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Abstract  

State-of-the-art computer-vision algorithms rely on big and accurately annotated data, which are expensive, laborious and time-
consuming to generate. This task is even more challenging when it comes to microbiological images, because they require 
specialized expertise for accurate annotation. Previous studies show that crowdsourcing and assistive-annotation tools are two 
potential solutions to address this challenge. In this work, we have developed a web-based platform to enable crowdsourcing 
annotation of image data; the platform is powered by a semi-automated assistive tool to support non-expert annotators to improve 
the annotation efficiency. The behavior of annotators with and without the assistive tool is analyzed, using biological images of 
different complexity. More specifically, non-experts have been asked to use the platform to annotate microbiological images of 
gut parasites, which are compared with annotations by experts. A quantitative evaluation is carried out on the results, confirming 
that the assistive tools can noticeably decrease the non-expert annotation’s cost (time, click, interaction, etc.) while preserving or 
even improving the annotation’s quality. The annotation quality of non-experts has been investigated using IOU (intersection of 
union), precision and recall; based on this analysis we propose some ideas on how to better design similar crowdsourcing and 
assistive platforms.   
Our platform is available at https://object-detection-a5d76.web.app/home. 
 
© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

Accurate computerized object detection and segmentation are becoming important in healthcare. For example 
they have been successfully used for detection of anatomical and cellular structures, as well as diagnosis and 
prognosis of diseases [1]. In some studies, object detection and segmentation have been utilized for oral disease 
screening (such as thrush, leukoplakia, lichenplanus, etc. [2,3]), for disease diagnosis on X-ray images and for cell 
detection on microscopic images [4–6]. Despite the wide use of object detection tools for the identification of 
diseases, their application in cell biology (e.g. identification of microbes) is still quite rare. In addition, most of the 
current state-of-the-art object detection algorithms are based on deep neural networks [7–11], the performance of 
which is highly correlated with the volume of data and the quality of annotations, which can be laborious, time-
consuming and expensive to generate. For everyday objects, numerous annotated datasets such as Cityscapes [12] or 
COCO [13] are now publicly available. However, for specialized domains such as microbiological images, the 
availability of adequate and accurately annotated data is very limited. Furthermore, the requirement of specialized 
knowledge for microbiological images is a challenge that makes their annotation process more difficult than the 
annotation of everyday objects. Some general approaches can be used to overcome the challenges of the annotation 
process: i) crowdsourcing the annotation process and ii) providing assistive tools to the annotators [14].  

Crowdsourcing is used to reduce costs by outsourcing a task to a group of experts or to a group of non-experts, 
who can be given online training [15]. Crowdsourcing has drawn the attention of computer vision researchers, in 
fact, studies [16,17] in this field have explored the effectiveness of outsourcing of image classification and instance 
segmentation on public datasets such as Pascal VOC, LabelMe and KITTI [18–20]. Recent studies on crowdsourcing 
have shown promising results on biomedical images. For example, [21] applied crowdsourcing techniques for the 
detection of dividing cells in breast cancer histology images, while [22] used a crowdsourcing framework for lung 
nodule detection and annotation to aid radiologists in lung cancer diagnosis. 

To achieve an easy and faster annotation process, it is essential to design an efficient annotation user interface and 
assistive tools, which can also maintain the motivation of the annotators and the quality of their annotations. Polygon 
operator is widely used for instance segmentation [18] while the use of assistive tools in conjunction with polygon 
operator to support annotators, e.g. to correct drawn polygons or to propose new polygons [23–25], is still an area of 
development. 

Given that crowdsourcing frameworks and assistive tools have been used mainly in isolation, in this study we 
propose a novel web-based image annotation platform combining crowdsourcing and assistive segmentation tools to 
support non-experts in annotating microbiological images of gut parasites. We show that our assistive tools enable 
non-expert annotators to perform their task accurately and more quickly. We also investigate the behavior of non-
expert annotators under different levels of image complexity (high and low object density) of microscopic images. 
Finally, we use our analysis to propose design directions for the development of state-of-the-art annotation 
platforms. 

2. Related works 

Given the importance of high-quality image annotations to train machine learning algorithms, research has 
looked into the design of annotation platforms to reduce the annotation cost (i.e. time, clicks, etc.) and improve its 
quality, e.g. by designing intelligent user interfaces which can assist human annotators to perform the task. In the 
following subsections, we present the key studies relating to i) annotation tools in crowdsourcing of medical or 
biological images, ii) assistive user interfaces and iii) annotators’ behavior analysis.  

2.1. Crowdsourcing medical image annotations 

Following the success in images of everyday objects [16,17], crowdsourcing has been increasingly adopted for 
medical image annotation by both experts and non-experts. However, the lack of crowds’ expertise for such 
specialized images is still the biggest challenge [26]. [21] investigated the performance of a novel aggregation 
technique (AggNet) for classification of mitosis in breast histology images based on non-expert crowds’ votes. The 
AggNet network is trained with gold standard images (images annotated by pathologists) for classification (mitosis 
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or not mitosis), along with an aggregation layer that has been trained to generate a ground truth from the non-expert 
votes. They showed how an aggregation through a CNN network can help to overcome the challenge of noisy data 
collected from non-experts. [27] has also used crowds’ votes (i.e. from knowledge workers) for classification of 
abnormal fundus images of the rear of eyes. Furthermore, [28] reported the performance of a group of non-experts in 
annotating Malaria infected RBCs’ (Red Blood Cell) images throughout a crowdsourcing game. The authors show 
that the public contribution in detecting the positive samples of infected RBCs through a game can lead to up to 99% 
accuracy compared to the experts’ detection. Along with outsourcing annotations for classification problems, studies 
have also explored the performance of the crowd in images segmentation. For instance, [29] introduced a web-based 
platform for hip segmentation in MR (Magnetic Resonance) images by non-expert annotators. Similarly, Heim and 
O’Neil explored the performance of non-expert annotators in CT (Computer Tomography) images segmentations, 
aggregated with majority voting technique [30, 31]. Collectively, these studies have demonstrated promising results 
of outsourcing medical-images annotation tasks to the public. 

