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Using single-plant-omics in the field to link maize
genes to functions and phenotypes
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Abstract

Most of our current knowledge on plant molecular biology is based
on experiments in controlled laboratory environments. However,
translating this knowledge from the laboratory to the field is often
not straightforward, in part because field growth conditions are
very different from laboratory conditions. Here, we test a new
experimental design to unravel the molecular wiring of plants and
study gene–phenotype relationships directly in the field. We
molecularly profiled a set of individual maize plants of the same
inbred background grown in the same field and used the resulting
data to predict the phenotypes of individual plants and the func-
tion of maize genes. We show that the field transcriptomes of indi-
vidual plants contain as much information on maize gene function
as traditional laboratory-generated transcriptomes of pooled plant
samples subject to controlled perturbations. Moreover, we show
that field-generated transcriptome and metabolome data can be
used to quantitatively predict individual plant phenotypes. Our
results show that profiling individual plants in the field is a
promising experimental design that could help narrow the lab-
field gap.
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Introduction

Efforts to develop crops with higher yield and higher tolerance to

environmental stress are more important than ever in the quest for

global food security and sustainable agriculture. Crop improvement

increasingly relies on the identification of genes and genetic vari-

ants that impact agronomically important traits, so that beneficial

variants can be engineered into the crop or incorporated in breed-

ing programs. Mapping of quantitative trait loci (QTLs), genome-

wide association studies (GWAS), and genomic prediction tech-

niques are some of the currently preferred means of identifying

the genes and variants influencing a phenotypic trait (Desta &

Ortiz, 2014; Korte & Farlow, 2013). All are based on associating

genetic variants, mostly single-nucleotide polymorphisms (SNPs),

to observed traits in a genetically diverse population of the

targeted plant species, e.g., a panel of accessions or a panel of

inbred crosses between two or more parental lines (recombinant

inbred lines, RILs).

Although fairly successful in some plant species, e.g., maize,

these techniques also have limitations. They can only detect loci

that display genetic variation in the mapping population. In addi-

tion, their resolving power is limited by linkage disequilibrium

(LD), i.e., the non-random association between markers due to

genetic relatedness in the population (Brachi et al, 2011; Huang &

Han, 2014; Korte & Farlow, 2013). As a consequence, loci can often

not be resolved to the individual gene level. GWA studies also have

low power for rare alleles and alleles with small effect sizes, which

often account for a substantial proportion of phenotypic variation,

in particular for complex traits such as yield. Moreover, when

mapping genotypes straight to phenotypes, the many intermediate

molecular layers that articulate the phenotype from the genotype,

such as the transcriptome or metabolome, are ignored. Conse-

quently, little mechanistic insight is gained from GWAS or genomic

prediction studies into how a trait is established.

As many variants uncovered in GWA studies appear to be regu-

lating gene expression (Li et al, 2012; Xiao et al, 2017), recent efforts

have sought to complement GWAS with transcriptome-wide associ-

ation studies (TWAS), i.e., mapping gene expression to phenotypes

in a genetically diverse population (Harper et al, 2012; Havlickova

et al, 2018; Koprivova et al, 2014; Kremling et al, 2019; Pasaniuc &

Price, 2017). Similarly, several recent studies have used transcrip-

tomic or metabolomic prediction in addition to genomic prediction

to associate genes to plant traits, in particular in maize (Azodi et al,

2020; Guo et al, 2016; Schrag et al, 2018). Azodi et al (2020) found

that transcript levels and genetic marker data have comparable

performance for predicting maize phenotypes and that performance

increased when combining both data layers in a joint model.

However, the use of transcriptomes and other intermediate data
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layers to aid genotype–phenotype mapping generally remains under-

explored (Baute et al, 2015, 2016; Kremling et al, 2019).

Whereas GWAS and related methods exploit the natural genetic

variation within a species to associate genes with phenotypes,

systems biology studies use controlled perturbations, either genetic,

environmental, or chemical, in a specific genetic background to

unravel the molecular wiring of plant traits. Since the advent of

high-throughput gene expression profiling platforms, massive

amounts of data have been generated on the transcriptomic

responses of, e.g., Arabidopsis thaliana Col-0 to various mutations

and environmental stresses, with the purpose of unraveling the

molecular processes underlying a variety of traits. However, many

independent perturbations are needed to accurately reconstruct the

molecular network underlying a complex trait, and no datasets exist

in which any particular complex plant trait is systematically

assessed molecularly and phenotypically under a large enough set

of perturbations to unravel more than fragments of its molecular

wiring.

The identification of a sufficient set of controlled perturbations

informative of a process of interest is one of the major bottle-

necks in present-day systems biology. It is often practically infea-

sible to identify, let alone implement, a large enough number of

different controlled perturbations (mutants, stresses) relevant to a

trait of interest in a single plant lineage (in contrast to GWA

studies, where the genetic differences across lineages function as

perturbations). Another issue is that such controlled perturbations

are mostly applied in a laboratory environment, where apart from

the imposed perturbation all other parameters are kept optimal

and do not restrict plant growth and development. This situation

does not reflect realistic field conditions, where at any given time

plants are exposed to a combination of different environmental

stressors with highly variable temporal and spatial patterns of

occurrence (Mittler & Blumwald, 2010; Thoen et al, 2017).

Increasing evidence is pointing toward the unique character of

plant molecular responses to combinations of stresses, which

often have non-additive effects on the molecular and phenotypic

level (Atkinson & Urwin, 2012; Barah et al, 2016; Cabello et al,

2014; Davila Olivas et al, 2017; Johnson et al, 2014; Rasmussen

et al, 2013; Suzuki et al, 2014; Thoen et al, 2017). As a result,

perturbation studies performed under controlled laboratory condi-

tions are often of limited predictive value for phenotypes in the

field (Atkinson & Urwin, 2012; Mittler, 2006; Nelissen et al, 2014;

Nelissen et al, 2019; Oh et al, 2009). It has been advocated that

to close this lab-field gap, more -omics data and associated

phenotypic data should be generated on field-grown plants

(Alexandersson et al, 2014; Nelissen et al, 2019; Zaidem et al,

2019). Several pioneering studies have already investigated how

gene expression is related to environmental stimuli in the field

(Nagano et al, 2012; Plessis et al, 2015; Richards et al, 2012).

Large-scale studies relating field-generated transcriptomes to field

phenotypes are however still lacking.

Here, we propose a new strategy for studying the wiring of plant

pathways and traits directly in the field, involving -omics and

phenotype profiling of individual plants of the same genetic back-

ground grown in the same field. Uncontrolled variations in the

micro-environment of the individual plants hereby serve as a pertur-

bation mechanism. Our expectation is that, in addition to stochastic

effects, the individual plants will be subject to subtly different sets

of environmental cues, and will in response exhibit different molec-

ular profiles and phenotypes.

It is well known that individual plants of the same inbred line

may display different phenotypes even when grown under the same

macro-environmental conditions (Abley et al, 2016; Hall et al, 2007;

Jimenez-Gomez et al, 2011; Sangster et al, 2008). Similar observa-

tions have been made on, e.g., inbred Drosophila melanogaster

populations (Morgante et al, 2015; Whitlock & Fowler, 1999). Also

on the level of gene expression, substantial variability is observed in

near-isogenic populations subject to the same conditions, e.g., in

plants (Cortijo et al, 2019; Cortijo & Locke, 2020; Jimenez-Gomez

et al, 2011), fruitflies (Lin et al, 2016), and mammals (Fraser &

Schadt, 2010). Both phenotypic and gene expression variability

among individuals of inbred populations of higher eukaryotes have

mostly been investigated from the perspective of studying the

“canalization” of developmental trajectories in the face of micro-

environmental variability, a concept first proposed by Waddington

(1942).

mRNA and protein expression variability are also observed in

clonal populations of unicellular organisms, for instance, in Saccha-

romyces cerevisiae (Ansel et al, 2008; Blake et al, 2006; Blake et al,

2003; Nadal-Ribelles et al, 2019; Raser & O’Shea, 2004) and Escheri-

chia coli (Elowitz et al, 2002), or among single cells of, e.g.,

mammalia (Foreman & Wollman, 2020; Raj et al, 2006; Raj & van

Oudenaarden, 2008; Sigal et al, 2006). Variability in gene expression

among cells grown in the same medium is mostly attributed to

“noise” caused by stochastic effects, either intrinsic (i.e., specific to

the gene concerned) or extrinsic (upstream) (Cortijo & Locke, 2020;

Raj & van Oudenaarden, 2008; Roeder, 2018). Studies have shown

that this single-cell noise has functional consequences, both benefi-

cial, e.g., allowing bet-hedging among cells, and detrimental (Raj &

van Oudenaarden, 2008; Roeder, 2018). Furthermore, it has been

shown that gene expression noise propagates through molecular

networks (Pedraza & van Oudenaarden, 2005) and can be used to

decipher regulatory influences (Dunlop et al, 2008; Munsky et al,

2012; Stewart-Ornstein et al, 2012).

