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Prefrontal cortex (PFC) asymmetry is an important marker in affective neuroscience and

has attracted significant interest, having been associated with studies of motivation,

eating behavior, empathy, risk propensity, and clinical depression. The data presented

in this paper are the result of three different experiments using PFC asymmetry

neurofeedback (NF) as a Brain-Computer Interface (BCI) paradigm, rather than a

therapeutic mechanism aiming at long-term effects, using functional near-infrared

spectroscopy (fNIRS) which is known to be particularly well-suited to the study of PFC

asymmetry and is less sensitive to artifacts. From an experimental perspective the

BCI context brings more emphasis on individual subjects’ baselines, successful and

sustained activation during epochs, and minimal training. The subject pool is also drawn

from the general population, with less bias toward specific behavioral patterns, and no

inclusion of any patient data. We accompany our datasets with a detailed description of

data formats, experiment and protocol designs, as well as analysis of the individualized

metrics for definitions of success scores based on baseline thresholds as well as

reference tasks. The work presented in this paper is the result of several experiments

in the domain of BCI where participants are interacting with continuous visual feedback

following a real-time NF paradigm, arising from our long-standing research in the field of

affective computing. We offer the community access to our fNIRS datasets from these

experiments. We specifically provide data drawn from our empirical studies in the field

of affective interactions with computer-generated narratives as well as interfacing with

algorithms, such as heuristic search, which all provide a mechanism to improve the ability

of the participants to engage in active BCI due to their realistic visual feedback. Beyond

providing details of the methodologies used where participants received real-time NF

of left-asymmetric increase in activation in their dorsolateral prefrontal cortex (DLPFC),

we re-establish the need for carefully designing protocols to ensure the benefits of NF

paradigm in BCI are enhanced by the ability of the real-time visual feedback to adapt to

the individual responses of the participants. Individualized feedback is paramount to the

success of NF in BCIs.

Keywords: functional near infrared spectroscopy (fNIRS), PFC asymmetry, visual feedback (VF), neurofeedback

(NF), dataset
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1. INTRODUCTION AND RATIONALE

There is growing interest in sharing datasets for Brain-Computer
Interfaces (BCI), to facilitate comparison of technical approaches.
Their availability is of particular relevance for applications in
which there is significant diversity of practice and lack of
standardized protocols, such as Neurofeedback (NF) (Ros et al.,
2020).

Such datasets make it possible to explore and compare
signal acquisition and dynamics, baselining, thresholding, and
categorization: this has the potential to identify experimental
difficulties and best practice, beyond reproducibility issues.

Among the various neural signals that support BCI, the
availability of fNIRS dataset remains scarce (Bak et al., 2019),
despite its growing popularity, both for BCI (Naseer and Hong,
2015) and NF applications (Kohl et al., 2020).

In this paper, we introduce three datasets obtained as part of
fNIRS BCI experiments. The originality of these datasets is that
they were produced in a BCI context yet using a NF paradigm,
in which users control their Prefrontal Cortex (PFC) asymmetry.
The use of a NF approach to BCI is characterized by an emphasis
on RoI activation over long-term effects, often with minimal
training compared to clinical uses of NF. It is of particular interest
when the RoI signal is not under direct volitional control, as the
NF channel assists the user in controlling the signal. Moreover,
the feedback channel can be embedded in the interface design
itself for added realism. Frontal asymmetry is an important brain
signal which has a long history in BCI, for the measure of valence,
approach or cognitive workload, and NF. Since frontal signals
are of the main elements of fNIRS, this dataset has validity
beyond the specific context it has been produced in, which is PFC
asymmetry NF.

After a reminder of key concepts in NF, which includes a
short discussion of current thinking in fNIRS NF, we discuss
the potential interest of our datasets to the wider fNIRS and NF
community, and describe several data formats supported by our
dataset to facilitate processing by various software packages and
data-oriented programming languages. In the remainder of the
text we will refer to our three datasets as follow:

• ANG (Aranyi et al., 2015b) is derived from an anger-
expressing BCI experiment.

• RAP (Aranyi et al., 2016) investigates rapport with a virtual
character endowed with full facial expressions.

• HEU (Cavazza et al., 2017) uses BCI input to a hybrid human-
AI system.

1.1. PFC Asymmetry in Neuroscience
Research
One of the major challenges for BCI is to relate neural
signals to specific cognitive processes, or to an element of user
experience. For affective BCI, this is rendered even more difficult
by the weakness of locationist hypotheses (Lindquist et al.,
2012). However, there is substantial evidence linking prefrontal
cortex (PFC) asymmetry to the approach/withdrawal dimension
(Davidson, 2004): the paradox being that an area associated to
high-level integrative cognitive processes is also the locus of

a rather basic dimension. This dimension has been shown to
underpin higher-level behavioral elements including motivation,
risk-taking, aggression, and empathy. Moreover, it has been
associated to clinical conditions, such as addiction, eating
disorders, gambling and depression. While PFC asymmetry has
been primarily associated with approach/withdrawal it has also
been shown to be highly correlated with valence, as well as
cognitive workload.

