
 

Journal Pre-proof

You took the words right out of my mouth: Dual-fMRI reveals intra-
and inter-personal neural processes supporting verbal interaction.

M. Salazar , D.J. Shaw , M. Gajdoš , R. Mareček , K. Czekóová ,
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Abstract 

Verbal communication relies heavily upon mutual understanding, or common ground. Inferring 

the intentional states of our interaction partners is crucial in achieving this, and social 

neuroscience has begun elucidating the intra- and inter-personal neural processes supporting 

such inferences. Typically, however, neuroscientific paradigms lack the reciprocal to-and-fro 

characteristic of social communication, offering little insight into the way these processes 

operate online during real-world interaction. In the present study, we overcame this by 

developing a “hyperscanning” paradigm in which pairs of interactants could communicate 

verbally with one another in a joint-action task whilst both undergoing functional magnetic 

resonance imaging simultaneously. Successful performance on this task required both 

interlocutors to predict their partner‟s upcoming utterance in order to converge on the same word 

as each other over recursive exchanges, based only on one another‟s prior verbal expressions. By 

applying various levels of analysis to behavioural and neuroimaging data acquired from 20 

dyads, three principle findings emerged: First, interlocutors converged frequently within the 

same semantic space, suggesting that mutual understanding had been established. Second, 

assessing the brain responses of each interlocutor as they planned their upcoming utterances on 

the basis of their co-player‟s previous word revealed the engagement of the temporo-parietal 

junctional (TPJ), precuneus and dorso-lateral pre-frontal cortex. Moreover, responses in the 

precuneus were modulated positively by the degree of semantic convergence achieved on each 

round. Second, effective connectivity among these regions indicates the crucial role of the right 

TPJ in this process, consistent with the Nexus model. Third, neural signals within certain nodes 

of this network became aligned between interacting interlocutors. We suggest this reflects an 
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interpersonal neural process through which interactants infer and align to one another‟s 

intentional states whilst they establish a common ground.  

 

Keywords: Verbal communication; dual-fMRI; Dynamic Causal Modeling; inter-subject 

correlation. 
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1. Introduction 

For social interactions to be co-operative, all interactants must act in a manner that complements 

each other‟s behaviour and aligns with a shared goal (Sebanz, Bekkering, & Knoblich, 2006). 

This is true especially for verbal communication, during which interlocutors engage typically in 

a joint-action task over reciprocal exchanges in an attempt to establish a common ground, or 

shared understanding. Inferring the intentional and motivational states of others is fundamental 

in achieving this (Kestemont et al., 2015), and understanding how the brain supports such 

inferences during real-time interpersonal co-operation is central to social neuroscience. 

Historically, however, neuroimaging paradigms have failed to capture the dynamic and bi-

directional characteristics of real-world social exchange, thereby offering limited insight into the 

brain systems that are modulated online during interaction (Hari, Henriksson, Malinen, & 

Parkkonen, 2015; Schilbach, 2010, 2014). To address this, we developed a communicative task 

in which successful performance requires pairs of interlocutors to co-operate with one another 

over recursive exchanges to converge on the same word using only their partner‟s prior verbal 

expressions. By performing functional magnetic resonance imaging on both interactants 

simultaneously (dual-fMRI), we then investigated the intra- and inter-personal neural processes 

associated with the emergence of a common ground, or shared understanding, during verbal 

communication. 

A wealth of neuroscientific research has demonstrated that verbal communication 

involves the transmission of signals through an indirect chain of interpersonal neural events, 

through which neural signals become coupled between speakers and listeners (e.g., Liu et al., 

2017; Silbert, Honey, Simony, Poeppel, & Hasson, 2014; Stephens, Silbert, & Hasson, 2010; 

Zadbood, Chen, Leong, Norman, & Hasson, 2017; see Hasson & Frith, 2016; Hasson, 
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Ghazanfar, Galantucci, Garrod & Keysers, 2012). Typically, however, these studies have 

investigated speech-related neural coupling by measuring the brains of individuals in isolation, 

offering little information about how these interpersonal processes unfold during real-world 

conversation. For this reason, and with the advent of second-person neuroimaging (Redcay & 

Schilbach, 2019), studies have begun utilizing neuroscientific techniques that afford the 

measurement of two or more interlocutors‟ brains while they engaged in dialogue. This has 

started to reveal discrete patterns of brain-to-brain coupling during different types of verbal and 

non-verbal exchange (Hirsch, Adam Noah, Zhang, Dravida, & Ono, 2018; Holper et al., 2013; 

Nguyen et al. 2020; for reviews see Czeszumski et al., 2020; Scholkmann, Holper, Wolf, & 

Wolf, 2013). While this “hyperscanning” research has advanced our understanding of the brain 

processes supporting verbal communication, it has focused primarily on the linear and often uni-

directional transfer of information between individuals. Real-world verbal interactions unfold as 

highly unpredictable, non-linear dynamics, however, whereby interlocutors use back-and-forth 

exchanges to continuously update their representation of one another‟s intentional state and adapt 

their own behaviour accordingly in order to establish a shared understanding.  