Analogous to single-cell noise, gene expression differences

between multicellular individuals of the same genetic background

and raised in the same environment may also be useful for gene

network inference. The nature of the variability between individuals

may however be different (less stochastic and more micro-environ-

mental) than between cells, as much of the single-cell stochasticity

is expected to be averaged out in multicellular organisms. Earlier,

we found that gene expression variations among individual

Arabidopsis thaliana plants grown under the same stringently

controlled laboratory conditions contain a lot of information on the

molecular wiring of the plants, on par with traditional expression

profiles of pooled plant samples subject to controlled perturbations

(Bhosale et al, 2013). The aim of this study is to investigate to what

extent we can use variability between individual field-grown plants

of the same line to link genes to biological processes and field

phenotypes. If even gene expression variability among laboratory-

grown plants contains functionally relevant information, the molec-

ular and phenotypic variability among field-grown plants may

contain a wealth of information on processes occurring in the field.

We profiled the ear leaf transcriptome, ear leaf metabolome, and

a number of phenotypes for individual field-grown maize plants of

the same inbred line (Zea mays B104), and used the resulting data
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to predict the function of genes and to quantitatively predict individ-

ual plant phenotypes. We find that our single-plant transcriptome

dataset can predict the function of maize genes as efficiently as

traditional laboratory-based perturbational datasets. Furthermore,

we show that some quantitative phenotypes, in particular leaf-

related phenotypes, can be predicted fairly well from the leaf tran-

scriptome and metabolome data generated for the individual plants.

These results open perspectives for the further use of field-generated

single-plant datasets to unravel the molecular networks underlying

crop phenotypes and stress responses in the field.

Results

Field trial design and exploratory data analysis

During the 2015 growth season, 560 maize plants of the B104 inbred

line were grown in a field in Zwijnaarde, Belgium (see Materials

and Methods and Fig 1A). At tasseling (VT stage), the ear leaf and

the growing ear were harvested for 200 non-border plants with a

primary ear at leaf 16, and plant height, the number of leaves, the

length and width of the ear leaf (leaf 16) blade, husk leaf length,

and ear length were measured (Dataset EV1). For 60 randomly

chosen plants out of these 200, the transcriptome of mature ear leaf

tissue was profiled using RNA-seq. Additionally, for 50 out of those

60 plants, metabolite profiles were generated on the same samples

used for transcriptome profiling. After preprocessing and filtering

(see Materials and Methods), data on the levels of 18,171 transcripts

and 592 metabolites in mature ear leaf tissue were obtained for 60

and 50 plants, respectively (Dataset EV1).

As plants were harvested on two different days (because not all

plants reached the VT developmental stage on the same day) and

RNA-seq was performed in two batches, there may be systematic

effects on some plant subgroups in the molecular and phenotypic

datasets. Additionally, analysis of single-nucleotide polymorphisms

(SNPs) in the RNA-seq data (see Materials and Methods) revealed

that two slightly different subpopulations of plants were part of the

experiment (see Appendix Fig S1). The 1,377 biallelic SNPs differen-

tiating the two subpopulations (hypergeometric test, q ≤ 0.01) were

found to cluster mainly in regions on chromosome 1 and to a lesser

extent chromosome 7 (see Appendix Fig S2). Both subpopulations

were found to mostly be homozygous for one allele or the other,

indicating that the mother plants of both subpopulations had dif-

ferent chromosome versions.

The sequencing batch, day-of-harvest (DOH), and SNP subgroup

effects on transcript, metabolite, and phenotype levels were quanti-

fied jointly using linear mixed-effects (LME) models (see Materials

and Methods and Dataset EV2). To avoid biases in the model P-

values caused by spatial autocorrelations in the data (see further),

these models also took into account the spatial structure of the field

setup. The batch, DOH, and SNP effects explained only a minor

proportion of the variance for most variables, with more than 90%

of the variance allocated to the LME model residuals for 44% of

transcripts, 73% of metabolites, and four out of five phenotypes (Fig

EV1). However, in particular the DOH effect was found to signifi-

cantly affect a sizeable proportion of the variables

(Appendix Table S1), notably transcripts related to photosynthesis,

transcriptional regulation, and nucleosome organization (Dataset

EV3). As we aim to leverage variability between individuals for gene

function and phenotype prediction, rather than systematic variabil-

ity between subgroups of plants, the batch, DOH, and SNP effects

were removed from all data layers before downstream analysis, i.e.,

all analyses were done on the LME model residuals (Dataset EV1).

After removal of the batch, DOH, and SNP effects, no distinct

sample groups are expected in our data, as no differential treatments

or control measures were applied to any plant subsets. Indeed, prin-

cipal component analysis (PCA) on the corrected gene expression,

metabolite, and phenotype data did not reveal any clear residual

group structure among the samples (Fig 1B–D). Mapping of the field

layout on the PCA plots does however suggest that there is spatial

structure in the data (Appendix Fig S3, see also further). Despite the

fact that we kept the harvesting timeframe (10:00 am-12:00 pm) as

short as possible, there may also be some time-of-harvest effect in

the data. In support of this hypothesis, genes identified in Lai et al

(2020) as having a strong diurnal rhythm (q < 1e-05) have on aver-

age a higher normalized CV (see Materials and Methods) in our

expression dataset than weakly rhythmic genes or non-rhythmic

genes (Mann–Whitney U-test, P < 1e-67, Appendix Fig S4). This set

of strongly rhythmic genes is enriched in genes involved in photo-

synthesis and small-molecule metabolism (Dataset EV3). The shift

in median normalized CV between strongly rhythmic genes and

other genes is however small compared to the range of normalized

CV values across all genes, indicating that only a minor part of the

expression variance in our dataset is due to diurnal effects. Further-

more, it cannot be excluded that there are other reasons or cues

than diurnal rhythmicity that may cause strongly rhythmic genes to

be more variably expressed in our dataset than the average gene. As

the spatial autocorrelation and time-of-harvest effects do not disturb

the single-plant character of the study (in contrast to, e.g., the DOH

effect), we did not attempt to remove them.

Despite the absence of designed treatments in our experimental

setup, we observed substantial variability in the corrected transcrip-

tome, metabolome, and phenotype profiles of the individual plants

(Fig 2A–G). Excluding the 5% lowest-expressed transcripts, tran-

script levels have on average a coefficient of variation (CV) of

0.2811 across plants. Metabolite levels have a CV of 0.2726 on aver-

age, and all phenotypes have a CV ≥ 0.0523. The gene expression

variability among the field-grown maize plants, as measured by the

CV, was found to be 2.49 times higher for the average gene than the

expression variability among individual laboratory-grown Arabidop-

sis thaliana plants in a recent study (Cortijo et al, 2019) (see also

Appendix Fig S5). Time point ZT06 of the A. thaliana dataset was

taken as the reference in this comparison, as it is most comparable

to the harvesting time point used for the maize dataset.

Plant-to-plant variability could either be caused by technical

noise, inherent stochasticity of molecular processes within the

plants, residual genetic variation in the inbred line used (even after

correction for population structure) or external factors such as vari-

ability in the growth micro-environment of the individual plants.

The last three processes are expected to generate biologically mean-

ingful variation that may propagate from the molecular to the

phenotypic level, or vice versa. If the variability in the data is

biological in nature and propagates through the molecular networks

of the plant, plants with similar gene expression profiles may be

expected to also have similar metabolite and phenotype profiles.

