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1. Abstract 

This paper proposes a DRL-based cache content update policy in the cache-enabled 

network to improve the cache hit ratio and reduce the average latency. In contrast to the 

existing policies, a more practical cache scenario is considered in this work, in which the 

content requests vary by both time and location. Considering the constraint of the limited 

cache capacity, the dynamic content update problem is modeled as a Markov decision 

process (MDP). Besides that, the deep Q-learning network (DQN) algorithm is utilised to 

solve the MDP problem. Specifically, the neural network is optimised to approximate the 

Q value where the training data are chosen from the experience replay memory. The DQN 

agent derives the optimal policy for the cache decision. Compared with the existing 

policies, the simulation results show that our proposed policy is 56%–64% improved in 

terms of the cache hit ratio and 56%–59% decreased in terms of the average latency.     

Index terms: cache, deep reinforcement learning (DRL), deep Q-learning network (DQN), 

content update, cache hit ratio, average latency, spatiotemporally varying 

1. Introduction 

The recent rapid evolution of mobile communication techniques and the proliferation of 

smart mobile devices have caused an exponential growth in mobile network traffic[1] [2]. 

According to Cisco [3], global mobile network traffic will reach 77 exabytes each month 

by 2022. As such, it will lead to data traffic congestion of the backhaul [4]. To mitigate 

this, a cache-enabled technique has emerged that is regarded as an effective method that 

can alleviate data traffic congestion [5]. In a cache-enabled network, a portion of the 

popular content is cached at the edge of the network at base stations (BSs) or user terminals 

(UTs), where users can directly access and download the cached content from the edge 

rather than from the core network via backhaul links. Consequently, data traffic congestion 
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of the backhaul can be reduced and content retrieval from the edge can be faster than from 

the remote core network [6][7].  

However, because of the limited cache capacity, it is necessary to update cache content to 

ensure that cache-enabled networks always store the most popular content [8]. The most 

two common content update policies are the least frequently used (LFU) policy and the 

least recently used (LRU) policy [9]. LRU frequently stores the content with the latest 

access time and LFU frequently stores content with the largest cumulative request times. 

Besides, as described in [10], a heterogeneous cache structure is proposed, in which the 

most popular contents are stored at small BSs and the less popular contents are stored at 

macro BSs. The combination of small BSs and macro BSs can maximise the network 

capacity and satisfy the content transmission demand. In [11], an optimal cooperative cache 

policy that can increase the cache hit ratio was presented. The cache hit ratio is utilised to 

describe how frequently content is requested by mobile users. In [9], an adaptive cache 

policy was proposed that can reduce user access latencies. In [12], an edge cache policy 

was proposed to reduce the average content delivery latency. However, conventional 

methods lack adaptive ability in dynamic cache scenarios. The reason is that they assume 

that the content popularity distribution is known or can be accurately predicted, which is 

difficult to achieve in dynamic caching scenarios. In this case, due to an inaccurate 

distribution of content popularity, the conventional methods have poor cache performances 

since their performances are highly dependent on the accurate distribution of content 

popularity.  

Motivated by the deep reinforcement learning (DRL) approach in solving the dynamic 

problem [13], DRL has been applied into cache policies to improve the cache performance 

of dynamic cache scenarios. In [14], a DRL approach was proposed to reduce the 

transmission cost by jointly considering proactive cache and content recommendations. In 

[15], a cache content update policy based on DRL was proposed to improve energy 

efficiency. In [16], a DRL model was utilised to minimise transmission latencies. For 

specific, reinforcement learning (RL) is applied to obtain the optimal cache policy. In [17], 

a DRL-based policy was proposed to minimise system power consumption.  In [18], a deep 

Q-learning network (DQN) algorithm, one branch of DRL, is applied to do the network 
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slicing decision and allocate the spectrum resources for the content delivery. In [19], a 

DQN-based mobile edge computing network is proposed, in which several computation 

tasks are offloaded from the user terminals to the computational access points. Although 

DQN has attracted significant attention in the cache-enabled network, there are very little 

works done in applying DQN into the cache content update phase. Moreover, most of the 

previously mentioned DRL-based cache policies assume the content requests as a time-

varying variable. They did not adopt more practical scenarios in which the content requests 

are varied in both time and location, also known as spatiotemporally varying scenarios.  

Inspired by the aforementioned literature, in this paper, a DQN-based content update policy 

at BSs is proposed to increase the cache hit ratio and reduce average latency, as well as 

considering spatiotemporally varying scenarios in which content requests vary by both time 

and location. The reasons to apply DQN are as follows: 1) DQN has a faster convergence 

speed than the conventional DRL policies, e.g., advanced actor-critic (A2C) and deep 

deterministic policy gradient (DDPG) [14]. 2) DQN can adapt to the varying scenarios, as 

long as the dynamic problem is correctly modeled and the DQN agent is allowed to 

continuously learn experience from the environment [18]. The main contributions are 

summarised as follows: 

 The dynamic cache content update problem is formulated as a Markov decision 

process (MDP) problem, which is solved by a DQN algorithm. Specifically, the neural 

network is utilised to approximate the Q value and the DQN agent is used to decide 

whether or not to cache the requested content. 

 Our proposed policy is compared with LRU, LFU and DRL [20] policies and the 

simulation results demonstrate that our proposed policy has the best cache 

performance in terms of the cache hit ratios and average latencies. 

