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2020.—Dietary fibers are essential components of a balanced diet
and have beneficial effects on metabolic functions. To gain insight
into their impact on host physiology and gut microbiota, we per-
formed a direct comparison of two specific prebiotic fibers in
mice. During an 8-wk follow up, mice fed a high-fat diet (HFD)
were compared with mice on a normal diet (basal condition, con-
trols) and to mice fed the HFD but treated with one of the follow-
ing prebiotics: fructooligosaccharides (FOS) or soluble corn fiber
(SCF). Both prebiotic fibers led to a similar reduction of body weight
and fat mass, lower inflammation and improved metabolic parameters.
However, these health benefits were the result of different actions of
the fibers, as SCF impacted energy excretion, whereas FOS did not.
Interestingly, both fibers had very distinct gut microbial signatures
with different short-chain fatty acid profiles, indicating that they do
not favor the growth of the same bacterial communities. Although the
prebiotic potential of different fibers may seem physiologically equiva-
lent, our data show that the underlying mechanisms of action are dif-
ferent, and this by targeting different gut microbes. Altogether, our
data provide evidence that beneficial health effects of specific dietary
fibers must be documented to be considered a prebiotic and that stud-
ies devoted to understanding how structures relate to specific micro-
biota modulation and metabolic effects are warranted.
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INTRODUCTION

The association between fiber intake and health is now well
recognized, with decades of research data supporting beneficial
effects of complex dietary fibers. These include direct effects on
gut functions and digestion, but also indirect effects on blood
glucose control, cardiovascular functions, and host metabolism.
Indeed, high dietary fiber intake have been linked to a protection
against development of several noncommunicable conditions,
including diabetes, cardiovascular disease, colon cancer, and
obesity (60).

Traditional sources of fibers include whole grains, nuts, fruits,
and vegetables. Although readily available, these ingredients
are not consumed in sufficient quantities, and the average intake
of the general population in the United States and the European
Union remains far below recommendations (53, 62).
Fiber supplementation, therefore, represents a realistic and ef-

ficient dietary intervention. Several products are already avail-
able commercially and come in various forms and types. These
are either naturally occurring fibers isolated from plants, or syn-
thetic nondigestible soluble and insoluble carbohydrates. Given
their specific structural and functional characteristics, each may
act differently in the body leading to distinct health perks.
Deciphering these specific mechanisms of action of these differ-
ent fibers may, therefore, prove crucial to understanding their
health-promoting properties.
One of the most important mechanisms of action among

fibers is fermentation in the intestinal tract. Fermentation leads
to the formation of short-chain fatty acids (SCFAs), of which ac-
etate, propionate, and butyrate are the most common. These are
then metabolized by the colonic epithelium, as well as other
organs and contribute �10% of the total energy intake from a
Western diet (3). Fibers can also serve as prebiotics and stimu-
late the growth of certain beneficial bacteria (32, 36). While,
more than 1,000 different known bacterial species can be found
in human gut microbiota, only �250 predominate in any given
person, forming an ecosystem with the ability to exert a marked
influence on the host during homeostasis and disease (13).
Modulating this complex and dynamic population of microor-
ganisms toward a more beneficial composition and metabolism
is considered a crucial step in trying to improve human health.
The role of fibers in directing the composition and activity of
the endogenous microbiota is gaining considerable interest.
Since each type of fiber is unique, with a distinct particle size,
branching, solubility, viscosity, degree of polymerization and
fermentability, it is implied they have distinct impacts on the
host. However, comparison of different studies remains very
difficult. This is largely because the human cohorts studied are
very heterogeneous and interindividual comparison is compli-
cated by a plethora of confounding factors. Indeed, individual
responses to fiber consumption can vary significantly. These
phenotypic variants are attributed to a combination of host
genetics (33), environmental factors (22, 66), dosage of the fiberCorrespondence: P. D. Cani (Patrice.cani@uclouvain.be).
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of interest (5, 18), and the distinct microbiota composition of
the individual at baseline. Also, not many studies include more
than one fiber, making direct comparison almost impossible.
In this study we assessed the effects of two types of nondiges-

tible, soluble carbohydrates: soluble corn fiber (SCF) and fruc-
tooligosaccharides (FOS) in a mouse model of diet-induced
obesity. This allows for the direct comparison of two different
fibers, while the use of inbred mice in a controlled environment
ensures that the number of confounding factors is kept to a mini-
mum. The results of this comparison could be interesting to pin-
point some shared, fundamental mechanisms of action of these
different fibers, while also recognizing some distinct and poten-
tially relevant differences to be defined as prebiotic fibers.