Historically, interest in PFC asymmetry has stemmed from
research in affective and social neuroscience. Another significant
use of PFC asymmetry has been early NF experiments, primarily
for the treatment of depression (Rosenfeld et al., 1995).
PFC asymmetry has been later adopted as a BCI technology
taking advantage of the above results, and has been used for
affective computing (Mühl andHeylen, 2009) cognitive workload
measurement (Fishburn et al., 2014; Peck et al., 2014; Barth et al.,
2016; Maior et al., 2020) or assessment of aesthetic response
(Karran et al., 2015; Cartocci et al., 2016).

Most of early work on PFC NF has taken place using EEG
signals. There are several reasons for that: despite the lack of
spatial resolution, it is still possible to capture a meaningful PFC
asymmetry signal from F3 and F4 electrodes. The existence of a
stable PFC asymmetry EEG baseline in the alpha spectrum and
the trait and state properties of the signal (Coan and Allen, 2002)
facilitates the design of PFC NF experiments. With the increasing
availability of fNIRS equipment, it appeared as an interesting
alternative to EEG with less sensitivity to a range of artifacts
and increased specificity and spatial resolution considering that
the RoI is close to the surface hence easily accessible to infrared
sensors. Sitaram et al. (2009) were amongst the first to suggest
that signals based on metabolic activity could be equally suited
to BCI than electrical signals. fNIRS has become the method of
choice as DLPFC is readily accessible via lateral optodes (Ernst
et al., 2013). It has been used as a measurement tool (Hirshfield
et al., 2007) and as a BCI (Solovey et al., 2009; Afergan et al., 2014;
Naseer andHong, 2015; Hong et al., 2020) to support NF research
and even clinical experiments.

1.2. Neurofeedback Concepts
Our dataset has been entirely produced through NF BCI
experiments and it is worth summarizing some of the main
concepts attached to NF technical implementations and subject
behavior. In naïve terms, NF consists in facilitating the activation
of a region of interest in the subject’s brain through the real-
time display of a feedback signal that represents how successful
they are in activating that region1. NF is generally considered an
operant conditioningmechanism, and subjects tend to develop or
improve this ability through training, although this ability shows
great individual variability, some subjects demonstrating it from
the very first testing sessions while others hardly develop it, a
phenomenon close to BCI illiteracy (Lee et al., 2014; Trambaiolli
et al., 2018).

1We are primarily considering here NF systems for which there is an element of

regional specificity or spatial resolution, which is generally the case for fNIRS and

fMRI-based NF.
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The essential components of a NF installation (Sitaram et al.,
2017) include a sensing device (EEG, fNIRS, FMRI, MEG)
that captures a signal measuring the RoI activity, a software
component analysing NF performance (by comparing the RoI
signal to a baseline or reference), and a feedback system which
maps the performance measure to a feedback channel giving
the user an indication on how well they are activating the
target region.

If we leave aside the case of motor areas, most NF experiments
require the activation of areas which are not under direct
volitional control2 [for instance, the amydgala (Zotev et al.,
2016), insula (Lawrence et al., 2014), PFC (Barth et al., 2016),
Anterior Cingulate Cortex (Mathiak et al., 2015; Zilverstand
et al., 2017)]. Initially, subjects may use cognitive strategies to
facilitate the activation of the target RoI and subsequently guide
themselves on the feedback signal to sustain that activation.
A cognitive strategy is essentially a set of thought contents
which are known to facilitate the activation of the RoI, albeit
not always specifically. For instance, imagining a gesture would
activate corresponding pre-motor areas, pleasant autobiographic
memories can affect PFC asymmetry, concentrating on your
inner self may activate the insula (Lawrence et al., 2014), and
achieving a relaxed state may decrease the amygdala activity.
Cognitive strategies may be suggested by the experimenter, or
may be discovered by the subjects themselves based on the (often
partial) experimental brief they have been given (Autenrieth
et al., 2020). Some of the cognitive strategies may actually lack
specificity: for PFC asymmetry in which valence and approach
may be confounded, the use of positive autobiographic memories
as a cognitive strategy may actually bias activation from a valence
perspective. Similarly, different strategies may lead to the same
region activation (Lawrence et al., 2014).

Barth et al. (2016) have identified no less than 17 different
cognitive strategies used by subjects during a PFCNF experiment
(not involving PFC asymmetry). These were often workload-
oriented and included verbal fluency tasks, calculating, and
naming terms in certain categories. Only two subjects used
emotional or arousing strategies, probably due to the fact that
there were no affective or motivational element in that PFC
experiment: subjects were given visual feedback of their own PFC
through an activation heat map, and told to increase activation.
Another possible explanation is that subjects may have been
influenced in their choice of cognitive strategies by a preliminary
working memory task undertaken prior to the actual experiment.

The cognitive strategies adopted by our subjects are specific to
each experiment and, short of being dictated by the experimenter,
were influenced by the context of the experiment and some high-
level instructions given. In the ANG dataset, subjects naturally
expressed anger at the designated character, while in the RAP
dataset they tried various positive mental attitudes toward the
agent. Finally, in the HEU dataset, they had to express motivation
or eagerness and developed various strategies, such as mentally
encouraging participants in a race.

2The following list includes NF experiments based on hemodynamic signals, fMRI

or fNIRS.

The NF loop operates by measuring the level of activation,
and mapping it onto the feedback signal, so that it reflects in
real-time how successful the subject is in activating the RoI.
The NF literature, despite its abundance, rarely discusses in-
depth this mapping process/function, which is in general a linear
mapping between the activation range above the baseline to the
variation range of visual feedback. For instance, in our ANG
experiment we run preliminary experiments measuring signal
variation and define a variation range using the PFC asymmetry
signal’s standard deviation, in a subject-specific fashion.