The rest of this paper is organised as follows. The system model and problem formulation 

are introduced in Section 2. The detailed elements of the MDP framework and the 

principles of the DQN-based cache content update policy are discussed in Section 3. The 

simulation results are shown in Section 4 and the conclusion is provided in Section 5.  
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2. System model and problem formulation 

In this section, the system model and the problem of how to maximise the cache hit ratio 

and minimise average latency are introduced. 

2.1. System model 

As shown in Figure 1, the cache-enabled system includes one core network, ℳ cache-

enabled BSs, and ℧ mobile users. Each BS can store ℋ contents at most. The total content 

library 𝒲 = {1, 2, …, 𝜔} contains 𝜔 kinds of contents and each content has the same size 

𝑆𝑖𝑧𝑒𝑑𝑓. The core network is assumed that has enough capacity to store the entire contents. 

Each BS covers a circular cellular region with a fixed radius, and all of the mobile users in 

its cellular region can connect with the serving BS (the BS where users connect). Mobile 

users can directly retrieve their requested content from the serving BS if the content is 

cached locally (the requested content is already cached at the serving BS); otherwise, the 

requested content must be retrieved from the core network. The ith BS is regarded as a DQN 

agent and receives the spatiotemporal content requests Ri = {𝑅1
𝑖 , 𝑅2

𝑖 , …, 𝑅𝓉
𝑖 , …}, where 𝑅𝓉

𝑖  

is the current content request at the ith BS. From the received content requests, the DQN 

agent can decide when and where (which BS) to cache the content or not. If cached, the 

DQN agent further decides which cached content is replaced by the currently requested 

content; otherwise, the cached contents remain the same. The action space of the ith BS is 

defined as Ai = {𝐴0
𝑖 , 𝐴1

𝑖 , 𝐴2
𝑖 , …, 𝐴ℋ

𝑖 } and Ai uses one hot code. 𝐴0
𝑖  = 1 means that the 

cached content remains the same, and 𝐴𝑣
𝑖  = 1 means that the vth cached content is replaced 

by the currently requested content, where v 𝜖 {1, 2, …, ℋ}. In summary, at each time slot 

𝓉, each BS receives numerous content requests including the user preference content and 

location information, and each DQN agent executes one action from the corresponding 

action space to maximise the cache hit ratio and minimise the average latency.   
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Figure 1. The system model of the cache-enabled network. 

2.2. Problem formulation 

The problem in this study consists of two sub-problems: maximising the cache hit ratio and 

minimising average latency. 

A) Maximising the cache hit ratio 

The cache hit ratio is utilised to describe the probability of the requested content at the 

local cache. The system cache hit ratio 𝒫ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜 is formulated for N requests as follows: 

𝒫ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜=
∑ ∑ 𝐹(𝑅𝓉

𝑖 )𝑁
𝓉=1

℧
𝑖=1

℧×𝑁
,                                                          (1) 

where 𝐹(𝑅𝓉
𝑖 ) is a function to test whether the requested content is cached locally. The 

definition of 𝐹(𝑅𝓉
𝑖 ) is as follows:  

 𝐹(𝑅𝓉
𝑖 )={

1, 𝑖𝑓 𝑅𝓉
𝑖  𝑖𝑠 𝑐𝑎𝑐ℎ𝑒𝑑 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                       (2) 

Maximising the cache hit ratio is expressed as follows: 

P_1: 𝑀𝑎𝑥 𝒫ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜                                           

s.t.   ∑ 𝐹(𝑅𝓉
𝑖 )𝑇

𝓉=1 ≤ ℋ                                                      (3) 

B) Minimising the average latency 
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The latency is an indicator that evaluates the cache content update policy’s performance. 

The latency is the time when content is transmitted from one location to another. The 

latency consists of the transmission latency  𝒯𝑡𝑟 , propagation latency 𝒯𝑝𝑟𝑝 , processing 

latency 𝒯𝑝𝑟𝑜, and queue latency 𝒯𝑞𝑢. From [20], the expression of the latency 𝒯 is given as: 

𝒯 = 𝒯𝑡𝑟 + 𝒯𝑝𝑟𝑝 + 𝒯𝑝𝑟𝑜 + 𝒯𝑞𝑢                                                     (4) 

Normally in the content update process, the destination of the content packet is determinate 

and the content packet is assumed that does not need to wait for transmission. Hence, the 

processing and queue latencies can be neglected during the content update process 

[20][21], and the expression of the latency can be optimised as follows: 

𝒯𝑡𝑟  = 
𝑆𝑖𝑧𝑒𝑑𝑓

𝑣𝑡𝑟
                                                            (5) 

𝒯𝑝𝑟𝑝 = 𝐷∗
 ×

𝑑

ℛ
                                                       (6) 

𝒯 = 𝒯𝑡𝑟 + 𝒯𝑝𝑟𝑝 

 = 
𝑆𝑖𝑧𝑒𝑑𝑓

𝑣𝑡𝑟
 + 𝐷∗ ×

𝒹

ℛ
                                                (7) 

where 𝑆𝑖𝑧𝑒𝑑𝑓 is the content size, 𝑣𝑡𝑟  is the content transmission rate, ℛ is the maximal 

coverage radius of the serving BS or core network, 𝒹 is the distance between the user and 

the serving BS or between the serving BS and the core network, and 𝐷∗ is the maximal 

propagation latency between the user and the serving BS or between the serving BS and 

the core network.  To meet the requirement of  the fifth-generation (5G) communication 