2.2. Assistive user interfaces 

Introducing user-friendly interfaces and assistive tools in annotation platforms is an important research direction 
to make the annotation process simple and engaging, hence resulting in a higher completion rate and fewer errors. 
For instance, [18] presented a well-known platform for image segmentation (using a polygon operator for drawing 
the object’s outline) called LabelMe, in which polygon operators were used. Polygon operators are the most 
common technique for instance segmentation [25,32,33] and they are well established, therefore, most of the efforts 
of recent studies have been put on developing assistive approaches. Regarding assistive tools, [28] introduced an 
automated classification approach that generates a preliminary classification on unlabeled images to be confirmed 
by a non-expert crowd through a computer game. Similarly, VATIC (Video Annotation Tool from Irvine, 
California) and iVAT (interactive Video Annotation) are two annotation platforms with rectangular and polygon 
operators for bounding box and instance segmentation, respectively, where for each frame of the input video, a 
supervised object detection algorithm generates the preliminary annotations that need to be confirmed/modified by 
annotators [23,25]. In a different approach, [34] have developed a recurrent neural network that iteratively proposes 
segmented objects to human annotators and refines the annotations with regard to their previous modifications. [35] 
presented a semi-automated platform that works based on edge detection, where high quality detected instances are 
proposed to annotators. It is worth mentioning that other studies have looked into novel tools based on different user 
interactions mechanisms, e.g. the use of eye-tracking for pixel-wise probability estimation of presence of an object 
[36]. 
 

2.3. Human annotator behavior analysis 

The behavioral patterns of human annotators have been explored in different studies [37–39], although there are 
only a few studies that correlated the user’s behavior pattern with the quality of their annotations. These are often 
done by capturing and analyzing user’s video recordings, clickstreams, and mouse/tap dynamics, e.g. velocity and 
acceleration of mouse motion, time spent on clicks, etc. [30]. [40] is one of the  few studies that correlated the 
mouse dynamics and clicks stream data with annotation quality in crowdsourced image segmentation. In that study, 
a regression model was trained to estimate the quality of annotations with respect to the features extracted from the 
clicks stream, i.e. velocity, acceleration, zoom, time, single and double clicks, contour correction, and mouse 
travelling distance. Similarly, [41] investigated the correlation between human annotators’ effort and their 
performance in the annotation task, as measured by IOU (Intersection of Union), where the annotator’s effort is 
quantified by three metrics: segmentation time, number of points and average time per point. [31] crowdsourced the 
task of CT lung scans annotation and investigated  the correlation between users' behavior (time spent) and the 
quality of the annotation, and found that there is not a strong correlation between annotations’ quality and annotation 
time or quantities such as number of regions and number of polygon vertices. 

All the aforementioned studies have been conducted to facilitate the annotation process while monitoring the 
crowdsourced annotation quality. In our study, we aim to address three main gaps of the existing literature: i) 
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exploring the performance in instance segmentation of non-expert annotators in the domain of cell biology; ii) 
studying the performance of the same non-expert annotators when they are aided by assistive tools and iii) studying 
annotator’s behavior to glean insights to inform the design of future platforms. 

3. Methodology 

The aim of this study is to develop and evaluate a cost-efficient, user-friendly, and publicly available platform for 
instance segmentation, as well as to explore annotators’ behavioral patterns. Our platform enables us to outsource 
the task among a group of non-expert annotators with no knowledge in the relevant cell biology domain. A polygon 
operator is implemented to allow annotators to draw the boundary of the objects of interest. To support the 
annotators in the drawing and labeling process, we have implemented a non-iterative mask proposal network that 
performs a preliminary detection on the input images. Preliminary detections are followed by user 
verification/modification steps on the computer predictions. The mask proposal network is trained with images that 
have been accurately annotated by an expert. The following subsections explain how the architecture of the entire 
platform and the different interconnected layers have been developed, how the mask proposal network is trained, 
and how the images have been collected, sorted and used in the study. Finally, the annotation subsection explains 
the procedure of image annotation by non-experts. 

3.1. Platform architecture 

Our platform relies on different technologies and contains three main blocks: i) the user interface, written in 
Typescript/HTML and deployed as a web-app, ii) the user assistive model, written in python and deployed on a 
python server, which is connected to the front-end through a Django gateway (shown as blue block in Fig. 1), iii) the 
database, which is used to store images, annotations and users’ information.  

In the design process of the user interface, effort has been put to make it as user-friendly as possible to ease the 
work of the annotators (as illustrated in section 3.3).  

 

 

Fig. 1. Overview of the interconnection of the platform’s layers  

The developed platform is powered by an assistive tool to support annotators during the annotation process. The 
core of the assistive tool is based on the MRCNN (Mask Regional-Convolutional Neural Network, a state-of-the-art 
object detection, proposed by [7]) algorithm that needs to be trained (see section 3.2 for detailed information). The 
images and annotations are stored in a database which is directly called by the front-end (web-browser). Fig. 1 
shows the workflow of the platform and the interconnections between different layers. The block, Model, reported in 
Fig. 1, represents the mask proposal network that is responsible for generating proposed polygons. The block is 
triggered by an Http request from the front-end layer (web-browser). The block, View.py, represents the auxiliary 
functions for refining/converting proposal masks and outputting them as polygons; the View.py block also stores 
results in the database. 

3.2. Mask proposal network 

In this work, we have implemented a one-shot mask proposal network based on the Weakly Supervised Object 
Localization (WSOL) technique [42], which is trained before use. Our approach is different from studies such as 
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[34,43], which utilized a recurrent neural network algorithm for auto-annotation that iteratively update and propose 
new masks. The WSOL technique has been applied (e.g. in [44]) for object detection with weakly annotated data or 
a subset of the entire data in many cases. In our study, instead, we have utilized a WSOL network only as a mask 
proposal network. The backbone of the proposed platform, which is a cutting-edge object detection algorithm (i.e. 
MRCNN), is trained with 20% of the total images (annotated by an expert). To facilitate the annotation of the 
remaining images, the weakly trained model generates proposal masks to help the non-experts. Proposed masks, 
which are initially generated in binary format, are converted into a tuple of polygon points using the RDP (Ramer-
Douglas-Peucker) algorithm [45]. The proposed masks are provided to non-expert annotators who have the option to 
accept, reject or modify them. Fig. 2, shows an overview of the workflow of the assistive mask proposal network. 
 

 

Fig. 2. The workflow of the assistive mask proposal network. The supervised object detection algorithm (MRCNN), trained with expert annotated 
data (gold standard), performs a preliminary detection on newly coming data and proposes masks which are accepted/modified by the annotator.  

3.3. Collection, sorting and use of images 

The dataset used in this study consists of bright-field microscopic images from three groups of microbial 
parasites, which requires domain-specific knowledge for annotation. In total, 150 microscopic images from three 
different groups of microbial parasites, Entamoeba, Giardia and Prototheca, were collected (50 images in each 
group). These three parasites were chosen specifically due to their distinct visual characteristics: shape, color, size, 
and texture (see appendix A for more information). In addition, these parasites are maintained axenically in culture 
(no other organism is present), avoiding any interference with the imaging process. All images were captured by an 
iPhone 8 smartphone, attached on top of a VWR IT 404 Inverted microscope’s ocular lens (magnification of 40X) 
with a resolution of 4032 (H) × 3024 (V) pixels. All collected images have been directly uploaded and annotated by 
a postgraduate student biologist (expert), and verified by a senior academic biologist. The annotated images are then 
used as ground truth (GT) for training the model and testing the annotators’ performances. Fig. 3, shows examples 
of annotated images from each group of parasites. 

