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Abstract—Modeling the effects of uncertainty is of crucial
importance in the Signal Integrity (SI) and Electromagnetic
Compatibility (EMC) assessment of electronic products. In this
paper, a novel machine-learning based approach for uncertainty
quantification problems involving both random and epistemic
variables is presented. The proposed methodology leverages
evidence theory to represent probabilistic and epistemic uncer-
tainties in a common framework. Then, Bayesian optimization
is used to efficiently propagate this hybrid uncertainty on the
performance of the system under study. Two suitable application
examples validate the accuracy and efficiency of the proposed
method.

Index Terms—Bayesian Optimization, epistemic uncertainty,
random-fuzzy problems.

I. INTRODUCTION

Resorting to statistical techniques for uncertainty quantifica-
tion (UQ) and propagation (UP) within EMC and SI problems
is common practice nowadays. In particular, RF designers
have to cope with several sources of uncertainty, such as
parasitic effects, non-ideal behavior of components, tolerances
due to the manufacturing process, and so on. Even in relatively
simple test setups several parameters are inherently unknown
and/or hard to control. For these reasons, advanced statisti-
cal techniques have recently been applied to EMC and SI
problems [1], [2], [3], [4], [5], [6], [7] with the objective to
outperform the standard brute-force approach, based on Monte
Carlo (MC) repeated simulations, in terms of computational
efficiency, while retaining comparable accuracy in predicting
the variability of the output variables.

All these techniques are firmly based on probability theory,
i.e. on the a priori assumption that to every variable in the
problem a probability distribution describing its variability
over a given interval of values and/or around a nominal value
can be assigned. This assumption is well-grounded when the
uncertainty is caused by random effects. If the distribution
of these random effects is known or can be estimated, a
probabilistic treatment is a sound choice. However, when the
uncertainty stems from a lack of knowledge about the value
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of a parameter or its distribution, a probabilistic view falls
short. Indeed, the standard approach to resort to a uniform
distribution when a parameter is known to fall in a certain
interval implies the arbitrary assumption that all values in that
interval are equally probable, though without any evidence
supporting this specific claim.

To overcome this intrinsic limitation of probability theory in
providing an adequate representation of parameters affected by
epistemic uncertainty, the more general framework of evidence
theory or Dempster-Shafer theory was introduced [8]. In
this framework, probability and possibility theories represent
special cases. On the one hand, aleatory uncertainty due to
random variability of parameters finds adequate description
through the use of random variables (RVs) to which probability
distribution functions (PDFs) are assigned. On the other hand,
epistemic uncertainty due to lack of information is tackled
through the use of fuzzy variables (FVs) to which possibility
distribution functions are assigned.

Since typical problems usually involve both parameters
affected by random and by epistemic uncertainty, hybrid
probabilistic-possibilistic UP approaches have recently been
developed and successfully applied in different engineering
fields, spanning from risk management [9], [10] to mea-
surement [11]. In an EMC context, the MC-based hybrid
algorithm of [9], [10] was considered in a previous work [12],
with the objective to estimate the radiated susceptibility of
a non-ideally twisted wire pair (above ground) illuminated
by a partially-unknown impinging electromagnetic (EM) field.
Comparison with a fully probabilistic solution of the problem
(where all uncertain parameters were assigned specific PDFs)
revealed the potential of the aforementioned hybrid approach
to provide a more general and exhaustive representation of
the variability of the output variables. Nonetheless, this also
unveiled the computational inefficiency of such an algorithm,
which requires repeated-run MC simulations to assess the
influence of RVs, and where for each MC run time-consuming
grid-search sub-problems need to be solved to quantify the
effect of the FVs. Hence, depending on the computational cost
of the underlying deterministic model, which can be evaluated
through either analytical expressions or full-wave EM simu-
lations (as in the examples provided in this manuscript), this
algorithm can become computationally prohibitive.