[22], the indicator 𝐷∗is expressed as: 

𝐷∗ = {
𝐷∗

𝑢𝑠𝑒𝑟−𝐵𝑆 = 0.5 ~ 1.5 𝑚𝑠, 𝑖𝑓 𝑖𝑡 𝑖𝑠 𝑎 𝑢𝑠𝑒𝑟 − 𝐵𝑆 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛  
𝐷∗

𝐵𝑆−𝑐𝑜𝑟𝑒 = 10 ~ 20 𝑚𝑠, 𝑖𝑓 𝑖𝑡 𝑖𝑠 𝑎 𝐵𝑆 − 𝑐𝑜𝑟𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛
                                    

(8) 

where 𝐷∗
𝑢𝑠𝑒𝑟−𝐵𝑆 is the maximal propagation latency between the user and the serving BS, 

and 𝐷∗
𝐵𝑆−𝑐𝑜𝑟𝑒 is the maximal propagation latency between the serving BS and the core 

network. 

In more detail, if the requested content is cached locally, the content can be directly 

retrieved from the serving BS. Thus, for a hit content request, we consider the maximal 

propagation latency between the user and the serving BS 𝐷∗
𝑢𝑠𝑒𝑟−𝐵𝑆, the distance between 
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the user and the serving BS 𝑑𝑢𝑠𝑒𝑟−𝐵𝑆, and the maximal coverage radius of the serving BS 

ℛ𝐵𝑆. The definition of the hit content 𝒯ℎ𝑖𝑡 latency is as follows: 

𝒯ℎ𝑖𝑡 = 
𝑆𝑖𝑧𝑒𝑑𝑓

𝑣𝑡𝑟𝑎𝑛
 +  𝐷∗

𝑢𝑠𝑒𝑟−𝐵𝑆 
×

𝑑𝑢𝑠𝑒𝑟−𝐵𝑆

ℛ𝐵𝑆
                                                  (9) 

If the requested content is missed at the serving BS, the serving BS needs to first retrieve 

the requested content from the core network and then deliver the requested content to the 

corresponding user. Hence, for a missed content request, we consider the maximal 

propagation latency between the user and the serving BS 𝐷∗
𝑢𝑠𝑒𝑟−𝐵𝑆 , the maximal 

propagation latency between the serving BS and the core network 𝐷∗
𝐵𝑆−𝑐𝑜𝑟𝑒, the distance 

between the user and the serving BS 𝑑𝑢𝑠𝑒𝑟−𝐵𝑆, the distance between the serving BS and 

the core network 𝑑𝐵𝑆−𝑐𝑜𝑟𝑒, the maximal coverage radius of the serving BS ℛ𝐵𝑆, and the 

maximal coverage radius of the core network ℛ𝑐𝑜𝑟𝑒. The definition of the latency of missed 

content 𝒯𝑚𝑖𝑠𝑠 is as follows: 

𝒯𝑚𝑖𝑠𝑠 = 
𝑆𝑖𝑧𝑒𝑑𝑓

𝑣𝑡𝑟𝑎𝑛
 +  𝐷∗

𝑢𝑠𝑒𝑟−𝐵𝑆 
×

𝑑𝑢𝑠𝑒𝑟−𝐵𝑆

ℛ𝐵𝑆
+ 𝐷∗

𝐵𝑆−𝑐𝑜𝑟𝑒 
×

𝑑𝐵𝑆−𝑐𝑜𝑟𝑒

ℛ𝑐𝑜𝑟𝑒
                  (10) 

The system latency 𝒯𝑠𝑦 is the sum of the latency of all of the hit content requests and all of 

the missed content requests. The average latency 𝒯𝑎𝑣𝑒 is the system latency divided by the 

number of content requests E. The 𝒯𝑠𝑦 and 𝒯𝑎𝑣𝑒 are defined as follows: 

𝒯𝑠𝑦 = [E × 𝒫ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜 × 𝒯ℎ𝑖𝑡 + E × (1-𝒫ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜) × 𝒯𝑚𝑖𝑠𝑠]                       (11) 

𝒯𝑎𝑣𝑒 = [𝒫ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜 × 𝒯ℎ𝑖𝑡+ (1-𝒫ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜) × 𝒯𝑚𝑖𝑠𝑠]                                   (12) 

The problem on how to minimise the average latency can be formulated as follows: 

P_2: Min 𝒯𝑎𝑣𝑒  

 s.t.  𝒫ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜  ∈ [0,1]                                                                       (13) 

3.  A deep Q-learning network-based cache content update policy 

The related elements of the deep Q-learning network will be introduced in section 3.1. The 

principle of the DQN algorithm and the workflow of our proposed cache policy will be 

provided in section 3.2.   

3.1. The description of the related elements of the deep Q-learning network  

The principle of the DQN can be regarded as a Markov decision process (MDP) [23][24]. 

To apply the DQN to the cache content update problem, the related notations under the 

DQN framework are described.  
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A) State space 

In time slot 𝓉 , the instant state consists of the currently cached content, the currently 

requested content and its corresponding user, the user’s next location, and the current time. 