 

 

Fig. 3. Sample images of the training dataset (annotated by biologist); (a) raw Entamoeba image, (b) annotated Entamoeba image, (c) raw 
Giardia image, (d) annotated Giardia image, (e) raw Prototheca image, (f) annotated Prototheca image 

In object detection, it is generally accepted that images which contain dense objects (“Crowded” images) are 
cognitively more demanding for human annotators than “Non-crowded” images. There is no a commonly accepted 
definition of “Crowded”  and “Non-crowded” images, although in some studies (e.g. [13]) images with more than 
10 objects are considered as crowded, while in some other sources (e.g. [46]) images with more than one object are 
considered crowded. In our study, we sorted the images in ascending order according to the number of objects in 
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them. The first half of the images were considered non-crowded while the second half was considered crowded (see 
Appendix A with histograms of the number of objects in the images). Note that the platform is a crowdsourcing 
platform, and in some literature the annotators might be called “Crowd” . So, to avoid any confusion, we call the 
crowded and non-crowded images as HD (high density) and LD (low density) images, respectively. Fig. 4 shows 
examples of HD and LD images. 
 

 

Fig. 4. Raw images for each group of parasites; (a) LD Entamoeba, (b) LD Giardia, (c) LD Prototheca, (d) HD Entamoeba, (e) HD Giardia, (f) 
HD Prototheca. 

To train the mask proposal network, 20% of the total images (i.e. 10 images from each group of parasites) has 
been used, and the rest has been used by non-expert annotators to test the platform. Specifically, 20 HD images and 
20 LD images for each parasite were used by the annotators to test the platform. Fig. 5 shows how the images were 
used in the workflow for training and testing the platform. 

 

Fig. 5. Use of images in the workflow for training and testing the platform.  

Fig. 6 shows the annotation interface of the platform. The annotation tools and options (previous/next image 
buttons, classes’ buttons, etc.) are placed on the left of the interface, and the annotation environment is on the right. 
In Fig. 6, two parasites (blue polygons) are drawn and accepted, while one drawn polygon, in yellow, is selected for 
revision. 
 

 

Fig. 6. A screenshot of the annotation interface (Entamoeba cells). (Colorful) 

Jo
urn

al 
Pre-

pro
of



 Saber Mirzaee Bafti / Computers in Biology and Medicine 000 (2020) 000–000 7 

3.4.  Train the proposed assistive Mask Proposal Network 

The proposed assistive mask proposal network is trained with 10 images (i.e., 20%) for each parasite where the 
training Entamoeba images contain 149 objects and the Giardia and Prototheca images contain 135 and 665 objects, 
respectively. The purpose of this training is to generate proposal masks for annotators by the weakly trained model 
(see section 3.2). The model is trained with the following hyper parameters: learning rate = 0.0001, step per epoch = 
2000, epoch =10, ROIS (region of interest) per image = 200, and image size = 1024 (h) ×1024 (v). Along with the 
training dataset, a sequential horizontal flipping, vertical flipping, horizontal and vertical rescaling, and ±90º 
rotating augmenter have been applied on all images to increase the volume of training dataset and model’s 
generalization. The backbone of the MRCNN model is set based on Resnet101. The trained model and the core of 
the mask proposal network are then deployed on a python server (See sections 3.1). 

3.5. Annotation procedure 

Four non-expert annotators were recruited to take part in this study. The annotators were from different 
geographic locations and they all have been screened to make sure no one has a background in biology. The 
annotators agreed to take part in this study by signing the voluntary consent form. The annotation process starts with 
the tutorial and assessment steps, which are followed by the actual annotation task as shown in Fig. 7. In this 
section, the annotator’s tutorial and assessment, and the annotation task are discussed. 

 

 

Fig. 7. Overview of user selection and annotation process 

Annotator tutorial and assessment. In order to increase the annotation quality and user’s understanding of the 
task, a short tutorial has been created to train the annotators. The tutorial contains written instructions that explain 
the process of annotation, followed by a short video that presents the annotation tools. In the last step of the tutorial 
the platform interface shows the annotators the three annotated images (one from each group of parasites), in which 
the objects of interest are identified with polygons. Afterwards, the annotators undergo an assessment step, in which 
they have to annotate a small set of images. Annotators who reached a mAP (mean average precision) higher than 
80% can then proceed to the annotation task. 

Annotation task. Four trained annotators start the annotation process right after they have successfully passed 
the assessment. We have created two different modes, “manual” (without assistive tool) and “semi-auto” (with 
assistive tool) in our platform and the four annotators were added to both modes. Images were imported in both 
modes and equally distributed among the annotators; each annotator was given 5 HD and 5 LD images per parasite 
(Entamoeba, Giardia, and Prototheca, respectively), i.e. 6×5=30 images in total. To avoid biased results due to 
learning effect and annotator’s fatigue, the annotators have been asked to first complete the semi-auto task and the 
day after to complete the manual task. They had to use a laptop or a desktop, with a mouse for annotation and sit 
behind a desk. The annotators could remove and redraw the proposed masks in the semi-auto task if they thought it 
was necessary. The annotation task’s results are reported and analyzed in the next section. 

4. Results 

In this section, the performance of non-expert annotators in both manual and semi-auto modes is analyzed. 
Specifically, this section presents the analyses of the annotators’ performance in terms of time, clicks and annotation 
quality. The annotators’ ability to distinguish between true and false parasites has been measured as accuracy and 
recall, where their effort has been quantified by three metrics i) Tp, true positive, ii) Fp, the number of falsely 
identified objects, and iii) Fn, the number of missed (un-identified) objects by annotators. The annotators’ 
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performance in terms of parasites’ border delineation has been measured with IOU (intersection of union), since it is 
the most common segmentation evaluation metric [10,14,18,34,43,47–51]. In the following subsection time, clicks, 
and annotation quality are discussed in detail.  

4.1. Time analysis 

Time is an important factor in the annotation process which can affect the annotator’s motivation and 
performance. In this study, we measure the time-cost as defined by the amount of time that annotators have spent on 
manual or semi-auto mode, respectively. Specifically, we define as gross-time the total time spent by the annotators 
to complete their task, from turning on the interface to the end of the task (i.e. including image loading time, time to 
choose the different tools in the interface, time to move from one image to the next, drawing parasites, etc.). The 
annotators were asked to measure the gross-time manually by themselves and report it to the researchers. 
Furthermore, for more accurate, standardized, and detailed information, we define as net-time the time spent just for 
annotation, which was measured automatically by the platform (i.e. time spent to draw polygons around objects plus 
the time to modify polygons, which are indicated as Drawing-time and Modifying-time, respectively). Finally, we 
define as observation-time the difference between gross-time and net-time that represent the time spent to observe 
images, choosing tools, moving images, etc. Fig. 8 shows the gross-time spent by four annotators on the three 
groups of parasites. Fig. 8 reports also the observation-time and the net-time. 