MATERIALS AND METHODS

Animals. Nine-week-old male C57BL/6J mice (Janvier, Le Genest-
Saint-Isle, France) were housed 2–3 mice per cage in specific patho-
gen-free conditions and in a controlled environment (room temperature
of 22± 2�C, humidity 55± 10%, 12:12-h light-dark cycle) with free
access to food and water. After an acclimatization period of 1 wk, mice
were randomly assigned to one of four dietary conditions (n = 15 per
group). The different groups were as follows: control diet (CT) (10 kcal
% fat, D12450Ji; Research Diets, New Brunswick, NJ) with water,
high-fat diet (HFD) (60 kcal% fat, D12492i; Research Diets) and water,
high-fat diet and water supplemented with fructooligosaccharides
(FOS; Orafti P95; Beneo) or a high-fat diet with water supplemented
with soluble corn fiber (SCF; Promitor, Tate & Lyle) during 8 wk.
Daily fiber consumption was recalculated regularly in function of the
food and water intake to maintain a final consumption of 10% (fiber/
food). The fiber’s caloric contribution was calculated on the basis of an
energy content of 1.1 kcal/g for SCF and 1.5 kcal/g for FOS, as indi-
cated by the manufacturers). The main characteristics of both fibers are
described in Table 1.

Body weight and food and water intake were recorded weekly. Body
composition (lean and fat mass) was assessed by using 7.5 MHz time
domain-nuclear magnetic resonance (TD-NMR) (LF50 Minispec;
Bruker, Rheinstetten, Germany). In the final week of the experiment,
feces were collected for each cage by transferring the animals to clean
cages for a period of 48 h. After this, feces were manually collected,
dried overnight at 60�C and weighted to assess the amount of feces
secreted per day. Then energy content was measured on a C1 calorime-
ter from IKA. Per cage containing two animals, one mean value was
considered for analysis.

All mouse experiments were approved by and performed in accord-
ance with the guidelines of the local Ethics Committee. Housing condi-
tions were specified by the Belgian Law of May 29, 2013, regarding
the protection of laboratory animals (agreement no. LA1230314).

Oral glucose tolerance test. After 7 wk of treatment, an oral glucose
tolerance test (OGTT) was performed as previously described (7).
Briefly, 6-h fasted mice were given an oral glucose load (2 g glucose
per kg body wt), and blood glucose levels were measured at different
time points: 30 min before and 15, 30, 60, 90, and 120 min after oral
glucose load. Blood glucose was measured with a standard glucose me-
ter (Accu Check, Roche, Basel, Switzerland) on blood samples col-
lected from the tip of the tail vein.

Insulin resistance index. Plasma insulin concentration was deter-
mined using an ELISA kit (Mercodia, Uppsala, Sweden), according to
the manufacturer’s instructions. Insulin resistance index was deter-
mined by multiplying the area under the curve of both blood glucose
(�30 to 120 min) and plasma insulin (�30 and 15 min) obtained fol-
lowing the oral glucose tolerance test (65). Glucose-induced insulin
secretion was calculated as the difference between plasma insulin levels
30 min before and 15 min after oral glucose load.

Tissue sampling. At the end of the treatment period (week 8), 10 ani-
mals from each group were selected randomly and anesthetized with
isoflurane (Forene, Abbott, Queenborough, Kent, UK), and blood was
sampled from the portal and cava veins. After exsanguination, mice
were killed by decapitation. Subcutaneous adipose tissue depots, intes-
tines, muscles, and liver were precisely dissected, weighed, and imme-
diately immersed in liquid nitrogen followed by storage at �80�C for
further analysis.

RNA preparation and Real-time quantitative PCR analysis. Total
RNA was prepared from tissues using TriPure reagent (Roche).
Quantification and integrity analysis of total RNA were performed by
analyzing 1μL of each sample in an Agilent 2100 Bioanalyzer
(Agilent RNA 6000 nano kit, Agilent, Santa Clara, CA). cDNA was
prepared by reverse transcription of 1 μg total RNA using a reverse
transcription system kit (Promega, Madison, WI). Real-time PCR
was performed with the CFX96 real-time PCR system and CFX
Manager 3.1 software (Bio-Rad, Hercules, CA) using Mesa Fast
quantitative PCR (Eurogentec, Liège, Belgium) for detection
according to the manufacturer’s instructions. RPL19 was chosen as
the housekeeping gene. All samples were performed in duplicate,
and data were analyzed according to the 2�DDCT method. The iden-
tity and purity of the amplified product were assessed by melting
curve analysis at the end of amplification. The primer sequences for
the targeted mouse genes are presented in Table 2.

