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Overdetermined problems for p-Laplace and

generalized Monge-Ampére equations

Behrouz Emamizadeh ∗, Yichen Liu †, Giovanni Porru‡

Abstract

We investigate overdetermined problems for p-Laplace and generalized
Monge-Ampére equations. By using the theory of domain derivative we
find duality results and a characterization of the overdetermined boundary
conditions via minimization of suitable functionals with respect to the
domain.
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1 Introduction

Let D be a bounded smooth domain in RN . A point x ∈ D will be denoted

with x = (x1, · · · , xN ). We also denote ui = ∂u
∂xi , uij = ∂2u

∂xi∂xj , etc, the partial
derivatives of u.
Let us recall the following well known overdetermined problem. Let c be a
constant. If there exists a solution u to the Dirichlet problem

(1) ∆u = 1 in D, u = 0 on ∂D

such that u satisfies the additional condition

(2) |∇u| = c on ∂D
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then D must be a ball. This result has been proved by J. Serrin [15] on 1971
using the moving plane method. At the same time, H. Weinberger [19] yields a
different proof of the same result by using a Pohozaev identity and the maximum
principle applied to a suitable P-function. The method of Weinberger requires
less regularity of the boundary ∂D, but the method of Serrin can be easily
applied to a large class of non-linear and fully non-linear operators. These two
celebrated papers have inspired a great number of mathematicians, and the
corresponding literature is nowadays very prominent. We refer to [2, 3, 5, 9,
11, 17] and references therein. For recent progress on this topic, we refer to the
survey [10]. Among several ideas related to this overdetermined problem, we
recall the following duality result [11].

Theorem 1.1 Let u ∈ C2(D) ∩ C1(D̄) be a solution to Problem (1). The
following statements are equivalent:
(i) u satisfies condition (2).
(ii) The identity

(3)

∫
D

v dx = c

∫
∂D

v dσ

holds for all functions v harmonic in D.

Motivated by this result, we shall prove duality theorems for overdetermined
problems involving p-Laplace equations as well as generalized Monge-Ampére
equations. In case of generalized Monge-Ampére equations, the overdetermined
boundary condition is not the same as (2), but condition (27) below. In the
linear case (κ = 1) condition (27) reduces to the familiar condition |∇u| = c on
∂D. If 1 < κ ≤ N , this condition involves ∇u as well as the second derivatives
of u throughout the Newton tensor Tκ−1(u). Furthermore, we consider suitable
functionals of the domain D whose minimizers must satisfy the overdetermined
boundary condition (2) for the p-Laplace problem, and condition (27) for the
generalized Monge-Ampére problems. A crucial tool serving us shall be the
domain derivative.

The paper is organized as follows. In Section 2 we introduce the notion of
domain derivative. Some of our descriptions are formal, for a precise treatment
of the domain derivative we refer to [16]. In particular, we find a sort of linearized
equation of the p-Laplace equation ∆pu = f(u) (see equation (10)), as well
as a linearized equation of the generalized Monge-Ampére equation Sκ(u) =
f(u) (see equation (19)). These linearized equations are crucial to get our
duality results. Sections 3 and 4 contain our main results. Section 3 is made
of two subsections. In Subsection 3.1 we prove a duality result for a p-Laplace
boundary value problem (see Theorem 3.1). In Subsection 3.2 we prove a duality
result for a boundary value problem corresponding to a generalized Monge-
Ampére equation (see Theorem 3.2). Also Section 4 is made of two subsections.
In Section 4.1 we introduce a special functional associated with our p-Laplace
equation in a domain D. We shall prove that the minimum of such functional
with respect to D under the condition |D| = constant yields a condition for ∇u
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on ∂D which is the same as used in Theorem 3.1 (i). In Section 4.2 we introduce
a special functional associated with a generalized Monge-Ampére equation in a
domain D. We shall prove that the minimum of such functional with respect to
D under the condition |D| = constant yields a condition for ∇u on ∂D which
is the same as used in Theorem 3.2 (i).