To tackle this limitation, this work proposes to use Bayesian
optimization (BO) to deal with FVs. In this way, far fewer
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model evaluations are required to accurately propagate the
epistemic uncertainty. The BO framework is hybridized with a
state-of-the-art polynomial chaos (PC) approach to efficiently
include the random variability. The computational efficiency
and accuracy of the novel hybrid method is demonstrated by
application to two realistic design examples. In particular, it is
demonstrated that the proposed approach allows the quantifica-
tion of combined possibilistic and probabilistic uncertainty of,
among others, interconnects on printed circuit boards in spite
of the time-consuming full-wave EM simulations required to
describe their behavior. It is instructive to note that BO can
also be used to optimize the design of electronic devices [13],
[14].

The manuscript organization is as follows. In Section II,
basic elements of evidence theory are recalled with focus
on possibility theory and fuzzy sets. Also, main features of
the original hybrid probabilistic-possibilistic MC algorithm are
described in this section. Section III introduces the novel BO
framework, and explains how BO combined with Polynomial
Chaos (PC) expansion is used to speed up the original hybrid
algorithm. Numerical examples are presented in Section IV.
Section V draws concluding remarks.

II. UNCERTAINTY PROPAGATION IN RANDOM-FUZZY
PROBLEMS

This section introduces basic elements of evidence theory as
a general framework for the representation of aleatory (prob-
ability theory) and epistemic (possibility theory) uncertainty.
Furthermore, the main features of the MC-based algorithm [9],
[10] are recalled, which allows for UP in hybrid problems
involving both random variables (RVs) and epistemic fuzzy
variables (FVs).

A. Basic Elements of Evidence Theory

Consider a set Σ that contains all possible values x that
a variable X may assume. Its power set Ω consists of all
possible subsets Bi of Σ, each of which can be assigned a
probability weight w (Bi), whose overall sum is unit over Ω.
Bi represents a focal element of Ω if its weight w (Bi) is
non-zero. Consider now a subset A ⊆ Σ, called ‘event’. The
evidence of the statement “x may belong to A” (i.e., to any
of its subsets Bi) is expressed by (i) the Belief function (Bel)

Bel (A) =
∑
Bi⊆A

w (Bi) (1)

which measures the confidence we have in the statement based
on the available information, i.e. the weights w (Bi); and by
(ii) the Plausibility function (Pl):

Pl (A) =
∑

Bi∩A6=∅

w (Bi) = 1− Bel
(
A
)

(2)

which measures the conceivability of the statement based on
the confidence in the occurrence of events that contradict
the statement. It can be proven that Bel and Pl represent
a limiting upper and lower cumulative distribution function

(CDF), encompassing all families of probability distributions
P (A) [15], i.e.:

Pl (A) ≤ P (A) ≤ Bel (A) (3)

If the focal elements Bi are singletons, it is possible to
assign weights, i.e., the traditional probabilities, to every
element of Σ in a unique and precise way, and Bel and Pl
degenerate into a single CDF P, that is Bel = Pl = P. As
such, probability theory can be seen as a particular case of
evidence theory.

Another particular case is obtained if, instead, the focal
elements Bi are nested intervals, i.e.,

B1 ⊆ B2 ⊆ . . . ⊆ BN , (4)

where N denotes the number of focal elements. Then, a
possibility distribution (PD) function π (x) : Σ → [0, 1] can
be introduced as follows:

∀x ∈ Σ|π (x) =
∑
Bk3x

w (Bk). (5)

π (x) = 0 corresponds to a definitely impossible value and
π (x) = 1 to a totally possible value. In the case of (4),
the Belief function (1) and Plausibility function (2) are called
necessity (N) and possibility (Π) functions respectively, and
they reduce to

N (A) =1− sup
x∈A

π (x) (6)

Π (A) = sup
x∈A

π (x). (7)

