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Abstract: Visible and near infrared (vis-NIR) diffuse reflectance and X-ray fluorescence (XRF) sensors
are promising proximal soil sensing (PSS) tools for predicting soil key fertility attributes. This work
aimed at assessing the performance of the individual and combined use of vis-NIR and XRF sensors
to predict clay, organic matter (OM), cation exchange capacity (CEC), pH, base saturation (V), and
extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg) in Brazilian tropical soils. Individual models
using the data of each sensor alone were calibrated using multiple linear regressions (MLR) for the
XRF data, and partial least squares (PLS) regressions for the vis-NIR data. Six data fusion approaches
were evaluated and compared against individual models using relative improvement (RI). The data
fusion approaches included (i) two spectra fusion approaches, which simply combined the data of
both sensors in a merged dataset, followed by support vector machine (SF-SVM) and PLS (SF-PLS)
regression analysis; (ii) two model averaging approaches using the Granger and Ramanathan (GR)
method; and (iii) two data fusion methods based on least squares (LS) modeling. For the GR and LS
approaches, two different combinations of inputs were used for MLR. The GR2 and LS2 used the
prediction of individual sensors, whereas the GR3 and LS3 used the individual sensors prediction
plus the SF-PLS prediction. The individual vis-NIR models showed the best results for clay and OM
prediction (RPD ≥ 2.61), while the individual XRF models exhibited the best predictive models for
CEC, V, ex-K, ex-Ca, and ex-Mg (RPD ≥ 2.57). For eight out of nine soil attributes studied (clay, CEC,
pH, V, ex-P, ex-K, ex-Ca, and ex-Mg), the combined use of vis-NIR and XRF sensors using at least one
of the six data fusion approaches improved the accuracy of the predictions (with RI ranging from 1
to 21%). In general, the LS3 model averaging approach stood out as the data fusion method with the
greatest number of attributes with positive RI (six attributes; namely, clay, CEC, pH, ex-P, ex-K, and
ex-Mg). Meanwhile, no single approach was capable of exploiting the synergism between sensors
for all attributes of interest, suggesting that the selection of the best data fusion approach should be
attribute-specific. The results presented in this work evidenced the complementarity of XRF and
vis-NIR sensors to predict fertility attributes in tropical soils, and encourage further research to find a
generalized method of data fusion of both sensors data.

Keywords: hybrid laboratory; soil testing; spectroanalytical techniques; precision agriculture; proxi-
mal soil sensing

1. Introduction

Proximal soil sensing (PSS) technologies allow information to be obtained on soil
physicochemical attributes in a practical way without exposing chemical reagents into
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the environment, which is the reason why they are considered as important green tools
for soil characterizations [1–4]. Studies have successfully used the information obtained
using different PSS techniques operating in situ [5,6] and under laboratory conditions [7,8],
suggesting practical approaches to predict and map soil attributes in agricultural fields [5,9].
Within the PSS context, particular attention has been given to the assessment of key soil
fertility parameters in order to optimize the number of soil samples sent for traditional
laboratory analyses [10,11].

The X-ray fluorescence (XRF) and visible and near infrared (vis-NIR) diffuse reflectance
spectroscopies are promising tools for PSS applications, since both techniques allow soil
analysis with minimal or no sample preparation, providing inferences about different soil
constituents. There are already portable versions of these equipment that are suitable for
in situ applications [12,13]. The vis-NIR diffuse reflectance spectroscopy is a widespread
technique in soil science [14,15], with extensive research reporting its potential to predict
mineralogical and organic attributes successfully [9,16–18]. Regarding soil fertility, in
some cases, good results can be extended for extractable (ex-) nutrients (e.g., ex-K, ex-Ca,
and ex-Mg) [7,19,20], cation exchange capacity (CEC) [19,21], base saturation (V), soil
potential acidity (H + Al3+), and pH [19,22], which are few to mention among others.
This is particularly true for secondary soil properties (spectrally inactive in the vis-NIR
region), and their successful prediction is frequently attributed to correlations they have
with the vis-NIR spectrally active attributes [23]. XRF elemental analysis has evolved
quickly in recent years, and approaches of XRF data acquisition and processing have
been developed to assess fertility attributes in agricultural soils [24,25]. XRF spectra allow
for a broad characterization of soils’ elementary constitution, which has the potential to
complement the information obtained with vis-NIR sensors [13,26]. The standalone use of
the XRF technique has resulted in promising results for the prediction of soil texture [27,28],
chemical attributes (e.g., pH, V, and CEC) [29–32], organic matter (OM) [33], and extractable
nutrients (ex-K, ex-Ca, and ex-Mg) [24,34–36].

It is well-known that a single soil sensor alone will not promote a comprehensive
characterization of all soil key fertility attributes, making it necessary to search for tech-
niques that are complementary and suitable for work concurrently [10,37]. The combined
use of different soil sensors can potentially increase the coverage of soil attributes with
improved prediction accuracy compared to the single-sensor case [24,38]. Recent studies
have evaluated the combined use of different PSS techniques and data fusion approaches
for soil characterization [39–42]. Some studies have demonstrated that merging datasets
of both XRF and vis-NIR spectroscopies can improve the quality of predictive models
for soil attributes, such as total carbon (TC) and total nitrogen (TN) [43], pH, CEC, and
textural attributes [44], and extractable nutrients (ex-K and ex-Ca) [26]. In addition, a recent
patent of a portable apparatus that allows for the characterization of soil attributes based
on a combined use of XRF and vis-NIR sensors was published [45]. Despite these recent
advances, the combined use of XRF and vis-NIR sensors in the context of PSS is still at its
early stages of development and further works are needed, particularly for the analysis of
tropical soils that are acidic and of low fertility [11].

Although an appropriate data fusion approach is required to combine data from
multiple sensors, there is still no consensus on an optimal method for predicting key
soil fertility attributes. Existing techniques and frameworks of data fusion [46] include
combining raw data obtained from multiple sensors [47]. Another solution is based on
applying model averaging techniques using information (e.g., predictions) previously
obtained by each sensor individually [48]. The model averaging approach proposed by
Granger and Ramanathan (GR) [49] has been suggested for predicting soil attributes using
multi-sensor data [26,48]. This method uses the individual prediction of each sensor as the
input for a second calibration (e.g., using multiple linear regression (MLR)). While simple,
it is as efficient as more sophisticated data fusion methods [26,50]. Another interesting
data fusion approach, adapted from the literature of signal processing, is the least squares
(LS) method [51]. This method considers the predictions given by soil sensors as unknown
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deterministic signals, since they are not random [52]. In essence, LS is equivalent to GR,
provided that there is no correlation between the residuals of the sensors’ predictions. How-
ever, the residuals are correlated in practice, according to experimental results. Therefore,
it is expected that LS performs at least as good as GR for cases with correlated noises. A
third approach is to combine spectral data (denoted here as spectra fusion (SF)) in one
matrix, which is subjected to linear or non-linear analysis. Furthermore, the majority of
papers reporting the fusion of vis-NIR and XRF data focused on the prediction of one or
limited number of soil attributes, e.g., soil textural attributes [44], TN and TC [43], textural
attributes, pH [53], CEC [54], and chromium [48]. Although O’Rourke et al. [26] combined
the vis-NIR and XRF data for the analysis of a wide range of soil attributes, they have
explored the averaging data fusion methods only. To the best of our knowledge, no work
exists in the literature that compares the performance of the model averaging methods
with SF and LS method in soil analysis.

This work aimed at assessing the performance of the individual and combined use of
XRF and vis-NIR sensors in prediction of clay, OM, CEC, pH, V, and extractable nutrients
(P, K, Ca, and Mg) in tropical soils, using six different data fusion modeling approaches: (i)
Combining the raw data of each sensor, followed by partial least squares (PLS) and support
vector machine (SVM) regressions; (ii) applying two model averaging approaches using the
GR method; and (iii) applying two least squares (LS) modeling methods. The performance
of the above data fusion schemes was compared against that of the single-sensor data
modeling approach.