2 Domain derivative

The theory of domain derivative is very useful in fields as shape optimization.
From a mathematical point of view, it goes back to Hadamard [8] and Schiffer
[14]. We recall shortly the definitions and refer to [16] for a careful treatment.
If L(u) is a differential operator, we consider the Dirichlet problem:

(4) L(u) = f(u) in D, u = 0 on ∂D,

where f is a smooth function such that problem (4) has a unique solution. Let
I be the identity map. For a smooth (C2 is enough) vector field V : RN → RN ,
and |t| small, define

Dt = (I + tV )(D).

Now, we consider the Dirichlet problem in Dt:

(5) L(ut) = f(ut) in Dt, ut = 0 on ∂Dt.

For x ∈ D we define

(6) v(x) = lim
t→0

ut(x)− u(x)

t
.

Clearly, since Dt depends on the vector field V , also v depends on V . By [16],
v satisfies the boundary condition

(7) v(x) = −∂u
∂ν

(V · ν) on ∂D,

where ν = (ν1, · · · , νN ) is the unit exterior normal on ∂D.
To obtain the equation for v, we compute

(8) lim
t→0

1

t

[
L(ut)− L(u)

]
= lim
t→0

1

t

[
f(ut)− f(u)

]
.

If f is differentiable, we have

f(ut)− f(u) = f ′(u+ θ(ut − u))
(
ut − u

)
. 0 < θ < 1.

Therefore,

(9) lim
t→0

1

t

[
f(ut)− f(u)

]
= f ′(u)v.
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The computation of the left hand side of (8) depends on the structure of the
differential operator L. If L(u) = ∆u we find

lim
t→0

1

t

[
∆ut −∆u

]
= ∆v.

Consider now the p-Laplacian L(u) = div
(
|∇u|p−2∇u

)
. We have

|∇ut|p−2∇ut − |∇u|p−2∇u = |∇u|p−2(∇ut −∇u) +
(
|∇ut|p−2 − |∇u|p−2

)
∇ut.

Therefore,

lim
t→0

1

t

(
|∇ut|p−2∇ut− |∇u|p−2∇u

)
= |∇u|p−2∇v+ (p− 2)|∇u|p−4(∇u ·∇v)∇u.

Hence, in this case, the equation corresponding to (8) for v reads as

(10) div
(
|∇u|p−2∇v + (p− 2)|∇u|p−4(∇u · ∇v)∇u

)
= f ′(u)v.

Now we recall the definition of generalized Monge-Ampére operators. Let
1 ≤ κ ≤ N , and let Sκ(u) be the κ-th elementary symmetric function of the
eigenvalues of the Hessian matrix H = D2u = [uij ] (that is, the sum of all
principal minors of order κ of H). Clearly, we have S1(u) = ∆u (Laplace
operator) and SN (u) = det[D2u] (Monge-Ampére operator). Given a positive
smooth function f(t), we consider the problem

(11) Sκ(u) = f(u) in D, u = 0 on ∂D.

Suppose the domain D ⊂ RN is bounded and smooth. In addition, for κ fixed
such that 2 ≤ κ ≤ N , we assume the following property:

(Pκ) σκ−1 ≥ β on ∂D,

where β is a positive constant and σκ−1 is the (κ− 1)-th elementary symmetric
function of the principal curvatures of ∂D with respect to its inner normal, see
[4, 18]. If we denote by τ1, τ2, · · · , τN−1 the principal curvatures of the surface
∂D we have:

σ1 =
∑

1≤i≤N−1

τi, σ2 =
∑

1≤i1<i2≤N−1

τi1τi2 , σN−1 = τ1τ2 · · · τN−1.

Note that condition (PN ) means that Ω is strictly convex. Moreover, if Ω enjoys
property (Pκ) then also Dt = (I+tV )(D), for |t| small, enjoys the same property
(possibly with a smaller constant β). Finally, f(t) is a positive smooth function
such that problem (11) has a unique admissible solution. As usual, a solution
is admissible if the operator Sκ(u) is positive definite. In this situation, the
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solution u is negative in D and ν = ∇u
|∇u| on the boundary ∂D. We refer to

[4, 18] for a careful discussion of this problem.
It is convenient to define the matrix

(12) T ijκ−1(u) =
∂Sκ(u)

∂uij
, i, j = 1, · · · , N.