In time slot 𝓉, the current instant state 𝑠𝓉 is defined as: 

 𝑠𝓉 = {𝑐𝓉
𝑖 ,  𝑅𝓉

𝑖 , 𝑗𝓉 , 𝐿𝓉
𝑗
}                                                (14) 

where 𝑐𝓉
𝑖  is the cached content at the ith DQN agent, 𝑅𝓉

𝑖  is the currently requested content, 

𝑗𝑡 is the unique name of the mobile user currently requesting the content, 𝐿𝓉
𝑗
 is the next 

location of the jth user, i ∈ {1, 2, …, ℳ}, and j ∈ {1, 2, …, ℧}. 

The state space S is the set of all of the instant states over a time period. It is defined as:  

S = {𝑠0, 𝑠1, 𝑠2, …, 𝑠𝓉,…}                                              (15) 

B) Action space 

In each time slot 𝓉 , the ith DQN agent decides whether or not to cache the currently 

requested content. If yes, the DQN agent decides which cached content is replaced by the 

currently requested content; otherwise, the cached content remains the same. The action 

space of the ith DQN Ai is defined as: 

Ai = {𝐴0
𝑖 , 𝐴1

𝑖 , 𝐴2
𝑖 , …, 𝐴ℋ

𝑖 }                                                  (16) 

where Ai uses one hot code, which means only one action can be executed in a time slot. 

In this study, 𝐴0
𝑖  = 1 means the cached content remains the same and 𝐴𝑣

𝑖  = 1 means the vth 

cached content is replaced by the currently requested content, where v 𝜖 {1, 2, …, ℋ} and 

ℋ is the maximal capacity of the ith BS. 

C) Reward and value functions 

The reward 𝓇𝑡 is the instant cache hit ratio in the time slot 𝓉. Specifically, reward 𝓇𝓉 = 1 

when the currently requested content is hit in the next state 𝑠𝓉+1; otherwise, 𝓇𝓉 = 0. The 

policy 𝜋(s) = 𝒫 (a|𝑠𝓉) is a map that shows the probability of the execution of action 𝑎𝓉 

under the current state 𝑠𝓉, and 𝑎𝓉 ∈ Ai. The MDP evaluates and optimises the policy based 

on the value function, which is defined as the expected value of cumulative discounted 

rewards received over the entire process following the policy [25]. There are two 

definitions of value functions: one is the state value function and the other is the state-

action value function. The state value function is the expected value of a discounted 
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cumulative reward in the current state 𝑠𝓉 when the agent follows the policy. The state value 

function is defined as follows: 

𝑉𝜋(𝑠) = 𝐸𝜋[∑ 𝛾𝑢𝓇𝓉+𝑢+1|𝑠𝓉
∞
𝑢=0 ]                                          (17) 

The state-action value function is the expected value of the discounted cumulative reward 

from the current state 𝑠𝓉  and action 𝑎𝓉 is based on the policy used to choose one action. 

The definition of the state-action value function is: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[∑ 𝛾𝑢𝓇𝓉+𝑢+1|(𝑠𝓉, 𝑎𝓉)]∞
𝑢=0                             (18) 

where 𝛾 𝜖 [0, 1] is a discount factor that affects the future reward from the current state 𝑠𝓉. 

The target of the MDP is finding the optimal 𝜋(s) and 𝜋∗(s) that can obtain the maximal 

value function.  

3.2. The cache content update based on the deep Q-learning network 

A) Principle of the DQN framework 

DQN is an effective hybrid framework of neural networks and Q-learning. In this 

framework, the neural network is applied to predict the Q values rather than recording the 

Q values in a Q table. However, the DQN will not be efficient when considering only the 

combination of Q-learning and the neural network. The following two characteristics 

improve the DQN framework’s efficiency. 

 The DQN has two neural networks with the same structures operating in different 

parameters, the evaluation network and the target network. The parameters of the 

evaluation and target networks are defined as 𝜃 and 𝜃−, respectively. The evaluation 

network uses the latest parameter 𝜃  to predict the current state-action Q values 

𝑄(𝑠𝓉 ,𝑎𝓉 ,𝜃), where 𝜃 is updated in each iteration. The target network uses the parameter 

𝜃− to predict the next state-action Q value 𝑄(𝑠𝓉+1,𝑎𝓉+1,𝜃−), where 𝜃− is updated over a 

period time. The target network can solve the correlation of the Q value with the Q 

target value, which makes the DQN easier to converge. 

 DQN has an experience replay memory with a limited capacity. The current state 𝑠𝑡, 

action 𝑎𝑡, reward 𝓇𝓉, and next state 𝑠𝓉+1 are stored in format (𝑠𝓉, 𝑎𝓉, 𝓇𝓉, and 𝑠𝓉+1) 

into the memory as experiences. Once the capacity is full, new received experiences 

will replace earlier experiences. During the training stage, the training data are 

randomly selected from the experience replay memory. The random selection 
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disorganises the experience correlation, which solves the neural network’s overfitting 

issue. 