2. Materials and Methods
2.1. Study Sites and Soil Samples

A set of 102 soil samples was selected from the soil sample bank of the Precision
Agriculture Laboratory (LAP) from Luiz de Queiroz College of Agriculture, University
of São Paulo. The chemical analysis results of the LAP’s soil sample bank were used to
select samples with wide ranges of variability of key fertility attributes in both study fields.
After this selection, the samples were again subjected to laboratory chemical analyses,
as described in Section 2.2, which provided the results of the reference analyses used in
this work. These 102 samples were collected from two different agricultural fields from
0–20 cm depth and stored after being air-dried and sieved at 2 mm. Both fields have been
under active agricultural production and have considerable textural dissimilarity. Field 1
is located in the municipality of Piracicaba, State of São Paulo, and Field 2 is situated in the
municipality of Campo Novo do Parecis, State of Mato Grosso. Field 1’s soil is classified
as Lixisol [55] with a clayey texture, and Field 2’s soil is classified as Ferralsol [55] with
texture varying between a sandy loam and a sand clay loam. Lixisols and Ferralsols are
representative and common type of soil in the Brazilian tropical areas [56]. A total of 58 and
44 soil samples were considered from Field 1 and Field 2, respectively. Figure 1 presents
the location of both agricultural fields considered in this study.

2.2. Reference Analyses

The contents of clay, sand, OM, CEC, pH, V, ex-P, ex-K, ex-Ca, and ex-Mg were
determined in a commercial laboratory of soil fertility analyses. Methods described by Van
Raij et al. [57] were applied for soil analyses. Extractable nutrients (ex-P, ex-K, ex-Ca, and
ex-Mg) were determined using ion exchange resin extraction. The CEC was calculated
by totaling the soil potential acidity (H + Al) plus the sum of bases (ex-Ca + ex-Mg +
ex-K), the former being quantified via the buffer solution method (SMP). The percent
base saturation (V) was calculated by the ratio between the sum of bases and CEC. OM
content was determined via oxidation with potassium dichromate solution, and pH was
determined via calcium chloride solution. Clay was determined using the Bouyoucos
hydrometer method in dispersing solution.
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Figure 1. The location of the two studied agricultural fields in Brazil, and the soil samples collected from them.

2.3. XRF Measurements and Selection of Emission Lines

XRF spectra were acquired using a Tracer III-SD model (Bruker AXS, Madison, EUA).
This device is a portable instrument equipped with a 4 W Rh X-ray tube and a Peltier-cooled
Silicon Drift Detector that has 2048 channels. The instrumental conditions suggested by
Tavares et al. [24] were applied, which consisted of: (i) An X-ray tube voltage and current
configured at 35 kV and 7 µA, respectively; and (ii) a scanning time (dwell time) of 90 s,
performed under atmospheric pressure without filters. A cellulose pellet was used as a
blank sample to ensure the contaminant-free operation of the equipment, being scanned
every 30 samples.

Soil samples were scanned with the XRF sensor after being air-dried and sieved
at 2 mm [35]. An XRF polyethylene cup of 31-mm diameter (Chemplex Industries Inc.,
Palm City, FL, USA) with the bottom sealed with a 4-µm thick polypropylene film (SPEX
CertiPrep Inc., Metuchen, NJ, USA) was used to place ten grams of each sample. The
samples were scanned in triplicate, moving the sample cup after each scan. The replicates
were subsequently averaged for analysis.

The acquired spectra were normalized by the detector live time, after which their
emission lines were evaluated in counts of photons per second (cps). Twelve emission lines
(K-lines of Al, Si, K, Ca, Ti, Mn, Fe, Ni, and Cu, and the scattering peaks Rh-Lα Thomson,
Rh-Kα Compton, and Rh-Kα Thomson) were selected to be used as independent variables
following the criteria recommended by Tavares et al. [25], which suggested that (i) the
element should be commonly found in agricultural soils; (ii) the signal-to-noise ratio (SNR)
should be higher than 10; and (iii) for elements with both K and L emission lines, just
their K-lines should be chosen because of the higher SNR. Finally, the nine XRF K-lines
(Al-Kα, Si-Kα, K-Kα, Ca-Kα, Ti-Kα, Mn-Kα, Fe-Kα, Ni-Kα, and Cu-Kα) were normalized
by the Compton peak, keeping the scattering peaks without normalization, as suggested
by Tavares et al. [25].

2.4. Vis-NIR Measurements and Spectra Pre-Processing

The samples were scanned using a Veris vis-NIR spectrometer (Veris Technologies,
Salina, KS, USA). This system uses a tungsten halogen lamp as the energy source and
two spectrometers, a CCD array spectrometer (USB4000, Ocean optics, Largo, FL, USA)
and an InGaAs photodiode-array spectrometer (C9914GB, Hamamatsu Photonics, Hama-
matsu, Japan), to collect spectra from 343 to 2222 nm, with a spectral resolution of around



Sensors 2021, 21, 148 5 of 23

5 nm. For the vis-NIR data acquisition, the sample was placed against a circular sapphire
window located in the bottom portion of a shank module. The diffused reflected energy
was transmitted through a bifurcated fiber optic cable from the soil to the spectrometers.
Before starting the spectra measurements, the system was calibrated using four references
materials with known spectral behavior. The sensor system also self-calibrated before
each spectra acquisition by collecting a dark reference measurement and a known inter-
nal reference material measurement. This self-calibration worked with a shutter system
present inside the shank, which operated automatically. Further information about the
equipment is provided by Christy et al. [58]. The same sample preparation applied for
the XRF analysis was used for the vis-NIR measurement, which matched the standard
preparation procedure adopted by the Brazilian Soil Spectral Library [22]. Each sample
was scanned in triplicate, changing the position after each reading. A total of 20 spectra
were recorded in each replicate, after which all the 60 vis-NIR spectra were averaged into
one spectrum for further analysis.

The raw spectra were reduced to a 437–2149 nm range due to the high presence of
noise at 343–432 and 2153–2222 nm. An artifact (spectral jump) present at 1040 nm, due to
the junction of the spectra obtained by the two different detectors, was corrected following
the method proposed by Mouazen et al. [59]. After spectra cut and jump removal, four
frequently adopted pre-processing steps were applied in the following successive order:
Standard normal variate (SNV) > maximum normalization > first derivative with Savitzky–
Golay (3-point window and adjusted with a second-order polynomial) > smoothing with
Savitzky–Golay (3-point window and adjusted with a second-order polynomial). The
standard normal variate (SNV) is a scattering correction method, which is commonly
applied to vis-NIR spectra of soil samples to remove the multiplicative interferences of
particle size [60]. The maximum normalization was carried out to bring all the spectra into
the same numerical scale in order to create an even distribution of variances [61], while
the first derivative was applied to improve the signal-to-noise ratio by highlighting weak
spectral features and possible hidden information [62]. Finally, smoothing with Savitzky–
Golay was applied to remove noise and improve the signal-to-noise ratio that conventional
finite-difference derivatives have [61,63]. Spectra modification due to the different pre-
processing steps applied in this study is shown in Figure A1, in the Appendix A. All data
pre-processing steps were performed using the Unscrambler® version 10.5.1 (Camo AS,
Oslo, Norway). The mean XRF and vis-NIR spectra of both Field 1 and Field 2 are shown
in Figure 2.

2.5. Modeling

The relationship between the spectra and the soil attributes was derived by predictive
models using the spectral data of each sensor alone, and using the data from both sensors
combined using the six fusion schemes listed above. Separate calibration equations were
developed for each soil fertility attribute. The individual calibrations with each sensor alone
and the calibrations with the six data fusion approaches are explained in more details in
Sections 2.5.1 and 2.5.2, respectively. All calibration and validation models were built after
subdividing the dataset into two subsets with 70% (calibration set) and 30% (validation
set) of data, using the Kennard–Stone algorithm [64] performed on the measured fertility
attributes.