We put T0(u) = I, the identity matrix. The matrix Tκ(u) is known as the κ-th
Newton tensor associated with H. We have [13]

Tκ(u) = Sκ(u)I − Tκ−1(u)H, κ = 1, · · · , N − 1.

Since H is symmetric, also Tκ is symmetric. It has several nice properties. For
example, we have

(13)
(
T ijκ (u)

)
i

= 0, j = 1, · · · , N,

where
(
T ijκ (u)

)
i

=
∂T ijκ (u)
∂xi , and here and in what follows, we use the summation

convention over repeated indices from 1 to N . To prove (13), we recall the
definition of the generalized Kronecker symbol(

i1 i2 · · · iq
j1 j2 · · · jq

)
, 2 ≤ q ≤ N,

where i1, · · · , iq are distinct integers between 1 and N , and also j1, · · · , jq are
distinct integers between 1 and N . The value of the symbol is 1 (respectively
−1) if (j1, · · · , jq) is and even (respectively an odd) permutation of (i1, · · · , iq),
and is 0 in all other cases. If 1 ≤ κ ≤ N − 1 we have (see [12])

(14) T ijκ (u) =
1

κ!

(
i1 i2 · · · iκ i
j1 j2 · · · jκ j

)
ui1j1ui2j2 · · ·uiκjκ .

We find (
T ijκ (u)

)
i

=
1

κ!

(
i1 i2 · · · iκ i
j1 j2 · · · jκ j

)
(ui1j1ui2j2 · · ·uiκjκ)i.

Simplifying we can write(
T ijκ (u)

)
i

=
1

(κ− 1)!

(
i1 i2 · · · iκ i
j1 j2 · · · jκ j

)
ui1j1iui2j2 · · ·uiκjκ .

We note that ui1j1i is symmetric with respect to i1i, while the Kronecker symbol
is skew-symmetric with respect to those indices. Thus, the sum over i1i vanish,
and (13) follows.
The proof in above can be extended to prove that, if also v is a smooth function,
we have

(15)

(
i1 i2 · · · iκ i
j1 j2 · · · jκ j

)(
vi1j1ui2j2 · · ·uiκjκ

)
i

= 0, j = 1, · · · , N.
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We refer to Proposition 2.1 of [12] for details.

Another very interesting property is the following (see [12, 13])

(16)
1

κ
T ijκ−1(u)uij = Sκ(u), κ = 1, · · · , N.

We are now ready to find the equation for v defined as in (6) with L(u) =
Sκ(u). Let ut be the (admissible) solution to problem (11) corresponding to Dt.
Using (16) and (13) we have

Sκ(ut)− Sκ(u) =
1

κ

(
T ijκ−1(ut)utij − T

ij
κ−1(u)uij

)
=

1

κ

(
T ijκ−1(ut)uti − T

ij
κ−1(u)ui

)
j

=
1

κ

[(
T ijκ−1(u)(uti − ui)

)
j

+
((
T ijκ−1(ut)− T ijκ−1(u)

)
uti

)
j

]
.

(17)

We have

lim
t→0

1

t
T ijκ−1(u)(uti − ui) = T ijκ−1(u)vi.

Using (13) again we find

(18) lim
t→0

1

t

(
T ijκ−1(u)(uti − ui)

)
j

= T ijκ−1(u)vij .

Moreover, using (14), we have((
T ijκ−1(ut)−T ijκ−1(u)

)
uti

)
j

=
1

κ!

(
i1 i2 · · · iκ−1 i
j1 j2 · · · jκ−1 j

)((
uti1j1u

t
i2j2 · · ·u

t
iκ−1jκ−1

−ui1j1ui2j2 · · ·uiκ−1jκ−1

)
uti

)
j
.

Hence,

lim
t→0

1

t

((
T ijκ−1(ut)−T ijκ−1(u)

)
uti

)
j

=
1

κ!

(
i1 i2 · · · iκ−1 i
j1 j2 · · · jκ−1 j

)((
vi1j1ui2j2 · · ·uiκ−1jκ−1

+· · ·+ui1j1ui2j2 · · · viκ−1jκ−1

)
ui

)
j

=
κ− 1

κ!