Indeed, plant-to-plant distances in transcriptome, metabolome, and
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phenotype space were found to be significantly positively correlated

(Fig EV2). Interestingly, the phenotype distance between plants was

also significantly positively correlated with the physical distance

between plants in the field. All phenotypes except ear length were

found to be spatially autocorrelated at q ≤ 0.05 (see Materials and

Methods, Fig EV3 and Dataset EV2). A weak but significant positive

correlation was also found between the metabolome distance and

physical distance between plants, and 48 out of 592 metabolites

exhibit spatial patterning at q ≤ 0.01 (Moran’s I, Dataset EV2). A

borderline significant correlation was found between the physical

distance of plants and their overall distance in transcriptome space

(Fig EV2), indicating that most genes do not exhibit spatially

patterned gene expression. However, spatial autocorrelation

analysis of the transcriptome data revealed that 2,574 out of 18,171

transcripts do exhibit spatial patterning at q ≤ 0.01 (Moran’s I,

Dataset EV2). Among the transcripts and metabolites with signifi-

cant spatial patterning, spatial covariance was found to make up

around 60% of the residual variance in the LME models on average

(see Appendix Fig S6).

The spatially autocorrelated transcripts and metabolites were

grouped in 16 and 2 co-expression clusters, respectively (see Mate-

rials and Methods, Dataset EV4 and Appendix Figs S7 and S8).

Significant GO enrichments were found in 9 of the autocorrelated

transcript clusters, e.g., clusters 5 and 6 were found enriched in

genes involved in the response to chitin, and clusters 14 to 16 in

chloroplast-associated genes (Dataset EV4). This indicates that the
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Figure 1. Field trial design and exploratory data analysis.

A Layout of the field trial. A total of 560 Zea mays B104 plants were grown in a grid of 10 rows by 56 columns. Border rows 0 and 9 are not shown on the plot, and the
dimensions on the figure are not to scale. Cell colors indicate which data types are available for the plants, with gray indicating phenotype data only (p), orange
transcriptome and phenotype data (t + p), and blue transcriptome, metabolome, and phenotype data (t + m + p). Harvesting dates (DOH) are indicated by the cell
border color. The RNA-sequencing batch is indicated by cell border thickness. Plants belonging to different subgroups based on SNP analysis are indicated by the
coloring of the plant ID numbers inside the cells. The designations 0 and 1 for the DOH, BATCH, and SNP effect groups are used for the largest and smallest group,
respectively.

B Plot showing the first two principal components (PCs) in a PCA of the 60 single-plant transcriptomes.
C Plot showing the first two PCs in a PCA of the 50 single-plant metabolomes.
D Plot showing the first two PCs in a PCA of the plant phenomes for the 60 plants that were RNA-sequenced.

Data information: The plants in panels (B–D) are numbered according to the numbering in panel (A). Plants belonging to different SNP and DOH subgroups are indicated
by different markers and marker colors, respectively, and plants sequenced in the second, smallest batch are circled in panel (B).
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activity of several biological processes varied across the field in a

spatially patterned way. Three of the 16 autocorrelated transcript

clusters and both of the autocorrelated metabolite clusters corre-

lated with at least one measured phenotype at q ≤ 0.05

(Appendix Figs S9 and S10). The average gene expression profile

of transcript cluster 2, for instance, correlates significantly with ear

length (Fig 3). Interestingly, one of the genes in cluster 2 is

GRMZM2G171365 (SUPPRESSOR OF OVEREXPRESSION OF

CONSTANS 1, ZmSOC1, ZmMADS1), a MADS-box transcription

factor known to promote flowering (Alter et al, 2016; Zhao et al,

2014) and also known to be upregulated in leaves during the floral

transition (Alter et al, 2016). Overall, the presence of spatially

autocorrelated patterns in the transcriptome, metabolome, and

phenotype data indicates that at least part of the variability

observed among the individual plants is due to micro-environmen-

tal factors that have a spatial structure. Correlations between the

molecular and phenotypic data layers indicate that this variability

propagates from one layer to another.
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Figure 2. Transcriptomic, metabolic, and phenotypic variability among individual field-grown maize plants.

A–G In panels (A) to (E), violin plots show the variability in continuous leaf 16, ear, and plant height phenotypes among the 60 individual plants used in downstream
analyses. Panel (F) depicts how many of the plants were harvested on different days (DOH), belong to different SNP subgroups, or were RNA-sequenced in different
batches. This panel also displays the variability in two discrete phenotypes, namely the number of leaves at harvest and whether or not leaf 16 was kinked.
Panel (G) shows violin plots for the distribution of the coefficient of variance (CV) across the sampled plants for the levels of individual transcripts and metabolites.
For visualization purposes, the transcript CV was capped at 2.0.

Data information: In all violin plots, the median is indicated by the white circle. The black box extends from the 25th to the 75th percentile, and black whiskers extend
from each end of the box to the most extreme values within 1.5 times the interquartile range from the respective end. Data points beyond this range are shown as black
dots. The red open circle indicates the mean of the distribution, with red whiskers extending to 1 standard deviation above and below the mean.
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Variability of gene and metabolite expression across plants gives
insight into biological processes active in the field

We investigated which genes have highly variable expression levels

in the field setting used, and which ones are stably expressed across

the field. We ranked genes based on a normalized coefficient of vari-

ation (normCV) of their gene expression profile across the field (see

Materials and Methods and Dataset EV5), excluding the 5% lowest-

expressed genes. We found that stably expressed genes have on

average longer coding sequences than variably expressed genes and

have on average more introns and exons (Appendix Table S2). Simi-

lar results were previously obtained in the study of Cortijo et al

(2019) on individual A. thaliana plants, and the authors showed

that their observations could not be accounted for by technical arte-

facts related to differences in the average RNA-seq coverage of

longer versus shorter genes.

Mann–Whitney U-tests (Mann and Whitney, 1947) were

performed to determine which Gene Ontology (GO) biological

processes are represented more at the top or bottom of the CV-

ranked gene list than expected by chance (Dataset EV6). Genes

related to photosynthesis, response to biotic and abiotic stresses,

cell wall organization, secondary metabolism, brassinosteroid meta-

bolism, and response to hormones such as cytokinin, abscisic acid,

jasmonic acid, and gibberellin were found to be among the more

variably expressed genes across the field, suggesting that the

harvested leaves were differentially impacted by various stress

factors. The processes that are most stably expressed across the field

are mainly housekeeping processes related to, e.g., the metabolism

and transport of proteins and mRNAs, and chromatin organization

(Dataset EV6). Interestingly, the GO enrichments obtained for vari-

ably and stably expressed genes in the field-grown maize plant

dataset are largely in line with the results reported by Cortijo et al

(2019) on laboratory-grown A. thaliana plants. Photosynthesis,

secondary metabolism, cell wall organization, abiotic stress, and

defense response genes, for instance, were also found enriched by

Cortijo et al (2019) in several of the highly variable gene sets they

compiled for different sampling time points in a 24 h time span,

while RNA and protein metabolism genes feature prominently in

some of their lowly variable gene lists.

The metabolites in our dataset were also ranked based on their

variability in abundance across the field, again based on a normal-

ized coefficient of variation (see Materials and Methods,

Appendix Fig S11, and Dataset EV5). The list of the 50 most variable

metabolites mainly includes primary metabolites, in particular

compounds involved in amino acid and sugar metabolism, but also

secondary metabolites such as naringenin, chrysoeriol, beta-caro-

tene, and benzoate. Among the 50 least variable metabolites, there

are five dipeptides and four compounds involved in vitamin metabo-

lism. Given the fairly limited number of identified metabolites in our

dataset, distinguishing clear trends is however harder than for genes.
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Figure 3. Gene expression patterns in cluster 2 correlate with ear length.

The top panel displays the ear length phenotype on the field (only for plants that were transcriptome profiled). The bottom panel displays the average z-scored gene
expression profile of spatially autocorrelated gene cluster 2 (291 genes), mapped to the field. Shown on top are the Pearson’s correlation (r) between the cluster 2
expression profile and ear length, the corresponding P-value (computed using cor.test in R) and the corresponding q-value (computed using the Benjamini–Hochberg
method on all comparisons of cluster gene expression profiles with the ear length profile). The scales on the top and to the right of the field maps give field plot
dimensions in cm.
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Hierarchical clustering of the transcriptome and metabolome

data offers an overall view of the molecular variability across the

plants profiled (Fig EV4). Several clusters were found to be signifi-

cantly enriched in genes involved in particular biological processes,

further confirming that the single-plant dataset contains biologically

meaningful information (Dataset EV7). Also the biclustering

approach ENIGMA (Maere et al, 2008) yielded a variety of modules

enriched in genes involved in processes such as photosynthesis, cell

wall organization, response to chitin, and others (Dataset EV7). An

example ENIGMA module enriched for photosynthesis and response

to light stimulus genes is shown in Fig 4. In this module and many

others (see, e.g., Fig EV4), different subgroups of plants show

clearly different expression profiles, highlighting that many

processes are not homogeneously active across the field.