In Figs. 1(a) and 1(b) two examples of typical possibility
(PD) distribution functions, i.e. a rectangular distribution π1
and a triangular distribution π2 respectively, are shown for
the case where Σ = R. In the case of Fig. 1(a), all values
x in the interval A = [x1, x2] are perfectly possible, whereas
all other values, in A, are impossible. This information is,
on the one hand, more vague than the information provided
by a uniform probability density function, as it represents
a total ignorance about x in that interval A = [x1, x2]. It
is only known that these values are all totally possible. On
the other hand, the information provided by π1, is more
complete, as it does not make any assumptions; in contrast,
the uniform probability density function assumes all values
to be equally probable in [x1, x2]. Consequently, all possible
cumulative density functions P (A), assigned to the interval
A = [x1, x2] (and including the uniform CDF), are bounded
by the possibility Π1 (A) and necessity N1 (A) functions,
i.e. N1 (A) ≤ P (A) ≤ Π1 (A). These functions are shown
in Fig. 1(c). As opposed to the total ignorance case of
Fig. 1(a) and (c), the triangular PD π2 (x) of Fig. 1(b), with
corresponding N2 and Π2 (see Fig. 1(d)), indicates a higher
degree of confidence in one value of x, where π2 (x) = 1, and
a gradual decrease for all other values in A.

The mathematical framework to deal with PDs is the theory
of fuzzy sets [16]. Within this framework, the focal elements
Bi are nested intervals obtained by cutting the PDs at different
levels α in [0, 1]. For example, in Fig. 1(b), α = 0.3 identifies
the interval [c1, c2], while α = 0.8 leads to [d1, d2]. Each such
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Figure 1: Rectangular (a) and triangular (b) possibility distributions
with their corresponding possibility Π(x) (solid) and necessity N(x)
(dashed) measures in (c) and (d), respectively. Here we used the
shorthand Π(x) and N(x) to denote Π (]−∞, x]) and N (]−∞, x]).

interval Aα = [infα, supα] is called an α-cut and the entire
PD is determined by the knowledge of the extreme values infα
and supα of a sufficient amount of α-cuts. Moreover, each α-
cut corresponds to a confidence interval with necessity N (Aα)
as follows:

N (Aα) = 1− sup
x/∈Aα

π (x) = 1− α (8)

B. Hybrid Random-Fuzzy MC-based Algorithm

Owing to their different meaning and mathematical repre-
sentation, UP of parameters affected by epistemic (FVs) and
aleatory (RVs) uncertainty follows different rules. Hence, sev-
eral approaches were developed for UP within hybrid problems
involving both RVs and FVs. Among these, the MC-based
hybrid algorithm of [10] along with the aggregation method
of [9], [17] is first described here. Next, in Section III, a novel
hybrid BO-PC framework is introduced, strongly optimizing
the MC-based algorithm, as such allowing for the EMC and
SI assessment of full-wave EM problems.

MC-based hybrid algorithm: Assume z to be defined as a
function of K random variables x1, . . . , xK and of J epistemic
variables y1, . . . , yJ , i.e., z = f (x1, . . . , xK , y1, . . . , yJ). As
can be seen in Fig. 2, the uncertainty of z is evaluated by
generating Nx random realizations of the K random variables.
For each i-th realization (i = 1, . . . , Nx), the i-th possibility
distribution function πzi of z with respect to the J epistemic
variables is constructed. Thereto, a preset number of values
for α, ranging from 1 to 0, is chosen. These determine the
α-cuts of the J epistemic variables. For each α-value, z
is evaluated on a dense grid in the space of the epistemic
variables. The extreme values (i.e., infα and supα) of z are
then identified by taking the minimum and maximum of these
evaluations, and they are assigned as lower and upper limits of
the corresponding α-cut of z. As such, these α-cuts yield the

i-th realization of the
K random variables

Identification of infα and supα of z
as a function of the J fuzzy variables

πzi

Πz
i Nz

i

Plz Belz

i = 1 : Nx

α = 1 : 0

Figure 2: Schematic representation of the hybrid random-fuzzy ap-
proach in both this paper and [10]. The indexed rectangles indicate
loops, the outer one over the Nx realizations of the RVs, the inner
one over the α-cuts for the FVs.

possibility distribution πzi of z for the i-th realization of the
K RVs. Then, repeating the above procedure for the Nx RV
realizations, a set of Nx possibility distributions πZ1 , . . . , π

Z
Nx

is obtained. Nx corresponding possibility Πz
i and necessity Nz

i

functions are constructed. Finally, to aggregate the results, Plz

and Belz of z are computed as the weighted averages:

Plz =
1

Nx

Nx∑
i=1

Πz
i , (9)

Belz =
1

Nx

Nx∑
i=1

Nz
i . (10)

These Plz and Belz can again be interpreted as limiting upper
and lower bounds, encompassing all possible CDFs of z, i.e.