The neural network enables 𝑄(𝑠𝓉 ,𝑎𝓉 ,𝜃) ≈  𝑄(𝑠𝓉 ,𝑎𝓉) [26]. According to [5], the evaluation of 

𝑄(𝑠𝓉 ,𝑎𝓉) is derived from Q-learning as: 

𝑄(𝑠𝓉 ,𝑎𝓉) = 𝑄(𝑠𝓉 ,𝑎𝓉) + 𝒷[𝓇𝑡 + 𝛾 ∗ 𝑚𝑎𝑥𝑄(𝑠𝓉+1,𝑎𝓉+1) − 𝑄(𝑠𝑡,𝑎𝑡)]                   (19) 

where 𝒷 is the learning rate 𝜖 (0, 1), 𝛾 is the discount factor 𝜖 [0, 1]. 

The neural network can be trained via the minimisation of the loss function. The loss 

function Loss (𝜃) is defined as: 

Loss (𝜃) = 𝐸[(𝑄(𝑠𝓉+1,𝑎𝓉+1,𝜃−) − 𝑄(𝑠𝓉 ,𝑎𝓉 ,𝜃))
2

]    

 = E[(𝓇𝓉 + 𝛾 ∗ 𝑚𝑎𝑥𝑄(𝑠𝓉+1,𝑎𝓉+1,𝜃−)  − 𝑄(𝑠𝓉 ,𝑎𝓉 ,𝜃))2]              (20) 

where 𝓇𝓉 + 𝛾 ∗ 𝑚𝑎𝑥𝑄(𝑠𝓉+1,𝑎𝓉+1,𝜃−)  is the target network’s Q value and 𝑄(𝑠𝓉 ,𝑎𝓉 ,𝜃)  is the 

evaluation’s Q value. 

The detailed optimisation of the evaluation network and target network is shown in Figure 

2. In each training step, the evaluation network receives a backpropagated loss function 

based on a batch of experiences randomly selected from the experience replay memory. 

The parameter of the evaluation network 𝜃 is then updated by the minimisation of the loss 

function via the stochastic gradient descent (SGD) function. After several steps, the 

parameter of the target network 𝜃− is updated by assigning the latest parameter 𝜃 to 𝜃−. 

After a training period, the two neural works are stably trained.  
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Figure 2. Flow chart of the deep Q-learning network. 

B) The workflow of the cache content update policy based on DQN 

In each decision epoch, the ith DQN agent receives a content request. If the content is 

cached locally, the serving BS delivers the requested content to the corresponding user. If 

the content is missed at the serving BS, the serving BS retrieves the requested content from 

the core network and then delivers the content to the corresponding user. Subsequently, the 

requested content is cached at the serving BS when the cache capacity is not full. If the 

cache capacity is full, the optimised evaluation network outputs the Q value of all of the 

actions and the DQN agent selects an action 𝑎𝑘  with the maximal Q value. After the 

execution of the action 𝑎𝑘, the new instant reward is calculated into the target network’s Q 

value and a new loss function is obtained based on Eq. (20). The parameters 𝜃 and 𝜃− are 

then updated based on the minimisation of the new loss function. After a training period, 

the best policy  𝜋∗(s) that can maximise the cache hit ratio and minimise the average 

latency is derived. The DQN-based cache content update policy is shown in Algorithm 1. 
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Algorithm 1. The DQN-based cache content update algorithm 

Input: The feature of the state 𝑠𝓉  

Initialise the parameter 𝜃 and 𝜃− and instant reward 𝓇𝑡 = 0 

for step = 1, Y do 

for 𝓉 = 1, Τ do 

  Receive a content request 

  if the content request is cached locally, then 

    BS directly delivers the requested content to the user end epoch 

  elif 

The cache capacity is not full, then 

   BS retrieves the requested content from the core network and delivers the requested content to the 

user 

   The requested content is cached locally end epoch 

elif 

The cache capacity is full, then  

    observe the current state 𝑠𝓉  

    randomly generate a value 𝜌 

    if 𝜌 < 휀, then 

      randomly select an action 𝑎𝓉 from the action spaces 

    else 

      𝑎𝓉  = argmax𝑄(𝑠𝓉 ,𝑎𝓉 ,𝜃) 

        end if 

        execute 𝑎𝓉, receive the reward 𝓇𝑡, next state 𝑠𝓉+1 

        store (𝑠𝓉 , 𝑎𝓉, 𝓇𝓉 , 𝑠𝓉+1) into the experience replay memory 

        randomly selects a mini-batch of the experiences 

        update the parameter of the evaluation 𝜃 via the minimisation of the backpropagated loss  

        update the parameter of the evaluation 𝜃− in several time slots 

end if 

end for 

end for 
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4. Results and discussion 

In this study, we consider a cache-enabled network with 4 BSs and 10 mobile users and 

ensure that each user is covered by a BS. For simplicity, the users are distributed along 

with the edge of the serving BS and each BS has the maximal communication distance with 

the core network, and hence the rate 
𝒹

ℛ
 is 1. Besides, there is no overlap between any two 

BSs to avoid the handover between any two BSs. Furthermore, each content has the same 

size (2,000 bits) and the content transmission rate is 35 Mbit/s. The neural network has 

three layers, the input layer, hidden layer, and output layer. The hidden layer has 512 

neurons, and the number of neurons at the input and output layers is (ℋ+3) and (ℋ+1), 

respectively. The maximal cache capacity ℋ is described in each experiment. The learning 

rate 𝒷 is 0.9, the greedy parameter 휀 is 0.9, and the discount factor 𝛾 is 0.1. The content 

requests of the 𝑖𝑡ℎ user are generated following the Zipf distribution law as: 

𝓅(𝛿, 𝒦, 𝐵) =
𝛿−𝒦

∑ 𝑏−𝒦𝐵
𝑏=1

                                                 (21) 

where 𝛿 is the content rank, 𝒦 is the Zipf parameter, and 𝐵 is the total number of content 

requests. In each experiment, we assume that the total number of content requests is 7,200. 
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Figure 3. The cache hit ratio vs the varying Zipf parameters. We assume that the Zipf 

parameters = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8. 

