.0 15.0 14.4 3.9 1.3 9.1 2.4 1.4 1305.67

36 2014-Feb-10 5.72 0.1 257.0 3.6 2.9 19.72 3.23 4.11 1784.67

37 2012-Oct-20 5.77 0.04 258.0 3.6 2.5 7.32 1.08 1.32 1555.17

38 2013-Jan-7 5.78 0.02 260.0 1.3 2.2 14.0 2.0 3.11 1926.0

39 2010-Nov-3 5.8 0.08 262.0 4.4 9.7 4.12 0.47 1.14 2412.5

40 2011-Feb-10 5.88 0.17 264.0 3.0 4.3 5.09 0.98 0.99 1712.0

41 2012-Oct-19 5.94 0.08 270.0 3.0 2.1 15.23 5.5 2.93 1730.84

42 2017-Aug-1 6.08 0.19 274.0 14.0 4.7 5.0 0.4 13.0 5.4 1.39 973.67

43 2011-Sep-22 6.22 0.11 284.0 1.4 1.7 12.2 3.47 1.28 994.34

44 2016-Oct-1 6.49 0.5 286.0 12.0 5.5 4.7 1.4 24.3 12.8 3.16 1239.67

45 2013-Jan-7 6.54 0.06 295.0 2.8 12.3 15.75 3.09 2.18 1360.0

46 2017-Jun-1 6.93 0.33 304.0 11.0 9.3 2.7 1.0 15.6 8.3 4.13 2680.84

47 2014-Jun-10 7.03 0.26 313.0 36.0 4.3 2.5 0.6 24.8 12.1 3.37 1417.5

48 2014-Feb-11 7.06 0.13 314.0 17.8 27.6 19.62 2.96 1.65 881.0

49 2015-Dec-20 7.18 0.15 317.0 11.0 8.2 4.0 0.7 20.8 6.4 3.05 1549.34

50 2014-Jul-8 7.23 0.86 319.0 19.0 6.5 6.4 1.6 18.4 8.2 1.65 952.84

51 2015-Apr-23 7.3 0.2 324.0 9.0 5.0 4.4 0.5 35.9 14.1 4.99 1502.17

52 2017-Sep-7 7.44 0.1 326.0 9.0 26.9 21.5 2.4 21.4 4.9 2.57 1306.17

53 2011-Feb-10 7.46 0.14 326.0 3.6 3.2 11.83 4.76 1.32 1214.17

54 2015-Oct-27 7.64 0.32 328.0 10.0 8.4 6.1 1.3 21.8 4.6 1.7 853.5

55 2015-Oct-28 7.67 0.4 330.0 11.0 13.2 6.2 1.7 15.5 4.3 1.57 1116.84

56 2017-Apr-3 7.95 0.26 333.0 19.0 4.2 5.4 1.4 19.0 4.8 1.96 1145.5

57 2012-Aug-7 7.73 0.27 333.0 15.4 7.4 16.7 1.03 1.68 1115.5

58 2012-Oct-20 8.1 0.03 347.0 9.6 4.4 24.83 3.41 4.43 2061.84

59 2011-Sep-23 8.27 0.12 348.0 7.5 10.0 16.55 1.44 1.47 1029.34

60 2013-Jan-7 8.32 0.14 352.0 17.2 4.8 9.0 3.0 1.29 1688.17

61 2012-Oct-20 8.33 0.06 353.0 3.1 3.4 14.17 2.73 2.48 2057.17

62 2013-Jan-7 8.48 0.07 363.0 8.0 16.3 7.53 1.45 1.05 1694.67

63 2011-Nov-17 8.48 0.4 365.0 6.4 4.3 19.19 1.55 1.25 792.17

64 2013-Jan-7 8.52 0.08 368.0 2.1 12.7 15.04 1.81 1.8 1469.0

65 2014-Nov-3 9.09 0.66 385.0 9.0 6.5 5.9 2.2 27.4 12.5 2.86 1338.17

66 2013-Oct-11 9.23 0.17 386.0 17.9 8.0 15.38 2.58 1.47 1231.34

67 2015-Oct-2 9.38 0.76 394.0 20.0 7.4 12.8 3.6 21.1 5.8 1.23 764.0

68 2011-Feb-11 9.52 0.17 397.0 4.7 8.9 8.02 1.09 0.7 1154.67

69 2014-Feb-11 9.69 0.14 403.0 9.3 7.8 20.71 4.71 2.28 1481.0