There has been growing interest in the nature of the NF
feedback channel which can be acoustic (Rosenfeld et al., 1995),
or more often, visual. In the latter case, the primary consideration
is in the use of abstract symbology or visually realistic signal. To
refine this distinction, we propose to categorize the type of visual
feedback by taking into account its degree of integration with the
interactive application controlled by the BCI (see Figure 1 for
visual details).

Abstract feedback is the dominantmodality inNF, and resorts
to various gauges or abstract geometrical shapes whose size vary
with the activation signal (Trambaiolli et al., 2018), or even
screen color (Sakatani et al., 2013). Some feedback can be visually
realistic but not semantically related, as in Li et al. (2019). Even
feedback based of visualizing target brain areas as in (Barth et al.,
2016) should fall in this category. Abstract feedback is primarily
used in clinical applications or fundamental NF investigation: in
BCI, abstract symbology tends to be disconnected from the main
application, unless some metaphor can be established between
the abstract shape and an element of the application. For instance,
in our HEU dataset, the width of the triangle used for visual
feedback is a metaphor of the heuristic search space (Cavazza
et al., 2017).

Semantic feedback corresponds to more realistic visual
feedback which can relate to the affective signals captured by
the BCI signal. For instance, in our ANG dataset visual feedback
consists in altering the visibility of the character against which
anger has to be expressed after an animation showing his evil
nature is shown to the subject.

Finally, Task-related feedback refers to experimental
conditions in which the BCI input is naturally embedded in the
interaction process, for instance with a visual feedback which is
part of the interface operation rather than added-on symbology.
In our RAP dataset, the overall task consists in non-verbal
communication with an agent with the agent’s non-verbal
behavior actually constituting the feedback signal, making the
feedback signal indistinguishable from the task itself. This comes
at the cost of losing some real-time properties of the feedback
signal, but the benefits of visual realism may actually outweigh
this loss by far. In previous work with a different yet compatible
signal [fMRI-derived EEG known as electrical fingerprint
(Keynan et al., 2019)], we have suggested that some complex
visual interfaces may have signal filtering abilities (Yamin et al.,
2017).

While visually realistic feedback has been shown to facilitate
NF performance via increased competence rather than simple
engagement (Cohen et al., 2016) there is no evidence that it
would distort the process compared to abstract feedback, which
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FIGURE 1 | NF Feedback categorization: abstract [HEU], semantic [ANG], and task-related [RAP].

is why we consider our datasets as representative examples of
generic interest. Moreover, visually realistic feedback with a social
component (such as in our RAP dataset) has been shown to
foster good NF responses even with minimal training (Mathiak
et al., 2015). Finally, more speculative explanations could involve
improved reward encoding with realistic visual feedback, in some
cases even resonating with reward encoding in the RoI itself
(Cavazza, 2018), in particular in the case of DLPFC (Tanaka et al.,
2006; Aupperle et al., 2015).

NF signals tend to fluctuate significantly during an epoch.
There have been several theoretical hypotheses underlying their
dynamics, such as the difficulty to activate the region, the
difficulty to sustain that activation, and the extent to which
feedback could assist or even hinder the process (Hinterberger
et al., 2004). Some researchers have hypothesized a control theory
model for NF (Ros et al., 2014), in which oscillations would be
explained by the response of the controller outside of a steady
state mode. BCI uses of NF signal can operate with shorter
epochs as no long-term effects are sought, and the actual duration
tends to be a compromise between application requirements and
signal acquisition.

2. ORIGINS OF DATA

2.1. Common Description of fNIRS NF
Experiments
Based on previous literature (Ruocco et al., 2014), including
literature applying HbO to affect-related manipulation in the
DLPFC (Tuscan et al., 2013), and to approach/withdrawal-
related experimental manipulation (Morinaga et al., 2007), and
based on our pilot study (Aranyi et al., 2015a), we elected to use
HbO for real-time application; we based post-hoc analyses on the
same metric for consistency.

Note that this measure is relative to a baseline (Ayaz et al.,
2010), this has important practical consequences in defining and
quantifying NF success. For example, as this operationalization
of asymmetry yields interval-level data, a ratio of task/no-task
signals for defining and quantifying success (for instance Sarkheil
et al., 2015) cannot be applied.

In our previous work corresponding to the three datasets
ANG, RAP, HEU, we have used a specific terminology in which
baseline referred to signal value at rest. In some experiments,

we used a reference epoch to calculate the signal variation,
which in some instances required the subject to watch a similar
environment to the one used during NF epochs, sometimes also
involving a neutral cognitive task, such as counting. It should also
be noted that some datasets have considered PFC asymmetry to
be zero for the baseline whilst there is evidence of default PFC
asymmetry values even in fNIRS (Zohdi et al., 2020) something
which was readily captured in EEG experiments (Cavazza et al.,
2014) but needs to be redefined on a session or even epoch basis
when using hemodynamic signals.

In all these experiments NF is used for its ability to produce
a signal with a clear interpretation in cognitive terms. We are
using PFC asymmetry as a dimensional marker of approach,
the actual cognitive feature under consideration (or analysis)
being determined by the experimental context, and the nature of
the feedback signal. For instance, an experiment on anger will
measure approach (dissociated from valence) (Harmon-Jones,
2007), while in an experiment on empathy, approach can be used
as a proxy measurement (Cavazza et al., 2014).