 A large and diffuse collection of brain regions are engaged when we attempt to infer the 

beliefs and mental states of others, which together form an inter-connected “mentalising” 

network (Burnett & Blakemore, 2009; Schmälzle et al., 2017); among those reported most 

consistently are the precuneus (PC), temporo-parietal junction (TPJ), superior temporal sulcus 

and anterior temporal lobes, the lateral and medial prefrontal cortex (PFC; Bzdok et al., 2012; 

Duffour et al., 2013; Schurz, Aichhorn, Martin, & Perner, 2013). The TPJ, particularly within the 

right hemisphere, sits at the nexus of several processing streams wherein external social 

information converges with that from attention- and memory-related systems (Carter & Huettel, 
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2013). This position affords the TPJ a central role in re-allocating attention between internal and 

external signals, distinguishing between self and other representations (Lamm, Bukowski, & 

Silani, 2016; Uddin, Molnar-Szakacs, Zaidel, & Iacoboni, 2006), coding the reciprocal influence 

of our own and other‟s actions (Bhatt, Lohrenz, Camerer, & Montague, 2010; Carter, Bowling, 

Reeck, & Huettel, 2012), testing and updating our predictions of external events (e.g., Decety & 

Lamm, 2007), and shaping decision-making processes upstream in the brain. The role of the PC 

in mentalising remains unclear, but its frequent engagement during mental imagery, self-

referential processing and deductive reasoning (Kulakova et al., 2013) implicates it in processes 

required for behavioural prediction. Within the PFC, the medial aspect appears to represent 

enduring personal traits (Overwalle, 2009) while the lateral surface is believed to update the 

abstract mental representations we hold about others when their behaviour contradicts our 

expectations (Christoff, Ream, Geddes, & Gabrieli, 2003; Kouneiher, Charron, & Koechlin, 

2009; Mende-Siedlecki, Cai, & Todorov, 2013). Together, this network of brain regions might 

support our moment-by-moment evaluation of others‟ transient mental states, allowing us to 

anticipate their behaviour and adapt our own accordingly.  

 The present study performed an investigation into the neural processes associated with 

interlocutors‟ efforts to establish a common ground. To achieve this, we adapted a 

communicative game for a dual-fMRI experiment – Say the Same Thing (STST), in which pairs 

of interactants utter words simultaneously in an unconstrained manner over iterative exchanges 

with the aim of eventually saying the exact same word as one another. Such convergence is 

achieved more readily if both players say the word that they expect their co-player to produce, 

which requires an inference of their intentional state. At the intra-personal level, then, we 

hypothesized that brain processes supporting the mental state inference would be engaged on this 
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task as individuals attempt infer and align to their co-player‟s intentions and/or motivations over 

successive exchanges in order to predict their partner‟s upcoming word. With Dynamic Causal 

Modelling, we also evaluated a prediction of the nexus model of the TPJ (Carter & Huettel, 

2013); specifically, that the right TPJ is crucial in establishing a social context, and activity 

within this region will therefore be observed earlier and serve to modulate activity in other 

upstream nodes of the mentalising brain network. By imaging the brains of both interlocutors 

simultaneously, we also examined inter-personal brain processes associated with this task. 

Specifically, by applying an analytical technique capable of identifying patterns of inter-subject 

correlations in dual-fMRI data (Bilek et al., 2015; Špiláková et al., 2019), we examined whether 

brain signals become aligned between interlocutors engaged in these co-operative verbal 

exchanges. We predicted that stronger between-brain alignment would emerge between 

interacting compared with non-interacting pairs, and greater within-dyad covariance would be 

associated with a higher rate of convergence on STST. 

 

2. Materials and Methods 

The neuroimaging data that support the findings of this study are available on request from the 

corresponding author, DJS. These data are not publicly available because it would compromise 

the consent of some research participants. All code used in the analysis of these data are 

available at https://osf.io/su8rd. 

 

2.1.Participants 

We recruited 44 right-handed individuals (24 males) from various faculties of Masaryk 

University, Czech Republic, who were paired into age-matched same-sex dyads. Importantly, 
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paired individuals had never met prior to the day of the experiment; inclusion in the experiment 

required participants to confirm that they were unfamiliar with the name of the person to whom 

they were paired. A lack of verbal responses on 10 or more trials over the course of the 

experiment led to the exclusion of two male pairs. In the final sample of 40 participants (mean 

age = 26.8 [SD = 3.80, range = 21-36] years; mean intra-dyad difference = 0.7 years), all 

reported normal or corrected-to-normal vision and no history of neurological diseases or 

psychiatric diagnosis. All participants provided written informed consent prior to the 

experimental procedure, which was approved by the Research Ethics Committee of Masaryk 

University. 

 

2.2.Procedure 

The individuals comprising a dyad were introduced to one another for the first time on the day of 

the experiment, and together asked any questions they had regarding the scanning procedure or 

task instructions. To ensure their understanding and to familiarize them with one anothers‟ 

voices, each dyad played one round (10 trials) of the experimental and control task (see below) 

outside of the scanner.  