Gene function prediction from single-plant transcriptome data

In previous work, we showed that expression variations among

individual Arabidopsis thaliana plants, all grown under the same

stringently controlled conditions, can efficiently predict gene func-

tions (Bhosale et al, 2013). A complicating factor in this study

however was that the individual plants profiled were of different

genetic backgrounds and were grown in different laboratories (Mas-

sonnet et al, 2010). Although laboratory and genotype effects and

their interaction were removed from the data and the results pointed

to micro-environmental or stochastic differences between plants as

the main cause of the residual gene expression variability, it cannot

be excluded that residual non-linear laboratory or genotype effects

may have influenced the results. In this respect, the current dataset

on individual maize plants of the same line grown in the same field

is likely better suited to assess whether expression variations

between individuals grown under the same conditions can be used

to predict gene functions, despite the potential presence of remnants

of other systematic effects in our data (day of harvest, sequencing

batch, population substructure). The phrasing “same conditions” is

to be understood here in the sense that there are no deliberate treat-

ment differences between plants, only uncontrolled micro-environ-

mental differences. These are likely larger in the current field setup

than in the controlled laboratory setup on which the Bhosale et al

(2013) study was based.

We constructed a network of significantly coexpressed genes

from the transcriptome data, using spatially adjusted Pearson corre-

lation coefficients between the log2-transformed gene expression

profiles (see Materials and Methods). Accounting for the spatial

autocorrelation structure of our field-generated data is necessary to

avoid inflation of the false-positive rate (Lennon, 2000). The func-

tion of any given gene in this co-expression network was predicted

based on the annotated functions of the gene’s network neighbors

0 1 2 3-1-2-3

z-scored log   fold change2

Figure 4. Example ENIGMA module learned from the single-plant transcriptome dataset.

The bottom yellow/blue grid shows the expression profiles of the module genes, while the top grid contains the expression profiles of predicted regulators of the module.
Yellow/blue squares indicate higher/lower gene expression with respect to the average expression of a gene across plants (black). Color hues are based on z-scoring the
log2 expression fold changes of genes (with respect to their average expression) across the entire dataset. Significant co-differential expression links between the
regulators and the module genes are indicated in the red/green matrix to the right (green = positively correlated, red = negatively correlated). Gene names highlighted
in red indicate regulators that are part of the module. Genes indicated as core genes belong to the original module seed, and other genes were accreted by the seed in
the course of module formation (Maere et al, 2008). Enriched GO categories in the module gene set are displayed on the right, with orange squares depicting which
module genes are annotated to these GO categories. This particular module is significantly enriched (q ≤ 0.01) in known photosynthesis genes.
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(see Materials and Methods). To compare the function prediction

performance of our single-plant dataset with that of traditional gene

expression datasets on pooled samples of plants grown under

controlled conditions, we ran the same function prediction pipeline

on 500 networks constructed from gene expression datasets on

maize leaves available from the Sequence Read Archive (SRA) tran-

scriptome database (see Materials and Methods and Dataset EV8).

Each of these 500 networks was inferred from a dataset of the same

size as the single-plant dataset, containing 60 transcriptome profiles

sampled from the SRA. The number of significant edges (Bonfer-

roni-corrected P ≤ 0.01) inferred from these sampled datasets was

systematically higher than the number of edges inferred from the

single-plant dataset. One factor causing this is that the SRA tran-

scriptome data exhibit clear groups of experimental conditions for

which expression profiles are more similar within groups than

between groups (Appendix Fig S12), more so than the single-plant

data. This group structure causes inflated correlation P-values in the

sampled networks. Since the function prediction performance of

correlation networks is dependent on the amount of edges included

(Appendix Fig S13), the number of edges in each sampled network

was fixed to the number of significant edges observed in the single-

plant network (878,079 edges). Other network properties such as

the number of nodes, network density, and average clustering coef-

ficient are not significantly different between the resulting sampled

networks and the single-plant network, but the single-plant network

does contain slightly less genes of unknown function than the aver-

age sampled network (Table 1).

The overall gene function prediction performance of all networks

was scored using known GO annotations for maize as the gold stan-

dard (see Materials and Methods). For each network, we calculated

the fraction of known gene function annotations recovered by the

predictions (recall), the fraction of gene function predictions

supported by the gold standard (precision), and the F-measure (har-

monic mean of precision and recall) at different false discovery rate

(FDR) levels, ranging from q = 0.01 to 10−11 (Fig 5A–D). Except at
the least stringent prediction threshold (q = 10−2), the recall of the

single-plant network was higher than the 75th percentile of the recall

values for the SRA sampled networks, indicating that the single-plant

network predictions generally recover more known gene functions

than the sampled network predictions. On the other hand, the

predictions of the single-plant network are generally less precise than

those of the average sampled network, except at lower-confidence

prediction thresholds (q ≥ 10-4). The overall function prediction

performance of the single-plant network (as measured by the

F-measure) is higher than the 75th percentile of the SRA networks

for most of the q-value range, except for q ≤ 10−10. The compara-

tively lower F-measures for q ≤ 10−10 are mostly due to the lower

precision of the single-plant network predictions at higher confi-

dence levels compared to the sampled networks, indicating that a

bigger proportion of the high-confidence function predictions made

by the single-plant network is not supported by the gold standard.

There are reasons to believe that not all of these excess false-

positive predictions made by the single-plant network at high confi-

dence levels are truly wrong. First, the GO annotation for maize,

used here as the gold standard, is incomplete. Of the 39,479 genes

in the maize B73 reference genome annotation (AGPv3.31), 9,884

have no biological process assignments in the GO annotation file we

compiled (see Materials and Methods), and many others likely have

incomplete or faulty annotations (Rhee & Mutwil, 2014; Wimala-

nathan et al, 2018). High-confidence gene function predictions

labeled as false positives may therefore be regarded rather as new

gene function predictions to be tested. By itself however, the incom-

pleteness of the gold standard should not lead to a specific disad-

vantage for the single-plant network, as all networks are compared

on the same footing. More importantly, the current annotations in

GO are mostly derived from traditional laboratory-based perturba-

tion experiments on pooled plant samples, akin to the ones used to

construct the sampled networks. This may create a bias in favor of

the sampled networks, in particular for the precision measurements

(see also Discussion). The recall measure should therefore probably

get a higher weight when comparing the gene function prediction

performance of the single-plant and sampled networks.

The analysis outlined above compares the gene function informa-

tion content of expression data generated on individual field-grown

plants versus data generated on pooled plant samples subject to

controlled treatments. In both cases, the plants profiled come from a

single inbred line. To assess how the information content of expres-

sion data on individuals of a single line compares to that of expres-

sion data on a diversity panel as used for GWAS and TWAS, we

performed the same analysis on 100 mature leaf gene expression

compendia sampled from a recent diversity panel dataset (Kremling

et al, 2018) (see Materials and Methods, Table 1 and Fig EV5).

Table 1. Topological parameters for the single-plant network and the networks sampled from the SRA and diversity panel datasets. The “predicted
positives” column indicates the amount of true-positive plus false-positive predictions made by each type of network at q ≤ 0.01

#
Nodes

#
Edges

Network
density

Average clustering
coefficient

Unannotated gene
fraction

Predicted
positives

Single-plant network 10,501 878,079 0.015927 0.481209 0.085135 291,237

SRA networks mean 10,256 878,079 0.017302 0.478519 0.091104 169,571

SRA networks SD 1,158 0 0.003674 0.022180 0.003826 25,649

P-value single-plant versus SRA
networks

0.377 – 0.377 0.465 0.052 0.004

Diversity networks mean 14,193 878,079 0.013921 0.323074 0.102636 111,555

Diversity networks SD 5,177 0 0.010709 0.125699 0.008788 46,866

P-value single-plant versus diversity
networks

0.436 – 0.574 0.039 0.001 0.001
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Some of the patterns observed are similar to those observed in the

comparison with SRA datasets, namely that the single-plant dataset

generates more function predictions than the diversity datasets, but

with lower precision over most of the prediction q-value range, in

particular for higher confidence levels. The recall values for the

single-plant dataset on the other hand are systematically higher than

for the sampled diversity datasets. As a result, the gene function

prediction performance (F-measure) of the single-plant dataset is

higher than that of all sampled diversity datasets.