The prediction efficiency of the models was evaluated in terms of the determination
coefficient (R2), root mean square error (RMSE), relative error (RMSE%), and the residual
prediction deviation (RPD). The relative error was calculated by dividing the RMSE of
each prediction by the range of the laboratory measured soil property, while the RPD was
the ratio between the standard deviation (SD) of the laboratory measured soil property
and the RMSE of its prediction. RPD and RMSE% allowed us to compare the predictive
performance of attributes that had different units and/or scale. Four RPD classes adapted
from Chang et al. [65] were used to evaluate the efficiency of the predictive models: Poor
(RPD < 1.40), reasonable (1.40 ≤ RPD < 2.00), good (2.00 ≤ RPD < 3.00), and excellent
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(RPD ≥ 3.00) predictions. The relative improvement (RI) of the predictions achieved by the
data fusion approaches was calculated (in percentage of RMSE) and compared to the best
prediction obtained using a single sensor alone. This indicator shows the improvement
or deterioration obtained by the joint use of the sensors, allowing its synergy for each soil
attribute and data fusion approach to be assessed [26,66].
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Figure 2. Mean spectra of Field 1 and Field 2: Obtained with visible and near infrared (vis-NIR)
sensor (A), and X-ray fluorescence (XRF) sensor (B). Snapshot of the emission lines from 1.01 to
8.18 keV (C) and scattering peaks between 18 and 21 keV (D) are shown. Vis-NIR spectra are
presented together with their standard deviation above and below the curve. Counts of photons per
second obtained for XRF have been abbreviated as cps.

2.5.1. Individual Models Using vis-NIR and XRF Sensors Alone

For the individual vis-NIR calibration model, PLS regression with leave-one-out cross-
validation was used [23]. The number of latent variables adopted for each PLS model
was determined for the model in cross-validation that resulted in the maximum R2 and
lowest RMSE. For the XRF models, calibrations were built with MLR using the 12 selected
emission lines as X-variables. The calibration and validation of the individual models were
performed using the Unscrambler® software, version 10.5.1 (Camo AS, Oslo, Norway).
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2.5.2. Data Fusion Approaches

Six different data fusion approaches were used to build the predictive models using
both vis-NIR and XRF data combined. The SF approaches consisted of combining the spec-
tral information of each sensor (the preprocessed vis-NIR spectra and the 12 selected XRF
emission lines) followed by a regression model. Two combinations of SF were evaluated
in this study, one with PLS regression and the other with SVM regression, designated as
SF-PLS and SF-SVM, respectively. For the SF-PLS approach, the number of latent variables
was determined according to the best cross-validation that resulted in the maximum R2

and lowest RMSE. The regression based on SVM is a linear machine learning method [67]
that uses the most prominent data (referred to as support vectors) for regression and can
be adopted for non-linear modeling by using appropriate kernels [54]. For SF-SVM, we
resorted to the epsilon-SVM algorithm, which uses the radial-based kernel. This kernel
includes the parameters γ ∈ [0.01, 0.1, 1, 10] and C ∈ [0.01, 0.1, 1, 10, 100] that were
fine-tuned by a grid search [54].

Two calibration approaches were performed using the Granger and Ramanathan (GR)
averaging method [49]. This method is simply an MLR model based on the predictions
given by the individual-sensor models. In this study, two different configurations of GR
were evaluated:

1. GR2, in which the predictions given by the vis-NIR and XRF individual models are
fused according to the following Equation (1):

Y = W0 + (WVis−NIR ·YVis−NIR) + (WXRF ·YXRF), (1)

where Y is the fused (potentially more accurate) estimation of the desired soil prop-
erty; Yvis-NIR and YXRF are the corresponding predictions given by vis-NIR and XRF
individual models (as described in Section 2.5.1), respectively; W0, Wvis-NIR, and WXRF
are the weights of the MLR determined by minimizing the mean squared error, where
the first parameter is the value of the line intercept and the others are the weights of
the prediction models of both sensors;

2. GR3, wherein the predictions given by the SF approach are also included in the fusion
process, as described by the following Equation (2):

Y = W0 + (WVis−NIR ·YVis−NIR) + (WXRF ·YXRF) + (WSF ·YSF), (2)

in which YSF and WSF are, respectively, the SF predictions and their corresponding
weights.

The weights in GR were calculated so that the mean squared error was minimized. To
this end, normally the weights are trained using gradient descent [67,68]. Another solution
is to vectorize the sensors’ predictions of the calibration set and calculate the weights by
Equation (3).

[W0, WVis−NIR, WXRF]
T =

(
YT

sensorsYsensors

)−1
YT

sensors (3)

where Ysensors is the matrix including the sensors’ predictions with all of the first column
elements assigned a value of one (referred to as intercept terms). It is worth mentioning
that MLR does not work well when the input data are highly correlated. In this case, the
weights become too sensitive to the calibration set.

Finally, two further calibration approaches were performed using LS-based fusion [52].
In LS, the correlation existing among the prediction residuals of the single sensors was
computed and considered in MLR modeling. In other words, in the LS approach, the
weights of the MLR models in Equations (1) and (2) were computed based on the covariance
matrix of the residuals of predictions given by the individual-sensor models [52].

Similar to the GR approaches, the LS-based fusion models were examined with two
combinations of inputs: (i) Using the predictions given by the vis-NIR and XRF individual
models (denoted by LS2); and (ii) using the predictions of the vis-NIR and XRF individual
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models plus the SF model prediction (denoted by LS3). The data fusion models were
calibrated and validated using Python 3.7.4. GR was evaluated by Scikit-learn package
of Python [68], while the related function was developed for the evaluation of LS. This
function calculated the covariance matrix based on the calibration set and used it for
obtaining the regression weights.

Finally, to analyze the impact of the sensors’ errors on the data fusion accuracy,
we assumed that the sensors’ errors were Gaussian and statistically independent. Then,
resorting to the maximum likelihood fusion approach [52], it was straightforward to show
that the fused prediction is given by Equation (4).

y =
σ2

2
σ2

1 + σ2
2

y1 +
σ2

1
σ2

1 + σ2
2

y2, (4)

where y1 and y2 are the predictions of sensors 1 and 2, respectively, and σ2
1 and σ2

2 are their
corresponding variances. This indicates that the more accurate a sensor prediction is, the
more it is weighted when fusing the data. On the other hand, the variance of the fused
prediction is obtained by Equation (5).

σ2 =
σ2

1 σ2
2

σ2
1 + σ2

2
(5)

where σ2 is the variance of the fused prediction and σ2
1 and σ2

2 are the variances of sensors
1 and 2, respectively. Equation (5) shows that the accuracy is improved by fusion since
σ2 < min

(
σ2

1 , σ2
2
)
. Moreover, it conveys the fact that data fusion does not necessarily im-

prove the prediction accuracy, when one sensor performs accurately (e.g., when σ2
1 = 0.1σ2

2 ).

3. Results
3.1. Laboratory Measured Soil Properties

The boxplot and SD of the reference soil data for the calibration and validation datasets
are shown in Figure 3. This figure shows that the range and SD for both calibration and
validation datasets are comparable; with the only exception for the ex-P, whose SD and
maximum values in the validation set are clearly lower than that in the calibration set
(Figure 3F). The calibration and validation sets were selected in order to ensure a similar
range and SD between them, in order to avoid negative influences on the prediction
accuracy that were related to the discrepancy in characteristics of the datasets that were
not related to the performance of the sensors [15,68]. Therefore, in this study, deterioration
in the prediction accuracy of the ex-P was expected.

In general, the soil fertility attributes of the dataset used were not normally distributed
(Table A1; Appendix A Section), although modeling of the sensor’s output using sample
sets with uneven distribution of soil attributes was quite common [8,69], which is known
to introduce the Dunne effect with potential reduction in the prediction quality, as reported
by Mouazen et al. [70].