The scanning procedure comprised seven rounds (10 trials per round) of the game “Say 

the Same Thing” (STST), and seven rounds of the “Last Letter Game” (LLG). In STST, a pair of 

players must each choose a word independently of their co-player and then say their chosen 

words simultaneously. This is performed over a number of iterations until both players produce 

the exact same word simultaneously, which, as the name suggests, is the ultimate goal. Such 

convergence is achieved more readily if both players say the word that they expect their co-

player to produce. On all but the first iteration, this can be achieved after careful consideration of 
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the previous word-pair; both players can identify semantic or cultural links between their own 

and their co-player‟s previous utterance, and then choose a word that will bridge the words 

together in the subsequent iteration. Crucially, STST requires both players to limit their choices 

to words that are likely to be used by the other player – there is little benefit in a player saying a 

word (e.g., an uncle‟s name) that is unlikely to be produced by their co-player, even if it serves to 

bridge the former word pair (e.g., “Christmas” and “juggling”). In contrast, on each iteration of 

the LLG, players are required to say a word that begins with the last letter of the word produced 

previously by their partner. Therefore, in all but the first iteration, the only limitation imposed on 

a player‟s choice is the spelling of their co-player‟s previous word. The former served as the 

experimental condition, while the latter served as a control condition. Although both tasks 

involve social and verbal processing, they do so to different extents; while the LLG focuses 

attention on the co-player and word spelling, STST involves a combination of mentalising and 

semantic processing to choose words that a co-player will interpret as meaningful in the context 

of a given interaction.   

At the beginning of each round, participants were informed what the upcoming task 

would be by a visual cue. Next, a countdown of 10 seconds was presented to both participants, 

during which they were instructed to “THINK OF A WORD”. When the timer reached zero, 

they were cued to “SPEAK” the word they had chosen. Three seconds later, they were cued to 

“LISTEN” and the word spoken by their partner was played to them during a subsequent 

interval. The variable duration of recordings introduced inter-trial jitter (428 – 1383 msec). 

Under both conditions, on the first trial of each round participants were instructed to choose a 

word that was independent of any preceding round. From the second trial onwards, participants 

had to either think of a word that would match what they believed their co-player would say next 
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in an attempt to achieve convergence (STST), or think of a word that started with the last letter 

of their partner‟s previous word (LLG). Sample rounds for both tasks are represented in Figure 

1A. Participants were instructed that if both players said the same word during a STST round, on 

the next trial they should try to think of an unrelated word to start the game over (see Supporting 

Information for participant instructions). Two pseudo-randomized sequences of rounds were 

generated – one being the reverse of the other – that ensured neither condition was played on 

more than two consecutive rounds without an intervening break. Each sequence was presented to 

half the sample. After seven rounds, a one-minute break took place. The entire procedure was 

coded in the Cogent toolbox (www.vislab.ucl.ac.uk/Cogent) for Matlab (v2016b; The 

MathWorks). 

 

2.3.Behavioural convergence 

To obtain a similarity metric for the word pairs uttered on each trial, we employed Word2Vec – a 

two-layer neural net that “vectorises” words in a text corpus according to their features, and then 

groups the vectors of similar words together in vectorspace (Mikolov, Chen, Corrado, & Dean, 

2013). When features express the context of words, vectors represent semantic similarity. Within 

Gensim (Řehůřek & Sojka, 2010), we applied latent semantic analysis (Dumais, 1988) to fasttext 

(Bojanowski, et al., 2017) to obtain a similarity index for each pair of utterances. This allowed us 

to evaluate if greater similarities were achieved on STST rounds when participants were 

instructed explicitly to reach convergence, compared to LLG rounds when their task was simply 

to think of word beginning with last letter of their co-player‟s previous utterance.  

 

2.4.Stimuli 
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A single computer connected to both scanners delivered visual and auditory stimuli to both 

players simultaneously. The visual cues and countdown timer were presented as white text on a 

black background. The verbal responses of each player were recorded in MATLAB as stereo 

wave files, and played back to their co-player using the communication devices built into each 

scanner. They were recorded in each stereo channel of the computer soundcard separately, and 

then played back to the co-player through the opposite channel via modified audio-pneumatic 

memory-foam earplugs. The audio setup is represented in Figure 1B. 

 

2.5.Imaging Protocol 

Functional and structural MR data were simultaneously acquired from both players comprising a 

dyad with two identical 3T Siemens Prisma scanners, each equipped with a 64-channel bird-cage 

head coil. In a single scanning session, blood-oxygen-level dependent (BOLD) images were 

acquired with a T2*-weighted echo-planar imaging (EPI) sequence with parallel acquisition (i-

PAT; GRAPPA acceleration factor = 2; 34 axial slices; TR/TE = 2000/35 msec; flip angle = 60°; 

matrix = 68 x 68 x 34, 3x3x4 mm voxels). Axial slices were acquired in an interleaved order, 

oriented parallel to a line connecting the base of the cerebellum to the base of orbitofrontal 

cortex to enable whole-brain coverage. To allow voice recordings, functional imaging was 

performed in a Clustered Temporal Acquisition (CTA) protocol (Schmidt et al., 2008): Through 

MATLAB, a programmable signal generator (Siglent SDG1025; www.siglent.com) started and 

stopped 10-second sequences of five volume acquisitions, each separated by a six-second period 

of silence. Each imaging period captured the duration of the countdown timer on each trial, and 

silent periods allowed participants to make their verbal response and then to hear the utterance of 

their partner. This way, participants were unaware of their partner‟s word choice, and therefore 
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whether or not they had achieved convergence, until after they had uttered their own word. A 

schematic of the CTA protocol is presented in Figure 1C. This resulted in 350 volumes acquired 

under each condition (7 rounds x 10 trials per round x 5 volumes per trial). A high-resolution T1-

weighted structural MR image was acquired prior to the functional run for localisation and co-

registration of the functional time-series (MPRAGE, TR/TE = 2300/2.34 msec; flip angle = 8°; 

matrix = 240 x 224 x 224, 1 mm
3
 voxels).  
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Figure 1. Experimental setup and procedure. A: Pairs of participants were scanned 