(
i1 i2 · · · iκ−1 i
j1 j2 · · · jκ−1 j

)(
vi1j1ui2j2 · · ·uiκ−1jκ−1

ui

)
j

=
κ− 1

κ!

(
i1 i2 · · · iκ−1 i
j1 j2 · · · jκ−1 j

)((
vi1j1ui2j2 · · ·uiκ−1jκ−1

)
j
ui+vi1j1ui2j2 · · ·uiκ−1jκ−1

uij

)
.
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By using (15) and changing conveniently the indices we find

lim
t→0

1

t

((
T ijκ−1(ut)−T ijκ−1(u)

)
uti

)
j

=
κ− 1

κ!

(
i1 i2 · · · iκ−1 i
j1 j2 · · · jκ−1 j

)
ui1j1ui2j2 · · ·uiκ−1jκ−1

vij

= (κ− 1)T ijκ−1(u)vij ,

where (14) has been used once more. From (17), (18) and the latter result we
find

lim
t→0

Sκ(ut)− Sκ(u)

t
=

1

κ

(
T ijκ−1(u)vij + (κ− 1)T ijκ−1(u)vij

)
= T ijκ−1(u)vij .

Hence, recalling (9), we find the equation for v:

(19) T ijκ−1(u)vij = f ′(u)v.

3 Duality results

In this section, we extend Theorem 1.1 to p-Laplace equations and to generalized
Monge-Ampére equations.

3.1 p-Laplace equations

Let D ⊂ RN be a bounded smooth domain, and let f : R→ R be a C1 positive
function such that the problem

(20) div
(
|∇u|p−2∇u

)
= f(u) in D, u = 0 on ∂D,

has a unique (negative) solution u ∈ C1(D̄) ∩W 1,p(D). For example, one can
take, for τ < 0, f(τ) = (−τ)α, 0 ≤ α < p, see [6]. We have

Theorem 3.1 Let u be the solution to problem (20). Then the following state-
ments are equivalent.
(i) There is a constant c such that

(21) |∇u| = c on ∂D.

(ii) There is a constant d such that

(22)

∫
D

(
f(u)− 1

p− 1
uf ′(u)

)
v dx = d

∫
∂D

v dσ

for all solutions v to equation (10).
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Proof. Multiplying (10) by −u, integrating over D and recalling that u = 0 on
∂D we find

−
∫
D

f ′(u)vu dx = −
∫
D

div
(
|∇u|p−2∇v + (p− 2)|∇u|p−4(∇u · ∇v)∇u

)
u dx

=

∫
D

(
|∇u|p−2∇v + (p− 2)|∇u|p−4(∇u · ∇v)∇u

)
· ∇u dx

= (p− 1)

∫
D

|∇u|p−2∇u · ∇v dx

= (p− 1)

∫
∂D

|∇u|p−2∇u · ν v dσ − (p− 1)

∫
D

div
(
|∇u|p−2∇u

)
v dx.

Since ν = ∇u
|∇u| on ∂D, using equation (20), from the latter result we find

(23)

∫
D

(
f(u)− 1

p− 1
f ′(u)u

)
v dx =

∫
∂D

|∇u|p−1v dσ.

If (i) holds, equation (23) yields (22) with d = cp−1.

If (ii) holds, from equations (22) and (23) we find

(24)

∫
∂D

|∇u|p−1v dσ = d

∫
∂D

v dσ.

Using the boundary condition (7) we have

v = −∂u
∂ν

V · ν = −|∇u|V · ν.

Therefore, from (24) we find

(25)

∫
∂D

(
|∇u|p − d|∇u|

)
V · ν dσ = 0.

Since V is arbitrary, we must have

|∇u|
(
|∇u|p−1 − d

)
= 0 on ∂D.

By Hopf’s Lemma |∇u| > 0, hence, |∇u| = d
1
p−1 on ∂D. The theorem is proved.

3.2 Generalized Monge-Ampére equations

Let κ be an integer such that 1 ≤ κ ≤ N . Let D ⊂ RN be a bounded smooth
domain satisfying property (Pκ), and let f : R → R be a C1 positive function
such that the problem

(26) Sκ(u) = f(u) in D, u = 0 on ∂D,

has a unique admissible solution u ∈ C3(D) ∩ C1(D̄). We have
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Theorem 3.2 Let u be the admissible solution to problem (26). The following
statements are equivalent.
(i) There is a constant c such that

(27) T ijκ−1(u)uiuj = c2 on ∂D.