Figure 4 illustrates the relationships between the studied fertility attributes, showing
the covariations among them, indicated by the Pearson’s correlation coefficient (r). Inter-
preting the inter-relationships between different fertility attributes aided in understanding
why indirect predictions were still possible with XRF and vis-NIR data, i.e., predictions
of CEC, which had no emission lines (in the case of XRF), and was a spectrally inactive
component (in the case of vis-NIR). CEC, ex-Ca, and ex-Mg were closely related, with
strong correlations (0.93 ≤ r ≤ 0.94). V had strong correlations with ex-Ca (r = 0.92),
clay, CEC, ex-K, and ex-Mg (0.70 ≤ r < 0.90) and moderate correlations with pH and
OM (0.50 ≤ r < 0.70). Ex-K possessed high correlations with clay and V (0.70 ≤ r < 0.90),
moderate correlations with CEC, ex-Ca, and ex-Mg (0.50 ≤ r < 0.70), and weak correlations
with OM and pH (0.30 ≤ r < 0.50). Clay content showed high correlations with V, ex-K, and
ex-Ca (0.70 ≤ r < 0.90), moderate correlations with OM, CEC, and ex-Mg (0.50 ≤ r < 0.70);
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and a weak correlation with pH (r = 0.38). OM content had weak and moderate correlations
(0.44 ≤ r ≤ 0.62) with all attributes, except for ex-P and pH, with which the correlations
were non-significant. In general, ex-P and pH were the attributes that presented weaker
interrelationships in comparison with the other attributes, characterized with r ranging
from −0.23 to 0.06 for ex-P, and from −0.23 to 0.50 for pH.
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0.05 were marked with an “X”. Significant values were presented on a colour gradient, ranging from
red (negative correlations) to blue (positive correlations), with the strongest correlations having the
darkest colours and vice versa.
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3.2. Prediction Performances of Single-Sensor and Data Fusion Models

The prediction results of individual and combined vis-NIR and XRF models are
presented in Figure 5 (with their details shown in Table A2, in the Appendix A Section).
The prediction performance of the vis-NIR sensor was satisfactory (RPD ≥ 1.40) for clay,
OM, CEC, V, ex-K, ex-Ca, and ex-Mg. The best prediction performance was obtained for
clay, with excellent performance (RPD = 3.37). Predictions of OM and V were of good
performance, with RPD values of 2.61 and 2.26, respectively. Reasonable predictions
(1.40 ≤ RPD < 1.89) were achieved for CEC, ex-K, ex-Ca, and ex-Mg, while pH and ex-P
had poor prediction performances (RPD ≤ 1.10).
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matter (OM), cation exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and
ex-Mg) using the single visible and near infrared (vis-NIR) and X-ray florescence (XRF) data alone and combined through
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least squares (LS2 and LS3)). Detailed results of coefficient of determination (R2), RPD values, and root-mean-square errors
(RMSE and RMSE%) are included in the Appendix A Section (Table A2).

The same attributes satisfactorily predicted with the vis-NIR models were also satisfac-
torily predicted with XRF models (RPD ≥ 1.82), namely, clay, OM, CEC, V, ex-K, ex-Ca, and
ex-Mg. However, CEC, V, ex-K, ex-Ca, and ex-Mg were clearly better predicted with the
XRF sensor than the vis-NIR technique, with an RPD increment of 1.17, 1.92, 2.37, 3.03, and
1.54, for CEC, V, ex-K, ex-Ca, and ex-Mg, respectively (Table A2). However, clay and OM
predictions were slightly better with the vis-NIR technique, with RPD values of 3.13 and
1.82, for XRF predictions, and 3.37 and 2.61, for vis-NIR predictions, respectively. Overall,
the XRF sensor showed excellent performance (RPD ≥ 3.13) for the prediction of clay, V,
ex-K, and ex-Mg, good performance (2.57 ≤ RPD < 2.99) for CEC and ex-Mg, a reasonable
performance (RPD = 1.82) for OM, and a poor performance (RPD ≤ 1.11) for pH and ex-P.

Table 1 lists the RI (in percentage of RMSE) of the predictions calibrated using the
six studied data fusion approaches (SF-PLS, SF-SVM, GR2, GR3, LS2, and LS3). Those
results showed that the combined use of vis-NIR and XRF techniques by means of the
different data fusion approaches tested allowed incremented improvement in predictive
performance for clay, CEC, pH, V, ex-P, ex-K, ex-Ca, and ex-Mg, with a positive RI ranging
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from 1 to 21%. However, the data fusion did not result in improving the prediction of OM
(Figure 5), with negative RI ranging between −39 and −8% (Table 1).

Table 1. Relative improvement (in percentage of root-mean-square error (RMSE)) achieved for the six studied data fusion
approaches (spectra fusion (SF-PLS and SF-SVM), Granger and Ramanathan (GR2 and GR3), and least squares (LS2 and
LS3)) in contrast to the best prediction obtained using a single sensor alone. The RMSE of each approach was also presented.

Single Sensor
Multiple Sensor

SF-PLS SF-SVM GR2 GR3 LS2 LS3

RMSE Techni. 5 RMSE % RI 6 RMSE % RI RMSE % RI RMSE % RI RMSE % RI RMSE % RI
Clay 27.32 vis-NIR 25.58 6 24.63 10 23.74 13 22.93 * 16 24.01 12 23.11 15
OM 1 2.10 * vis-NIR 2.28 −8 2.34 −11 2.89 −37 2.48 −18 2.92 −39 2.47 −17
CEC 2 10.19 XRF 11.05 −8 13.28 −30 10.74 −5 9.99 * 2 10.9 −7 9.99 * 2

pH 0.33 XRF 0.31 7 0.26 21 0.28 * 16 0.28 * 16 0.28 * 16 0.28 * 16
V 3 5.6 XRF 6.63 −18 6.61 −18 5.04 * 10 5.7 −2 5.11 9 5.77 −3

ex-P 4 12.05 vis-NIR 13.43 −11 9.89 18 12.42 −3 12.45 −3 11.70 * 3 11.97 1
ex-K 4 0.53 XRF 0.61 −15 0.71 −33 0.51 4 0.52 2 0.50 * 6 0.52 2
ex-Ca 4 4.09 XRF 3.98 * 3 7.26 −77 4.45 −9 4.2 −3 4.46 −9 4.18 −2
ex-Mg

4 4.28 XRF 4.07 5 5.89 −38 4.42 −3 3.94 8 4.43 −3 3.92 * 9

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg); 5 technique;
6 percentage of relative improvement. The values of percentage of relative improvement (%RI) for the same soil attribute were compared
and the positive RI values were presented on grayscale, with higher values having the darkest color and vice versa. RIs with negative
values indicate a degradation in predictive performance, and RMSE values with an asterisk (*) indicate the approach with the lowest
prediction error of all the calibrated models. The detailed results of %RI are included in the Appendix A Section (Table A3).

Comparing the predictive performance of the data fusion approaches with the best
approach achieved using a single sensor alone (Table 1), clay and pH were the only
attributes that showed a higher predictive performance when using all six data fusion
approaches tested (SF-PLS, SF-SVM, GR2, GR3, LS2, and LS3), with the RI ranging from 6
to 16% for clay, and from 7 to 21% for pH. In turn, for CEC, V, ex-P, ex-K, ex-Ca, and ex-Mg
an increase in their predictive performance was observed by using at least one of the data
fusion techniques tested. In other words, not all the tested data fusion approaches have
guaranteed improvement in the prediction accuracy of the studied soil fertility attributes.
For example, for ex-Ca, only the SF-PLS modeling resulted in a positive RI (RI = 3%),
whereas all other modeling approaches resulted in negative RI (−9% ≤ RI ≤ −2%). The
same trend (but with different data fusion approaches) was observed for CEC, V, ex-P, ex-K,
and ex-Mg (Table 1). It is also important to mention that regardless of the increment in
prediction performance achieved with the data fusion technique used, the pH and ex-P
predictions continued to be with poor performance (RPD ≤ 1.32) similar to the results from
the corresponding individual sensor models.