Single-plant dataset contains information on biological processes
that are active and varying between plants in the field context

To assess whether the single-plant dataset contains more informa-

tion on some biological processes than on others, we investigated

how well the gene function predictions on the single-plant network

and sampled SRA networks could recover the genes involved in

specific biological processes (see Materials and Methods). The func-

tion prediction performance of all networks was scored for 207 dif-

ferent GO categories, including the categories investigated in

Bhosale et al (2013) (Dataset EV9). Figure 6A–D shows the relative

performance of the single-plant network for a selection of GO cate-

gories related to abiotic and biotic stress responses, hormonal

responses, and development (see Dataset EV9 and Appendix Fig S14

for results on other GO categories).

For abiotic stresses, the single-plant network scores very well

compared to the sampled SRA networks for responses to cold and

heat, salt stress, and drought (water deprivation), all of which are

relevant from a field perspective (Fig 6A). For light responses, the

picture is more nuanced, with very good performance for response

to UV light, average performance for response to blue light, ambigu-

ous performance for categories related to “response to red- and far-

red light” and very poor performance for “response to light inten-

sity” and “photoperiodism”. The overall very good function predic-

tion performance for “response to abiotic stimulus” indicates that

there is considerable variation across the field in the transcriptional

activity of the genes concerned, which suggests that the individual

plants were subject to multiple abiotic environmental cues that

varied in intensity across the field.

Concerning responses to biotic stimuli, the single-plant predic-

tions score very well for the “response to herbivore” and “response

to bacterium” categories, but poor for responses to fungi, nema-

todes, viruses, and symbionts (Fig 6C, Dataset EV9 and

Appendix Fig S14). This indicates that the individual plants may

have been variably exposed to bacteria and herbivores in particular.

The single-plant network also scored very well for some GO cate-

gories related to biotic stimulus responses that are not shown in

Fig 6C, such as “defense response” and “response to chitin” (Dataset

EV9 and Appendix Fig S14). The function prediction performance

for other biotic stress categories such as “response to insect” or

“response to oomycetes” could not be assessed because both the

sampled and single-plant datasets did not yield enough predictions

(see Materials and Methods).

Similarly, both the sampled and single-plant datasets failed to

deliver sufficient predictions to score the function prediction perfor-

mance for responses to ethylene, gibberellins, salicylic acid, and

strigolactones (Fig 6D). Among the hormone responses for which

the gene function prediction performance of the single-plant dataset

could be scored, the responses to abscisic acid (ABA), cytokinin,

and jasmonic acid score very well, “response to brassinosteroids”

scores average and “response to auxin” scores very poorly. The very

poor function prediction performance for auxin response genes is

consistent with the fact that only mature leaf tissue was profiled in

the single-plant experiment, where auxin signaling is less active

(Brumos et al, 2018). In contrast, the sampled datasets also contain

experiments on entire leaves, leaf primordia, and leaf zones such as

the division and elongation zone where auxin signaling is more

active (Dataset EV8).

Regarding developmental processes, the single-plant dataset

scores very well for predicting genes involved in leaf development

and embryo development, and very poor for flower, fruit, and seed

development (Fig 6B). The very good prediction performance for

embryo development may come as a surprise given that only leaf

material was profiled, but one needs to keep in mind that all perfor-

mances are scored relative to the performance of the sampled SRA

datasets, which also exclusively profiled leaves. Even then, it may

be considered surprising that leaf expression profiles contain any

information at all on developmental processes occurring in other

tissues. However, aspects of development may be shared across

tissues. Several root development genes, for instance, were found to

also function in some capacity in leaves (Taniguchi et al, 2017; Yang

et al, 2019). The developmental program of leaves may overlap with

that of embryos in particular as the latter also contain embryonic

leaves. More genuinely surprising is that the single-plant dataset

outperforms more than 75% of the sampled SRA datasets for

predicting genes involved in leaf development, both in terms of

precision and recall, despite only profiling mature leaf tissue of ear

leaves.

Exploration of new maize genes predicted to be involved in
biotic and abiotic stress responses

In total, 1,334,456 novel gene function predictions (i.e., predictions

not matching GO annotations) were obtained from the single-plant

dataset at q ≤ 0.01 (Dataset EV10). To assess the quality of these

predictions, we performed a literature screen to search for evidence

supporting the top-10 regulator predictions for the GO categories

“response to chitin”, “response to water deprivation”, and “C4 photo-

synthesis”. The first two are categories for which the single-plant

dataset exhibited very good gene function prediction performance

compared to the sampled SRA datasets. “C4 photosynthesis” on the

other hand scored very poorly in the single-plant dataset (Dataset

EV9 and Appendix Fig S14). We included this category in the litera-

ture validation effort to assess whether poor gene function predic-

tion performance for a biological process, as scored based on which

genes are already annotated to the process in GO, also entails that

newly predicted links between genes and the process under study

are of poor quality.

“Response to chitin” was among the best-scoring GO categories

in our assessment of the gene function prediction performance of

the single-plant dataset. Chitin is a main component of fungal cell

walls and insect exoskeletons (Fleet, 1991; Latg�e, 2007), and the

response to chitin is therefore closely related to the responses to

fungi and insects. For three out of the top-10 novel transcriptional

regulators predicted to be involved in the response to chitin

(Appendix Table S3), we found indirect evidence in literature in
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support of the predictions. ZmWRKY53 (GRMZM2G012724), on the

1st position in the ranking, was previously found to be involved in

the response of maize to Aspergillus flavus, a fungal pathogen that

affects maize kernel tissues and produces mycotoxins that are harm-

ful for humans and animals (Fountain et al, 2015). ZmWRKY53 was

found to be strongly upregulated in both a susceptible and a

resistant maize line upon inoculation of kernels with Aspergillus

flavus (Fountain et al, 2015). Its putative functional ortholog in

Arabidopsis thaliana, AtWRKY33, is known to regulate defense

response genes (Birkenbihl et al, 2012; Zheng et al, 2006), and its

putative functional orthologs in Triticum aestivum (TaWRKY53) and

Oryza sativa (OsWRKY53) have previously been suggested to
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Figure 5. Global gene function prediction performance.

A–D Panels (A) to (D) depict the gene function prediction performance of the single-plant network (solid line) and 500 sampled SRA networks (box-and-whisker plots)
averaged across all genes in a given network. Boxes extend from the 25th to the 75th percentile of the sampled networks, with the median indicated by the central
black line. Whiskers extend from each end of the box to the most extreme values within 1.5 times the interquartile range from the respective end. Data points
beyond this range are displayed as open black circles. Panels (A), (B), and (C), respectively, represent the recall, precision, and F-measure of the network-based gene
function predictions as a function of the prediction FDR threshold (q). Panel (D) depicts the number of gene functions predicted from each network (predicted
positives = true positives + false positives) as a function of the prediction FDR threshold. As multiple gene functions can be predicted per gene, the number of
predicted positives is generally higher than the number of genes.
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regulate several biotic and abiotic stress response genes, including

chitinases (Van Eck et al, 2014). Overexpression of OsWRKY53 was

also shown to increase the resistance of O. sativa to herbivory by

the brown planthopper Nilaparvata lugens (Hu et al, 2016). Another

WRKY TF in the top-10 list, ZmWRKY92 (GRMZM2G449681, rank

7), was previously found to be induced upon Fusarium verticillioides

inoculation of kernels in the ear rot-resistant maize inbred line BT-1

(Wang et al, 2016). Yet another WRKY TF, ZmWRKY14

(GRMZM2G091331, rank 8), is orthologous to AtWRKY15

(AT2G23320), a known chitin-responsive TF in A. thaliana (Libault

et al, 2007). Two other genes in the top-10 list are linked to defense

responses, but have not been linked specifically to the response to

chitin: GRMZM2G027958 (rank 6), a putative BRASSINOSTEROID

INSENSITIVE 1-associated receptor kinase whose A. thaliana

ortholog AT2G31880 (EVERSHED, EVR, SOBIR1, SUPPRESSOR OF

BIR1 1) regulates cell death and defense responses (Albert et al,

2015; Gao et al, 2009), and GRMZM2G106792 (rank 9), a gene

homologous to NDR1/HIN1-like genes in A. thaliana, most of which

are induced upon particular viral (Zheng et al, 2004) or bacterial

(Varet et al, 2002) infections.