Gut microbiota analysis. Cecal contents were collected and kept
frozen at �80 �C until use. Metagenomic DNA was extracted from
the cecal content using a QIAamp DNA Stool mini kit (Qiagen,
Hilden, Germany), according to the manufacturer’s instructions
with modifications.

The 16S rRNA gene was amplified from the cecal microbiota of the
mice using the following universal eubacterial primers: 27Fmod (50-
AGRGTTTGATCMTGGCTCAG-30) and 519Rmodbio (50-GTNTT-
ACNGCGGCKGCTG-30). Purified amplicons were sequenced using a
MiSeq following the manufacturer’s guidelines. Sequencing was per-
formed at MR DNA (www.mrdnalab.com; Shallowater, TX). Sequences
were demultiplexed and processed using the QIIME pipeline (v1.9 using
default options (Q25, minimum sequence length=200 bp, maximum
sequence length=1,000 bp, maximum number of ambiguous bases= 6,
maximum number of homopolymers =6, maximum number of primer
mismatches= 0). For the 49 samples analyzed, 162,260 OTUs have been
identified (97% similarity). The minimum number of sequences per sam-
ple was 20,675, and the maximum number of sequences per sample was
79,590. The median number of sequences per sample was 40,475 and the
mean number of sequences per sample was 44,066,714 ± 14,774.308
(SD). The Q25 sequence data derived from the sequencing process were
analyzed with the QIIME 1.9 pipeline. Briefly, sequences were depleted
of barcodes and primers. Sequences 1,000 bp were then removed;
sequences with ambiguous base calls and with homopolymer runs
exceeding 6 bp were also removed. Sequences were denoised, and opera-
tional taxonomic units (OTUs) were generated. Chimeras were also
removed. OTUs were defined by clustering at 3% divergence (97%

Table 1. Structural and functional characteristics of FOS and
SCF

FOS SCF

Solubility soluble soluble
Viscosity nonviscous nonviscous
Fermentability fermentable fermentable
Structure
component

fructose glucose

Linkages linear
fructosyl units linked by b
(2, 1) bonds with chain-
terminating glucose
moieties

branched
glucosyl units connected by
a and b bonds with vary-
ing linkages like (1, 4),
(1, 6), (1, 3), and others

FOS, fructooligosaccharides; SCF, soluble corn fiber.
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similarity). Final OTUs were taxonomically classified using BLASTn
against a curated Greengenes database. Principal coordinate analysis
(PCoA) was generated with QIIME using the unweighted UniFrac dis-
tance matrix between the samples (21, 52) and as previously described
(25, 30).

Quantification of short-chain fatty acids. SCFAs were measured in
both cecal content and fresh feces collected at the end of the experiment.

Upon weighing the samples using an analytical balance (Kern ABJ
320), samples were suspended in distilled water and incubated during 2
h at 4�C. After vortexing, SCFA were extracted from the samples with
diethyl ether, upon the addition of 2-methyl hexanoic acid as an internal
standard. Subsequently obtained extracts were analyzed using a GC-
2014 gas chromatograph (Shimadzu, Noord-Brabant, the Netherlands),
equipped with a GC SGE capillary column, 30 mm � 0.32 mm ID-
BP21x 0.25 mm (Achrom, Machelen, Belgium), a flame ionization de-
tector and a split injector. The injection volume was 1 mL and the tem-
perature profile was set from 110 to 160�C, with a temperature increase
of 6�C/min. The carrier gas was nitrogen, and the temperature of the in-
jector and detector was both 200�C.

Statistical analysis. Mouse data are expressed as the means±SE.
Differences between groups were assessed using nonparametric Kruskal-
Wallis one-way ANOVA, followed by the Dunn’s multiple-comparison
test. Variance was compared using a Bartlett’s test. If variances were sig-
nificantly different between groups, values were normalized by Log-
transformation before proceeding to the analysis. When only two groups
were compared, a nonparametric Mann-Whitney U test was used.
Regimen and treatment effects on community compositions were
assessed using permutational multivariate analysis of variances after rare-
faction of all communities to even sampling depths. The abundances of
all phyla were computed by agglomerating the OTUs assigned to those
phyla. For each such family, Mann-Whitney U test with Benjamini-
Hochberg correction (35) were performed to detect the combinations
(treatment) that were significantly different in terms of abundance.

A two-way ANOVA analysis with a Bonferroni post hoc test on
repeated measurements was performed for the evolution of glycemia
and insulinemia during the OGTT. For all analyses and for each group,
any exclusion decision was supported by the use of the Grubbs’s test
for outlier detection.