 

 

Fig. 8.  Gross-time for each group of parasites, calculated as the sum of the gross-times (net-time + observation-time) of each annotator. Blue 
bars refer to manual mode, red bars refer to semi-auto mode. Light color (blue and red) represents the observation-time, while the dark color 
represents net-time. (Colorful) 

As Fig. 8 shows, for the first two parasite groups (Entamoeba and Giardia) the gross-time in the semi-auto mode 
is 16% and 25% lower than the manual mode respectively; the gross-time for the Prototheca is 74.4% lower in the 
semi-auto mode. In comparison with the other two groups of parasites, Prototheca shows a much larger reduction in 
gross-time. From Fig. 8 a consistent trend emerges: the gross-time in semi-auto mode is shorter than in the manual 
mode’s one. Importantly, Fig. 8 shows that in the manual mode, most of the time is spent on drawing and modifying 
polygons (i.e. net-time), while in the semi-auto mode, most of the time is spent to observe the images (i.e. 
observation time). This is because the annotators spent more time studying the polygons proposed by the mask 
proposal network to decide if they are real parasites and if they need to correct any mistakes (see appendix B for 
more detailed information).  

Fig. 9 reports the mean net-time for annotation of a single object (i.e. a parasite cell) over all four annotators (for 
each parasite group, and for HD and LD images, respectively). In order to calculate the mean net-time reported in 
Fig. 9, we calculated firstly the mean net-time per image, by each annotator: 

 

            
,

, , , , ,
1,

1
_ _ _

j mN

j m i j m i j m
ij m

net time Drawing time Modification time
N =

= +∑                      (1) 

 
Where i is the index for the object in image j, and m represents the index for the annotator. Nj,m is the number of 

objects (parasites) within image j, which have been identified by annotator m. Therefore, the mean net-time of an 

Jo
urn

al 
Pre-

pro
of



 Saber Mirzaee Bafti / Computers in Biology and Medicine 000 (2020) 000–000 9 

object (for each parasite group, and for HD and LD images, respectively) reported in Fig. 9 is calculated according 
to Eq. (2): 

,
1 1

1
_ _ _

w v

j m
m j

mean net time net time
N = =

= ∑∑     (2) 

 
Where the image-index, j, goes from 1 to v, i.e. the number of images given to each annotator (v=5), and the 

annotator-index, m, goes from 1 to w, i.e. the number of annotators (w=4). In Eq. (2), N is the total number of 
images annotated by four annotators in each group (in this case, N= 4×5=20). See Appendix B for more information. 
 

 

Fig. 9. Mean net-time for each group and for high-dense and low-dense images. Blue bars for manual mode, red bars for semi-auto mode. Error 
bars represent the standard deviation calculated over ��� − �����,
. (Colorful) 

To evaluate the significance of the mean net-time on groups, a statistical Wilcoxon test has been carried out on 
the mean net-times. According to the test, the mean-net time in semi-auto mode is significantly shorter than manual 
mode (P < .001). Fig. 9 and the Wilcoxon test confirm the trend from Fig 8, where the net-time in the semi-auto 
mode is shorter than the net-time in the manual mode. In the case of Prototheca (both HD and LD), the semi-auto 
mode’s net-time is noticeably smaller than the manual mode’s net-time (87.31% smaller for HD and 78.44% smaller 
for LD, respectively). Looking at the results for Prototheca, the densest group of parasites (see Fig. A.1), the 
comparison of mean net-time between HD and LD images in the manual and semi-auto modes shows that the net-
time reduction from manual to semi-auto mode in the HD images is more pronounced than in the LD images. We 
believe this could be because the annotators became more fatigued and less motivated with the HD images. 
Therefore when they annotated HD images in the semi-auto mode, they tended to trust the proposed polygons by 
machine more often. To explore the impact of this over-trusting of the proposed mask on quality and other aspects 
of the annotation process, we have carried out click and quality analyses in following sections. 

4.2. Clicks Analysis 

Clicks are also another factor that can affect the annotation cost, annotator’s motivation, and thus the annotation 
quality. In this study, further quantitative analysis is carried out by computing the number of clicks in the annotation 
task; we define as Drawing-clicks the number of clicks required by the annotator to draw a new polygon around an 
object (in both manual and semi-auto modes), and we define as Modifying-clicks the number of clicks required for 
correcting machine-proposed polygons (only in semi-auto mode) or user-drawn polygons (in both manual and semi-
auto modes). Fig. 10 shows a consistent trend in that the total number of clicks in the semi-auto mode is 
considerably smaller than the clicks in manual mode; this is the case in particular for Prototheca images (both HD 
and LD). With respect to this finding, and given that the Prototheca is the densest group of images in comparison 
with the two other groups (See appendix B), we believe that annotators were less motivated when they annotated 
high dense images, therefore in the semi-auto they tended to do less clicks, and trust the proposed polygons by 
machine. 
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Fig. 10. Number of clicks for each group of images, calculated as the sum of the drawing and modifying clicks of each annotator. Blue bars refer 
to manual mode and red bars refers to the semi-auto mode. Light colors (blue and red) represent drawing-clicks while dark colors represent 
modifying-clicks. (Colorful) 

Fig. 11 reports the mean number of clicks for each object, calculated over all the objects identified by all four 
annotators (for each parasite group and for HD images and LD images, respectively). In order to calculate the mean 
number of clicks, reported in Fig. 11, we calculated first the mean clicks per image, by each annotator: 

 
,

, , , , ,
, 1

1
_ _ _

j mL

j m i j m i j m
j m i

num clicks Drawing clicks Modification clicks
L =

= +∑        (3) 

 
Where i is the index for the object in image j, and m represents the index for the annotator. ,j mL is the number of 

objects (parasites) within image j, which have been identified by annotator m. Therefore, the mean number of clicks 
(for each group and for high-dense and low-dense images, respectively) reported in Fig. 11 is calculated according 
to Eq. (4):  

,

1 1

1
_ _ _

w v

j m

m j

Mean num clicks num clicks
L = =

= ∑∑                                     (4) 

Where the image-index j, goes from 1 to v, i.e. the number of images given to each annotator (v=5), and the 
annotator-index, m, goes from 1 to w, i.e. the number of annotators (w=4). Here, L is the total number of images 
annotated by the four annotators in each group (in this case, N= 4×5=20). See also appendix B. 