The second GO category for which we screened literature is

“response to water deprivation”. Seven of the top-10 transcriptional

regulators predicted to be involved in drought stress responses, but

not annotated as such in GO, have previously been linked to

drought stress in other studies (Appendix Table S4). ZmXLG3b

(GRMZM2G429113, rank 1), encoding a guanine nucleotide-binding

protein predicted to be involved in the response to desiccation, was

previously found to be downregulated in the drought-tolerant

H082183 line but upregulated in the drought-susceptible maize line

Lv28 under severe drought stress versus control conditions (Zhang

Response to abiotic stimulus

Response to biotic stimulus
Response to hormone

Development

A

C D

B

Very good

Good

Average

Poor

Very poor

No info

cellular
response
to red or
far red
light

response
to red or
far red
light

detection
of light

stimulus

phototransduction

response
to light

intensity

response
to UV

response
to high
light

intensity

hyperosmotic
response

cellular
response

to salt
stress

red or
far-red
light

signaling
pathway

response
to salt
stress

response
to

desiccation
response
to flooding

response
to

humidity

response
to water

deprivation

response
to water

drought
recovery

de-etiolation

response
to light

stimulus

nonphotochemical
quenching

response
to osmotic

stress

response
to ionizing
radiation

photoperiodismresponse
to abiotic
stimulus

phototropism

photoprotection

response
to

radiation

response
to blue
light

response
to pH

response
to

non-ionic
osmotic
stress

cellular
response
to osmotic

stress

response
to karrikin

osmosensory
signaling
pathway

hypotonic
response

gravitropism
response
to gravity

response
to anoxia

response
to

decreased
oxygen
levels

response
to heat

thigmotropism

response
to hypoxia

response
to

temperature
stimulus

response
to cold

response
to oxygen

levels

response
to

mechanical
stimulus

response
to

ethylene

response
to

strigolactone

response
to peptide
hormone response

to
brassinosteroid

response
to steroid
hormone

response
to auxin

response
to

gibberellin

response
to

hormone

response
to abscisic

acid

response
to

jasmonic
acid

response
to

oxygen-containing
compound

response
to salicylic

acid

response
to

cytokinin

response
to

oomycetes

response
to

protozoan

response
to other

organism response
to fungus

response
to

symbiont

response
to

bacterium

response to
defenses
of other

organism
involved in
symbiotic
interaction

response
to insect

defense
response

to
bacterium

response
to

nematode

response
to

herbivoreresponse
to virus

response
to external
stimulus

response
to external

biotic
stimulus

response
to host

lateral
root

development

leaf
morphogenesis

root
development

leaf
pavement

cell
development

stipule
developmentleaf

development

leaf
senescence

adventitious
root

development

phyllome
development

post-embryonic
development

seed
dormancy
process

flower
development

de-etiolation

fruit
ripeningdevelopmental

process

abscissioncell
differentiation

floral
organ

senescence

seed
development

fruit
development

embryo
development

plant
organ

development

internode
patterning

anatomical
structure

development

shoot
system

development

Figure 6. Gene function prediction performance for specific GO categories.

A–D Panels (A) to (D) show the gene function prediction performance of the single-plant network versus sampled SRA networks for GO categories related to abiotic
stimulus responses, development, biotic stimulus responses, and hormone responses, respectively. Categories are shown in the context of the GO hierarchy and
colored according to how well the single-plant network performs in comparison with 500 sampled SRA networks (see Materials and Methods). Solid arrows
represent direct parent–child relationships in GO, and dashed arrows represent indirect relationships. Gray nodes depict untested GO categories. White nodes
depict GO categories for which there was insufficient information to score the performance of the single-plant network versus the sampled networks, i.e.,
categories for which the single-plant network and more than half of the sampled networks did not give rise to any predictions at q ≤ 1e-2.
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et al, 2017). Moreover, ZmXLG3b was identified as a candidate

drought stress response gene in a GWAS study on 300 inbred maize

lines, and its expression level was found to anticorrelate with

drought stress tolerance levels in four tested maize lines (Yuan et al,

2019). ZmMPK3-1 (GRMZM2G053987, rank 2), a mitogen-activated

protein kinase (MAPK), was previously found to be upregulated in

leaf and stem tissue upon drought stress in maize (Liu et al, 2015b).

Furthermore, the top-10 contains 3 bZIP and 2 NAC transcription

factors with drought stress-responsive expression profiles. In a

recent study (Cao et al, 2019), ZmbZIP111 (GRMZM2G073427, rank

3) was found to show decreased expression under polyethylene

glycol (PEG)-induced drought stress and a sharp increase in expres-

sion upon rewatering, and ZmbZIP9 (GRMZM2G092137, rank 5)

was found to exhibit the opposite behavior. Similarly, ZmNACTF77

(AC196475.3_FG005, rank 9) was found to show increased expres-

sion under PEG-induced drought stress and a sharp decrease in

expression upon rewatering, while ZmNACTF53 (GRMZM2G059428,

rank 4) was found to show a temporary sharp decrease in expres-

sion under PEG-induced drought stress (Wang et al, 2020). Expres-

sion of ZmbZIP60 (GRMZM2G025812, rank 8) was also found to be

rapidly and strongly induced by dehydration (Wang et al, 2012).

Finally, we screened literature for the top-10 regulators predicted

to be involved in C4 photosynthesis (Appendix Table S5). Surpris-

ingly, the single-plant dataset performed very poorly for the light-

associated GO categories “photosynthesis” and “C4 photosynthesis”

(Dataset EV9 and Appendix Fig S14), even though several “response

to light stimulus” subcategories scored very well (Fig 6A) and

though our clustering analyses revealed several (bi)clusters heavily

enriched in photosynthesis genes (see Dataset EV7). The perfor-

mance plots show that the very poor function prediction perfor-

mance for photosynthesis categories is due to the single-plant

predictions having a very low precision compared to the predictions

from the sampled SRA datasets, while the number of predictions

made by the single-plant data and their recall are comparatively

very high (Appendix Fig S14). As argued above, recall values may

be more indicative for the quality of gene function predictions than

precision values, given the incompleteness of the maize GO annota-

tion we use as a reference. If this is the case, genes that are

predicted with high confidence to be involved in C4 photosynthesis

but were scored as false positives by GO may still offer valuable

leads. Indeed, we found evidence in literature linking four of the

top-10 predicted regulators to C4 photosynthesis. ZmCSP41A

(GRMZM2G111216, rank 1), a highly conserved sequence-specific

chloroplast mRNA binding protein and unspecific endoribonuclease,

was previously found to be more highly expressed in bundle sheet

chloroplasts than in mesophyll chloroplasts (Friso et al, 2010). In

the genus Flaveria, which contains C3 and C4 species as well as

intermediates, a homolog of ZmCSP41A was found to be downregu-

lated in leaves of C4 species compared to C3 species (Gowik et al,

2011). Transcripts of ZmCRB (GRMZM2G165655, rank 2) also accu-

mulate preferentially in bundle sheet cells and are known to stabi-

lize several chloroplast transcripts, e.g., for photosystem I and II

components (John et al, 2014). ZmbHLH32 (GRMZM2G180406,

rank 7) is orthologous to A. thaliana CRYPTOCHROME INTER-

ACTING BASIC-HELIX-LOOP-HELIX (CIB) genes, known to regulate

photosynthesis, and ZmbHLH32 transcripts have been shown to

preferentially accumulate in bundle sheath cells, while transcripts of

other maize CIB orthologs preferentially accumulate in mesophyll

cells (Hendron & Kelly, 2020). ZmSIG5 (GRMZM2G543629, rank 8)

encodes a plastid sigma factor. Several homologous sigma factors in

the Flaveria and Cleome genera were found to be upregulated in

leaves of C4 species compared to C3 species (Gowik et al, 2011).