RESULTS

Effects on body weight, body composition, and adipose tis-
sue. Body weight gain and fat mass gain were both significantly
greater in the high-fat diet fed mice (HFD) than in mice fed the
control diet (CT). Supplementation of both FOS and SCF drasti-

cally reduced fat mass development, ultimately resulting in body
weights that were comparable to that of control diet-fed mice. (Fig.
1, A and B). Lean mass was not different in any of the groups (Fig.
1C), suggesting that muscle development was not affected by
high-fat feeding or fiber supplementation. This was confirmed by
measuring the weights of four different types of muscles (Fig. 1D).
To confirm the results on fat mass measured by NMR, we

precisely dissected and weighed four different types of adipose
tissues. Subcutaneous (inguinal), epididymal, visceral (mesen-
teric), and brown adipose depots were all significantly smaller
in mice receiving fibers (FOS and SCF), as compared with their
littermates fed only high-fat diet (Fig. 1E).
The weights of the livers of mice treated with fibers were also

reduced as compared with that of mice on HFD, suggesting
reduced steatosis. The weight of the spleen was not affected in
any of the groups (Fig. 1F), but the weight of the cecum was
markedly decreased by the HFD and increased following con-
sumption of fibers (Fig. 1F).
Effects on energy homeostasis. The caloric content of the

diets was measured using a bomb calorimeter and energy con-
sumption was calculated for each group by regularly weighing
the amount of food eaten. In addition, the amount of water
drunk was monitored, and the caloric contribution of the fiber
supplementation was considered to calculate the total energy
consumption. This showed that there were no differences in
energy consumption between the high-fat diet-fed groups (Fig.
2A), indicating that potential beneficial effects associated with
fiber intake could not be attributed to a lower caloric intake.
In the final week of the experiment, feces were collected dur-

ing a 24-h period for each mouse, and energy content was meas-
ured by calorimetric bomb analysis (Fig. 2). There was no
difference between the CT and HFD group; however, supple-
mentation with both dietary fibers result in a significant increase
of the energy content of the feces (Fig. 2C). In addition, the
daily amount of feces excreted by mice given SCF was higher
(Fig. 2B), resulting in a significantly increased daily energy
excretion for this group (Fig. 2D). This suggests that SCF could
partially act by reducing energy absorption, but that FOS prob-
ably has a different mode of action.
To estimate energy consumption, the body temperature was

measured using a rectal probe. No differences were observed
between the different groups (Fig. 2E).

Table 2. List of primers used for quantitative PCR analysis

Gene Forward (5 0-3 0) Reverse (5 0-3 0)

Rpl19 GAAGGTCAAAGGGAATGTGTTCA CCTTGTCTGCCTTCAGCTTGT
Proglucagon TGGCAGCACGCCCTTC GCGCTTCTGTCTGGGA
F480 TGACAACCAGACGGCTTGTG GCAGGCGAGGAAAAGATAGTGT
PYY GTTTGGACCAGTGGTGAAGA TGCCCTCTTCTTAAACCAAACA
LBP GTCCTGGGAATCTGTCCTTG CCGGTAACCTTGCTGTTGTT
PAI1 ACAGCCTTTGTCATCTCAGCC CCGACACAAAGAAGGA
CD11b GTCAGAGTCTGCCTCCGTGT CCTGCGTGTGTTGTTCTTTG
MCP1 GCAGTTAACGCCCCACTCA CCCAGCCTACTCATTGGGATCA
TNFa TCGAGTGACAAGCCTGTAGCC TTGAGATCCATGCCGTTGG
CD11c ACGTCAGTACAAGGAGATGTTGGA ATCCTATTGCAGAATGCTTCTTTACC
IL6 ACAAGTCGGAGGCTTAATTACACAT TTGCCATTGCACAACTCTTTTC
IL1b TCGCTCAGGGTCACAAGAAA CATCAGAGGCAAGGAGGAAAAC
CD206 CCTCTGGTGAACGGAATGAT CTTCCTTTGGTCAGCTTTGG
IL10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG
MGL1 TGAGAAAGGCTTTAAGAA GACCACCTGTAGTGATGTGGG
Arg1 CTCCAAGCCAAAGTCCTTAGAG AGGAGCTGTCATTAGGGACATC
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Effects on glucose metabolism. We have previously discov-
ered that changing the gut microbiota by using FOS improves
glucose tolerance and insulin resistance (9, 10). Therefore, an
oral glucose tolerance test (OGTT) was performed after 7 wk of
treatment. Mice from the HFD group clearly showed a higher
increase in blood glucose levels as compared with mice from
the CT group, whereas both dietary fibers (FOS and SCF) mark-
edly and significantly improved glucose tolerance (Fig. 3, A and
B). This indicated that consumption of both fibers is equivalent
for improving this parameter.
As expected, fasted insulin levels were drastically increased