(ii) There is a constant d such that

(28)

∫
D

(
κf(u)− uf ′(u)

)
v dx = d

∫
∂D

v

|∇u|
dσ

hold for all solutions v to equation (19).

Proof. Multiplying (19) by −u, integrating over D, using (13) and recalling that
u = 0 on ∂D we find

−
∫
D

uf ′(u)v dx = −
∫
D

uT ijκ−1(u)vij dx

= −
∫
D

u
(
T ijκ−1(u)vi

)
j
dx =

∫
D

ujT
ij
κ−1(u)vi dx.

(29)

Integrating by parts and using (13) again we find∫
D

ujT
ij
κ−1(u)vi dx =

∫
∂D

ujT
ij
κ−1(u) v νi dσ −

∫
D

uijT
ij
κ−1(u) v dx.

Since T ijκ−1(u)uij = κf(u) in D and νi|∇u| = ui on ∂D, from the latter equation
we find

(30)

∫
D

ujT
ij
κ−1(u)vi dx =

∫
∂D

T ijκ−1(u)uiuj
v

|∇u|
dσ −

∫
D

κf(u)v dx.

From (29) and (30) it follows that

(31)

∫
D

(
κf(u)− uf ′(u)

)
v dx =

∫
∂D

T ijκ−1(u)uiuj
v

|∇u|
dσ.

If (i) holds, equation (31) yields (28) with d = c2.

If (ii) holds, from equations (28) and (31) we find

(32)

∫
∂D

[
T ijκ−1(u)uiuj − d

] v

|∇u|
dσ = 0.

Finally, using the boundary condition (7) we get∫
∂D

[
T ijκ−1(u)uiuj − d

]
V · ν dσ = 0.

Since V is arbitrary, (27) follows with c2 = d. The theorem is proved.

Let us recall a result from [1].
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Theorem 3.3 Let D be a bounded convex domain in the plane and let c be a
constant. If there exists a convex solution u to the Dirichlet problem

(33) S2(u) = u11u22 − u212 = 1 in D, u = 0 on ∂D

such that u satisfies the additional condition

(34) u22u
2
1 + u11u

2
2 − 2u12u1u2 = c2 on ∂D,

then D must be an ellipse.

Proof. See Theorem 2.4 of [1].

Corollary 3.4 Let D be a bounded convex domain in the plane and let c be
a constant. If there exists a convex solution u to problem (33) such that the
integral equations

(35) 2

∫
D

v dx = c2
∫
∂D

v

|∇u|
ds,

hold for all solutions v to the equation

(36) u22v11 + u11v22 − 2u12v12 = 0 in D,

then, D is an ellipse.

Proof. Since T 11
1 (u) = u22, T 12

1 (u) = T 21
1 (u) = −u12 and T 22

1 (u) = u11, equation
(36) can be written as T ij1 (u)vij = 0, and condition (34) can be written as

T ij1 uiuj = c2. Hence, the corollary follows from Theorem 3.2 and Theorem 3.3.

4 Minimization of functionals

In this section we present a motivation of the overdetermined conditions (2) and
(27).

4.1 p-Laplace equations

Let D ⊂ RN be a bounded smooth domain, and recall the problem (20) below

(37) div
(
|∇u|p−2∇u

)
= f(u) in D, u = 0 on ∂D,

where f is a positive function such that problem (37) has a unique (negative)
solution. Given D and the corresponding solution u to problem (37), we consider
the functional

(38) J(D) =

∫
D

(
|∇u|p + p

∫ u

0

f(τ) dτ
)
dx.

10



Theorem 4.1 Let J(D) be defined as in (38). If D̂ is a minimum of J(D)
among all domains D having the same measure as D̂, then |∇u| is constant on
∂D̂.