It is worth discussing again the main differences between
clinical NF and BCI NF, the latter still being an emerging
application within the broader field of BCI technology.
In terms of experimental protocol and validation, clinical
NF tends to rely on sham feedback as a control group,
under the hypothesis that appropriate feedback provides the
reward signal that mediates long-term effects. The clinical
context implies and allows the use of repeated sessions with
significant training, which increases the number of responders:
on the other hand, BCI NF dedicates limited time to
subjects training and leaves non-responders to the various
categories of BCI illiteracy (Lee et al., 2014; Trambaiolli et al.,
2018; Autenrieth et al., 2020), concentrating instead on the
responders’ behavior.

2.2. Representativity and Interest of the
Dataset
In this section, we are briefly discussing the relevance and
potential community interest of our datasets, considering the
increasing popularity of fNIRS and in particular fNIRS NF. We
will be basing this discussion primarily on the recent review of
fNIRS NF by Kohl et al. (2020), which collected a significant
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FIGURE 2 | (A) Overview of the apparatus used in our experiments: fNIR Optical Brain Imaging System (fNIR400) by Biopac Systems with one PC dedicated to the

data acquisition, and one PC dedicated to running the simulation and visualization of the stimulus presented in real-time to the subjects. (B) The 16-channel sensor

placed on the subjects’ forehead (C) showing the selected channels for the calculation of the asymmetry values.

number of studies and highlights variants in different core aspects
of NF3.

Firstly, most of the studies reported in the review use HbO,
which is also the case for our three datasets (Aranyi et al., 2015a).
Recently (Tachtsidis and Scholkmann, 2016) have suggested that
HbO alone might be insufficient to cover the widest range of
experimental situation, but this recent observation has not yet
been fully taken up in the community.

The duration of NF epoch in Kohl et al. (2020) ranges from 5
to 40 s (the latter actually corresponding to our own RAP dataset,
although its actual useful duration is 33 s), with the majority of
epochs (30%) lasting 30 s. Duration of epochs in our datasets are
30 s [HEU], 15 s [ANG], and 33 s [RAP].

Our subject population was primarily drawn from healthy
subjects, which were also overrepresented in Kohl et al. (2020)’s
review (76%). Our target RoI also proves to be one of the most
studied ones, as 59% of the studies reviewed trained participants
to regulate parts of the PFC.

Our three datasets also cover a range of cognitive strategies,
ranging from explicitly expressing a given feeling [ANG],
engaging with a virtual character [RAP], or expressing
motivation [HEU]. We collected post-experiment user feedback
(Autenrieth et al., 2020) on the actual cognitive strategies they
used for NF: it highlighted a mix of through contents related to
both approach and positive valence, apparently influenced by
the visual nature of the application. Users reported various sorts
of mental “cheering” as if encouraging runners during a race, as

3This review already includes one of our own experiments corresponding to the

RAP dataset.

well as the use of more abstract thinking strategies to generate a
feeling of eagerness, such as reminiscence of appetitive stimuli or
pleasant memories.

3. DETAILED EXPERIMENTS

3.1. Apparatus
For the three experiments presented here, we used an fNIR
Optical Brain Imaging System (fNIR400) by Biopac Systems
for data acquisition. Raw fNIRS data and oxygenation values
were collected with 2 Hz sampling rate (using COBI Studio and
FnirSoft), and was sent to the bespoke experimental software over
TCP/IP (using FnirSoft DAQ Tools) (Figure 2A). A 16-channel
sensor with a fixed 2.5 cm source-detector separation was placed
on the subjects’ forehead. For real-time application we used
measurements of changes in HbO concentration, as opposed to
deoxygenated or total hemoglobin (HbR and HbT, respectively)
(Figures 2B,C). Values of HbO concentration changes were
averaged over the four leftmost and four rightmost channels
(located over the left and right DLPFC, respectively) to derive
a simple metric of inter-hemispheric difference in the level of
HbO change that could account for left prefrontal asymmetry
(i.e., Asymmetry = L− R).

A bespoke graphical user interface was developed using C#
and Windows WPF for each of the experiment, which includes
a real-time visualization of HbO changes and asymmetry values.
All these variables are logged during the experiment to facilitate
the post-processing of the collected data. This graphical user
interface was also used to manage the running of the experiment
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FIGURE 3 | Experimental setup for the ANG experiment (see Figure 1 [ANG] for overall visual feedback setup).

FIGURE 4 | Protocol design for the ANG experiment.

itself, which included displaying the required epochs (text,
image, video, or more complex visualization) and managing
their duration and the synchronization of all the software
components. Finally, this interface was also used to implement
visual feedback.

For the positioning of the different devices in relation to the
subjects, we followed the recommendations of Solovey et al.
(2009) regarding the use of fNIRS in a HCI setting. Subjects were
seated∼47′′ (120 cm) from a 24′′ flat monitor in a dimly-lit, quiet
(but not soundproof) room in a comfortable chair to minimize
movements, with the fNIRS probe positioned over their forehead
and covered with non-transparent fabric to prevent ambient
light reaching the sensors. Subjects were instructed to refrain
from moving their limbs, frowning and talking during data
collection blocks.