simultaneously whilst they played alternate rounds of STST (top) and LLG (bottom). B: On each 

round of both conditions, the utterance of each participant was recorded through one stereo 

channel in their respective scanners and played back for the other participant through the other 

channel. C: Cloud icons represents the 10 second period in which participants planned their next 

response. Acquisition stopped for six seconds, during which participants‟ responses were first 

recorded and then a recording of their partner‟s response was played-back to them; microphone 

and headphone icons represent the three seconds for recording and playback of the audio stimuli, 

respectively. Each grey rectangle represents a volume acquisition lasting two seconds. The 
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empty rectangle represents a missing acquisition due to non-systematic desynchronizations, and 

striped rectangles represent volumes that were ignored in the GLM procedure to account for any 

such omissions. Importantly, the hemodynamic response function (red dashed line) during the 

target planning phase is estimated optimally by ignoring the last of five acquisitions (see text). 

Yellow curves portray the gradient decay over the course of a round, producing a decrease in the 

mean voxel intensity. 

 

2.6.Pre-processing 

Neuroimaging data were pre-processed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm), which 

involved spatial realignment and unwarping, slice-time correction, normalization and spatial 

smoothing. Motion correction was performed using a six-parameter rigid-body transformation, 

with the first functional scan serving as a reference. Six motion parameters estimated from this 

realignment process were used as nuisance covariates to account for motion-related variance. 

Using non-linear transformations (trilinear interpolation; 16 warping iterations), the mean of the 

motion-corrected time-series was registered to the EPI template in MNI space. Employing 

analysis parameters that we have used previously for dual-fMRI data (Shaw et al., 2018; 

Špiláková et al., 2019), images were then smoothed with a 5-mm isotropic Gaussian kernel, and 

a high-pass filter with 128 second cut-off removed low-frequency drifts. Gradient decay 

occurring in the CTA protocol caused a systematic artefact in the first three scans of each trial. 

We corrected the data for this signal decay after each interruption of periodical acquisition with a 

custom SPM12 script, which calculated the mean decay in voxel intensity and modelled it as a 

nuisance regressor in the General Linear Modelling procedure (see below) to normalize the 

affected volumes. As illustrated in Supplementary Figure S1, this proved to be an effective way 
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of modelling the exponential decay in the measured time-series. Data quality after pre-processing 

was verified using the mask_explorer tool (Gajdoš, Mikl, & Mareček, 2016). 

 

2.7.General Linear Modelling 

General linear modelling was performed on the pre-processed time-series using SPM12 

(http://www.fil.ion.ucl.ac.uk). The first trial of each round was ignored in this analysis, as these 

spontaneous choices were assumed to be independent of any prior interaction. The following 

nine trials of each round were modelled as event-related responses, the onsets of which mirrored 

the start of the countdown timer. Due to non-systematic desynchronizations between the 

scanners and the signal generator used to start acquisition, the first of the five planned volumes 

was not acquired on some trials. To account for this, and to estimate the BOLD response during 

the planning period (uncontaminated by any speech-related response)we removed the last 

volume of all trials; in this discontinuous CTA protocol, elimination of the first volume would 

effectively shift the onset of all trials. 

As first step, conventional subtraction methods were used to compare the experimental and 

control condition; we performed a direct contrast of the parametric maps for each condition 

(STST>LLG) at the first-level, and the resulting contrast images were carried forward to a 

second-level random-effect one-sample t-test. Secondly, indices of semantic similarity for STST 

and LLG rounds were introduced as parametric regressors. As the similarity index between two 

words is expected to influence the degree to which participants would engage in prediction and 

mental imagery, these regressors were applied to the upcoming trial (i.e. the similarity index of 

trial 1 was used as a regressor for trial 2). Again, the first trial of every round was ignored in this 

analysis. For both analyses, the initial cluster determining threshold (CDT) was set at p<.001 to 

reduce the family-wise error (FWE) rate (Eklund, Nichols, & Knutsson, 2016). Given the 
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apparent inflation of FWE rates in sparse sampling protocols even with this CDT (Manno et al., 

2019), we then implemented FWE correction at the cluster level with p<.05. 

 

2.8.Dynamic Causal Modelling 

To evaluate the prediction of the Nexus model (Carter & Huettel, 2013), we performed Dynamic 

Causal Modelling (DCM) to assess if and how effective connectivity from the right TPJ to other 

brain regions revealed by the GLM analysis was altered differentially during performance of the 

STST compared with the LLG task (Friston, Harrison, & Penny, 2003; Stephan et al., 2010). 

First we conducted volume-of-interest (VOI) analyses on individual‟s parametric maps of the 

STST>LLG contrast after a cluster defining threshold (CDT) of p<0.05: Using the MarsBaR 

toolbox (Brett, Anton, Valabregue, & Poline, 2002), within masks representing discrete 

functional clusters emerging from the group-level analysis we created spheres of 10 mm radius 

centred around voxels expressing peak t-values from this contrast. If fewer than 5 voxels 

survived this CDT within a sphere for any participant, that individual was omitted from further 

analyses. This yielded usable datasets from 30 participants. We used the first eigenvector as the 

representative signal, which has been shown to be more efficient than the mean (Gajdoš, 

Výtvarová, Fousek, Lamoš, & Mikl, 2018). 