Comparing the six different data fusion approaches, there was no one method that
stood out unanimously for all evaluated attributes (Table 1). In addition, all of them were
effective in covering a similar range when comparing the dataset of predicted soil attributes
with their respective reference values (Figure 6). Four out of the nine studied soil fertility
attributes (clay, pH, ex-Ca, and ex-Mg) showed an increase in predictive performance with
the SF-PLS approach (with RI ranging from 3 to 7%), three out of the nine (clay, pH, and
ex-P) with SF-SVM (with RI ranging from 10 to 21%), four out of the nine (clay, pH, V, and
ex-K) with the GR2 (with RI ranging from 4 to 16%), five out of nine (clay, CEC, pH, ex-K,
ex-Mg) with the GR3 approach (with RI ranging from 2 to 16%), five out of nine attributes
(clay, pH, V, ex-P, and ex-K) with the LS2 (with RI oscillating from 3 to 16%), and six out
of nine attributes (clay, CEC, pH, ex-P, ex-K, and ex-Ca) with the LS3 approach (with RI
oscillating from 1 to 16%). At the same time, a reduction in the predictive performance was
obtained for the SF (with RI ranging from −18.40 to −8.45%) for five out of nine studied
fertility attributes (OM, CEC, V, ex-P, and ex-K), for the GR2 (with RI ranging from −37.47
to −3.11%) for also five out of nine attributes (OM, CEC, ex-P, ex-Ca, and ex-Mg), for the
GR3 approach (with RI ranging from −17.97 to −1.79%) for four out of nine attributes
(OM, V, ex-P, and ex-Ca), for the LS2 approach (with RI ranging from −38.90 to −3.39%)
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for also four out of nine attributes (OM, CEC, ex-P, ex-Ca, and ex-Mg), and for the LS3
approach (with RI ranging from −17.49 to −2.15%) for three out of nine attributes (OM, V,
and ex-Ca).
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Figure 6. Box plot of the reference and predicted values of clay, organic matter (OM), cation exchange
capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (P, K, Ca, and Mg). The
predicted values were obtained through the six tested data fusion approaches (spectra fusion (SF-PLS
and SF-SVM), Granger and Ramanathan (GR2 and GR3), and least squares (LS2 and LS3)).

In general, the GR3, LS2, and LS3 data fusion approaches stood out from the others
for presenting a greater number of attributes with positive RI values (e.g., positive RI for
five attributes using GR3 and LS2, and six attributes using LS3). On the other hand, SF-PLS
was distinguished as the best data fusion approach for the prediction of ex-Ca, with the
only approach providing an increase in predictive performance in comparison with the
corresponding individual XRF model (Table 1).
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The weights related to the X-variables used in Granger and Ramanathan (GR2 and
GR3) and least squares (LS2 and LS3) approaches are presented in Table 2. In general, the
weights assigned to the XRF and vis-NIR sensors in the GR2 and LS2 methods had a similar
trend to those of the individual models, in which the XRF data played a more important
role for CEC, V, ex-K, ex-Ca, and ex-Mg, and the vis-NIR data for clay and OM. The ex-Ca
prediction, which showed no synergy with any of the averaging model methods, was the
one with the highest contrast in weight between the vis-NIR and XRF sensors (0.10 for
the vis-NIR and 0.91 for the XRF in the GR2 method, and 0.08 for the vis-NIR and 0.92 for
the XRF in the LS2 method). This asymmetry in weights with a higher value for the XRF
corresponded to the higher accuracy of XRF compared to that of vis-NIR for the prediction
of ex-Ca (as seen in Figure 5). As stated in Section 2.5.2, fusing the output of an accurate
sensor with a less accurate sensor may have not improved the prediction performance.
Finally, it is also worth mentioning that the predictions provided by SF-PLS played an
important role in the GR3 and LS3 methods, with weights ≥ 0.34; with the only exception
for the ex-P that showed weights ≤ 0.18.

Table 2. Weights assigned to XRF, vis-NIR, and SF-PLS outputs used as X-variables in Granger and Ramanathan (GR2 and
GR3) and least squares (LS2 and LS3) approaches.

GR2 GR3 LS2 LS3

vis-NIR XRF vis-NIR XRF SF-PLS vis-NIR XRF vis-NIR XRF SF-PLS
Clay 0.77 0.24 0.54 0.07 0.38 0.74 0.26 0.41 0.07 0.52
OM 1 0.55 0.46 0.33 0.01 0.67 0.76 0.24 0.51 -0.08 0.57
CEC 2 0.18 0.82 0.07 0.37 0.59 0.19 0.81 0.19 0.45 0.35

pH 0.61 0.35 0.48 0.12 0.37 0.61 0.39 0.42 0.14 0.43
V 3 0.37 0.63 0.30 0.27 0.44 0.35 0.65 0.27 0.07 0.65

ex-P 4 0.46 0.62 0.42 0.48 0.15 0.55 0.45 0.50 0.32 0.18
ex-K 4 0.13 0.85 0.10 0.56 0.34 0.15 0.85 0.10 0.52 0.38
ex-Ca 4 0.10 0.91 0.08 −0.06 0.98 0.08 0.92 0.07 -0.06 1.00
ex-Mg 4 0.26 0.73 0.18 0.05 0.78 0.20 0.80 0.09 0.05 0.87

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg). The values of
weights were presented on grayscale, with higher values having the darkest color and vice versa.

4. Discussion

Different soil sensors can be classified based on the relationships between their data
into complementary techniques, when the information provided allows the soil attributes’
coverage and/or cooperative techniques to be extended, and when the information pro-
vided presents synergism, allowing the prediction accuracy of a given soil attribute to be
improved [38,46]. The discussion of the results obtained in this work was structured to
address (i) the individual prediction performances obtained with the vis-NIR and XRF
sensor (Section 4.1), indicating the complementarity of its information for the prediction of
key soil fertility attributes; and (ii) the prediction performance improvement achieved by
the data fusion approaches (Section 4.2), indicating the synergy of the sensors’ information.

4.1. vis-NIR and XRF Individual Performance

The XRF sensor showed a greater number of attributes predicted with good and
excellent performances (i.e., with RPD ≥ 2.00). However, both vis-NIR and XRF sensors
achieved satisfactory prediction performance (i.e., with RPD ≥ 1.40) for the same attributes
(clay, OM, CEC, V, ex-K, ex-Ca, and ex-Mg). Using the vis-NIR sensor individually, pre-
dictions with good and excellent performances were obtained for three attributes (clay,
OM, and V), while the XRF sensor alone was successful in prediction of six attributes (clay,
CEC, V, ex-K, ex-Ca, and ex-Mg) with the same quality of prediction performance. Thus,
by using both sensors concomitantly, through individual modeling (without using data
fusion approaches), a higher number of attributes (seven attributes: clay, OM, CEC, V, ex-K,



Sensors 2021, 21, 148 14 of 23

ex-Ca, and ex-Mg) was predicted with good and excellent performances compared to the
individual use of each sensor alone.

The best predictive performances for OM and clay were obtained with the vis-NIR
sensor, compared to those obtained with the XRF sensor. Both clay and OM are attributes
with active spectral responses in the NIR region, which explains the excellent predictions
obtained with the vis-NIR sensor. Clay minerals had multiple absorption features in the
vis-NIR spectra (e.g., gibbsite at 2265 nm, kaolinite at 2200 and 2180 nm, and hematite
and goethite at 480, 513, 650, 840, 903, and 940 nm) [71]. On the other hand, the organic
compounds surface consisted mainly of carboxyl (–COOH), –OH phenolic, and alcoholic
groups that are functional groups with known spectral signatures in NIR region (e.g., OH
group’s features at 1414 and 1917 nm) [72]. The predictions obtained for clay and OM using
the vis-NIR sensor corroborated with different studies conducted on tropical soils, which
reported R2 values ranging from 0.75 to 0.93 for clay [17,21,73,74], and between 0.30 and
0.83 for OM [17,21,74,75]. Clay prediction in tropical soils via XRF spectroscopy is justified
by the relationships that exist between the total contents of Al, Si, and Fe with kaolinite,
gibbsite, and hematite clay minerals, which are minerals commonly found in Brazilian
tropical soils [28]. In turn, OM predictions via XRF can be explained by its relationship with
X-ray scattering peaks [33], as well as by its potential relationship with clay content [76].
Predictions with R2 ranging from 0.71 to 0.85 for clay [28,77], and from 0.48 to 0.98 for
OM [24,28,33,34] were reported by works conducted on tropical soils using XRF sensors.