Proof. To prove the theorem, we use the notion of domain derivative. Recall
that I is the identity map. Let V : RN → RN be a smooth vector field, and let
Dt = (I + tV )D̂ be a deformation of D̂. By the well known Lagrange principle,
D̂ is a stationary point of the functional

I(D) ≡ J(D) + λ(K(D)− µ), K(D) = |D|, µ = |D̂|,

where λ is a real parameter. Since D̂ is a stationary point of I(D), we must
have dI(D̂, V ) = 0 for every vector field V . Clearly,

(39) dI(D̂, V ) ≡ dJ(D̂, V ) + λ dK(D̂, V ).

We compute first dJ(D̂, V ). Let u be the solution of problem (37) with D = D̂,
and let ut be the solution of problem (37) corresponding to Dt. We have

dJ(D̂, V ) = lim
t→0

J(Dt)− J(D̂)

t

= lim
t→0

1

t

[∫
Dt

(
|∇ut|p + p

∫ ut

0

f(τ) dτ
)
dx−

∫
D̂

(
|∇u|p + p

∫ u

0

f(τ) dτ
)
dx
]

= lim
t→0

1

t

[∫
Dt

(
|∇ut|p + p

∫ ut

0

f(τ) dτ
)
dx−

∫
D̂

(
|∇ut|p + p

∫ ut

0

f(τ) dτ
)
dx
]

+ lim
t→0

1

t

[∫
D̂

(
|∇ut|p + p

∫ ut

0

f(τ) dτ
)
dx−

∫
D̂

(
|∇u|p + p

∫ u

0

f(τ) dτ
)
dx
]
.

Since u = 0 on ∂D̂ we find

lim
t→0

1

t

[∫
Dt

(
|∇ut|p + p

∫ ut

0

f(τ) dτ
)
dx−

∫
D̂

(
|∇ut|p + p

∫ ut

0

f(τ) dτ
)
dx
]

=

∫
∂D̂

(
|∇u|p + p

∫ u

0

f(τ) dτ
)
V · ν dσ =

∫
∂D̂

|∇u|p V · ν dσ.

Therefore, we find

dJ(D̂, V ) =

∫
∂D̂

|∇u|p V · ν dσ

+ lim
t→0

∫
D̂

|∇ut|p − |∇u|p

t
dx+ p lim

t→0

∫
D̂

∫ ut
u
f(τ) dτ

t
dx

=

∫
∂D̂

|∇u|p V · ν dσ + p
(∫

D̂

|∇u|p−2∇u · ∇v dx+

∫
D̂

f(u)v dx
)
,

(40)

where v is defined as

v(x) = lim
t→0

ut(x)− u(x)

t
.
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Integrating the equation

−v div
(
|∇u|p−2∇u

)
= −f(u)v

over D̂ we find

−
∫
∂D̂

v|∇u|p−2∇u · ν dσ +

∫
D̂

|∇u|p−2∇u · ∇v dx = −
∫
D̂

f(u)v dx.

Recalling that ∇u = |∇u| ν on ∂D and using the boundary condition (7), from
the latter equation we find∫

D̂

|∇u|p−2∇u · ∇v dx+

∫
D̂

f(u)v dx = −
∫
∂D̂

|∇u|p V · ν dσ.

By (40) and the latter equation we find
(41)

dJ(D̂, V ) =

∫
∂D̂

|∇u|p V ·ν dσ−p
∫
∂D̂

|∇u|p V ·ν dσ = −(p−1)

∫
∂D̂

|∇u|p V ·ν dσ.

On the other hand (see [16] page 652 formula (12) with C(u) = 1), we have

(42) dK(D̂, V ) =

∫
∂D̂

V · ν dσ.

Insertion of (41) and (42) into (39) yields

dI(D̂, V ) = −(p− 1)

∫
∂D̂

|∇u|p V · ν dσ + λ

∫
∂D̂

V · ν dσ

=

∫
∂D̂

(
−(p− 1)|∇u|p + λ

)
V · ν dσ.

Since dI(D̂, V ) = 0 for every vector field V , it follows that |∇u|p = λ
p−1 . There-

fore, |∇u| is a constant on ∂D̂, and the theorem is proved.

4.2 Generalized Monge-Ampére equations

Now we prove a similar result for generalized Monge-Ampére equations. Assume
the domain D bounded, smooth and having the property (Pκ). Let u be an
admissible solution to the problem

(43) Sκ(u) = f(u) in D, u = 0 on ∂D.