Modelling these VOIs as network nodes, and the onset of STST rounds as the input (the 

beginning of the 10-second period in which participants were instructed to “THINK OF 

WORD”), we then performed a comprehensive evaluation of all models that met the following 

logical network conditions: (1) Each node is connected directly with at least one other node; (2) 

each node is connected at least indirectly to all other nodes; (3) driving stimulus input arrives 

only at the right TPJ; and (4) the right TPJ has at least one feedforward connection. All of the 
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models meeting these conditions were inverted using DCM (v12.5) implemented in SPM12 

(v7487), and then compared using Bayesian Model Comparison (Rigoux, Stephan, Friston, & 

Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran, & Friston, 2009) implemented in the 

Variational Bayesian Analysis toolbox of MATLAB (Daunizeau, Adam, & Rigoux, 2014). This 

analysis evaluated log model evidences to determine the probability that a given model or family 

of models described the data acquired during STST rounds better than any other model(s). 

Goodness‐of‐fit indices can then be estimated based upon the free energy of all compared 

models, which indicate how well the model(s) fit the observed BOLD time-series; specifically, 

estimated model frequencies (EMFs) and approximated exceedance probabilities (AEPs). The 

EMF provides an estimate of the prevalence of each model/family of models in the population. 

The AEP identifies the relative superiority of one model compared to all others comprising the 

model space (Penny, Stephan, Mechelli, & Friston, 2004; Stephan, Weiskopf, Drysdale, 

Robinson, & Friston, 2007); an AEP value of 0.8 indicates that a model is 80% more likely to fit 

the data better than any other model. Finally, to assess the specificity of any winning 

model/family of models to data acquired during STST rounds, we again performed Bayesian 

Model Comparison to compare its fit with the data measured under the LLG condition – that is, 

with input defined as the onset of LLG rounds. 

 

2.9.Inter-subject Correlations 

To assess whether our interactive task elicited between-brain alignment, we conducted inter-

subject correlation (ISC) analysis informed by group Independent Component Analysis (gICA). 

A detailed description of this technique is presented in Špiláková et al. (2019), and so we 

describe only the details of its current implementation in the section that follows.  
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First, we applied principle component analysis (PCA) to each of the 40 time‐series, and 

subsequently to all the resulting components concatenated into one matrix. This resulted in a set 

of spatially orthogonal principal components, the number of which was determined by the 

minimum description length (Sammut & Webb, 2016). Using the GIFT toolbox for MATLAB 

(v2.0e; mialab.mrn.org/software/gift; Calhoun, Adali, Pearlson & Pekar, 2001), gICA was then 

performed 20 times on these resulting components using the INFOMAX algorithm to identify 

those that were expressed reliably and independently of one another at the group level. From the 

most reliable components, we then identified those that were expressed in individuals‟ brains 

along a time-series that corresponded to the STST and/or LLG rounds. Using the results of the 

PCA, each non-artifactual component was back‐reconstructed to each of the 40-input time‐series 

to produce a subject-specific time‐course for each component. Multiple regression analyses were 

then computed to assess the task-specificity of each component: For each subject, the 

explanatory variables were their back‐reconstructed time‐course for each independent 

component and the outcome variable was their unique task design for either the STST or LLG 

condition. This resulted in two subject‐specific β‐values for each component, and Bonferroni-

corrected paired‐samples t‐tests were conducted to identify task‐specific components (βSTST > 0, 

βSTST > βLLG, βLLG> 0, or βLLG > βSTST).  

Finally, to examine whether the time-series of BOLD signals covaried between 

communicating players during STST rounds, for each interacting pair we computed the Pearson 

correlation between the back‐reconstructed time‐series for components expressed during the 

STST condition. The resulting correlation coefficients were transformed to z‐values, and the 

median was used as a coefficient of alignment. To determine the significance of the resulting 

coefficient, we performed a randomization test with 10,000 permutations: in each iteration, we 
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randomly selected pairs among the 38 non‐interacting players and computed a median z‐

transformed coefficient as above. This produced a null distribution of correlations among non‐

interacting pairs, against which the significance of alignment between each interacting pair was 

then compared.  

 

3. Results 

3.1.Behaviour 

One participant failed to provide a word within the response window on four STST rounds, but 

this did not interrupt the general flow of the task for this pair. One pair chose semantically 

related words on all LLG rounds, and were therefore omitted from the GLM analysis. For the 

remaining word pairs, Word2Vec analyses revealed that similarity indices were significantly 

higher on STST (mean = 0.45 [SD = 0.21]) compared with LLG rounds (mean = 0.25 [SD = 

0.13]; t[2632]=28.81, p<0.001, CI = [.18, .21]). Transcriptions of Czech word pairs, their English 

translations and similarity indices are provided in Supporting Information. 

 

3.2.Intra-subject brain responses and effective connectivity 

Consistent with our hypotheses, the GLM revealed four clusters of increased BOLD response 

over the course of STST relative to LLG rounds: bilateral TPJ and PC, and right dorso-lateral 

PFC. Relative increases in BOLD signal were also observed in the anterior/mid-cingulate cortex 

and medial PFC, but these clusters did not survive FWE-correction. No clusters survived FWE-

correction in the reverse contrast (LLG>STST). The parametric modulation analysis revealed 

that the BOLD response in the precuneus and adjacent posterior cingulate cortex was modulated 

positively by similarity indices calculated for each word pair - greater word similarity is 
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associated with greater activation in these brain regions. No significant modulation was observed 

for the LLG condition. These results are illustrated in Figure 2 and specified in Table 1. 