70 2017-Aug-1 9.78 0.62 403.0 13.0 3.6 6.9 2.2 12.7 4.6 1.37 1453.84

71 2015-Oct-28 10.21 0.16 410.0 9.0 2.9 1.2 0.3 27.8 13.7 5.0 2458.0

72 2014-Jun-10 10.45 1.02 411.0 10.0 1.6 3.7 1.7 8.6 3.6 1.01 1608.0

73 2015-Jun-4 10.56 0.49 412.0 12.0 11.7 8.8 2.0 25.6 6.9 1.44 770.67

74 2015-Dec-20 10.58 0.72 416.0 8.0 4.6 6.7 1.8 18.2 5.9 1.37 1042.67

75 2014-Jun-11 10.68 0.73 423.0 11.0 10.0 5.8 1.5 15.6 4.4 1.2 1088.84

76 2015-Apr-23 11.35 0.47 431.0 8.0 3.4 14.5 2.6 29.6 7.5 1.45 703.17

77 2014-Feb-11 11.46 0.16 431.0 6.9 10.7 24.17 5.13 1.79 1064.17

78 2011-Nov-18 11.56 0.3 432.0 14.5 15.6 27.43 4.26 1.54 806.33

79 2016-Jul-10 11.83 0.16 435.0 12.0 9.6 9.7 1.2 26.8 7.6 3.16 1709.84

80 2015-Dec-20 11.88 0.78 436.0 9.0 8.8 13.4 2.1 49.3 20.6 2.65 781.83

81 2017-Apr-3 12.07 0.57 445.0 12.0 14.8 9.7 2.5 20.1 5.5 1.61 1185.67

82 2014-Jun-11 12.51 0.42 448.0 11.0 2.6 4.1 0.8 27.3 11.1 2.02 1105.34

83 2014-Jun-11 12.51 0.42 450.0 9.0 6.2 6.6 1.3 43.0 13.5 2.66 927.67

84 2014-Jun-11 12.57 0.38 451.0 10.0 5.5 6.8 1.5 23.2 8.9 1.69 1093.34

85 2017-Aug-1 12.81 0.32 457.0 10.0 1.7 3.9 1.0 25.1 10.8 4.23 2564.51

86 2014-Feb-11 12.95 0.55 457.0 4.9 15.0 13.64 3.93 0.96 1075.84

87 2012-Oct-20 13.43 0.05 473.0 12.5 13.7 13.15 2.66 2.13 2551.17

88 2012-Jan-16 13.3 0.13 473.0 2.5 9.2 18.71 4.5 1.57 1319.34

89 2014-Jul-11 14.3 0.38 489.0 10.0 6.4 7.5 1.3 31.7 10.6 2.68 1377.84

90 2014-Sep-27 14.38 0.33 494.0 10.0 3.9 3.6 1.2 11.1 5.2 2.14 3172.84

91 2015-Dec-21 15.36 0.48 506.0 9.0 9.4 3.7 0.9 16.5 4.6 1.62 1652.0

92 2015-Oct-17 15.68 0.66 507.0 11.0 3.5 2.1 0.8 11.3 5.0 1.54 2302.5

93 2013-Jan-7 15.83 0.19 512.0 15.8 13.4 14.62 4.96 1.49 1745.0

94 2017-Apr-17 16.45 0.83 537.0 14.0 2.8 3.0 1.1 14.4 5.1 1.27 1577.17

95 2011-Nov-18 16.73 0.58 538.0 31.8 26.6 35.01 6.44 1.71 876.5

96 2013-Jul-18 17.19 0.16 540.0 12.3 22.0 21.98 15.6 1.44 1178.0

97 2016-Jul-10 17.82 0.28 547.0 11.0 6.2 12.1 1.1 15.4 3.8 1.43 1694.5

98 2017-Aug-1 17.86 1.18 551.0 13.0 9.3 5.3 1.8 15.5 6.5 1.13 1335.84

99 2015-Apr-23 18.59 1.03 570.0 11.0 14.2 9.8 2.4 28.4 7.3 1.37 915.17

100 2013-Jul-18 20.46 0.12 588.0 25.4 27.4 26.64 2.17 1.69 1243.67

101 2013-Jul-18 20.76 0.21 597.0 19.9 23.7 15.76 3.09 0.98 1237.5
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