Furthermore, two genes in the top-10 have known roles in chloro-

phyll biosynthesis but no specific link to C4 photosynthesis in litera-

ture: GRMZM2G027640 (rank 9), orthologous to the A. thaliana

light-harvesting-like genes AT4G17600 and AT5G47110 (Tanaka

et al, 2010), and ZmELM2 (GRMZM2G101004, rank 10), a heme

oxygenase (Shi et al, 2013). In total, seven of the top-10 genes are

known to be chloroplast-localized (GRMZM2G111216,

GRMZM2G165655, GRMZM2G074393, GRMZM2G543629,

GRMZM2G027640, GRMZM2G101004) or light-responsive

(GRMZM2G158662), increasing the likelihood that they are involved

in processes related to C4 photosynthesis.

Predicting phenotypic traits of individual plants from leaf
transcriptome and metabolome data

We investigated to what extent the transcriptome and metabolome

data generated on the individual plants can predict individual plant

phenotypes. First, we performed spatially corrected correlation anal-

yses (see Materials and Methods) to identify transcripts and metabo-

lites that show a significant linear association with a given

phenotype (Datasets EV11 and EV12). Some of the most interesting

transcript–phenotype correlations are briefly discussed below, with

homolog or ortholog information derived from the PLAZA database

v:4.5 (Van Bel et al, 2018). The interpretation of significantly corre-

lated metabolites is less straightforward however, as most metabo-

lites with significant phenotype correlations have not been identified.

41 genes and 161 metabolites exhibit an expression profile that is

significantly correlated (q ≤ 0.05) with leaf 16 blade length.

Notably, the set of significantly negatively correlated genes contains

six known or suspected flower development genes:

GRMZM2G103666 (ZmZCN12) and GRMZM2G051338 (ZmZCN15),

both phosphatidylethanolamine-binding proteins orthologous to

FLOWERING LOCUS T (FT) in A. thaliana; GRMZM2G032339

(ZmAGL8), an Agamous-like MADS-box gene; GRMZM2G148693

(ZmZAP1) and GRMZM2G553379 (ZmZMM15), both MADS-box

genes homologous to the A. thaliana gene APETALA1; and

GRMZM2G116658 (ZmOCL3), a HD-ZipIV homeodomain gene pref-

erentially expressed in the epidermis of reproductive structures and

to a lesser extent leaves (Javelle et al, 2011). All of these genes

except ZmOCL3 are in the top-10 of genes most correlated to leaf 16

blade length. The top correlated gene, ZmZAP1, was previously

found in QTL and GWA studies as a candidate gene associated with

ear length (Xue et al, 2016), ear height (Vanous et al, 2018), tassel

length (Wang et al, 2018), and flowering time (Wallace et al, 2016),

and it has been implicated in maize domestication, in particular for

temperate maize lines, in which its expression is downregulated

(Liu et al, 2015a).

274 transcript and 133 metabolite profiles are significantly corre-

lated with leaf 16 blade width. Notably, the set of significantly nega-

tively correlated genes again contains ZmZCN15, ZmAGL8,

ZmZAP1, ZmZMM15, and ZmOCL3, and two other known or

suspected leaf and flower development genes: GRMZM2G118063

(ZmHDZIV10), a HD-ZipIV homeodomain gene homologous to

ZmOCL3 (Javelle et al, 2011), and GRMZM2G019317, a LRR
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receptor-like kinase orthologous to SOMATIC EMBRYOGENESIS

RECEPTOR-LIKE KINASEs (SERKs) in A. thaliana.

583 genes and 241 metabolites have an expression profile that

correlates significantly with husk leaf length. The set of genes

whose expression in mature leaf 16 tissue negatively correlates with

husk leaf length (q ≤ 0.05, R2 > 0.2) is enriched in leaf and flower

development genes and defense response genes (q ≤ 0.05, Dataset

EV11). Next to the flowering genes ZmZCN15, ZmAGL8, ZmZAP1,

ZmZMM15, ZmOCL3, ZmHDZIV10, and GRMZM2G019317 that are

also found to correlate with leaf 16 blade length or width, the set of

putative flowering genes negatively correlated with husk leaf length

contains two auxin response factors, GRMZM2G475882 (ZmARF8)

and GRMZM2G116557 (ZmARF2) and one additional MADS-box

gene, GRMZM2G059102 (ZmZMM20). The set of genes that posi-

tively correlate to husk leaf length (q ≤ 0.05, R2 > 0.2) is enriched

in genes involved in, e.g., the response to oxidative stress, salt

stress, and UV stress, and also contains the MADS-box gene

GRMZM2G171365 (ZmSOC1) that was identified in the spatial auto-

correlation analysis above as part of a gene cluster correlated with

ear length.

118 genes and 74 metabolites exhibit an expression profile in

mature leaf 16 tissue that is significantly correlated with ear length

at q ≤ 0.05. No significant GO biological process enrichments were

found among positively or negatively correlated genes, but ZmSOC1

is also identified in this analysis as positively correlated with ear

length (Dataset EV11). Interestingly, none of the other flowering

genes identified as negatively correlated with leaf 16 blade length,

width, or husk leaf length is significantly associated with ear length.

Latsly, 84 genes and 76 metabolites exhibited an expression pro-

file in leaf 16 that is significantly correlated with plant height at

q ≤ 0.05. No significant GO enrichments were found, but interest-

ingly, three of the top-5 of most correlated genes code for transcrip-

tion factors, among which the photoperiodically regulated

transcription factor GRMZM2G107101 (ZmGI1, GIGANTEA1).

ZmGI1 mutants were found to exhibit early vegetative phase change

and early flowering phenotypes under field conditions, and to grow

taller than non-mutant plants (Bendix et al, 2013). Fittingly,

GRMZM2G107101 expression is negatively correlated with plant

height in our dataset (Dataset EV11).

The phenotypes of the individual plants can be predicted by the

expression patterns of single genes in the leaf 16 blade with maxi-

mum R2 scores ranging from 0.407 (for husk leaf length) to 0.292

(for plant height and blade width, Dataset EV11). We investigated

whether combinations of genes or metabolites, or both, could lead

to a better prediction performance. Elastic net and random forest

techniques were used to construct models predicting the phenotypes

of individual plants as a function of the transcript and metabolite

levels in the harvested leaf samples (see Materials and Methods).

Elastic net (e-net) regression is a shrinkage method that is generally

well suited for use on high-dimensional datasets (Zou & Hastie,

2005). Its combination of the L1 and L2 penalties of its relatives

lasso and ridge regression, respectively, makes e-net regression

capable of selecting groups of correlated features (transcripts,

metabolites) as predictors. Rather than selecting one representative

feature from each group (as in lasso regression), e-nets can select

multiple correlated features (as in ridge regression) while still

setting the regression coefficients of irrelevant features to zero. This

makes the resulting models more biologically interpretable. Random

forest regression (Breiman, 2001) was used in addition because this

technique can account for some types of interaction effects between

features and is fairly robust to overfitting.

Both types of models were learned for each phenotype using

either the transcript levels, the metabolite levels, or both as features

(see Table 2 and Datasets EV13-EV16), each time using a 10-fold

nested cross-validation strategy (see Materials and Methods). Tran-

script-based models were additionally run with only a predefined

selection of regulatory transcripts as features (see Materials and

Methods). The performance of the models was evaluated in two

ways: by pooling the predictions for the test sets in each of the 10

folds into one dataset and computing the combined “out-of-bag”

(oob) R2 (pooled R2), and by computing the oob R2 on each test fold

individually and taking the median (median R2, see Materials and

Methods). For all models, 500 datasets with permuted phenotype

data were used to compute an empirical P-value that reflects

whether the R2 score of the model is significantly higher than the R2

scores of models learned on randomized data (see Materials and

Methods and Table 2).

Based on the oob R2 scores, blade width and husk leaf length are

the phenotypes that are best predictable from the transcriptome and

metabolome data, followed by blade length (Table 2 and Fig 7A–F).
The transcriptome- and metabolome-based e-net models for leaf 16

blade width reached pooled R2 scores of 0.490 and 0.648, respec-

tively, whereas the R2 values for the best-correlated single gene and

metabolite are only 0.292 (Dataset EV11) and 0.350 (Dataset EV12),

respectively. This indicates that the multi-feature models for blade

width perform substantially better than single-feature models. The

performance difference is likely even higher than suggested by the

R2 difference, as single-feature models have an advantage in this

comparison: multi-gene model R2 values are based on test data while

single-gene model R2 values are based on training data. For husk leaf

length and blade length, however, the multi-feature models yield R2

scores that are merely comparable to those of the best single-feature

models, indicating that only a few genes genuinely contribute to

model performance, while inclusion of others in the models leads to

data overfitting. The limited data available for model training versus

the large number of model features are definitely a factor here (60

and 50 datapoints versus 18,171 and 592 features for transcriptome-

and metabolome-based models, respectively).