Belz ≤ P (z) ≤ Plz (11)

III. BAYESIAN OPTIMIZATION FRAMEWORK

The brute force implementation of the hybrid algorithm
presented in Section II-B easily becomes computationally
prohibitive even in the presence of few uncertain parameters,
due the large amount of dense grid evaluations required to find
infα and supα for each α-value. This is especially true for EM
problems where numerical full-wave simulations are required
in order to achieve solution of the underlying deterministic
model.

To alleviate the computational burden, BO is introduced in
this section as a way to obtain these infα and supα for each
α-value in a significantly more efficient way. When combined
with PC for the RVs, the number of simulations is reduced
even further.
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Figure 3: Flowchart of a BO algorithm.

A. General characteristics of Bayesian Optimization

BO aims to solve global optimization problems of the form

fmin = min
y

[f (y)], (12)

where f (y) is the quantity to be minimized (or maximized),
also called cost or objective function in the BO framework,
and depends on a set of parameters collected in the vector y.
In particular, f (y) can be considered a “black box” function:
it does not have to be known a priori, but can be evaluated
for any combination of its parameters y through simulations
or measurements. BO is particularly useful when the objective
function is expensive to evaluate and dynamic with respect to
its parameters, causing f (y) to have several local optima [18].

The general methodology of BO is summarized in Fig. 3.
First, the cost function f (y) is evaluated through simulations
or measurements for an initial set of Nin samples yi, i =
1, . . . , Nin, chosen e.g. according to a Latin hypercube.

With these initial samples, a suitable stochastic surrogate
model is then built. This model serves as a cheap to evaluate
substitute for f (y), which is computationally easy to optimize.
The predictions of this model are stochastic, and because of
this, the uncertainty of the model can be used to select the
next point to evaluate. Several mathematical techniques can
be adopted to build the desired surrogate model, among which
are Bayesian neural networks [19] and Gaussian Processes
(GPs) [20], [21].

The selection of the point to evaluate next is generally
done by optimizing an acquisition function. Such an ac-
quisition function transforms the model predictions into a
measure that identifies where the next evaluation should be
in order to obtain a global optimum (12) efficiently. Among
the most widely adopted acquisition functions are Expected
Improvement (EI) [22], [23] and Probability of Improvement
(PoI) [24].

If the selected point is very close to the previously eval-
uated point, convergence is assumed and the optimization is
finished. If not, the suggested point is evaluated through a new
(expensive) simulation. As long as the computational budget
is not spent, the stochastic surrogate model is then updated,
another point is selected, and so on.

For a more complete treatment of BO, the interested reader
is referred to [18], [23], [25].

B. Bayesian Optimization for the possibilistic part of the
hybrid algorithm

In light of the hybrid algorithm detailed in Section II-B,
BO is particularly suited to replace the grid-search and to
optimize the solution of the possibilistic sub-problems, where
the infα and supα of all α-cuts must be identified for each
RV realization. To this end, the widely popular GP regression
model [20], [21] is chosen as the stochastic surrogate model,
due to its accuracy and modeling power. A GP can be consid-
ered a generalization of the multivariate Gaussian distribution;
the latter is a distribution over a finite set of random variables,
completely specified by a mean vector and covariance matrix,
whereas a GP considers an infinite, parameterized set of RVs.
As such it can be interpreted as a distribution over functions
that is fully characterized by its mean function and covariance
function [20], [21]. Often, and also in this paper, the mean
is chosen to be zero, as the data can be normalized, and no
trend is assumed to be known beforehand. As the covariance
function (also called kernel), a Matérn (5/2) kernel is used,
which has the form:

KM,5/2 (y,y′) = σ2

(
1 +

√
5d

ρ
+

5d2

3ρ2

)
exp

(
−
√

5d

ρ

)
,

(13)
where y and y′ are two vectors of length J , representing two
points in the space of FVs, and d = ‖y − y′‖. This kernel is
adopted due to its capability to model a wide class of functions
(including non-differentiable ones) [20], [21]. The hyper-
parameters σ2 and ρ are optimized using maximum likelihood
estimation, as implemented by the GPyOpt package [26], or
the GPFlowOpt package [27].