 

 

Fig. 11. Mean number of clicks per object, for each group and for HD and LD images. Blue bars for manual mode, red bars for semi-auto mode. 
Error-bars represent the standard deviation calculated over ���_�����,
. (Colorful) 

Fig. 11 shows that the number of clicks in semi-auto mode is smaller than in the manuals’ one, especially for the 
case of Prototheca (88.8% smaller for HD and 85.4% smaller for LD images). This seems to reinforce what 
emerged from the time analysis. A statistical Wilcoxon test has also been carried out on the mean number of clicks 
in all groups. According to the test, the mean number of clicks in semi-auto mode is significantly lower than manual 
mode (P < .001). 

4.3. Annotation quality analysis 

As it is common in object detection [13], we computed a range of evaluation metrics to explore annotations' 
quality, including Precision, Recall, IOU (intersection of union, also known as Jaccard index in some literature) and 
Acceptance Ratio. These parameters are explained in more detail, later in this section. Here we indicate with Tp 

Jo
urn

al 
Pre-

pro
of



 Saber Mirzaee Bafti / Computers in Biology and Medicine 000 (2020) 000–000 11 

(true positive) the number of truly identified objects, with Fp, the number of falsely identified objects, and with Fn, 
the number of missed (un-identified) objects by annotators. Following the literature, we set the IOU threshold to 
50% for the calculation of Tp, Fp, and Fn, i.e. those objects, identified with an overlap higher than 50% with GT 
objects, are considered positive. Tp, Fp, and Fn are calculated according to Equations (5). In Eqs. (5), image-index, 
j, goes from 1 to v, i.e. the number of images given to each annotator (v=5), and the annotator-index, m, goes from 1 
to w, i.e. the number of annotators (w=4). 
 

,

1 1

_
w v

j m

m j

Tp True Positive
= =

=∑∑                    (5) 

,

1 1

_
w v

j m

m j

Fp False Positive
= =

=∑∑  

,

1 1

_
w v

j m

m j

Fn False Positive
= =

=∑∑  

 
Fig. 12 shows that the number of identified objects (both Tp and Fp) in the semi-auto mode is higher than the 

identified objects in manual mode for all groups of images, although, in some cases, the number of Fp in semi-auto 
mode is higher than the manual mode (see appendix C for more detailed information). 
 

 

Fig. 12.  True positive, Tp (dark color), false positive, Fp (light color), and total number of objects (black) in each group of images, with 50% 
IOU threshold. Blue-bars manual mode, red-bars semi-auto mode. (Colorful) 

Precision, Recall and F1 score are calculated according to Eq. (6). 
 

                 Tp
Precision

Tp Fp
=

+
                      (6) 

   

           Tp
Recall

Tp Fn
=

+
 

 

        2
1

Presicion Recall
F

Presicion Recall

× ×=
+

 

 
Fig. 13 shows the average Precision, Recall and F1 score in both manual and semi-auto mode for each group of 

images. The comparison between manual and semi-auto mode in Fig. 13 shows that, unlike Precision, Recall is 
considerably increased in the semi-auto mode, which means that the semi-auto mode helped to reduce the number of 
Fn more than for the number of Fp (see appendix C for detailed information).  
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Fig. 13. (a) Average Precision for each group of images, (b) Average Recall for each group of images, (c) Average F1 score for each group of 
images. (Colorful) 

IOU is a well-known metric that has been widely used in instance segmentation studies [10,14,18,34,43,47–51], 
as a measure of the annotators’ accuracy in drawing objects’ borders. IOU is a measure of the overlap between a 
drawn polygon (by non-experts in this case) and the ground truth polygon (by experts), and it is defined as in Eq. 
(7): 

 
 

Areaof overlap
IOU

Areaof union
=       (7) 

 
Note that, the mean IOU is only calculated on Tp (true positive) objects. We first calculate the summation of the 

entire objects’ IOU within each image, then calculate Mean_IOU as shown in Eq. 8, where m, j, and i are the index 
of annotator, image, and object, respectively. Here, L is the total number of objects annotate by the four annotators 
in each group of images, and z refers to the number of objects within the image 
 

1

_
z

i

i

Total IOU IOU
=

=∑                                                                     (8) 

        
1 1

1
_ _

v w

j

m j

Mean IOU Total IOU
L = =

= ∑∑          

 
Fig. 14 indicates that the IOUs (for Entamoeba and Prototheca, HD and LD) in manual and semi-auto mode do 

not show a significant difference. The IOU for Giardia images is 7% higher in semi-auto mode for HD images, and 
10% higher in semi-auto mode for LD images (see appendix D for more information). Note that, unlike Entamoeba 
and Prototheca, which have a round shape (see Fig. 4), Giardia has a more complex shape, including sharp edges. 
We believe that our assistive tool is more effective (in terms of IOU) for challenging objects than for simpler 
objects.  
 

 

Fig. 14.  Mean IOU for each group of images. (Colorful) 

Fig. 15 presents a selection of samples of Entamoeba, Giardia, and Prototheca parasites, annotated by the expert 
vs. annotators (non-experts) in manual and semi-auto modes. As expected, the drawn masks in manual mode is 
coarser than the semi-auto mode, while it cost less number of points. 
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Fig. 15. Samples of raw images, of annotated images by expert and by non-expert annotators in manual mode and in semi-auto mode. “Drawn 
points” shows the points drawn with the polygon operator, and “Masks” shows the final generated mask. 

We undertook further analysis by calculating the acceptance ratio of machine-proposed polygons by the four 
annotators in the semi-auto mode. Given a machine proposed polygons, the annotators are faced with three options: 
i) fully accept proposals without any modification, ii) accept with some modifications iii) reject (delete) proposals. 
Therefore, we define three parameters: Fully_acceptance_ratio, Partially_acceptance_ratio, and Rejection_ratio 
(calculated from all annotators) as in Eq. (9). Here the Fully_acceptance_ratio, represents the number of accepted 
proposed polygons without any modification, while the Partially_acceptance_ratio refers to those proposed 
polygons which are accepted whether with or without modification. 
 

        . ( )
_ _ 100

.

Num of accepted polygons Without modification
Fully Acceptance ratio

Num of proposed polygons
= ×                 (9)

  
. ( / )

_ _ 100
.

Num of accepted polygons With Without modification
Partially Acceptance ratio

Num of proposed polygons
= ×  

 
_ 100%Rejection ratio Partially acceptance ratio= −  

 

Table 1. Acceptance ratio of proposed polygons for each group of images. Partially_acceptance_ratio  
refers to machine-generated masks accepted by annotators, and fully_acceptance_ratio refers to those 
computer generated masks they are accepted and modified. 

 Entamoeba Giardia Prototheca 

HD LD HD LD HD LD 

Partially Acceptance ratio 83.84% 85% 73.42% 58.57% 95% 87.6% 

Fully Acceptance ratio 41.1% 32.6% 40.3% 39% 85.8% 77% 

Rejection ratio 16.16% 15% 26.58% 41.43% 5% 12.4% 

 

Table 1 shows that in HD images, the annotators tend to accept proposals more often than LD images, which 
reinforces what emerged from the time and clicks analyses (for detailed information see appendix E). Based on 
appendix D (Tables D.2 and D.3), despite the fact that the annotators spend a significant amount of time for refining 
proposed masks, the final IOU of accepted/refined proposals by annotators does not show a noticeable improvement 
over the proposed masks. 