3.2. Anger-Based NF—[ANG]
3.2.1. Subjects
This experiment (Aranyi et al., 2015b) was conducted with
twelve English-speaking adult subjects originally, though one
subject had to be excluded due to technical problems.
Thus, the effective sample size was eleven subjects (five
females, mean age = 33.55 years, SD = 11.53, range: [24;
59]). Subjects had no history of psychiatric conditions and
were right-handed. They all provided written consent prior
to participation.

3.2.2. Protocol
Full details of the protocol design can be found in Aranyi et al.
(2015b), but we will outline the essential details here (Figure 3
for the details of the overall setup). Subjects were instructed that
they would go through a sequence of blocks, each comprising
three main epochs: Rest, View and NF (Figure 4). During Rest,
the baseline for calculatingHbO data is acquired for the block as a
whole. TheView epochs correspond to control conditions, during
which the subjects watch an idle animation of the character while
given a cognitive task, counting, that keeps them in a neutral
state, hence providing a reference for prefrontal asymmetry
levels. Finally, the NF epochs consist in subjects expressing anger
toward the character and receiving visual feedback. Each subject
completed two training blocks to get acquainted to the task,
followed by six blocks for the experiment itself, during which
HbO asymmetry was monitored and recorded.

3.2.3. Results
We treated a block as successful if the mean of asymmetry values
during the NF epoch was statistically significantly larger than
the mean of asymmetry values during the View epoch within
the same block (Figure 5). As opposed to simply comparing
asymmetry scores duringNF to the overall baseline, we compared
asymmetry scores between the successive View and NF epochs
because the visual stimulus was very similar (and conceptually
the same) in the two epochs. Moreover, we set conditions
for controlling subjects’ cognitive activity during these epochs
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FIGURE 5 | Results from the post-hoc analysis of the ANG experiment, illustrating the dynamics of PFC asymmetry over the whole experiment for successful blocks

(Left) and unsuccessful blocks (Right) successful blocks demonstrates a significant increase of the left-side oxygenation compared to unsuccessful blocks.

(counting during View and expressing anger duringNF), whereas
thought processes during Rest were not controlled. Thus, the
View epoch served as a control condition within each block.
Because the hemodynamic response measured by fNIRS occurs
in ∼7 s, we discarded the first 7 s of data in each View and
NF epoch for determining block success. The system determined
block success by performing an independent t-test on the set
of asymmetry scores collected during successive View and NF
epochs within a block. In particular, it calculated mean and
standard deviation of asymmetry scores in both epochs, and
then calculated the t value. Since removing the first 7 s left
15 s of data per epoch (at least 29 data points sampled at
2 Hz), the software used the t critical value of 2.05 with 28
degrees of freedom for p (two-tailed) = 0.05 as a threshold for
success. Furthermore, to quantify the extent of block success
by expressing the distance of the distribution of asymmetry
scores during successive View and NF epochs, the experimental
software calculated the Cohen’s d effect-size measure, which
is the difference between two means divided by the pooled
standard deviation. This way we characterized each block with
a dichotomous success value (success/fail) and a continuous
success score (Cohen’s d or d for short) that reflects the distance
between the distribution of asymmetry values between View and
NF epochs within the same block.

3.3. Virtual Agent—[RAP]
3.3.1. Subjects
This experiment (Aranyi et al., 2016) was conducted with
eighteen English-speaking adult subjects, though data from one
subject was discarded due to technical problems during data
collection. Thus, the effective sample size was seventeen subjects
(eight females, mean age = 35.11 years, SD = 11.25, range:
[21; 60]). Subjects were right-handed and were not treated for
psychiatric conditions.

3.3.2. Protocol
Figure 6 provides an overview of the details of the overall setup.
The experimental task consisted in completing eight identical

blocks (preceded by a practice block which was not analyzed).
The structure of the blocks is presented in Figure 7. Each block
included three epochs: Rest, View, and Engage. During Rest
epochs, subjects were instructed to look at a crosshair located in
the center of a gray screen to try to clear their head of thoughts
and relax. During View epochs, subjects were instructed to keep
looking at the agent while carrying out a simple mental counting
task (counting backwards from 500 by increments of a given
integer). This task was included to control for unwanted mental
processes. During Engage epochs, subjects were instructed to
engage with the ECA through positive thinking, and to “cheer
her up” with their thoughts. We were deliberately vague with
support instructions in order to allow subjects to develop their
own cognitive strategies. After completing each block, subjects
were asked to describe their strategies in general terms. During
Engage epochs, subjects received real-time feedback of their
left-asymmetry. To ensure consistent mapping of individual
variations in left-asymmetry onto the feedback signal, we used the
range of variation of HbO asymmetry during the View epoch in
each block to determine the mapping of the level of engagement
from the user to the visual feedback signal. This was calculated
by the experimental software during the last 3 s of the Rest epoch
between the View and Engage epochs. We defined the minimum
point for mapping Min as the mean of left-asymmetry values
during the View epoch plus 1.28 times their standard deviation.
In normally distributed asymmetry scores, this threshold would
result in no feedback for 90% of the spontaneous asymmetry
variations during the reference (View) epoch. To determine the
maximum Max point for mapping, we increased the threshold
asymmetry value for feedback Min by the variation range of
asymmetry values during the View epoch. Asymmetry values
within the range [Min; Max] during the Engage epoch were
mapped linearly onto the ECA’s facial expression, with the same
2Hz frequency as the acquisition of asymmetry values.