Regarding the sampling strategy, the acquisition function
chosen in this paper is EI [22], [23]. For pure minimization
problems, EI is defined as follows. The current evaluated point
with minimum value is called fmin. Improvement at a point y,
denoted I (y), is equal to fmin− f (y) if f (y) is smaller than
fmin, and 0 otherwise. Since a GP is a stochastic surrogate
model, its prediction t at location y, is not deterministic, but
is a Gaussian RV, whose mean represents the estimated value
of f (y). Therefore, the expected value of the improvement
can be written as:

E [I (y)] = E [max (fmin − t, 0)] . (14)

The expectation in (14) and the corresponding gradient can
be calculated analytically, making optimization of EI compu-
tationally cheap.

Since for each α-cut of the J FVs (see Fig. 2) both
minimum and maximum need to be found, the following



5

50 0 50 100 150
0.00

0.25

0.50

0.75

1.00
(y

)

50 0 50 100 150
y

1.0
0.5
0.0
0.5

f(y
)

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50
f

0.00

0.25

0.50

0.75

1.00

(f
)

(b)

Figure 4: Illustration of the “top-down” optimization strategy for a
one-dimensional analytical example with 10 α-cuts, and 19 samples
in total as a computational budget. In (a), the red diamonds are the
maxima found in each α-cut (or the global maximum on the curve),
while the blue diamonds represent the found minima in each α-cut.
The green diamonds on the curve are evaluated samples that are not
optimal. The dashed lines represent each of the ten α-cuts, while
the black lines delimiting them describe the possibility distribution.
(b) shows the obtained possibility distribution, using all evaluated
samples. The two halves of this curve are plotted in blue and red,
to show that they are obtained from the minimum and maximum,
respectively, at each α-cut.

modified version of EI is adopted as an acquisition function
here:

EImm (y)=max (E [max (fmin−t, 0)] ,E [max (t−fmax, 0)]).
(15)

This is the maximum of: EI for minimization; and EI for
maximization. Hence, the point where, according to the model,
most potential for a better optimum of either kind can be
found, will be evaluated. Thus, the proposed optimization
strategy finds both optima with a minimal amount of eval-
uations.

It is important to remark that both the minimum and the
maximum of the cost function must be computed for each α-
cut. This is a trivial task for FVs with a rectangular possibility
distribution as shown in Fig. 1(a), as then all α-cuts are
the same. Still, a suitable strategy must be defined when
dealing with different possibility distributions, e.g., the one of
Fig. 1(b). To this end, considering that α-cuts are nested by
definition, a “top-down” approach is proposed here. Fig. 4(a)
displays the proposed “top-down” strategy for a toy example.

The analytical function under study is

f (y) = cos
( x

23

)
sin
( x

50

)
. (16)

This function depends on one FV y with a triangular dis-
tribution π (y). BO is first carried out for the top α-cut,
corresponding to α = 1, with a small portion of the total com-
putational budget (though in the one-dimensional triangular
case of Fig. 4, no BO is needed as the domain consists of only
one point). Then, one by one, the objective function is also
optimized over the α-cuts corresponding to lower possibility
values, making use of the samples already evaluated in the
α-cuts above them, while allowing a few additional samples
to be evaluated for each new α-cut. The PD of f (y), denoted
π (f), constructed in this way, is shown in Fig. 4(b). Note
that, in post-processing, a better optimum found at lower α
can replace an optimum found at higher α, as long as it falls
within the bounds defined by that α-cut.