Figure 3 investigates the cache hit ratios of the LFU policy, LRU policy, DRL policy in 

[20], and our proposed policy. The Zipf parameters vary from 1.1 to 1.8, the users’ 

locations are fixed, and the cache can store 288 types of contents at most. As the Zipf 

parameter 𝒦 increases, the four policies’ cache hit ratios increase. This occurs because as 

the Zipf parameter increases, there is less content with larger probabilities of content 

requests. In other words, the popular content becomes more popular, the unpopular content 

becomes less popular, and the type of content decreases. Considering the same cache 

capacity, the cached content is more popular, and therefore the cache hit ratio increases. 

Our proposed policy has the highest cache hit ratio regardless of the Zipf parameter. The 

simulation demonstrates that the effect of the popular content in the cache hit ratio 

increases as the Zipf parameter increases. Thus, our proposed policy is superior to the three 

other policies. 
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Figure 4. The cache hit ratio vs. the cache capacity. The varied cache capacity is 36, 72, 

108, 144, 180, 216, 252, and 288. 

Figure 4 investigates the effect of the cache capacity on the cache hit ratio. Here, the Zipf 

parameter is 1.4 and the mobile users’ locations are fixed. The varied cache capacity is 36, 

72, 108, 144, 180, 216, 252, and 288. As demonstrated, our proposed policy is superior to 

the three other policies since our proposed policy has the highest cache hit ratio. In addition, 

as the cache capacity increases, the cache hit ratios of the four policies continuously 

increase. When the capacity is 288, the cache hit ratios of the four policies are remarkably 

close. This occurs because the popular content dominates the cache hit ratio and the cache 

capacity is high enough to store all of the popular contents.  
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Figure 5. The cache hit ratio under spatiotemporally varying scenarios in which the 

mobile users randomly change their locations after the 20,000 time slot. 

The cache hit ratio under spatiotemporally varying scenarios is shown in Figure 5. In the 

experiment, the cache can store 216 types of contents at most, the Zipf parameters are 

randomly generated from 1.2 to 1.6 every 20,000 time slots, and the users are initially fixed 

and randomly change their locations among the four BSs after the 20,000 time slot. When 

the users’ locations and the Zipf parameters are fixed, the gaps between our proposed 

policy and the three other policies are gradually stable. This occurs because all of the 

policies are optimally trained. After time slot 20,000, the four policies immediately 

decrease. This occurs because the content popularity changes with the random movement 

of the users and random generation of the Zipf parameters. Later, our proposed policy’s 

curve slowly increases while the three other policies’ curves continuously decrease. The 

gaps between our proposed policy’s curve and the other policies’ curves continuously 

increase. Our proposed policy eventually improves by at least 56% compared with the three 

other policies. The growth ratio ℊ is derived based on ℊ = 
𝐶𝑜𝑢𝑟−𝐶𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

𝐶𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
, in which 𝐶𝑜𝑢𝑟 and  

𝐶𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 is the cache hit ratio of our proposed policy and any one of the other three policies, 



17 

 

respectively. This significant improvement occurs because our proposed policy considers 

the effect of the users’ random distribution and the random generation of Zipf parameters. 

Therefore, our proposed policy quickly adapts to spatiotemporally varying content requests. 

Consequently, we conclude that our proposed policy is superior for managing 

spatiotemporally varying problems. 

 

Figure 6. The average latency vs the varying Zipf parameters. We assume that the Zipf 

parameters = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8. 

Figure 6 demonstrates the four policies’ average latencies under different Zipf parameters. 

Here, the Zipf parameters vary from 1.1 to 1.8, the mobile users’ locations are fixed, and 

the cache can store 288 types of contents at most. As demonstrated, our proposed policy 

always has the lowest cache hit ratio compared with the other three policies. Thus, our 

proposed policy has the best cache hit ratio. The higher the cache hit ratio is, the more 

contents can be retrieved locally. The local latency from the BS is much smaller than the 

remote latency from the core network. Therefore, our proposed policy performs better than 

the other three policies in terms of the average latency. 
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Figure 7. The average latency vs. the varying cache capacity. We assume that the cache 

capacity is 36, 72, 108, 144, 180, 216, 252, and 288. 

As shown in Figure 7, we investigate the effect of the cache capacity on the average latency. 

In this simulation, the Zipf parameter is 1.4 and the mobile users’ locations are fixed. The 

cache capacity is 36, 72, 108, 144, 180, 216, 252, and 288. The higher the cache capacity, 

the lower the average latency of each policy. This occurs because more contents can be 

cached locally as the cache capacity increases. In addition, the slope of each policy 

gradually decreases. This occurs because all of the policies aim to cache the most popular 

contents via their limited cache capacity. As the cache capacity further increases, more 

contents are cached while the recently cached contents are less popular than the initially 

cached contents. Consequently, the average latency increases less when caching less 

popular contents. Furthermore, our proposed policy has the minimal average latency 

regardless of the cache capacity.  
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Figure 8. The average latency under spatiotemporally varying scenarios in which the 

mobile users randomly change their locations after the 20,000 time slot. 