Here 1 ≤ κ ≤ N and f(t) > 0. Consider the functional

(44) E(D) =

∫
D

(
T ijκ−1(u)uiuj + (κ+ κ2)

∫ u

0

f(τ) dτ
)
dx,

where u is an admissible solution to problem (43).

12



Theorem 4.2 Let E(D) be defined as in (44). If D̂ is a minimum of E(D)
among all domains D having the property (Pκ) and having the same measure as
D̂, then we have

T ijκ−1(u)uiuj = constant on ∂D̂.

Proof. Let us find a different formulation for E(D). If we multiply (43) by u
and use (16) we have

T ijκ−1(u)uiju = κf(u)u.

Integration over D yields

−
∫
D

T ijκ−1(u)uiuj dx = κ

∫
D

f(u)u dx.

Hence, the functional defined by (44) can be rewritten as

E(D) =

∫
D

(
−κf(u)u+ (κ+ κ2)

∫ u

0

f(τ) dτ
)
dx.

From now on, we shall use this formula for E(D).
By the well known Lagrange principle, D̂ is a stationary point of the functional

I(D) ≡ E(D) + λ(K(D)− µ), K(D) = |D|, µ = |D̂|,

where λ is a real parameter. For a smooth vector field V , let Dt = (I + tV )D̂
be a deformation of D̂. We must have dI(D̂, V ) = 0 for every vector field V .
Clearly,

(45) dI(D̂, V ) ≡ dE(D̂, V ) + λ dK(D̂, V ).

If ut is the solution to problem (43) corresponding to Dt, we compute

dE(D̂, V ) =

∫
∂D̂

(
−κf(u)u+ (κ+ κ2)

∫ u

0

f(τ) dτ
)
V · ν dσ

+ lim
t→0

1

t

∫
D̂

(
−κ
(
f(ut)ut − f(u)u

)
+ (κ+ κ2)

∫ ut

u

f(τ) dτ
)
dx.

Since u = 0 on ∂D̂, the first integral vanishes. Hence,

dE(D̂, V ) =

∫
D̂

(
−κ
(
f ′(u)vu+ f(u)v

)
+ (κ+ κ2)f(u)v

)
dx

=

∫
D̂

(
−κf ′(u)vu+ κ2f(u)v

)
dx.

(46)

As usual, the function v is defined as

v(x) = lim
t→0

ut(x)− u(x)

t
.
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Now we multiply equation (19) by −u and integrate over D̂. We find

−
∫
D̂

f ′(u)vu dx = −
∫
D̂

T ijκ−1(u)viju dx =

∫
D̂

T ijκ−1(u)uivj dx

=

∫
∂D̂

T ijκ−1(u)uiν
jv dσ −

∫
D̂

T ijκ−1(u)uijv dx.

Since νj |∇u| = uj and v = −|∇u|V · ν on ∂D̂, and T ijκ−1(u)uij = κf(u) in D̂,
from the latter equation we find

−
∫
D̂

κf ′(u)vu dx = −κ
∫
∂D̂

T ijκ−1(u)uiuj V · ν dσ −
∫
D̂

κ2f(u)v dx.

In view of the latter result, from (46) we get

(47) dE(D̂, V ) = −κ
∫
∂D̂

T ijκ−1(u)uiuj V · ν dσ.

Insertion of (47) and (42) into (45) yields

dI(D̂, V ) =

∫
∂D̂

(
−κT ijκ−1(u)uiuj + λ

)
V · ν dσ.

Since dI(D̂, V ) = 0 for every vector field V , it follows that T ijκ−1(u)uiuj = λ
κ .

Therefore, T ijκ−1(u)uiuj is a constant on ∂D̂, and the theorem is proved.

Corollary 4.3 Let D be a convex planar domain, let u be a convex solution
to problem (43) with N = κ = 2 and f = 1. If E(D) is the corresponding
functional defined as in (44), and if D̂ is a minimum of E(D) among all convex
domains D having the same measure as D̂, then D is an ellipse.

Proof. It follows from Theorems 4.2 and 3.3.
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