C. Hybridization of BO with PC

BO successfully expedites the solution of the epistemic
sub-problems. Nonetheless, the slow convergence of the MC
sampling, to account for the aleatory variability of the RVs,
renders the hybrid algorithm still slow. Therefore, in this paper,
PC expansions [28] are adopted, given their accuracy and
efficiency in characterizing stochastic variations [2], [3], [4],
[29], [30], [31], [32]. Using the PC expansion, a suitable model
is computed for both the minimum and maximum depending
on the RVs and the α-cut, in the form:

Fmin (α,x) =

K∑
k=0

βmin,k (α)φk (x),

Fmax (α,x) =

K∑
k=0

βmax,k (α)φk (x), (17)

where φk (x), for k = 1, . . . ,K, are suitable orthogonal
polynomials depending on the randomly distributed variables
collected in the vector x, while βmin,k (α) and βmax,k (α) are
the corresponding PC coefficients, which depend on the α-
cut [28].

It is important to remark that the PC basis functions in (17)
depend only on the distribution of the RVs x, and can be
determined upfront for different distributions [32]. Thus, only
the coefficients βmin,k must be estimated, as described in the
following. First, a number of samples [xi]

NPC
i=1 (also called

collocation points) are chosen in the random variables’ space
according to the method described in [30]. At each of these
points, BO is performed in order to find the minima and
maxima of the cost function for the different α-cuts. Next, the
desired PC coefficients can be computed by solving a suitable
linear system [30].
Fmin and Fmax at each of the α-cuts and for a specific

instance of the random variables xj form the α-cuts for z
itself, and thus define its possibility distribution πzj . As such,
an MC sampling of Nx instances of the random variables,
evaluated using Fmin and Fmax (17), is used to construct many
such possibility distributions. These can then be combined
using (9) and (10), to obtain Plz and Belz (see Fig. 2). Since
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the models in (17) are analytical, they can be evaluated with
great efficiency compared to a direct sampling of the cost
function.

IV. NUMERICAL EXAMPLES

The proposed methodology is applied to two distinct nu-
merical examples, of increasing complexity. The first example
is an analytical one, constitutes a typical EMC setup and is
used to illustrate and validate the proposed methodology. The
second case study, instead, represents a relevant SI application
example where full-wave EM simulations are required to
estimate the chosen cost function.

A. Twisted wire pair

In this first example, the proposed methodology is applied
to the radiated susceptibility problem illustrated in Fig. 5 and
also adopted in [12]. Two lossless wires are wound into a
double helix, h = 5 cm above a perfectly conducting ground
plane. The line length is l = 200 cm. The terminal loads are
the same both at the left and at the right terminations, and
are balanced to prevent mode conversion. A uniform plane
wave (1 V m−1) with polarization angle η, azimuth angle ψ
and elevation angle θ illuminates the twisted wire pair.

In this example, the goal is to estimate the variation of
the induced differential mode (DM) noise current with re-
spect to polarization η and azimuth angle ψ of the incident
field. Since positioning of the irradiating antenna is affected
by random uncertainty, they are considered Gaussian RVs:
η ∼ N (90◦, 2◦) and ψ ∼ N (90◦, 2◦) (where N (µ, σ) is the
Gaussian distribution with mean µ and standard deviation σ).

The elevation angle θ, as suggested in aerospace standards,
is usually set to 73◦ [33]. However, the test operator is allowed
some flexibility in setting this angle, and thus a a triangular
distribution [68◦, 78◦] [12] is chosen to represent the epistemic
uncertainty for this parameter.

The number of twists Nt can be treated as a real number
to also indicate a fraction of an incomplete twist at the end of
the structure. It has been shown that such an incomplete twist
produces a similar variability to that of a non-uniformity in
the twists [12], [34]. This justifies approximating the effect of
an unknown non-uniformity by imposing a uniform possibility
distribution on Nt, more specifically in the range [40, 41].

The DM current (which is the z = f (x,y) for this
example, with x = [η, φ] and y = [θ,Nt]) can be analytically
computed for any frequency value of interest by means of the
deterministic model described in [35].