in the HFD group, and this hyperinsulinemia was normalized af-
ter treatment with FOS and SCF (Fig. 3C). After an oral glucose

load, the HFD group exhibited a four-fold higher insulin level
compared with CT mice. This parameter was reduced by treat-
ment with FOS and SCF but without reaching significance (Fig.
3D). However, the insulin resistance (IR) index was significantly
lower for both fiber-treated groups (Fig. 3E).
Effects on adipose tissue inflammation. Since diabetes and

insulin resistance were frequently associated with adipose tissue
inflammation (7, 40, 57), we measured various macrophage
infiltration markers in the subcutaneous (SAT) and visceral adi-
pose tissue (VAT) using quantitative PCR analysis (Fig. 4).
Lipopolysaccharide binding protein and monocyte chemoattrac-
tant protein-1 were upregulated by HFD and were reduced by
both FOS and SCF in both adipose tissues. Although the number

Fig. 1. Effects on body weight, body composi-
tion, organs, and adipose tissues. Body weight
(g) (A) with corresponding fat mass (g) (B),
and lean mass (g) (C) at the end of the 8-wk
follow-up. Weight of different types of
muscles (g) (tibialis, soleus, gastrocnemius,
and vastus lateralis) (D) and of different adi-
pose tissue depots (g) (subcutaneous (ingui-
nal), epididymal, visceral (mesenteric) and
brown adipose tissues) (E) at the end of the 8-
wk period. Weights of liver (g) spleen (g), full
cecum (g), and cecum content (g) at the end of
the follow-up (F). Data are presented as the
means±SE. Data with different letters above
the bars are significantly different (P < 0.05)
according to post hoc one-way ANOVA.
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of macrophages did not seem to differ significantly between
groups (no effect on the global macrophage markers F4/80 and
CD11b), supplementation with FOS or SCF did have an impact
on M1 macrophage activation in the adipose tissue, as evi-
denced by a significant decrease in CD11c mRNA (SAT and
VAT) and trends toward reduction of TNFa and IL6 (SAT
only). M2 macrophage markers, however, remained unaffected
(CD206, IL10, and MGL1), with the exception of Arg1.
Plasminogen activator inhibitor-1 (PAI-1) tended to be reduced
by FOS and SCF in the SAT, but not in the VAT. IL-1b was not
different in any of the groups, although there was a consistent
trend toward increase by the HFD.
Effects on gut microbiota. We and others have previously

linked the gut microbiota with low-grade inflammation and met-
abolic disorders associated with HFD feeding (1, 7, 11, 46).
Here, we confirmed that HFD feeding shifted the gut micro-

biota composition as depicted by the PCoA scores, clearly
showing a separation between the HFD and CT group (Fig. 5A).
Interestingly, treating mice on an HFD with fiber does not
restore the microbial composition to a CT-like basal signature.
Instead, the different groups display very distinct clusters, indi-
cating that they developed different bacterial compositions, and
that this is specific for the fiber used. Of note, although the b-di-
versity (microbial composition) was clearly affected, the effects
on a-diversity (species richness) were less clear: the Shannon
index indicates a trend toward reduced a-diversity in the HFD
group, and this was improved in the FOS-treated mice, but fur-
ther decreased in the SCF-treated mice (Fig. 5B).
At the level of the phyla, the FOS treatment was associated

with an increase in Actinobacteria and a decrease in Prot-
eobacteria when compared with HFD-fed mice. Treatment with

SCF was associated with a similar decrease in Proteobacteria, but
with an increase in Firmicutes (Fig. 5C).
At the level of the genera, we observed some common effects

between FOS and SCF (Figs. 5D and Fig. 6 and Supplemental
Table S1, https://doi.org/10.6084/m9.figshare.12423797). For
example, both were able to counteract the HFD-induced increase
of Ruminoccocus, Bilophila, Desulfovibrio, Oscillospira, and
Paenibacillus, and the decrease of Allobaculum, Sutterella, and
Dehalobacterium. In addition, both increased Pseudomonas and
decreased Bacillus.
Interestingly, we also found effects that were specific to one of

the two fibers (Fig. 6, B and C). FOS treatment was able to com-
pletely restore the loss of Prevotella caused by the HFD, whereas
this genus was not affected by SCF. In accordance with previous
studies, FOS supplementation also increased Bifidobacterium,
whereas we did not observe this for SCF-treated mice.
SCF-specific effects included an increase in abundance of