 

Figure 2. GLM results. The red scale presents clusters of brain response (p<.001, uncorrected) in 

the contrast STST>LLG comprising right TPJ and right DLPFC, left TPJ, and bilateral 

precuneus. Voxels in clusters that did not survive subsequent FWE-correction are rendered in 

greyscale for ease of interpretation, using xjView toolbox 8 (http://www.alivelearn.net/xjview). 

The blue scale show the results of the parametric modulation analyses of the STST rounds. 

Image created in the xjView toolbox 8 (http://www.alivelearn.net/xjview). 
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Table 1. Clusters of brain response expressing the STST>LLG contrast.  

 Label # Voxels Peak t x y z 

S
T

S
T

>
L

L
G

 

L Angular gyrus 655 7.48 -48 -55 19 

  7.07 -39 -52 22 

  6.62 -39 -70 37 

R Lateral occipital cortex 626 6.75 48 -67 34 

  6.26 51 -13 13 

  6.25* 42 -55 22 

L Precuneus 843 8.50 -3 -58 43 

  7.29 -3 -64 52 

  6.60 -9 -46 34 

R Middle frontal gyrus 439 6.77 30 11 58 

  5.65 36 14 43 

  5.20 30 38 40 

P
ar

am
et

ri
c 

M
o

d
u

la
ti

o
n
 

R Posterior cingulate cortex 253 5.24 3 -31 43 

  5.23 9 -46 37 

  4.95 -6 -34 40 

L Precuneus 114 4.41 -9 -73 37 

  4.37 -9 -73 25 

  3.61* -9 -73 52 

R Precuneus 143 5.16 15 -67 31 

  5.02 18 -70 43 

  4.98 6 -70 46 
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Note: All clusters survived family-wise error correction (pFWE<.05). Coordinates (mm) are given 

in the standard space of the Montreal Neurological Institute template, and labels correspond to 

those specified in Harvard-Oxford Cortical Structural Atlas. Grey rows indicate the coordinates 

around which spheres were centred for VOIs. TPJ=temporo-parietal junction, PFC=dorso-lateral 

prefrontal cortex; L/R=left/right. 

 

 

  

                  



23 
 

 The results of the DCM analysis are shown in Figure 3. A total of 2432 models met our 

pre-defined network conditions so we partitioned them into four families, each defined by the 

conditions shown schematically in Figure 3A. Of all the inverted models, 1184 belonged to only 

one of the four families and were carried forward for family comparisons: 112 models in the first 

(F1), 480 in the second (F2), 224 in the third (F3), and 368 in the fourth (F4). Comparisons of 

these families performed with VBA identified the best fit between our observed data and the 

models belonging to family F2, with an EFF of .71 (Figure 3B). This is confirmed by the free 

energy over algorithm convergences, which revealed that the observed log evidences are 

explained better by random-effects generative models than chance alone. Within F2, one model 

outperformed all others with an AEP of .99. We focus on this specific model herein, illustrated in 

Figure 3C. While this optimal model appears to resemble a near fully connected model, one-

sample t-tests of connection strengths across all participants (see Table S1) revealed that only the 

following were reliably strong enough (p<.05): reciprocal excitatory connections from left to 

right (.06 [SE±.02] Hz) and right to left TPJ (.09 [±.03] Hz); excitatory connections from the left 

(.08 [±.02] Hz) and right TPJ (.09 [±.02] Hz) to the PC, with excitatory feedback from the PC to 

the left TPJ (.04 [±.01] Hz); and a unidirectional excitatory connection from the right DLPFC to 

the PC (.03 [±.01] Hz).  

When comparing these winning models against data acquired during STST or LLG 

rounds, however, there was little evidence for any specificity towards the former. As shown in 

Figure 3D, while the EFF parameter indicates a slightly better fit of models in F2 to STST 

measurements, it fell within chance confidence intervals. Further, free energy calculated over 

VBA iterations revealed that the log model evidences provided no evidence that this family of 

models fit STST significantly more than measures during LLG rounds). 
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Figure 3. DCM results. A: Schematics of the parameters defining each family of models. Straight 

lines indicate strictly necessary connections, dashed arrows represent optional connections, and 

dotted arrows are mutually exclusive connections. For all families, the right TPJ served as the 

input node. B: Estimated Family Frequencies from a comparison between all four families fitted 

to data acquired during STST rounds, illustrating that F2 is estimated to be significantly more 

prevalent in the population (the dashed horizontal line represent the „null‟ frequency profile over 

all models). C: Best fitting model of the winning family (F2). Dashed lines illustrate connections 

with non-significant strength. Solid line thickness represents the strength of connections (see text 

for details). D: Estimated Family Frequencies following the comparison of fit for F2 against 

STST or LLG data, illustrating no significant difference. Abbreviations: rPFC=right dorso-lateral 

prefrontal cortex, l/rTPJ=left/right temporo-parietal junction, PC=precuneus. 
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3.3. Inter-subject neuroimaging data 

Initial data reduction of the 40-input time-series with PCA identified a set of 59 spatially 

orthogonal principal components, which were then fed into 20 iterations of gICA. The resulting 

estimates were compared using ICASSO, which confirmed that all 59 components achieved very 

high indices of cluster quality (Iq=.97 - .99). We then identified components reflecting artefactual 

signals (e.g., head motion, heart-beat, acquisition artefacts) using principles underpinning an 

automated classifier (Bhaganagarapu, Jackson, & Abbott, 2013); specifically, if a given 

component expressed a narrow range of high power in temporal frequencies beyond 0.08 Hz, 

and/or a large extent of its spatial pattern lay within peripheral and/or ventricular areas of the 

brain. This revealed 25 artefactual components that were excluded from subsequent analyses (see 