3.3.3. Results
Subjects were instructed to refrain from talking, frowning and
moving their limbs during fNIRS data collection periods within
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FIGURE 6 | (A,B) Experimental setup for the RAP experiment (see Figure 1 [RAP] for overall visual feedback setup).

FIGURE 7 | Protocol design for the RAP experiment.

FIGURE 8 | Results from the post-hoc analysis of the RAP experiment, illustrating the dynamics of PFC asymmetry over the whole experiment for successful blocks

(Left) and unsuccessful blocks (Right) successful blocks demonstrates a significant increase of the left-side oxygenation compared to unsuccessful blocks.

the protocol. Additionally, we applied a sliding-window motion
artifact rejection (SMAR) to each channel used for calculating
the asymmetry metric which was inspected post-hoc to identify
motion artifacts during NF. For post-hoc analyses, raw data
were low-pass filtered using a finite impulse response filter
with order 20 and 0.1 Hz cut-off frequency (Ayaz et al.,
2010). For this experiment (Aranyi et al., 2016), we used a
sliding-window motion artifact rejection (SMAR) procedure,
which rejected motion-affected periods in the fNIRS signal.
This was an experiment which had greater potential for upper

body movement as the subject could try to align to the
agent non-verbal behavior which also included head and upper
body motion.

Moreover, we have applied a counting task during reference
epochs rather than passive visualization: while counting
tasks are known to activate the PFC (Barth et al., 2016)
they are also neutral toward affective and motivational
aspects, which allows us to claim greater specificity for
measuring NF activation compared to our reference epoch
(Figure 8).
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FIGURE 9 | Experimental setup for the HEU experiment (see Figure 1 [HEU] for overall visual feedback setup). A* represent is artificial intelligence search algorithm.

FIGURE 10 | Protocol design for the HEU experiment.

3.4. Motivational BCI—[HEU]
3.4.1. Subjects
This experiment (Cavazza et al., 2017) was conducted with eleven
adults (three females; mean age = 37.18 years, SD = 11.21,
range= [20; 52]) who were right-handed, reported no treatment
history for psychiatric conditions and provided written consent
prior to participation. Subjects were seated in a dimly-lit room
in a comfortable chair to minimize movements, with the fNIRS
probe positioned over their forehead and covered with non-
transparent fabric to prevent ambient light reaching the sensors.

3.4.2. Protocol
HbO values were averaged over the four leftmost and the
four rightmost channels (located over the left and right
dorsolateral prefrontal cortex, respectively). Average right HbO
was subtracted from average left HbO to derive a simple, real-
time prefrontal asymmetry score rejecting differential changes
in oxygenation. We developed bespoke experimental software
for generating real-time feedback and interfacing with the
WA* algorithm (Figure 9). Response time is an important

component of NF systems; however, (Zotev et al., 2016)
reported successful fMRI-based NF despite the ∼7 s delay
of the BOLD signal. Since delay using fNIRS is comparable,
we sought inspiration from the experimental protocol of
(Zotev et al., 2016). The overall protocol design for the
experiment is described in Cavazza et al. (2017) and in
Figure 10.

3.4.3. Results
Out of all 66 blocks completed by the eleven subjects, 38 (58%)
contained an NF epoch with statistically significant left-side
asymmetry; these blocks were considered successful. Each subject
had at least one successful block, and eight subjects (73%) had
at least three successful blocks (i.e., half of blocks successful).
No subject achieved NF success on all six blocks. Since fNIRS
signals are relative values, it can be difficult to compare them
across subjects (Sakatani et al., 2013); moreover, the magnitude
of oxygenation changes can also differ substantially across blocks
within the same subject (Figure 11). Our mapping strategy was
designed to mitigate the issue of comparability.
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FIGURE 11 | Results from the post-hoc analysis of the HEU experiment, illustrating the dynamics of PFC asymmetry over the whole experiment for successful blocks

(Left) and unsuccessful blocks (Right) successful blocks demonstrates a significant increase of the left-side oxygenation compared to unsuccessful blocks.

4. DATA FORMATS AND DATASETS

4.1. Data Formats
The benefits of offering datasets to the BCI community must
allow for the data to be easily manageable by all, which
includes requirements, such as the ability to process the data
with a wide range of modern software, in our case this
includes Matlab or R, and also the ability to account for latest
offerings in terms of programming languages, such as Python
or Julia.

Other initiatives have supported the exchange of NIRS
data, for instance the Shared Near Infrared Spectroscopy
Format (SNIRF)4, developed by the Society for functional
Near Infrared Spectroscopy. In an effort to facilitate the
sharing of NIRS data, they have developed the Shared
Near Infrared Spectroscopy Format (SNIRF). It follows a
hierarchical data format—HDF5 which is a general purpose,
machine-independent standard for storing scientific data in
files, developed by the National Center for Supercomputing
Applications (NCSA). As well as SNIRF, they have also
developed two other text-based alternatives for platforms
that do not support HDF5—JNIRS and BNIRS which
are JSON and binary JSON files with the forementioned
file extensions.

We have opted for a more portable and lightweight
alternative to HDF5: JSON. To facilitate access to our
data, we also provide binary data files for the most
commonly used scientific languages—R, MATLAB,
Python and Julia. The binary data allows for instant
access to the data without the prerequisite of being
familiar with HDF5 or JSON and acquainted with the
necessary libraries that are needed to load the data in any
given environment.