Parabacteroides, Coprococcus and Bacteroides. In contrast to
FOS, SCF was also able to counter the decrease of Blautia
induced by the HFD and the increase of Lactococcus and
Odoribacter.
Effects on short-chain fatty acids. In the cecum, a nonsigni-

ficant reduction of total short-chain fatty acids (SCFA)
amounts was observed in all HFD-fed mice when compared
with CT diet-fed mice (Fig. 7A). This was mostly due to an
HFD-induced reduction of propionate amounts. This
decrease was countered upon dosing SCF that significantly
increased propionate amounts, as compared with the HFD
group, with a similar, albeit milder, trend being observed for
FOS. Further, also acetate tended to decrease upon dosing

Fig. 2. Effects on energy homeostasis. Energy intake: mean
cumulative caloric intake per mouse (kcal) (A). Energy excre-
tion: mean amount of feces excreted per mouse in one day
(mg/24 h) (B), mean energy content in feces (cal/g) (C), daily
energy excretion as calculated using the previous values (cal/
mouse) (D) and body temperature (�C) (E). Data are presented
as the means±SE. Data with different letters above the bars
are significantly different (P < 0.05), according to post hoc
one-way ANOVA (B–E).
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the HFD. Neither FOS nor SCF treatment could counter this
reduction.
In feces, propionate and butyrate concentrations were signifi-

cantly decreased in the HFD-group, as compared with the con-
trol group, whereas both SCF and FOS treatment significantly
increased propionate and butyrate (Fig. 7B). Additionally, FOS
significantly increased acetate concentrations.

DISCUSSION

The gut microbiota plays an important role in health (6, 16,
48). More and more studies are being conducted to understand
the complex interplay between gut microbes and their host.
These studies have implicated many mediators ranging from
bacterial components and metabolites to hormones, neurotrans-
mitters, and bioactive lipids (13). Concurrently, efforts were
made to identify which bacterial populations are associated with
health or disease risk. The ultimate goal is to be able to under-
stand how an individual’s microbiota can be modulated to maxi-
mize health.
Dietary interventions are one of the most obvious ways to

achieve changes of the microbiota (17). In this context, fibers, in
particular, have a crucial role to play. These carbohydrates are
undigestible by the human gut but can be used by certain
microbes in the colon. They have the capacity to significantly
impact the gut microbiota and have been linked with beneficial
health effects. Unfortunately, there are only a few human dietary
intervention studies that assess well-defined diets in well-char-
acterized study populations to objectively monitor wide-ranging

responses (61, 71). This type of trials is needed to make correla-
tion-causation connections. Indeed, confounding factors, such
as metabolic, physiological and genetic differences among indi-
viduals result in substantial interindividual variation in the
response to diet and fiber intake, making it almost impossible to
characterize phenotypes under controlled conditions.
Animal studies allow population-based confounding factors

to be avoided and can be performed in controlled experimental
setups. Therefore, they are very useful when it comes to assess-
ing causality of the complex host-microbiota interactions and
deciphering the ground rules of gut microbiota functioning.
In this study, we set out to compare two different fibers that

are both classified as soluble, fermentable, nonviscous fibers to
which prebiotic effects have been attributed. Both FOS and SCF
are known for their influence on colonic microbiota content (26,
27, 42, 51, 69) and have been associated with improved intesti-
nal health (2, 4, 20, 43).
When supplemented to a high-fat diet, both components

reduced body weight gain and inhibited the development of fat
mass in mice. This was independent of the amount of energy
consumed. In addition, the weight of the liver, an indicator of
steatosis, was lower in the fiber-treated mice. Glucose homeo-
stasis was also improved to a similar degree for both fiber-sup-
plemented groups, as evidenced by lower glucose plasma levels
after an oral glucose load and reduced insulin resistance
indexes. Also, adipose tissue inflammation was ameliorated.
These combined observations lead to the conclusion that both
FOS and SCF have a positive impact on host metabolism and
health.
The most obvious underlying mechanism of the two tested

fibers is gut bacterial fermentation to SCFA, which are known
to interact with the host metabolism on several levels (13). In
the cecum, we only found an increase of propionate for SCF
and, to a lesser extent, for FOS. However, the lack of effects
could be masked by the high degree of absorption of SCFA in
this part of the intestines. Additionally, we also measured the
SCFA in the feces and found that treatment with either FOS or
SCF could completely alleviate the HFD-induced reduction of
propionate and butyrate. In addition, we observed a marked
effect of FOS on acetate.
Of course, other potential mechanisms may also explain the