Figure 8 shows the average latency under spatiotemporally varying scenarios. In the 

experiment, the cache is assumed that can store 216 types of contents at most, the Zipf 

parameter is randomly generated from 1.2 to 1.6 every 20,000 time slots, and the users are 

initially fixed and randomly change their locations among the four BSs after the 20,000 

time slot. In the first 20,000 time slots, each policy finally has a stable cache performance 

after a training period. Once the users randomly move among the four BSs, the LRU, LFU, 

and DRL policies’ curves immediately increase, and our proposed policy’s curve first 

slightly increases and then gradually decreases. More specifically, our proposed policy 

achieves a 56%-59% decrease compared to the three other policies. The reduction rate 𝔶 is 

derived based on 𝔶 =  
𝐿𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔−𝐿𝑜𝑢𝑟

𝐿𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
, in which 𝐿𝑜𝑢𝑟  and  𝐿𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔  is the latency of our 

proposed policy and any one of the other three policies, respectively. The decrease occurs 

because our proposed policy considers the effect of the dynamic changes in the user 

distribution and Zipf parameters on the latency, while the other three policies do not. The 
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simulation demonstrates that our proposed policy can perform stably under 

spatiotemporally varying scenarios.   

5. Conclusions 

In this study, a DRL-based cache content update policy is proposed with the objective to 

maximise the cache hit ratio and minimise the average latency. Compared to the existing 

policies, a more practical cache scenario is considered, in which the content requests vary 

spatiotemporally. The dynamic content update problem is formulated as an MDP problem, 

and DQN is applied to solve this MDP problem. Specifically, the neural network is trained 

to approximate the Q value, in which the training data are chosen from the experience 

replay memory. The DQN agent derives the optimal policy from the neural network for the 

cache decision. Compared with the existing policies, e.g., the LFU, LRU, and DRL [20] 

policies, the simulation results show that our proposed DRL-based cache content update 

policy has the best cache performance in the considered spatiotemporally varying scenario, 

and is 56%–64% improved in terms of the cache hit ratio and 56%–59% decreased in terms 

of the average latency.  

6. Data availability 

Content requests were described in the simulation section. 

7. Conflicts of interest 

Lincan Li, Chiew Foong Kwong, Qianyu Liu, and Jing Wang declare that there are no 

conflicts of interest regarding the publication of this paper. 

8. Funding statement 

This study was supported by Ningbo Natural Science Programme (NBNSP), project code 

2018A610095. 

  



21 

 

9. References 

[1] M. Chen, Y. Hao, L. Hu, K. Huang, and V. K. N. Lau, “Green and Mobility-Aware Caching in 5G 

Networks,” IEEE Trans. Wirel. Commun., vol. 16, no. 12, pp. 8347–8361, 2017, doi: 

10.1109/TWC.2017.2760830. 

[2] D. Deng, J. Xia, L. Fan, and X. Li, “Link Selection in Buffer-Aided Cooperative Networks for Green 

IoT,” IEEE Access, vol. 8, pp. 30763–30771, 2020, doi: 10.1109/ACCESS.2020.2972698. 

[3] E. Summary, “Cisco public Cisco Visual Networking Index: Global Mobile Data Traffic The Cisco® 

Visual Networking Index (VNI) Global Mobile Data,” pp. 2017–2022, 2019. 

[4] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A Deep Reinforcement Learning-based Framework 

for Content Caching,” 2018 52nd Annu. Conf. Inf. Sci. Syst. CISS 2018, pp. 1–6, 2018, doi: 

10.1109/CISS.2018.8362276. 

[5] Z. Zhao, W. Zhou, D. Deng, J. Xia, and L. Fan, “Intelligent Mobile Edge Computing with Pricing in 

Internet of Things,” IEEE Access, vol. 8, pp. 37727–37735, 2020, doi: 

10.1109/ACCESS.2020.2974249. 

[6] H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, “Caching Transient Data for Internet of 

Things: A Deep Reinforcement Learning Approach,” IEEE Internet Things J., vol. 6, no. 2, pp. 2074–

2083, 2019, doi: 10.1109/JIOT.2018.2882583. 

[7] Y. Wu, S. Yao, Y. Yang, Z. Hu, and C.-X. Wang, “Semigradient-based Cooperative Caching 

Algorithm for Mobile Social Networks,” 2016 IEEE Glob. Commun. Conf., no. i, pp. 1–6, 2016, doi: 

10.1109/GLOCOM.2016.7842260. 

[8] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic Content Update for Wireless Edge 

Caching via Deep Reinforcement Learning,” IEEE Commun. Lett., vol. 23, no. 10, pp. 1773–1777, 

2019, doi: 10.1109/LCOMM.2019.2931688. 

[9] X. Zhang and Y. Cao, “A Cooperation-Driven ICN-based Caching Scheme for Mobile Content 

Chunk Delivery at RAN,” 2017 13th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2017, pp. 

1437–1442, 2017, doi: 10.1109/IWCMC.2017.7986495. 