In order to compute the PC models (17), the proposed BO
is carried out for K = 10 samples of the random variables
(η, ψ). In particular, 51 α-cuts, ranging from possibility level
1 to 0, are considered for each collocation point. The BO starts
at α = 1 with 3 initial points in the range of Nt ∈ [40, 41]
(since the distribution of θ is triangular) to construct a GP
model. A maximum of (in total) 10 samples is allowed for
the BO at this α-cut. In each following α-cut, the bounds
of the optimization are widened according to the possibility
distributions of Nt and θ and an additional 1.8 samples are
added to the maximum total budget for BO (at each step the

R
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Figure 5: Twisted wire pair. RC = 100 Ω, RD1 = RD2 = 50 Ω.
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Figure 6: Twisted wire pair: Plausibility and Belief functions of
the DM current computed through PC (random variables) and BO
(epistemic variables) are shown in thick blue and orange lines. The
same functions computed with the approach presented in [12] are
displayed in thick dashed dark blue and brown lines. Examples of
CDFs obtained by treating all variables as probabilistic are shown in
thinner lines. With Nt distributed as a uniform distribution between
40 and 41 and θ following a triangular distribution from 68 to 78 with
mode at 73, the CDF given by the dash-dotted red line is obtained. If
Nt follows a Beta distribution with Beta

(
1
2
, 1
2

)
between 40 and 41,

and if θ follows a Gaussian distribution N (73, 2), truncated between
68 and 78, the green dotted CDF is calculated.

budget is rounded down), summing to a total maximum of 100
samples over all α-cuts.

Next, a PC model (with polynomials up to third order) as a
function of the random variables is calculated for both the
minimum and maximum of the DM current, estimated via
BO for each α-cut. Finally, a large number of MC samples
are drawn from the RVs distributions, and the PC models
are evaluated for all of them. The obtained results are then
aggregated using (9) and (10) in terms of Pl and Bel functions.
The uncertainty quantification results for the frequency of
30.54 MHz are displayed in Fig. 6.

For comparison, the same example was also solved with
the original implementation of the algorithm [12], that is by
making use of MC sampling for the RVs and grid search (GS)
(i.e., sampling on a pre-determined grid formed by 101× 101
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samples) for the possibilistic sub-problems. The corresponding
Pl and Bel functions (aggregated by (9) and (10)) are also
shown in Fig. 6. Clearly, the proposed method offers a com-
parable accuracy with respect to the reference one. However,
fewer than 1000 samples were simulated for the proposed
method, corresponding to fewer than 100 (θ,Nt) samples for
each of the 10 (η, ψ) collocation points, while the reference
approach required to simulate 10201000 samples, given by
10201 (θ,Nt) samples for each of the 1000 (η, ψ) MC
sample points. Due to the availability of an analytical solution
and vectorization speedups, the grid search approach takes
5 min and 35 s, while the proposed approach takes 39 min.
Ignoring the vectorization speedups and sequential function
call overhead, the difference amounts to an average of about
2 s per model update and acquisition function optimization
step, as an indication.

Fig. 6 also features two CDFs, obtained by treating Nt and
θ as RVs. This demonstrates that the obtained Pl and Bel
functions can serve as lower and upper bounds to any possible
CDF of the DM current. This can be interpreted as follows.
At any value z∗ of the DM current, the belief function is a
lower bound to the percentage of instances of the setup that
are smaller than z∗. For example, at least 25 % of the setups
lead to a DM current of less than −39.7 dB µA. Similarly, the
plausibility function is an upper bound to the percentage of
instances of the setup that are smaller than z∗, or alternatively,
1− Pl is a lower bound to the percentage of instances of the
setup that are larger than z∗. For example, maximally 25 %
of the setups lead to a DM current of less than −67.8 dB µA
or, differently put, minimally 75 % of the setups lead to a DM
current of more than −67.8 dB µA.

When implemented on a server node with a Quad-Core
AMD Opteron Processor (2 GHz) and 31.4 GiB DDR2 RAM,
the

B. Bent microstrip lines

As a second example, the proposed framework is applied
to two bent coupled microstrip lines making a 90◦ bend (see
Fig. 7). This layout was introduced in [36].