improved phenotype. For example, it is interesting to note that
only mice treated with SCF had a significantly increased daily
energy excretion. This suggests that SCF could partially act by
reducing energy absorption, possibly as a result of this fiber’s
stool-bulking effect. Since we did not find similar results for
FOS, it is probable that this mode of action is not relevant for
this type of fiber, confirming our statement that it is essential to
individually assess the specific health-promoting properties of
specific fibers. Another potential mechanism that cannot be
excluded is the effect on gastrointestinal motility. Indeed, we
found that mRNA expression of proglucagon, the precursor of
glucagon-like peptide, and peptide YY to be increased in the il-
eum and colon of FOS-treated mice (Supplemental Fig. S1,
https://doi.org/10.6084/m9.figshare.12423920). Both hormones
have been shown to delay gut transit, suggesting that SCF-
treated mice had shorter transit times.
Another target of the tested fibers is the microbiota itself.

Changes in microbial composition due to fiber supplementation
may result in altered microbial functions, which can have an
impact on specific metabolites such as bile acids, branched-

Fig. 3. Effects on glucose metabolism. Plasma glucose (mg/dL) profile (A) and the
mean area under the curve (AUC) (B) (using the oral glucose tolerance test
(OGTT) measured between 0 and 120 min after glucose loading (mg·dL�1·
min�1). Plasma insulin levels at 30 min before (C) and 15 min after glucose load-
ing (mg/L) (D). Insulin resistance index determined by multiplying the AUC of
blood glucose by the AUC of insulin between 30 min before and 15 min after glu-
cose loading (E). Data are presented as means±SE. *P < 0.05, **P < 0.01, and
***P < 0.001, significant difference vs. HFD, as determined by a two-way
ANOVA. A: data with different letters above the bars are significantly different (P
< 0.05), according to post hoc one-way ANOVA (B–E).
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chain amino acids, indole propionic acid, and endocannabinoids
(13). These metabolites can, in turn, affect systemic energy ex-
penditure by influencing energy consumption, thermogenesis,
and adipose tissue browning.
In this study, we confirm that the gut microbiota is strongly

affected by both FOS and SCF fibers. The microbial composi-
tion after treatment with both soluble fibers is not a mere resto-
ration to the control situation of normal diet-fed mice, but each
fiber is characterized by a distinct microbial signature. There are
changes that are common to both components, but there are also
modifications that are fiber-specific. Common effects of both
fibers include increases of Allobaculum, Pseudomonas, Sutterella
and Dehalobacterium, and decreases of Bacillus, Ruminoccocus,

Bilophila, Desulfovibrio, Oscillospira and Paenibacillus.
Several of these genera are thought to be involved in benefi-
cial physiological effects. For example, Allobaculum is a
known producer of butyrate, a SCFA that is rapidly taken up
by enterocytes, where it serves as an energy source (23).
Allobaculum has been shown to be increased by prebiotics
(27, 63) and has been associated with improved intestinal in-
tegrity, increased Reg3γ levels in the colon (27), and with re-
sistance to NAFLD development (46). Moreover, metformin
and berberine, two clinical drugs used for the treatment of di-
abetes, are associated with increases in Allobaculum abun-
dance (73).

Fig. 4. Effects on adipose tissue inflammation. Relative expression of genes related to inflammation and immune system in the subcutaneous (SAT) and visceral adi-
pose tissue (VAT). Arg1, arginase 1; IL-1b, interleukin 1b; LBP, lipopolysaccharide binding protein; MCP1, monocyte chemoattractant protein-1; MGL1, macro-
phage galactose-type lectin 1; PAI1, plasminogen activator inhibitor-1. Data are presented as means±SE. Data with different letters above the bars are significantly
different (P< 0.05), according to post hoc one-way ANOVA.
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Lower abundances ofDehalobacteriumwere previously asso-
ciated with a high body mass index (BMI) (28, 58),
and Dehalobacteria appeared to be protective against athero-
sclerosis in apolipoprotein E knockout (ApoE�/�) mice (14).
Ruminococcaceae and Desulfovibrio have previously been asso-
ciated with a high-fat diet and obesity (27, 31, 41, 72) and
decreased with FOS in genetically obese mice (26).
Several genera belonging to the Desulfovibrionaceae family

are considered opportunistic pathogens. They produce endotox-
ins and have been linked to inflammatory diseases (50, 68).

They also have the capacity to reduce sulfate to H2S (67),
thereby damaging the intestinal barrier (38).
Two genera were modified only by FOS supplementation.