[10] S. Zhang, N. Zhang, P. Yang, and X. Shen, “Cost-Effective Cache Deployment in Mobile 

Heterogeneous Networks,” IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 12264–12276, 2017, doi: 



22 

 

10.1109/TVT2017.2724547. 

[11] R. Wang, F. Hajiaghajani, and S. Biswas, “Distributed Caching in Mobile Networks with 

Heterogeneous Content Demand,” 2017 14th IEEE Annu. Consum. Commun. Netw. Conf. CCNC 

2017, pp. 172–178, 2017, doi: 10.1109/CCNC.2017.7983101. 

[12] Z. Luo, M. LiWang, Z. Lin, L. Huang, X. Du, and M. Guizani, “Cooperate Caching with Multicast 

for Mobile Edge Computing in 5G Networks,” Appl. Sci., vol. 16, no. 7, pp. 229–244, 2017, doi: 

10.3390/app7060557. 

[13] D. Guo, L. Tang, X. Zhang, and Y.-C. Liang, “Joint optimization of Handover Control and Power 

Allocation based on Multi-Agent Deep Reinforcement Learning,” IEEE Transactions on Vehicular 

Technology. pp. 1–1, 2020, doi: 10.1109/tvt.2020.3020400. 

[14] D. Liu and C. Yang, “A Deep Reinforcement Learning Approach to Proactive Content Pushing and 

Recommendation for Mobile Users,” IEEE Access, vol. 7, pp. 83120–83136, 2019, doi: 

10.1109/ACCESS.2019.2925019. 

[15] W. Li, J. Wang, G. Zhang, L. Li, Z. Dang, and S. Li, “A Reinforcement Learning based Smart Cache 

Strategy for Cache-Aided Ultra-Dense Network,” IEEE Access, vol. 7, pp. 39390–39401, 2019, doi: 

10.1109/ACCESS.2019.2905589. 

[16] Y. Wei, Z. Zhang, F. R. Yu, and Z. Han, “Joint User Scheduling and Content Caching Strategy for 

Mobile Edge Networks Using Deep Reinforcement Learning,” 2018 IEEE Int. Conf. Commun. Work. 

ICC Work. 2018 - Proc., pp. 1–6, 2018, doi: 10.1109/ICCW.2018.8403711. 

[17] Y. Sun, M. Peng, and S. Mao, “Deep Reinforcement Learning-based Mode Selection and Resource 

Management for Green Fog Radio Access Networks,” IEEE Internet Things J., vol. 6, no. 2, pp. 

1960–1971, 2019, doi: 10.1109/JIOT.2018.2871020. 

[18] G. Sun, H. Al-Ward, G. O. Boateng, and G. Liu, “Autonomous Cache Resource Slicing and Content 

Placement at Virtualized Mobile Edge Network,” IEEE Access, vol. 7, pp. 84727–84743, 2019, doi: 

10.1109/ACCESS.2019.2923021. 

[19] R. Zhao, X. Wang, J. Xia, and L. Fan, “Deep reinforcement learning based mobile edge computing 

for intelligent Internet of Things,” Phys. Commun., vol. 43, p. 101184, 2020, doi: 

10.1016/j.phycom.2020.101184. 



23 

 

[20] F. Jiang, Z. Yuan, C. Sun, and J. Wang, “Deep Q-Learning-Based Content Caching With Update 

Strategy for Fog Radio Access Networks,” IEEE Access, vol. 7, pp. 97505–97514, 2019, doi: 

10.1109/access.2019.2927836. 

[21] C. Wang, W. Li, D. Li, M. Song, C. Dong, and X. Wang, “Edge Caching via Content Offloading in 

Heterogeneous Mobile Opportunistic Networks,” Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS, 

pp. 787–794, 2019, doi: 10.1109/PADSW.2018.8644563. 

[22] N. Wang, G. Shen, S. K. Bose, and W. Shao, “Zone-Based Cooperative Content Caching and 

Delivery for Radio Access Network with Mobile Edge Computing,” IEEE Access, vol. 7, pp. 4031–

4044, 2019, doi: 10.1109/ACCESS.2018.2888602. 

[23] X. He, K. Wang, H. Huang, T. Miyazaki, Y. Wang, and S. Guo, “Green Resource Allocation based 

on Deep Reinforcement Learning in Content-Centric IoT,” IEEE Trans. Emerg. Top. Comput., vol. 

6750, no. c, pp. 1–15, 2018, doi: 10.1109/TETC.2018.2805718. 

[24] N. C. Luong et al., “Applications of Deep Reinforcement Learning in Communications and 

Networking: A Survey,” IEEE Communications Surveys and Tutorials, vol. 21, no. 4. IEEE, pp. 

3133–3174, 2019, doi: 10.1109/COMST.2019.2916583. 

[25] Y. He, N. Zhao, and H. Yin, “Integrated Networking, Caching, and Computing for Connected 

Vehicles: A Deep Reinforcement Learning Approach,” IEEE Trans. Veh. Technol., vol. 67, no. 1, 

pp. 44–55, 2018, doi: 10.1109/TVT.2017.2760281. 

[26] F. Xu, F. Yang, S. Bao, and C. Zhao, “DQN Inspired Joint Computing and Caching Resource 

Allocation Approach for Software Defined Information-Centric Internet of Things Network,” IEEE 

Access, vol. 7, pp. 61987–61996, 2019, doi: 10.1109/ACCESS.2019.2916178. 

 

 