5. Discussion 

In this paper, we investigated non-expert annotators' behavior on a specialized domain (cell biology), using a 
bespoke segmentation annotation platform powered by a user-assistive tool. The annotators were asked to perform 
segmentation tasks in two modes: manual and semi-auto (assisted with a mask proposal network). Our results show 
that like the segmentation of everyday objects (e.g. using Cityscapes or COCO dataset), outsourcing the specialized 
annotation task in cell biology to non-experts can result in a decrease in the annotation cost, i.e. time spent, number 
of clicks, when supported by the assistive tool(see Figs. 9 and 11). Importantly, the overall IOU performance of non-
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expert annotations was higher with the assistive tool. Furthermore, our results show that semi-auto annotation 
resulted in consistently higher recall (which means that fewer objects/cells in the image were missed by the 
annotator). We have also investigated the behavioral patterns of annotators in both modes and identified some key 
directions for the design of future platforms.  

Firstly, our analysis reveals that performing more clicks and spending more time on the segmentation of each 
object does not lead to significantly better annotation quality (see Tables B.2, B.6, and D.1). We believe that 
spending more time and more clicks on the task eventually lead to mental fatigue, which may result in poor quality 
annotation. This implies that the design of such platforms should focus not just on helping users to make accurate 
annotations, but also efficient ones with fewer clicks, hence less time. Conventional reward mechanisms of some 
crowdsourcing platforms calculate users’ wages based on the number of clicks and time spent, which may have a 
perverse incentive to produce lower quality work. Hence, we suggest that wage calculations could take into account 
the efficiency of the annotator’s work as well, in order to set the right motivation. Another way to improve user 
motivation may involve a system with non-monetary reward (e.g. gamification scoring system), nudging annotators 
toward more efficient annotations whilst maintaining the quality of the results. This reward system can be 
implemented in the tutorial phase, or embedded seamlessly throughout the annotation task to train annotators to do 
the task more efficiently.  

Secondly, contrary to expectations, our results show that in the semi-auto mode, despite annotators spending a lot 
of time refining the proposed masks, the mean IOU of refined masks was not always improved. In cases where there 
was an improvement, it was only marginal (see appendix D, Tables D.2 and D.3).  Furthermore, we observed that 
although the annotators tended to spend a lot of time refining a proposed mask, they did not pay sufficient attention 
to verify if a proposed mask contained a real parasite object, i.e. many false proposed masks were confirmed by the 
annotator and only a few ones were rejected (see Tables C.1 and E.1). Consequently, it resulted in a high number of 
Fp (False-positive) and low precision (see Fig. 13). The implication of this observation is noteworthy: the annotators 
seemed to have trusted the machine in identifying the object, but did not trust as much the segmentation that was 
done by the machine. 

Consequently, the design of future platforms, especially for the tutorial phase, could emphasize the need to verify 
machine-proposed masks prior to refining them. Furthermore, the behavior we observed suggests the need to 
optimize the confidence threshold of the mask proposal network (set at 30% in our work). Setting a higher threshold, 
in fact, will force the machine to propose a mask only when it is really confident about it, to avoid the problem of 
over-trusting of the annotators. However, a higher threshold will mean fewer masks are proposed by the machines, 
potentially resulting in more time spent to segment objects from scratch. Alternatively, future platforms could 
present individually the generated masks to annotators, rather than in bulk within each image. We propose the 
exploration of these solutions as the topic for future researches. We also found that on average, the annotators spent 
0.49±0.16 seconds per click when creating a new mask from scratch (for detailed information see appendix B, Table 
B.5), while the modification of a point took 1.5±0.9 seconds on average, in a mask either proposed by the machine 
or generated by themselves. This means that the modification of a few points is more efficient than creating a mask 
from scratch by the annotator. However, if the quality of machine-proposed mask is low, resulting in the need of 
modifying many points, it may be more efficient for annotators to generate a mask from scratch. From these results, 
we recommend that in a machine-proposed mask, if the number of points which requires modification is more than 
30% of all total points, it may be more efficient to reject this proposed mask and create the mask from scratch by the 
annotator. 

6. Conclusion 

 Our study sheds some light onto important behavioral features of non-expert annotators in performing 
segmentation tasks in the specialized domain of microbiology, when assisted by a supervised object detection 
algorithm. These insights can help inform the design of future systems, taking into account the performance trade-
off due to human-machine interactions (e.g. human’s perceived trust on machine), the complexity of images, and 
human factors (e.g. fatigue and motivation). However, we acknowledge that the present results are based on only 
four annotators (although they performed a total of 1842 and 2209 segmentations in manual and semi-auto mode, 
respectively, yielding a large number of activities for analysis), and are drawn from images from three parasite cells 
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produced using a single microscope. Different cells may present different challenges for the annotation task, 
especially to non-experts. More specifically, different life stages of the parasites (i.e. cysts, spores, gametes), 
environmental stresses (that change the morphology of the parasite) and other objects could be present in the 
images, making the annotation task more challenging. Furthermore, it is not clear how annotators’ behavior may 
change over a longer period of time, and if the system needs to be more adaptive to respond to this possible change. 
This calls for future studies to broaden the scope of the investigation, involving more participants and diverse 
microscopic images over a longer period of time. Crucially, a collective effort is needed to generate a public dataset 
for microbiology, similar to Cityscape or COCO datasets for everyday objects. Future work should also focus on 
how human annotators perceive machine recommendations, and how user interfaces can be designed to facilitate 
efficient, trusting and transparent human-machine interaction.  
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Appendix Overview 

In this section, we provide detailed information about the annotators, in the annotation process in both modes of 
manual and semi-auto. All tables in this section present data for all the annotators 

 
Appendix A. Data Statistics 
 

To explore the correlation between annotations’ cost and images’ features such as shape, size, color, number of 
objects per images, and difficulty level of detecting objects in images, we computed different features of the images 
in each group. The number of objects in the images seems to be a factor that can influence the annotator’s behavior, 
and consequently the cost of annotation. Fig. A.1 presents the number of parasites in each group of images. 

 

Fig. A.1. Histograms of the number of objects in images: (a) LD Entamoeba, (b) LD Giardia, (c) LD Prototheca, (d) HD Entamoeba, (e) HD 
Giardia, (f) HD Prototheca 

The object’s size is another factor that can affect the annotation’s cost, including the number of clicks and time. 
To investigate the effect of annotating objects of different sizes on the annotator’s performance, we have computed 
the object’s size per each group of images as present in Table A.1. 
 