Results showed that the XRF sensor clearly outperformed the vis-NIR sensor for
CEC, V, ex-K, ex-Ca, and ex-Mg prediction, although the latter also achieved satisfactory
prediction performance for these attributes (Figure 5). CEC, V, ex-K, ex-Ca, and ex-Mg
are considered as secondary soil attributes that have no direct spectral responses in the
NIR spectroscopy range [15]. Nevertheless, vis-NIR prediction models can be successfully
established for such secondary attributes, especially when they are correlated with one
or more spectrally active attributes such as OM and clay [23]. In the present paper, CEC,
V, ex-K, ex-Ca, and ex-Mg presented significant correlations with OM (0.44 ≤ r ≤ 0.62)
and clay (0.64 ≤ r ≤ 0.82) (Figure 4), which explain the successful predictions of such
secondary attributes. In Brazilian tropical soils, different studies have reported satisfactory
predictions for CEC, V, ex-K, ex-Ca, and ex-Mg using vis-NIR spectroscopy sensors, with
R2 values ranging from 0.46 to 0.92 for CEC [17,21,74], from 0.56 to 0.79 for V [74], from
0.61 to 0.94 for ex-K [73,78], from 0.42 to 0.74 for ex-Ca [7,17,74], and from 0.41 to 0.81 for
ex-Mg [7,17,74].

The excellent predictions of ex-K and ex-Ca with the XRF sensor were attributed to
the relationship between the total and extractable contents of these elements that existed in
the evaluated soil samples (r ≥ 0.90, shown in Table A4, in the Appendix A Section). It is
also important to highlight that both K and Ca had clear emission lines in the XRF spectra
(Figure 2C). The high correlations (r ≥ 0.92) between ex-Ca and V, and CEC and ex-Mg
(Figure 4) explained the good and excellent predictions of these attributes, since they were
not directly related to XRF spectra [24]. Studies on the prediction of soil fertility attributes
in Brazilian tropical soils using XRF sensor reported R2 values ranging between 0.71 and
0.89 for ex-Ca [31,34,36,79], 0.04 and 0.81 for ex-K [31,34,36], 0.08 and 0.89 for V [31,34],
0.75 and 0.86 for CEC [24,34], and between 0.60 and 0.85 for ex-Mg [34,36].

The prediction quality of pH and ex-P was not satisfactory with any individual sensor,
which can be explained by their weak association with the attributes with direct signatures
in vis-NIR and XRF spectra (e.g., OM and clay, for vis-NIR spectra, and ex-K, ex-Ca, and
clay, for XRF spectra). The correlations between pH with the mentioned attributes were
always low (r ≤ 0.44), whereas ex-P had a non-significant correlation with all mentioned
attributes (clay, OM, ex-K, and ex-Ca).

In summary, the vis-NIR sensor showed the best results for clay and OM prediction
(both had direct spectral responses in NIR range), while the XRF sensor showed the best
predictive models for CEC, V, ex-K, ex-Ca, and ex-Mg. Thus, the combined use of both
sensors, with individual prediction models using each sensor data alone (without using
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data fusion), allowed us to increase the range of soil fertility attributes determined with
good and excellent predictions, emphasizing the complementary relationship of their data.
Finally, it is important to comment that the individual instrument models evaluated in this
work were performed using traditional linear prediction models, and more sophisticated
nonlinear modeling methods (e.g., machine learning and computational models) should
be considered in future works, especially to deal with datasets having larger number of
samples and nonlinear spectral responses.

4.2. Performance of Data Fusion Approches

For eight out of nine soil fertility attributes (clay, CEC, pH, V, ex-P, ex-K, ex-Ca, and
ex-Mg), the combined use of vis-NIR and XRF sensors using at least one of the six tested
data fusion strategies allowed achieving higher prediction performances (with RI between
1 and 21%) compared to the best individual sensor performances (Table 1). The only
exception was for OM that did not show any improvement in its predictive performance
using the tested data fusion strategies, which could be explained by the fact that the
variance described by both sensors was not complementary for the OM characterization in
our dataset. In this regard, it has been reported that data fusion will not necessarily result
in optimal prediction accuracy, compared to individual sensors [26,42]. It is also interesting
to highlight that although individual vis-NIR and XRF sensors for OM prediction did not
show satisfactory performance (RPD ≥ 1.82), the corresponding data fusion models did
not lead to any improvement in its predictive performance. On the other hand, though
the prediction of pH and ex-P did not perform satisfactorily with the individual models,
the models of both attributes showed a slight improvement in performance when using
data fusion strategies. These results suggest that even if the vis-NIR and XRF sensors did
not perform satisfactorily individually for a given attribute, their combined use could be
synergistically positive for its prediction.

O’Rourke et al. [26] reported RI ranging from 15 to 44% for clay, CEC, pH, ex-K, ex-Ca,
and ex-Mg after model averaging data fusion procedures (e.g., GR and variance weighted
averaging), using an Australian soil dataset. Evaluating the combined use of vis-NIR
and XRF techniques through different data fusion approaches, Zhang and Hartemink [53]
obtained RI values of 12, 3, and 20% for clay, pH, and total carbon, respectively, for samples
collected from different agricultural fields in the USA. A similar study in Chinese soils,
reported an RI of 26% for CEC [54]. The synergism observed for the predictive models
is explained by the contrasting design of concept of the vis-NIR and XRF sensors and
spectral signatures each soil attribute may have in each sensor spectral range, which allow
different variations of the soil sample constituents to be characterized, and therefore allow
fertility attributes to be better inferred [38]. This feature also enables synergism for indirect
characterizations, related to secondary attributes that are correlated to those with active
spectral response, as seen for CEC, pH, V, and ex-Mg. It is worth noting that synergism
existing in different information given by vis-NIR and XRF sensors should be exploited
while taking the co-linearity and correlation among those data into account.

In general, the results obtained in this work did not identify a unique data fusion
approach for exploiting the synergy between the sensors in order to predict all key fertility
attributes successfully. With the exception of clay and pH, the prediction performance of
data fusion models resulted in oscillated positive and negative RI values for the prediction
of the same attribute. For example, the CEC prediction showed synergy with GR3 and LS3
approaches (RI = 2% for both), but its performance degraded when using GR2 (RI = −5%),
LS2 (RI = −7), SF-PLS (RI = −8%), and SF-SVM (RI = −30%) models. Similarly, the V
prediction accuracy improved for GR2 (RI = 10%) and LS2 (RI = 9%), while a negative RI
was observed for GR3 (RI = −2%), LS3 (RI = −3%), and for both SF approaches (RI = −18%
for both). The same happened for ex-P, ex-K, ex-Ca, and ex-Mg attributes. Generally
speaking, the LS3 model averaging approach stood out as the best data fusion method that
enabled greater number of attributes (six attributes) to be predicted with positive RI values
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(i.e., with better predictions, compared to the best performance obtained using a single
sensor alone).