4https://github.com/fangq/snirf/blob/master/snirf_specification.md

Unlike SNIRF, which follows a generic filing-like hierarchical
data structure, we have taken an object-oriented approach to
structuring our data. This approach is self-contained and is
descriptive of our experiments as we have objects that define a
subject, an experimental block and an epoch (Figure 12). This
approach facilitates the understanding and possible analysis of
the data, as we have included as many properties as needed for
ease of use and to accurately depict our experiments, such as a
Boolean value property which indicates whether an experimental
block was characterized as successful or not, the unfiltered HbO
values for each channel used and the filtered asymmetry scores
used during the NF epoch—and many more.

Our intention was to provide datasets ready for use, i.e.,
requiring minimum data wrangling prior to analysis. Though
SNIRF provides a generic mechanism to share NIRS data, one
would still need to extract relevant information and restructure
the data depending on the intended data analysis. Our data
format also reflects the fact that we are sharing fNIRS data in a
NF context, and supports additional annotations typical of NF
on top of RoI signal dynamics (in this case, PFC activity).

Thus, we decided to provide our datasets in multiple file
formats so as to expand the usability of our datasets across
software and languages—we therefore provide our data as files
for MatLab (file extension .mat), R (file extension .RData), JSON
(file extension .json), Pickle (file extension .pckl), and Julia (file
extension .jld).

In this section, we provide details of the overall structure of the
datasets, as well as highlighting detailing specificities, in order to
make them as accessible as possible for further processing and
analysis using programming languages Python or Julia, or from
recognized data processing and analysis packages, such as Matlab
and R. We first present generic data which are common to all our
experiments, then we provide details about the specific Subjects
data, as well as Blocks and Epochs, and finishing with a short
discussion on Time Series (see framework and structural datasets
details in Figure 12, as well as a summary of both the experiments
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FIGURE 12 | Diagram providing details of the structure of the overall datasets. The only difference in structures are shown in the blocks data, where (a) is specific to

both [ANG] and [RAP] experiments, whilst (b) is specific to the [HEU] experiment.
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TABLE 1 | Comparison table of overall protocol and analysis settings for the three experiments.

Experiment HEU ANG RAP

Threshold 0 Dynamic (M + 1.28*SD) Dynamic (M + 1.28*SD)

Maximum 1.1 (fixed) Dynamic (min + range) Dynamic (min + range)

Practice 3 blocks 2 blocks 1 block

N blocks 6 6 8

Baseline task Rest Rest Rest

Reference epoch No Yes Yes

Test Parametric Parametric Bootstrapping

Success test Real-time Real-time Post-hoc

Filtering No No Yes (FIR, SMAR, detrending)

Success measure r d r

Delay treatment Remove 7 s Remove 7 s Windowing

Effective NF epoch length 33 s 15 s (+15 s reference task) 40 s (+40 s reference task)

N subjects 11 11 17

Block success 58% 58% 58%

Subject success 73% 73% 70%

TABLE 2 | Comparison table of participants’ demographic information for the

three experiments.

Experiment HEU ANG RAP

N subjects 11 11 17

N female subjects 3 5 8

Mean age 37.18 33.55 35.11

SD age 11.21 11.53 11.25

Range [20; 52] [24; 59] [21; 60]

settings in Table 1 and participants’ demographic information in
Table 2).

4.2. Generic Data
4.2.1. Sampling Rate and Number of Channels
By default, our fNIR system records two wavelengths and dark
current for each 16 optodes, totalling 48 measurements for
each sampling period. Although the sampling rate of the latest
generation systems can be up to 10 Hz, our experiments were
recorded at 2Hz sampling rate (Sampling_rate). Although the
fNIR system provides full data for all 16 optodes, as we only
consider data for the calculation of the asymmetry scores, we
here provide HbO data for eight optodes (Number_of_channels).
Asymmetry calculations are derived from the four leftmost and
four rightmost optodes, as a difference of Left minus Right (see
Figures 2B,C).

4.2.2. Asymmetry Data and Filtering
The asymmetry data (Asymmetry_data) calculated in real-time
during the experiments is provided in the datasets as a tensor
in the following format (subject, time, blocks). This subset
constitutes the asymmetry data for all subjects and all blocks
in the experiment considered. Each epoch within has been
resampled and the data has been filtered using FIR filter
kernel (Filter_kernel) applied as a low-pass filter to each raw
channel data.

4.2.3. Time and Blocks
All data provided includes timestamps in the form of a
normalized time vector (Time) which is the temporal reference
for all data in the experimental blocks considered. As described
in detail for each protocol design in the previous section, we
also record the number of experimental blocks for each subject
(Number_of_blocks). These individual subject blocks also include
the practice blocks. Practice blocks were actual blocks, as per
the experimental design, used as a prior task for the subjects to
acquaint themselves with the task which was expected from them.
Subjects were not directly influenced by the experimenter during
these blocks, but were given the opportunity to discover what the
realtime system consisted of, overall. Although, practice blocks
were also logged in our original data, we do not include them
here, since they were not part of our original analysis.