Figure S2). From the back‐reconstructed time‐series of these remaining 32 components, 

Bonferroni-corrected paired‐samples t‐tests identified only one that demonstrated any significant 

task-specificity; namely, a component for which the β value was significantly greater than zero 

across all players for STST rounds (mean = .21 [SD=.33]; t[39] = 4.01, pcorr=.01), but not LLG 

rounds (mean = .13 [SD=.34]; t[39] = 2.49, pcorr=.550). This component, illustrated in see Figure 

4, comprised bilateral medial and dorso-lateral PFC, right posterior superior temporal sulcus, and 

bilateral inferior parietal lobule. Pearson correlations revealed that the subject-specific time‐

series of this component correlated positively between interacting individuals (median r =.18; 

range=-.07 - .47), and significantly more strongly than for non-interacting subjects paired 

randomly (p = .012; see Figure 4C).  

Finally, we assessed whether the strength of neural alignment expressed within this 

component was associated with the degree of semantic convergence achieved on each round of 

the STST task. To do so, we first concatenated all the functional volumes acquired during the 
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STST and LLG rounds separately. For each pair, we then calculated a coefficient of alignment 

specific to each condition, before performing a Fisher r-to-z transformation of the alignment 

coefficient. Importantly, this revealed that the strength of alignment was similar on both types of 

rounds (.12 [.23] vs. .11 [.19]; t[36]= -.09, p=.930). We then performed a Pearson correlation on 

z-transformed alignment coefficients and the mean semantic similarity achieved across all STST 

rounds. This revealed that the degree of inter-brain alignment was unrelated to performance on 

the task (r= -0.06, p=.802). 
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Figure 4. Results of inter-subject neuroimaging analyses. A: Spatial distribution of the only 

component emerging from the group Independent Component Analysis (gICA) that was aligned 

significantly (p<.05) with the time-series of STST rounds. B: Time-series expressing the 

probability of response within the component in each volume at the group level (blue), presented 

with an example time-course of control and experimental rounds. C: Null distribution of median 

correlation coefficients among all non-interacting pairs, with the median coefficient of 

interacting pairs presented as a red line.  

 

4. Discussion 

This study explored the brain processes associated with interlocutors‟ efforts to establish a 

common ground during verbal communication, both at the intra- and inter-personal level. We 
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achieved this by measuring the brain responses of interactants engaged co-operatively in Say the 

Same Thing (STST) – a joint-action game of verbal exchange, whereby each player must attempt 

to predict their co-player‟s next spoken word based only on their previous utterances. Assessing 

brain responses across the whole sample, this game elicited strong responses within the bilateral 

temporo-parietal junction (TPJ), the precuneus (PC), and right dorso-lateral prefrontal cortex 

(PFC). Given the frequent engagement of these brain regions in tasks requiring mentalising (see 

review by Schurz, Radua, Aichhorn, Richlan, & Perner, 2014), we interpret their involvement to 

reflect the effort of interlocutors to infer and align with their co-player‟s intentions in order to 

achieve common ground. Consistent with this interpretation, a parametric modulation analysis 

revealed that the degree of similarity achieved on each round of STST was associated with the 

magnitude of response in the PC. Furthermore, our modelling of effective connectivity supports 

the hypothesis that the right TPJ exerts a modulatory influence over this interconnected network, 

consistent with its purported role in the re-allocation of attention from self- to other-

representations during social decision making (Carter & Huettel, 2013; Decety & Lamm, 2007a). 

Inter-subject correlations revealed a pattern of inter-brain alignment that was stronger between 

interacting compared with non-interacting individuals, encompassing bilateral dorso-lateral and 

dorso-medial PFC, STS and inferior frontal gyrus (IFG). This was unspecific to the nature of the 

interaction, however, and, contrary to our hypothesis, unrelated to performance on the STST 

task.  

 We propose that the set of neural responses elicited during STST form a system through 

which interactants‟ attention is reallocated (Geng & Vossel, 2013; Vossel, Geng, & Fink, 2014) 

to facilitate reciprocal choices when attempting to establish a common ground during 

conversation (Vanlangendonck, Willems, & Hagoort, 2018). This is supported partly by the 
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functional and anatomical connectivity profile among these brain regions during social 

information processing (Burnett & Blakemore, 2009; Jung, Cloutman, Binney, & Lambon Ralph, 

2017; Schmälzle et al., 2017; see also Zhang & Li, 2013). Given its overlap with language-

related regions, it is perhaps unsurprising that the left TPJ is engaged when choosing a specific 

term or phrase for referral. Operating in concert with a wider network, the right dorso-lateral 

PFC also appears to play an important role in this planning process; this cortical region is 

engaged more during the processing of semantic compared with phonological aspects of words 

(McDermott, Petersen, Watson, & Ojemann, 2003), and facilitatory stimulation of this brain site 

improves performance in the Verb Generation Task (Erickson et al., 2017). Two transcranial 

magnetic stimulation (TMS) studies provide further insights into the potential social role of the 

dorso-lateral prefrontal cortices in our communicative task: disrupting neural activity within this 

brain region reduces participants‟ rejections of unfair offers on the Ultimatum Game (Knoch, 

Pascual-Leone, Meyer, Treyer, & Fehr, 2006), a task on which choices reflect reciprocal 

tendencies (Shaw et al., 2018; 2019). Taken together, past studies suggest that, during a verbal 

joint-action task like STST, activity in the right dorso-lateral PFC might support reciprocal word 

choices guided by the prior behaviour of an interaction partner.  