We observed a restoration of the Prevotella abundance to a sim-
ilar level as that of control mice, as well as a major increase in
Bifidobacterium. Humans consuming more carbohydrates and
fiber have been suggested to predominantly have a Prevotella-
driven enterotype (19, 44, 49, 70), which has been negatively
correlated with body weight, BMI, fat mass, and leptin concen-
trations (29). Prevotella are known to produce acetate and

Fig. 5. Effects on gut microbiota. Gut bacte-
rial community analysis by 16S rRNA gene
high-throughput sequencing. A: principal
coordinate analysis based on the weighted
UniFrac analysis (PCoA) on operational taxo-
nomic units (OTUs). Each symbol represent-
ing a single sample is colored according to
the group. Data with different letters above
the bars are significantly different (P < 0.05),
according to post hoc one-way ANOVA. B:
richness of the cecal microbiota based on 16S
rRNA gene sequences analysis presented by
Shannon, Simpson, and Chao1 indexes. Data
are presented as box plots. C: relative abun-
dances (percentage of 16S rRNA gene
sequences) of the different bacterial phyla and
genera in each sample among the different
groups.
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succinate, which can be converted by certain bacterial species
into propionate. Both acetate and propionate are increased in the
feces of FOS-treated mice. Bifidobacterium are acetate-produc-
ing members of the Actinobacteria phylum, and some strains
have been attributed health-promoting properties (34).
We found four bacterial genera that were increased specifically

by the SCF treatment, as compared with the HFD group: Blautia
were restored to control levels, whereas Parabacteroides,
Coprococcus, and Bacteroides were increased to levels several
folds higher than that of the control group. Blautia has been

suggested to be important for gut health, as reductions in Blautia
are associated with increased incidence of colorectal cancer (15,
55). Reductions in Blautia were also found in diabetic adults and
children (45, 54) and patients suffering from liver cirrhosis (39).
On the other hand, high levels of Blautia were observed in obese
humans and rats (37, 47, 56, 58), as well as in human patients
with inflammatory bowel disease (59). Whether, Blautia is delete-
rious in these cases, or perhaps increased in an attempt to restore
homeostasis, remains unknown. Interestingly, berberine markedly
enriched the SCFA-producing Blautia in the gut of rats and,

Fig. 6. Effects on bacterial genera. Relative abundance of the bacterial genera significantly altered by both fructooligosaccharides (FOS) and soluble corn fiber (SCF)
(A), by FOS only (B), or by SCF only (C). Data are presented as the means±SE. Data with different letters above the bars are significantly different (P < 0.05),
according to post hoc one-way ANOVA.
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accordingly, the intestinal SCFAs were increased as well.
Coprococci are considered to be butyrate producers and might,
thus, contribute to the improvement of glucose tolerance. We
have previously observed that FOS was associated with higher
Akkermansia levels (24, 26, 27); however, this effect has not
been reproduced in this study. This suggests that an increase of
this genus is not always necessary to obtain beneficial effects
using prebiotic fibers (8). As discussed in previous papers (8, 12,
64), we advocate for caution when attributing specific effects to
changes of a single taxonomic species. Especially in the context
of dietary fibers or polyphenols, much broader functional modifi-
cations may be at play.
Consumption of dietary fibers is sometimes associated with

gastrointestinal effects (e.g., bloating, borborygmi, flatus, and

diarrhea), particularly at high-consumption levels. These effects
are due to the production of gases by fermentation, as well as os-
motic effects in the large intestine. In this study, we did not
observe any adverse effects or discomfort in the mice at the end
of the follow-up, indicating that maintaining a final fiber con-
sumption of 10% (fiber/food) was well tolerated.
In conclusion, we show that two different fibers with similar

overall properties (both nondigestible and soluble), and with simi-
lar metabolic outcomes (reduced fat mass, improved glucose ho-
meostasis, reduced inflammation), may have very distinct
mechanism of actions and result in quite different gut microbial
profiles. This study was conducted in inbred mice, however;
therefore, we should remain very careful about the possible
extrapolation of these results to humans. Even so, we believe

Fig. 7. Short-chain fatty acids (SCFA). Total pool of SCFA
and iso-SCFA in the cecum (mmol) (A) and fecal concen-
trations of aforementioned metabolites (mmol/mg) (B).
Data are expressed as means± SE. Data with different let-
ters above the bars are significantly different (P < 0.05),
according to post hoc one-way ANOVA.
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these kind of experiments remain essential for gaining the neces-
sary understanding of the complex processes involved in host me-
tabolism, in general.
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