4.2.4. Markers
All our experiments include the very important markers data
(Markers), which has been set consistently across our three
experiments. It is provided as a collection of marker IDs, which
include the “num,” being the marker number used to label the
time series, as well as a “description” providing details of the
epoch they refer to (e.g., 54 is “NF epoch”). These marker IDs are
generated during the experiments so as to facilitate the extraction
of the blocks from the raw data for the post-analysis. Marker
data (Marker) is provided as a vector of the markers for each
data point, so as to be able to label individual data points with
the allocated reference marker, which then provides the details of
which epoch they refer to.

4.3. Subjects
The all-important data recorded per subject is being made
available on a per subject basis. For each subject we provide
a reference (id) which is the subject’s unique identifier. This
identifier was generated following the convention “MDDN,”
where M is the number of the month of the day the experiment
took place, DD is the day of the experiment, and N is the subject
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order on the day of the experiment—(i.e., 3,241 is the 1st subject
to take part in the experiment on the 24th of March. This method
of anonymizing the subjects’ details were deemed sufficient to
be able to retrieve the subject’s data if they had decided, at
any point, to retract their data from the experiment analysis.
(Channel_data) is a tensor in the format (channel, time, blocks)
containing the channels for all blocks. Each epoch within has
been resampled and the data has been filtered. The asymmetry
information provided (Asymmetry_data) is amatrix in the format
(time x blocks) containing the asymmetry data for all blocks.
Each epoch within has been resampled and the data has been
filtered. As expected from any data information, time stamps are
also provided for each data entry (Time), which is a normalized
time vector providing temporal labeling for the “Channel data”
and “Asymmetry data” time series. Then, as presented previously,
we also include marker data (Marker) as a vector of markers
for segmenting the “Channel data” and “Asymmetry data” time
series. And finally, (Blocks) is a collection of all blocks data. This
is presented in the next section.

4.4. Blocks
Blocks are characterized by their identifier (Block_number) which
describes the order of the block (starting at zero). We define
a boolean variable (Success) indicating whether the block was
successful based on the actual success criteria defined for the
considered experiment (refer to the above sections for details of
the definition of the success criteria). (Whole_block) is a variable
which contains the data for the whole block (details are provided
in the next section on Epochs). As we have presented in the
details of the experiments above, the two important epochs are
provided here as View (View_epoch), being a variable which
provides the details of the View epoch data only, after having
been segmented from the Whole_block, and the NF epoch data
(NF_epoch), being a variable which provides the details of the
NF epoch data only, after having been segmented from the
Whole_block. Contrary to the HEU experiment, in both the ANG
and RAP experiments, mapping is defined between the realtime
asymmetry value processed and the feedback value, which is
calculated on the basis of a [Min; Max] range—determined
in realtime from the reference View epoch. Thus these two
experiment datasets also include the following information for
each block:

• (Mapping_min) is the value calculated as the lower bound
value as: theMean of the View epoch + 1.28 standard deviation
of View epoch.

• (Mapping_max) is the value calculated as the upper bound
value as: the Mapping min value + range of the View epoch.

• (Mapping_feedback) is the actual NF signal value mapped to
the feedback.

4.5. Epochs
After having described the details of the actual structure of the
data presented in the blocks, we are providing details for the
epoch data points. We note that Whole_block, View_epoch, and

NF_epoch follow the same data structure. (Time) is the un-
normalized time vector containing the exact time each data point
was recorded during the experiment. This provides accurate
and detailed overview of the actual recordings and affords
possibilities for the potential further analysis. (Marker) is a vector
of markers allowing for the segmentation of time, HbO filtered
and unfiltered, Average left, Average right, and asymmetry values.
(HbO) provides a matrix of the low-pass filtered HbO channel
data in the format channel x time. (HbO_unfiltered) provides
the same matrix format for the unfiltered HbO channel data.
(Average_left) is the average value of the four leftmost optodes.
(Average_right) is the average value of the four rightmost optodes.
And finally, (Asymmetry) is the actual asymmetry value generated
as the difference of Average_left and Average_right.

4.6. Time Series Discussion
The ANG dataset differentiates between approach and valence,
albeit not perfectly, and could be used to experiment whether
differences of magnitude take place by removing the valence
component. In the HEU dataset, NF success above baseline
is used primarily as a trigger so could be of interest on
comparative study of NF dynamics but perhaps less onNF epoch-
based validation. The RAP dataset is closer to previous EEG
experiments (Cavazza et al., 2014) and the one with perhaps
the most potential for confounding various aspects of PFC
asymmetry in terms of its dimensional interpretation (approach,
valence). On the other hand, it has some of the longest fNIRS
NF epochs (Kohl et al., 2020) and is a good candidate to study
signal dynamics.

5. CONCLUSIONS

We have described three datasets for fNIRS PFC asymmetry,
which correspond to one of the most investigated signals
in social and affective neuroscience and also one of the
main areas for fNIRS NF. Although the focus of our BCI
experiments were primarily on the motivational dimension, the
DLPFC signals can also be of interest to researchers requiring
comparative data when investigating cognitive workload or
other dimensions, such as valence. As these datasets cover
different NF variants, they should be valuable to investigate
signal dynamics across epochs of different lengths as well as
issues around baselining and reference epochs. Since they all
have been previously analyzed as part of various publications
(Aranyi et al., 2015b, 2016; Cavazza et al., 2017), they can also
support experiments with various statistical methods for post-
hoc epoch validation. We have endeavored to facilitate this
through the various formats we have embedded data into, which
should support various processing pipelines in data analysis or
machine learning.
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