The interpretation presented above accords with the pattern of effective connectivity we 

observed with DCM. Connection strengths from and between right and left TPJ are stronger than 

those coming from PC and right dorso-lateral PFC. This might indicate variability in the 

strategies employed on the STST task; on some rounds, participants may engage in deductive 

reasoning and mental imagery processes that recruit the PC (Kulakova et al., 2013). Indeed, our 

parametric analysis revealed that the involvement of the PC was greater when pairs achieved 

greater similarity in their utterances. On other rounds, they may opt instead for reciprocal over 
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strategic choices that engage the right dorso-lateral PFC (Smittenaar et al., 2013). In contrast, the 

stronger influence of bilateral TPJ throughout the task may reflect its role in processes necessary 

for task performance; for example, meta-analytic data imply a role of the TPJ in reallocating 

attention between representations of the self and others (Murray, Schaer, & Debbané, 2012; van 

Veluw & Chance, 2014), and positions this brain region within dissociable functional networks 

associated with internal processes (e.g., memory and attention) and those involved in the 

processing of social stimuli (Bzdok et al., 2012). Furthermore, meta-analyses highlight 

overlapping activations within the TPJ during attention reorienting and mental state inferences 

(Krall et al., 2015; Scholz, Triantafyllou, Whitfield-Gabrieli, Brown, & Saxe, 2009). In this light, 

achieving a common ground during verbal exchange are likely to draw on processes performed 

by TPJ, such as efficient switching between self- and other-representations (Lamm et al., 2016), 

shifting attention between internal and external signals (Krall et al., 2015), and coding the 

reciprocal influences of our and other‟s actions (Bhatt et al., 2010; Carter et al., 2012).  

Importantly, however, the family of models emerging from our DCM analyses showed no 

specificity to STST rounds; they fit equally well to data acquired during the Last Letter Game 

(LLG). Although the component emerging from the group ICA regressed onto the timings of the 

STST but not LLG rounds, inter-brain alignment within that component was also task-unspecific. 

The fact that inter-subject correlations within the medial PFC were equally as strong during 

exchanges on STST and LLG rounds might indicate that both tasks place similar demands on 

neural systems supporting reciprocal adaptation or linguistic processes during verbal exchanges, 

revealing a potential limitation in our choice of control condition. Consistent with the latter 

possibility, meta-analytic data have shown that speech production and comprehension engage 

dorso-medial PFC. This is true also for the IFG – another brain region encompassed by the 
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component expressed during STST rounds (Adank, 2012). Interestingly, however, between-brain 

alignment has been reported in other non-verbal tasks within the dorso-medial PFC (Shaw et al., 

2018; Špiláková et al., 2019) and IFG (Koike et al., 2015; Liu, Saito, & Oi, 2015; Saito et al., 

2010). It is also noteworthy that the only brain region in which responses were associated with 

the performance on the STST task was the precuneus – an area that did not feature in the 

component emerging from the group ICA. Perhaps, then, the multi-level analyses we have 

performed captured two different brain responses: the model-free technique of group ICA 

revealed those that are common to various forms of social interaction, while the model-drivem 

GLM analysis identified those specific to the establishment of common ground. Future studies 

should investigate the nature of neural coupling with these specific cortical areas during social 

interaction by extending our paradigm with other non-verbal control conditions. 

A valuable contribution of our study is the introduction of an interactive task capable of 

eliciting reliable brain responses during naturalistic conversation – one that permits an 

investigation of the neural processes that unfold as interlocutors choose verbal responses in 

complete freedom, as opposed to the constraints imposed typically by experimental paradigms 

used in social neuroscience research (Schilbach et al., 2013). This second-person approach 

provides a more accurate simulation of minimalistic conversation (Redcay & Schilbach, 2019): 

A tacit agreement emerges naturally as the flow of conversation follows what we believe our 

interaction partner does or does not know (Grice, 1989), using what we have learnt about them 

over successive exchanges (Shintel & Keysar, 2009). In realizing this experimental paradigm, we 

have also demonstrated the utility of clustered temporal acquisition protocols (Schmidt et al., 

2008; Zaehle et al., 2007) coupled with dual-channel audio setups for (dual-)fMRI investigations 

of real-world verbal communication. Given recent advances in active noise cancelation, the 
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quality of audio stimuli should now be sufficient to allow for more complex communication than 

the short utterances used in this experiment.  

 

4.1.Conclusion 

Using a communicative joint-action task, we have revealed both intra- and inter-personal brain 

processes that appear to support interlocutors in aligning within the same semantic space during 

verbal communication, and thereby establishing a common ground. Our data present a potential 

neurophysiological model that facilitates the co-adaptive choices made in communicative 

environments wherein interlocutors influence one another reciprocally in a dynamic and 

bidirectional manner. Our results also lend further evidence for the important role of the right 

TPJ in this process, consistent with its purported role in processes required for, but not restricted 

to, social cognition and behaviour, such as the reallocation of attention between internal and 

external signals. We propose that the dorso-lateral PFC should be a target for further exploration 

in social neuroscience, as its involvement in our task suggests its crucial role in the real-time co-

adaptation that characterises co-operative social exchanges. 
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