                                             Table A.1. Parasites’ size - HD-Ent: high-dense Entamoeba, LD-Ent: low-dense Entamoeba,  
                                             HD-Gia: high-dense Giardia, LD-Gia: low-dense Giardia, HD-Pro: high-dense Prototheca, 
                                             LD-Pro: low-dense Prototheca 
 

Image 
Group 

Height ( pixel) Width (pixels) Area (pixel) 
Min Max Mean Min Max Mean Min Max Mean 

HD-Ent 103 1099 560 113 1121 608 431k 1189k 355k 
LD-Ent 97 1147 560 84 1160 549 36k 1169k 348k 
HD-Gia 55 520 264 122 500 271 15k 206k 71k 
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Image 
Group 

Height ( pixel) Width (pixels) Area (pixel) 
Min Max Mean Min Max Mean Min Max Mean 

LD-Gia 109 524 263 126 586 263 20k 224k 69k 
HD-Pro 27 460 206 89 502 214 3.4k 227k 46k 
LD-Pro 56 556 217 50 524 218 8k 264k 50k 

 
The Entamoeba and Prototheca have a round shape, while the Giardia has a non-round object and therefore is 

more challenging in terms of visibility and for drawing (see Fig. 4). Entamoeba, Giardia, and Prototheca are the 
biggest to the smallest objects in terms of pixels, based on Table A.1. On the other hand, Prototheca images are the 
most populated (dense) images, as there are 2023 objects in Prototheca images, 643 objects in Giardia, and 541 
objects in Entamoeba images. 
 
Appendix B. Time and clicks results 
 

This section presents detailed results of clicks and time analysis for all participants. Table B.1 shows the net-time 
spent on each group of images by the four annotators and the expert biologist. 

Table B.1.  Net-time (seconds) spent on each group of images by four annotators and biologist. The first number is drawing time and second 
number refers to the modifying time 
 

# user Enteomeba Giardia Prototeca 
HD LD HD LD HD LD 
Manual S-auto Manual S-auto Manual S-auto Manual S-auto Manual S-auto Manual S-auto 

# 1 440;72 26;161 285;0 0;66 490;10 73;251 133;4 10;189 878;40 37;105 694;51 63;116 
# 2 525;117 52;240 235;94 44;266 356;41 136;153 201;25 88;97 1509;180 104;75 139;3 32;21 
# 3 972;303 63;600 554;107 10;395 904;23 82;217 510;10 89;44 2581;178 323;273 232;0 9;79 
# 4 951;88 159;624 389;14 0;167 682;15 149;277 293;18 132;39 2654;178 355;32 1420;247 223;40 
Expert 4205;765 N/A 1553;210 N/A 2481;248 N/A 1565;82 N/A 8641;1112 N/A 3187;445 N/A 

 
Tables B.2 and B.3 present the average time spent per object (drawing and modifying) in manual and semi-auto 

mode (calculated based on Eq. (2)). 
 
            Table B.2. Average spent time (drawing and modifying, in seconds) per object in manual mode.  

   (Mean± Standard deviation) 
 

# user Enteomeba Giardia Prototeca 
HD LD HD LD HD LD 

# 1 14.2±4.5 9.5±1.6 7.1±1.7 7.6±2.4 6.9±2.4 5.5±1.8 
# 2 10.5±3.2 11.7±3.4 6.8±2 8±2.3 8.3±3.5 8.3±4.1 
# 3 23.6±11.6 21.3±10.5 14.2±10.9 11.8±4 10.5±3.5 9.2±3.9 
# 4 18.2±8.5 13.8±4.7 9.17±3.2 11.5±4 13.1±3.5 11.9±4 
Expert 19.5±8.8 12.8±4.5 7.9±2.3 9.9±4.1 10±3.5 9.4±3.2 

 
 

    Table B.3. Average spent time (drawing and modifying, in seconds) per object in semi-auto mode.  
    (Mean± Standard deviation)  

 
# user Enteomeba Giardia Prototeca 

HD LD HD LD HD LD 
# 1 3.4±2.6 2.2±1.1 4.7±4.6 5.3±1.8 0.7±0.2 1.1±0.8 
# 2 4.8±0.9 9.7±2.1 4.5±1.9 7.2±2.5 0.8±0.4 2.5±1.8 
# 3 10.8±6.9 12.8±6.5 3.4±1.1 2.5±1.6 2±0.6 3.5±4.2 
# 4 12.1±2.7 4.7±6.9 5.3±2.1 4.4±4.3 1.6±3 1.4±2.3 

 

The average number of clicks per object in manual mode, for all four annotators, according to Eq. (4) are shown 
in Table B.4. 
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       Table B.4. Average number of clicks (drawing and modifying) per object in manual mode. 
       (Mean ± Standard deviation) 

 
# user Enteomeba Giardia Prototeca 

HD LD HD LD HD LD 
# 1 33.4±10.54 24.7±3.9 14.8±2.8 17±3.5 16.5±4 14.2±2.8 
# 2 21.8±6.3 21.1±5 15.3±3.3 15.3±3.3 17.9±5.6 19.1±7.5 
# 3 42.9±14.7 45.9±16.5 33.4±9.8 30.8±7.5 19.4±5.5 24.4±6.7 
# 4 25.4±8.2 22.8±7.9 15.8±3.8 17.6±4.7 17±15 15.6±3.3 

 
In manual mode, when annotators are drawing parasites from scratch, the time between each click is different 

from person to person. Table B.5, illustrate the average time spent for each clicks for different group of images.  
 

                  Table B.5. Average spent time (in seconds) per click for drawing parasites (Mean ± Standard deviation) 
 

# user Enteomeba Giardia Prototeca 
HD LD HD LD HD LD 

# 1 0.36±0.05 0.38±0.04 0.48±0.1 0.43±0.07 0.4±0.05 0.37±0.1 
# 2 0.45±0.08 0.51±0.06 0.42±0.08 0.5±0.08 0.43±0.09 0.41±0.05 
# 3 0.4±0.14 0.37±0.06 0.41±0.3 0.37±0.07 0.51±0.14 0.38±0.16 
# 4 0.62±0.1 0.58±0.06 0.55±0.12 0.62±0.09 0.72±0.11 0.63±0.1 

 
The total number of clicks by annotators are presented in Table B.6. The first number shows the total number of 

clicks for drawing and second number shows the total number of clicks for modifying objects. 
 