In fact, though GR and LS are conventional data fusion approaches with promising
results for fusing data of vis-NIR and XRF sensors for soil analysis [26,48], they may not
take advantage of all the information contained in multi-source spectra [53]. On the other
hand, front-end approaches (Front-end approaches are the fusion methods which consider
all available information before subjecting them to any prediction model [48,53]), such as
SF, attempt to make use of all available information by merging the full data. However,
this trend was not endorsed by the results of our study that showed better prediction
performances for the model averaging techniques compared to the tested front-end data
fusion approaches (e.g., SF-PLS and SF-SVM). In this sense, a similar behavior was also
observed by O’Rourke et al. [26], who compared a front-end approach with one type of
GR method. On the other hand, results by Xu et al. [48] showed comparable prediction
performances between model averaging approaches (i.e., GR approach) and the outer
product analysis (OPA), which is also a front-end approach for the integration of vis-NIR
and XRF sensor data. Further contrasting, recent research by Zhang and Hartemink [53],
which fused XRF and vis-NIR data using front-end approaches, successfully explored the
synergy between sensors and achieved accurate prediction performance for soil TN and
TC. The results observed in the literature clearly show that there is still no consensus on an
optimal data fusion approach for vis-NIR and XRF sensor data for soil analysis. Moreover,
they reinforce the hypothesis raised in this paper that the best data fusion approach might
be attribute-specific.

The evaluation of the integrated use of vis-NIR and XRF sensors in tropical soils is
still at its early stages of development, with the current work being the first to show a
synoptic view of the potential and challenges associated with data fusion modeling for a
complete characterization of key soil fertility attributes. It is undeniable that the integrated
use of these sensors will be benefited if a generalized data fusion method is established,
so that it can be adopted in future research. In this sense, the following suggestions are
made for further research: (i) The need to assess front-end approaches, combined with
more sophisticated modeling strategies, i.e., machine learning and computational models,
especially for datasets with a large number of soil samples; and (ii) the need to evaluate
back-end model averaging using methods that allow the estimation of the weights of each
model to be optimized [79,80].

In the present scenario, one possible solution for selecting a data fusion method
with optimal prediction performance is to evaluate the performance of different data
fusion methods using independent subset of soil samples (independent validation). This
evaluation should also include the performance of the individual models of each sensor,
since data fusion models are not always the best performing when compared to individual
models. The proposed strategy is similar to the one currently used for the selection of the
best performing vis-NIR models for soil attribute prediction [23].

To summarize, the results obtained in this work showed the possibility of synergism
between vis-NIR and XRF sensors for the prediction of the studied fertility attributes in
tropical soils. The main drawback observed was that the selection of the data fusion ap-
proach should be made for each attribute, since a single approach may not allow exploring
the synergism between sensors for all the attributes of interest. This finding should en-
courage future research to better understand the behavior of vis-NIR and XRF data fusion
methods for the characterization of fertility attributes, especially in tropical soils. Finding
solutions to avoid the classic disadvantage of data fusion methods related to handling large
volumes of data from multiple sensors/sources should be part of the future investigations.

5. Conclusions

The current research assessed the performance of the individual and combined use
of X-ray fluorescence (XRF) and visible and near infrared (vis-NIR) diffuse reflectance
sensors to predict clay, organic matter (OM), cation exchange capacity (CEC), pH, base
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saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg) in tropical
soils. Six different data fusion approaches (two spectra fusion (SF), followed by partial
least squares regression (SF-PLS) and support vector machine regression (SF-SVM), two
Granger and Ramanathan methods (GR2 and GR3), and two methods based on least
squares modeling (LS2 and LS3)) were evaluated and compared with the corresponding
models obtained using data of each sensor alone. Satisfactory prediction performances
(with residual prediction deviation (RPD) ≥ 1.40) using PLS regressions for vis-NIR, and
multiple linear regression (MLR) for XRF were achieved for clay, OM, CEC, V, ex-K, ex-Ca,
and ex-Mg using the each sensor alone. However, the combined use of both vis-NIR
and XRF sensors allowed us to increase the range of soil fertility attributes that could be
predicted within the good and excellent accuracy range (RPD ≥ 2.00). The vis-NIR sensor
showed the best results for clay and OM prediction, while the XRF sensor showed the
best prediction models for CEC, V, ex-K, ex-Ca, and ex-Mg. Among the key soil fertility
attributes studied, only the pH and ex-P did not show satisfactory prediction results.

For eight out of nine soil attributes studied (clay, CEC, pH, V, ex-P, ex-K, ex-Ca, and
ex-Mg), the combined use of vis-NIR and XRF sensors using at least one of the six tested
data fusion approaches showed synergy, allowing for better prediction performances (with
relative improvement (RI) ranging from 1 to 21%) than the corresponding predictions
obtained using a single sensor data. The only exception was for OM, whose predictive
performance was not improved by any of the data fusion methods tested. Our results
suggest that the best data fusion approach is attribute-specific, since there was no one
approach capable of exploiting the synergism between the two sensors for all attributes of
interest. However, in general, the LS3 model averaging approach stood out as the best data
fusion method, enabling the greatest number of attributes to be predicted with positive RI
(six attributes, namely, clay, CEC, pH, ex-P, ex-K, and ex-Mg). The results presented in this
work evidenced the complementarity of XRF and vis-NIR spectroscopies to predict fertility
attributes in tropical soils, and encourage further research to find a generalized method of
both sensors data.
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standard normal variate (SNV) (B); spectra after SNV and maximum normalization (C); spectra after SNV, maximum 
normalization, and first derivative (D); spectra after SNV, maximum normalization, first derivative, and smoothing (E). 

Table A1. Skewness and kurtosis values for the calibration and validation dataset. 

 Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4 
-------------------------------------------- Calibration set (n = 68) -------------------------------------------- 
Skewness −0.22 0.14 0.46 0.50 −0.57 2.26 0.59 0.25 0.81 
Kurtosis −1.22 −1.10 −0.41 −1.02 −1.16 8.75 −0.79 −1.01 −0.14 

-------------------------------------------- Validation set (n = 34) -------------------------------------------- 
Skewness −0.45 −0.11 0.53 0.83 −0.35 2.16 0.35 0.34 0.63 
Kurtosis −1.39 −1.45 −0.63 0.26 −1.62 5.78 −1.35 −1.11 −0.73 

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg). 

Table A2. Prediction results of the validation set (n = 34) obtained using single vis-NIR and XRF data alone and using 
multiple-sensor data, combined through the six tested data fusion approaches (spectra fusion (SF-PLS and SF-SVM), 
Granger and Ramanathan (GR2 and GR3), least squares (LS2 and LS3)). 

 Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4 
 -------------------------------------- R2 -------------------------------------- 

vis-NIR 0.93 0.86 0.51 0.19 0.80 0.07 0.74 0.68 0.52 
XRF 0.92 0.74 0.88 0.34 0.95 0.01 0.95 0.96 0.89 

Figure A1. Visualization of the pre-processing sequence applied to vis-NIR spectra. Raw spectral data (A); spectra after
standard normal variate (SNV) (B); spectra after SNV and maximum normalization (C); spectra after SNV, maximum
normalization, and first derivative (D); spectra after SNV, maximum normalization, first derivative, and smoothing (E).

Table A1. Skewness and kurtosis values for the calibration and validation dataset.

Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4

———————————————————————– Calibration set (n = 68) ———————————————————————–
Skewness −0.22 0.14 0.46 0.50 −0.57 2.26 0.59 0.25 0.81
Kurtosis −1.22 −1.10 −0.41 −1.02 −1.16 8.75 −0.79 −1.01 −0.14

———————————————————————– Validation set (n = 34) ———————————————————————–
Skewness −0.45 −0.11 0.53 0.83 −0.35 2.16 0.35 0.34 0.63
Kurtosis −1.39 −1.45 −0.63 0.26 −1.62 5.78 −1.35 −1.11 −0.73

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg).

Table A2. Prediction results of the validation set (n = 34) obtained using single vis-NIR and XRF data alone and using
multiple-sensor data, combined through the six tested data fusion approaches (spectra fusion (SF-PLS and SF-SVM), Granger
and Ramanathan (GR2 and GR3), least squares (LS2 and LS3)).

Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4

———————————————————– R2 ———————————————————–
vis-NIR 0.93 0.86 0.51 0.19 0.80 0.07 0.74 0.68 0.52

XRF 0.92 0.74 0.88 0.34 0.95 0.01 0.95 0.96 0.89
SF-PLS 0.92 0.83 0.82 0.31 0.92 0.00 0.93 0.96 0.90
SF-SVM 0.95 0.85 0.79 0.49 0.92 0.14 0.90 0.88 0.81

GR2 0.93 0.72 0.83 0.41 0.95 0.00 0.95 0.95 0.88
GR3 0.94 0.79 0.85 0.43 0.94 0.00 0.95 0.95 0.91
LS2 0.94 0.80 0.85 0.44 0.94 0.00 0.95 0.96 0.91
LS3 0.93 0.72 0.83 0.42 0.95 0.00 0.95 0.95 0.88
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Table A2. Cont.

Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4

———————————————————– RMSE ———————————————————–
vis-NIR 27.32 2.10 18.66 0.34 10.38 12.05 1.20 10.98 8.85

XRF 29.40 3.01 10.19 0.33 5.60 13.27 0.53 4.09 4.28
SF-PLS 25.58 2.28 11.05 0.31 6.63 13.43 0.61 3.98 4.07
SF-SVM 24.63 2.34 13.28 0.26 6.61 9.89 0.71 7.26 5.89

GR2 23.74 2.89 10.74 0.28 5.04 12.42 0.51 4.45 4.42
GR3 22.93 2.48 9.99 0.28 5.70 12.45 0.52 4.20 3.94
LS2 23.11 2.47 9.99 0.28 5.77 11.97 0.52 4.18 3.92
LS3 24.01 2.92 10.90 0.28 5.11 11.70 0.50 4.46 4.43

———————————————————– RMSE% ———————————————————–
vis-NIR 9.49 12.37 19.45 22.42 16.48 23.16 17.10 16.39 20.12

XRF 10.21 17.73 10.62 22.15 8.89 25.51 7.60 6.11 9.74
SF-PLS 8.88 13.41 11.52 20.67 10.52 25.83 8.71 5.94 9.25
SF-SVM 8.55 13.77 13.85 17.41 10.50 19.02 10.11 10.84 13.39

GR2 8.24 17.00 11.20 18.67 8.00 23.88 7.29 6.64 10.05
GR3 7.96 14.59 10.42 18.67 9.05 23.94 7.43 6.27 8.95
LS2 8.02 14.53 10.42 18.67 9.16 23.02 7.43 6.24 8.91
LS3 8.34 17.18 11.37 18.67 8.11 22.50 7.14 6.66 10.07

———————————————————– RPD ———————————————————–
vis-NIR 3.37 2.61 1.40 1.10 2.26 0.88 1.89 1.79 1.45

XRF 3.13 1.82 2.57 1.11 4.18 0.80 4.26 4.82 2.99
SF-PLS 3.60 2.40 2.37 1.19 3.53 0.79 3.71 4.95 3.15
SF-SVM 3.74 2.34 1.97 1.41 3.54 1.08 3.20 2.71 2.17

GR2 3.88 1.90 2.43 1.32 4.65 0.86 4.44 4.43 2.90
GR3 4.01 2.21 2.62 1.32 4.11 0.86 4.35 4.69 3.25
LS2 3.98 2.22 2.62 1.32 4.06 0.89 4.35 4.72 3.27
LS3 3.83 1.88 2.40 1.32 4.58 0.91 4.53 4.42 2.89
1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg). The coefficient
of determination (R2) and residual prediction deviation (RPD) values are presented on grayscale, highlighting the highest values. The
root-mean-square error (RMSE) are given in g dm−3 for clay and OM; in mmolc dm−3 for CEC, ex-K, ex-Ca, and ex-Mg; in % for V; and, for
ex-P, the RMSE was given in mg dm−3. The partial least squares (PLS) regressions of the individual vis-NIR modeling used two latent
variables (LVs) for ex-K prediction, three LVs for clay, OM, CEC, V, and ex-Ca predictions, and four LVs for pH, ex-P, and ex-Mg predictions.

Table A3. Relative improvement (in percentage of root-mean-square error (RMSE)) achieved for the six studied data fusion
approaches (spectra fusion (SF-PLS and SF-SVM), Granger and Ramanathan (GR2 and GR3), least squares (LS2 and LS3))
in contrast to the predictions obtained using the individual models of both vis-NIR and XRF sensors. The RMSE of each
approach was also presented.

Single Sensor
Multiple Sensor

SF-PLS SF-SVM GR2 GR3 LS2 LS3
RMSE Techni. 5 RMSE % RI 6 RMSE % RI RMSE % RI RMSE % RI RMSE % RI RMSE % RI

Clay 27.32 vis-NIR
25.58

6
24.63

10
23.74

13
22.93 *

16
24.01

12
23.11

15
29.40 XRF 13 16 19 22 18 21

OM 1 2.10 * vis-NIR
2.28

−8
2.34

−11
2.89

−37
2.48

−18
2.92

−39
2.47

−17
3.01 XRF 24 22 4 18 3 18

CEC 2 18.66 vis-NIR
11.05

41
13.28

29
10.74

42
9.99 *

46
10.90

42
9.99

46
10.19 XRF −8 −30 −5 2 −7 2

pH 0.34 vis-NIR
0.31

8
0.26 *

22
0.28

17
0.28

17
0.28

17
0.28

17
0.33 XRF 7 21 16 16 16 16

V 3 10.38 vis-NIR
6.63

36
6.61

36
5.04 *

51
5.70

45
5.11

51
5.77

44
5.60 XRF −18 −18 10 −2 9 −3

ex-P 4 12.05 vis-NIR
13.43

−11
9.89

18
12.42

−3
12.45

−3
11.70 *

3
11.97

1
13.27 XRF −1 25 6 6 12 10

ex-K 4 1.20 vis-NIR
0.61

49
0.71

41
0.51

57
0.52

57
0.50 *

58
0.52

57
0.53 XRF −15 −33 4 2 6 2

ex-Ca 4 10.98 vis-NIR
3.98 *

64
7.26

34
4.45

59
4.20

62
4.46

59
4.18

62
4.09 XRF 3 −78 −9 −3 −9 −2
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Table A3. Cont.

Single Sensor
Multiple Sensor

SF-PLS SF-SVM GR2 GR3 LS2 LS3
RMSE Techni. 5 RMSE % RI 6 RMSE % RI RMSE % RI RMSE % RI RMSE % RI RMSE % RI

ex-Mg
4

8.85 vis-NIR
4.07

54
5.89

33
4.42

50
3.94

55
4.43

50
3.92 *

56
4.28 XRF 5 −38 −3 8 −3 9

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg); 5 technique;
6 percentage of relative improvement. The values of the percentage of relative improvement (%RI) for the same soil attribute were compared
and the positive RI values were presented on grayscale, with higher values having the darkest color and vice versa. RI with negative values
indicate a degradation in predictive performance, and RMSE values with an asterisk (*) indicate the approach with the lowest prediction
error of all the calibrated models.

Table A4. Correlations between the studied soil fertility attributes and pseudo total content (ptc) of
K and Ca.

Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4

K ptc 0.81 0.67 0.58 0.30 0.80 −0.13 0.90 0.70 0.58
Ca ptc 0.70 0.44 0.85 0.51 0.85 0.01 0.53 0.91 0.84
1 Organic matter; 2 cation exchange capacity; 3 base saturation; and 4 extractable (ex-) nutrients (ex-P,
ex-K, ex-Ca, and ex-Mg). Bold values indicate a significant correlation at the probability level of 0.05.
Pearson’s correlation coefficient values that were significant are presented on grayscale, highlighting
the highest values. Pseudo total content of K and Ca were determined following the United States
Environmental Protection Agency (USEPA) Method 3051A [81], which uses a chemical dissolution of
pulverized soil samples using HNO3 and HCl.
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