For this example, four independent RVs are considered: the
lengths of both of the line segments, l1 ∼ N (50 mm, 0.1 mm)
and l2 ∼ N (50 mm, 0.1 mm), and the width of each line,
w1 ∼ N (1.8 mm, 0.1 mm) and w2 ∼ N (1.8 mm, 0.1 mm).
Since they are only specified by manufacturers within certain
tolerances, the relative permittivity εr and the height h of the
substrate are treated as FVs with rectangular possibility distri-
butions with supports [3.36, 3.96] and [1.374 mm, 1.674 mm],
respectively. Given that mode conversion is especially critical
for bent interconnects, we construct an objective function
that is a measure of the total DM to common mode (CM)
conversion [37], as follows:

C =

[∫ 6GHz

0GHz

(
|Scd11 (f)|2 + |Scd21 (f)|2

)
df

]1/2
, (18)

where Scd11 and Scd21 are the relevant elements of the modal
S-parameters matrix. In contrast to the previous example, no
analytical model for the S-parameters nor the cost function is

l1

l2

1

2

Cross-section

εr , tan δ

w1 s w2

t

h

Figure 7: Bent microstrip lines: The top schematic shows the layout
of the bent microstrip lines, demarcating the line lengths l1 and l2.
The differential signaling ports are also indicated using braces. The
cross-section of the bent microstrip lines is shown in the bottom
schematic, demarcating remaining parameters. The fixed parameters
are s = 0.7 mm, t = 35 µm, tan δ = 0.003 and the line conductivity
is 4.1× 107 S m−1.

0.5 0.6 0.8 0.90.68
 total DM-to-CM conversion C (18)

0.00

0.40

0.60

0.80

1.00

0.69

0.21

cd
f

Plausibility (BO)
Belief (BO)
Plausibility (GS)
Belief (GS)

Figure 8: Bent microstrip lines: Plausibility and Belief functions for
the cost function C (18), obtained through PC (random variables)
and BO (epistemic variables) are shown in blue and orange lines.
The same functions computed with the approach presented in [12]
are displayed in dashed dark blue and brown lines.

available. For a specific sample of the random and epistemic
variables, the cost function is computed by first acquiring the
S-parameters in the frequency range of interest [0-6 GHz] by
means of full wave simulations, performed using Advanced
Design System (ADS) [38]. Then, the modal scattering param-
eters are computed [36], and the integral in (18) is calculated
using standard numerical techniques [37].
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Table I: Bent microstrip lines:
Computational cost of the Uncertainty Quantification.

PC + BO MC + grid search
Total number of simulations 696 100 000

Total computational time 17h, 57min 112d, 16h, 3min

PC models with K = 35 (with polynomials up to third
order) of the minimum and maximum of the cost function
were constructed from the optima found by BO in the collo-
cation points. In particular, since the FVs follow a rectangular
possibility distribution, BO only needs to be carried out once
for each of the collocation points. A maximum of 50 samples
in the space of the epistemic variables was allowed.

Evaluating these PC models in 1000 Monte Carlo sampled
points leads to an aggregated distribution for the cost func-
tion C, as indicated in Fig. 8. As an example, at least 21 %
of the samples has a total DM-to-CM conversion of less
than 0.68, but no more than 69 %.

For comparison, a grid search (GS) with 10× 10 points for
the epistemic variables was also carried out in each of these
1000 Monte Carlo points, and the corresponding aggregated
results are also shown in Fig. 8. The Pl and Bel functions
obtained with both methods are in excellent agreement, while
the proposed BO-based approach, as displayed in Table I, is
much more efficient. Both methodologies were implemented
on a server node with a Quad-Core AMD Opteron Processor
(2 GHz) and 31.4 GiB DDR2 RAM.

V. CONCLUSIONS

A hybrid novel machine-learning based approach for the
UQ of the EMC and SI behavior of electronic problems
prone to both probabilistic and epistemic variability is pre-
sented in this paper. The method leverages evidence theory
as a general framework to deal with both probabilistic and
possibilistic definitions of uncertainty. Bayesian optimization
based on Gaussian process regression and a modified version
of the Expected Improvement acquisition function are used
to solve uncertainty propagation problems with accuracy and
efficiency. Two relevant application examples, a twisted wire
pair and a bent differential microstrip, have been used to
validate the proposed approach, demonstrating its usefulness
in providing bounds for the probability of events.
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