Table B.6. Total number of clicks for each group of images. (Num. of drawing clicks; num. of modifying clicks) 
 
# user HD Enteomeba LD Enteomeba HD Giardia LD Giardia HD Prototeca LD Prototeca 

Manual S-auto Manual S-auto Manual S-auto Manual A-auto Manual A-auto Manual A-auto 
# 1 1205;53 58;107 742;0 0;40 1041;3 191;274 306;2 26;197 2198;24 108;54 1919;35 134;102 
# 2 1311;107 85;170 593;85 95;314 891;33 301;118 431;16 189;66 3628;205 290;43 326;2 61;15 
# 3 2318;255 103;448 1425;78 14;251 2175;13 164;116 1357;5 182;38 5106;106 659;121 611;0 18;73 
# 4 1451;30 255;571 664;4 0;137 1207;5 283;260 477;4 254;33 3674;63 661;22 2197;99 447;38 

 
Appendix C. Precision and recall 
 

Table C.1 shows the number of truly identified, wrongly identified, and missed objects in both manual and semi-
auto is calculated (for calculation, the IOU threshold is set to 50%). 
 
Table C.1. Tp (true-positive), Fp (false-positive) and Fn (false-negative) with IOU-threshold=50% for each group of images, per annotators 
(num. of Tp ; num. of Fp ; num. of Fn) 
 
# user HD Enteomeba LD Enteomeba HD Giardia LD Giardia HD Prototeca LD Prototeca 

Manual S-auto Manual S-auto Manual S-auto Manual S-auto Manual S-auto Manual S-auto 
# 1 33;3;23 45;2;11 24;6;11 30;3;5 55;15;49 71;41;33 10;8;33 24;13;19 103;30;89 167;34;25 115;20;57 150;13;22 
# 2 60;1;8 59;1;10 27;1;9 31;1;5 33;25;44 57;6;20 9;19;22 22;5;9 167;35;59 202;18;24 16;1;2 18;0;1 
# 3 50;4;4 50;10;4 30;1;1 30;1;1 37;28;33 54;33;16 36;8;7 40;12;3 209;53;82 259;28;32 13;12;4 15;11;2 
# 4 56;1;21 66;1;11 28;1;7 32;2;3 60;16;32 74;12;18 22;5;26 36;7;12 208;8;56 235;23;29 136;4;42 152;13;27 
Precision 95.67 94.01 92.37 94.61 68.77 73.56 65.81 76.72 84.50 89.33 88.32 90.05 
Recall 78.03 85.93 79.56 91.95 53.93 74.62 46.66 73.93 70.60 89.52 72.91 86.56 

 
Appendix D. Intersection of Union 
 

IOUs for each group of images in both manual and semi-auto are shown in Tables D.1 and D.2. 
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    Table D.1. Final IOU in manual mode for each group of images (Mean ± Standard deviation). 

 
# user Enteomeba  Giardia   Prototeca   

HD LD HD LD HD LD 
# 1 85±7.9 75.5±6.2 72±11.1 68.8±12.6 77.3±8.9 79.4±7.7 
# 2 85.5±8.9 85.1±10.4 69.5±10.7 64.8±10.8 77.7±8.9 80.3±9.4 
# 3 87.4±12.4 90±5 71±12.3 76.3±8.8 78.2±11.9 75.9±23.3 
# 4 90.1±6.5 90.8±5.5 76.2±12.8 75.6±13.4 84±6.8 85.9±5.7 

 
     Table D.2. Final IOU in semi-auto mode for each group of images (Mean ± Standard deviation). 

 
# user Enteomeba  Giardia   Prototeca   

HD LD HD LD HD LD 
# 1 86.8±6.5 86.6±7.4 75.6±11.9 75.2±12.8 80.7±7.8 83.7±6.9 
# 2 87.8±6 85.9±9.5 81.8±8.5 79±10.9 82.8±8.7 86±6.9 
# 3 84.8±12.4 87.1±6.5 76.6±13.7 82.2±6.4 83.4±9.9 80.8±13.3 
# 4 88.6±4.9 86.6±7.4 80.1±9.8 79.3±10.2 84.2±7.3 82±7.8 

 
The IOUs for the masks generated in the semi-auto mode in comparison with the GT (ground truth) are shown in 

Table D.3. 
 

      Table D.3. IOU of computer generated masks (Mean ± Standard deviation). 
 

# user Enteomeba  Giardia   Prototeca   
HD LD HD LD HD LD 

# 1 86±6.9 86.3±7 78±9.5 80±7.2 81.4±6.8 84.2±6.6 
# 2 87±6 85.3±8.3 81.1±8.2 80±8.5 83.7±6.5 85.5±7.4 
# 3 84.7±8.9 86.1±7.2 79±9.6 82.6±6.4 85.3±6.8 84.7±10 
# 4 86.3±6.4 85.8±7.1 80.2±7.2 80.6±8 84.7±6.5 81.6±7.8 

 
 
Appendix E. Semi-auto mode complementary results 
 

Number of proposed objects, along with the number of added and removed parasites in semi-auto mode are 
shown in Table E.1. 
 
Table E.1. Accepted, removed and modified mask proposals in semi-auto mode. (P: total number of proposed objects, A: Number of added 
objects by annotator, D: number of deleted objects by annotator, T: the final number of annotated objects) 

# user HD Enteomeba  LD Enteomeba  HD Giardia  LD Giardia  HD Prototeca  LD Prototeca 
P A D T  P A D T  P A D T  P A D T  P A D T  P A D T 

# 1 56 2 11 47  40 0 7 33  140 14 40 112  58 2 23 37  203 7 9 201  158 12 7 163 
# 2 68 4 13 59  38 4 10 32  86 14 37 63  44 8 25 27  225 19 24 220  27 3 12 18 
# 3 60 2 2 60  31 1 1 31  82 6 1 87  47 7 12 42  256 35 4 287  44 1 19 26 
# 4 76 7 16 67  38 0 4 34  106 12 32 86  61 9 27 43  220 46 8 258  142 12 31 165 

 

      Table E.2. Number of partially and fully accepted polygons (num. of accepted proposals with 
       modification; num. of accepted proposal without modification). 

 
# user Enteomeba Giardia Prototeca 

HD LD HD LD HD LD 
# 1 9 ; 36 10 ; 23 39 ; 61 24 ; 11 25 ; 169 23 ; 128 
# 2 34 ; 21 27 ; 1 20 ; 29 12 ; 7 15 ; 186 4 ; 11 
# 3 25 ; 33 16 ; 14 40 ; 41 8 ; 37 43 ; 209 11 ; 14 
# 4 43 ; 17 24 ; 10 38 ; 36 7 ; 27 0 ; 212 1 ; 133 
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Highlights 

• Our assistive tool enables non-expert annotators to perform annotation of microbiological images 
accurately and quickly. 

• Our study sheds some light on important behavioral features of non-expert annotators. 
• Our findings can help inform the design of future annotation systems. 
• Annotation quality is not found to be strongly correlated with either annotation time or quantities 

including the number of regions and polygon vertices. 
• Results reveal that other than time reduction, annotation platforms should encourage annotators 

toward more efficient annotations to maintain their motivation. 
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