Ear length and in particular plant height are considerably less

predictable than the leaf phenotypes (Table 2 and Fig 7G and H).

While all of the models for ear length still reach significant oob R2

scores, most of the models for plant height perform no better than

random, and in most cases negative R2 scores are obtained. Tell-

ingly, the multi-feature model oob R2 scores for plant height are

much lower than the best single-feature (gene or metabolite) R2

scores (Datasets EV11 and EV12), suggesting that the multi-feature

models severely overfit the training data.

These results suggest that predicting phenotypes at the time of

sampling gets more difficult as phenotypes become more distantly

related to the sampled material (see also Discussion). That the leaf

16-related phenotypes can be predicted better than ear length or

plant height is not surprising, as the transcriptome and metabolome

data were generated on mature leaf 16 blade tissue. Similarly, husk

leaf length is more closely related to the profiled plant material in

terms of tissue type than ear length or plant height, which may help

explain why it is better predictable.
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For leaf 16 blade width and husk leaf length, the models learned

on metabolome data outperform those learned on transcriptome

data, despite the fact that they were trained on less data (see Table 2

and Materials and Methods). On the other hand, the feature space

of the transcriptome models is much larger than that of the metabo-

lome models (18,171 transcripts versus 592 metabolites), which

increases the risk of overfitting for the transcriptome models and

may lead to reduced oob R2 scores. Furthermore, for ear length both

types of models perform similarly, while for blade length the meta-

bolome models exhibit much lower median R2 values than the

transcriptome models. It is in other words difficult to establish

whether transcripts or metabolites are better predictors. Surpris-

ingly, the models learned on both data sources combined did not

outperform the models learned on the transcriptome or metabolome

data separately. This suggests that most of the relevant phenotype

information is redundantly present in both data types. Interestingly,

the models learned on the transcriptome data using only the tran-

script levels of regulatory genes as features performed generally on

par with the overall transcriptome models and in terms of median

R2 values most often slightly better (Table 2). This indicates that

Table 2. Performance of e-net and random forest models for trait prediction

Trait Transcripts Regulators Metabolites Both

Pooled R2

Blade 16 length Elastic Net 0.315 (0.002) 0.313 (0.002) 0.359 (0.002) 0.305 (0.002)

Random Forest 0.314 (0.002) 0.421 (0.002) 0.308 (0.002) 0.323 (0.002)

Blade 16 width Elastic Net 0.490 (0.002) 0.459 (0.002) 0.648 (0.002) 0.642 (0.002)

Random Forest 0.334 (0.002) 0.272 (0.002) 0.496 (0.002) 0.419 (0.002)

Husk Leaf length Elastic Net 0.458 (0.002) 0.415 (0.002) 0.509 (0.002) 0.476 (0.002)

Random Forest 0.258 (0.002) 0.340 (0.002) 0.555 (0.002) 0.450 (0.002)

Ear length Elastic Net 0.235 (0.002) 0.126 (0.006) 0.208 (0.002) 0.279 (0.002)

Random Forest 0.100 (0.006) 0.065 (0.018) 0.287 (0.002) 0.131 (0.004)

Plant height Elastic Net 0.058 (0.010) 0.026 (0.022) −0.086 (0.681) −0.048 (0.327)

Random Forest −0.015 (0.146) 0.039 (0.030) 0.018 (0.062) −0.012 (0.116)

Median R2

Blade 16 length Elastic Net 0.243 (0.002) 0.322 (0.002) 0.079 (0.002) −0.060 (0.088)

Random Forest 0.381 (0.002) 0.473 (0.002) 0.031 (0.012) 0.017 (0.016)

Blade 16 width Elastic Net 0.408 (0.002) 0.232 (0.002) 0.668 (0.002) 0.537 (0.002)

Random Forest 0.270 (0.002) 0.321 (0.002) 0.434 (0.002) 0.292 (0.002)

Husk leaf length Elastic Net 0.404 (0.002) 0.435 (0.002) 0.449 (0.002) 0.443 (0.002)

Random Forest 0.198 (0.002) 0.233 (0.002) 0.463 (0.002) 0.446 (0.002)

Ear length Elastic Net 0.376 (0.002) 0.085 (0.002) 0.370 (0.002) 0.187 (0.004)

Random Forest 0.009 (0.016) −0.051 (0.044) 0.312 (0.002) 0.123 (0.002)

Plant height Elastic Net −0.037 (0.048) −0.291 (0.824) −0.166 (0.399) −0.106 (0.206)

Random Forest −0.391 (0.858) −0.323 (0.762) −0.249 (0.467) −0.081 (0.074)

PCC

Blade 16 length Elastic Net 0.587 (0.002) 0.600 (0.002) 0.603 (0.002) 0.562 (0.002)

Random Forest 0.606 (0.002) 0.665 (0.002) 0.566 (0.002) 0.603 (0.002)

Blade 16 width Elastic Net 0.717 (0.002) 0.700 (0.002) 0.805 (0.002) 0.812 (0.002)

Random Forest 0.647 (0.002) 0.559 (0.002) 0.753 (0.002) 0.771 (0.002)

Husk leaf length Elastic Net 0.677 (0.002) 0.644 (0.002) 0.718 (0.002) 0.690 (0.002)

Random Forest 0.568 (0.002) 0.625 (0.002) 0.757 (0.002) 0.730 (0.002)

Ear length Elastic Net 0.503 (0.002) 0.385 (0.004) 0.463 (0.004) 0.535 (0.002)

Random Forest 0.317 (0.006) 0.265 (0.016) 0.542 (0.002) 0.372 (0.004)

Plant height Elastic Net 0.268 (0.014) 0.250 (0.012) −0.016 (0.122) −0.135 (0.224)

Random Forest 0.115 (0.106) 0.212 (0.030) 0.172 (0.060) 0.110 (0.098)

Three different sections of the table show the pooled R2, median R2, and Pearson correlation (PCC) measures for the prediction performance of the models
learned for all traits using all transcripts (Transcripts), only regulatory transcripts (Regulators), all metabolites (Metabolites), and both transcripts and metabolites
(Both) as features. Numbers between parentheses indicate P-values for the performance values obtained, derived from permutation tests.
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using the expression levels of regulatory genes as features may be

sufficient to obtain adequate phenotype predictors, with the advan-

tage that the predictors obtained may be more interpretable from a

mechanistic perspective.

We took a closer look at the regulator-based models for leaf 16

blade length and width and for husk leaf length (Datasets EV13-EV15).

We focused on the random forest models, as the mean decrease in

impurity (MDI) values derived from these models are more inter-

pretable as feature importance statistics than the regularized regression

coefficients produced by e-net models. For blade length, two genes

have a median MDI score above 0.05 (Dataset EV13):

GRMZM2G051338 (ZmZCN15, median MDI = 0.234) and

GRMZM2G148693 (ZmZAP1, median MDI = 0.158). Both genes are

found in the top-3 of genes that are most significantly anticorrelated

with blade length (Dataset EV11), and both are related to flowering

(see above). The next genes in the list have substantially lower median

MDI scores, and only 5 genes have a median MDI score above 0.01.

Also for blade width, two genes have a median MDI score above

0.05, but the scores are notably lower than for blade length and

more genes (10) have a median MDI score > 0.01 (Dataset EV14).

The top-2 blade width regulators with median MDI > 0.05 are

GRMZM2G109987 (ZmRLD1, ROLLED LEAF1, median MDI =
0.0536) and GRMZM2G148693 (ZmZAP1, median MDI = 0.0511).

ZmRLD1 codes for a homeobox-leucine zipper transcription factor

involved in establishing abaxial-adaxial leaf polarity (Nelson et al,

2002). In the semi-dominant Rld1 mutant, abaxial-adaxial leaf polar-

ity is partially reversed and the leaf blade is transversally rolled

inward (Nelson et al, 2002). Interestingly, the regulator with the

highest elastic net importance, GRMZM2G023625, also has a link to

leaf curling. GRMZM2G023625 is a putative HIRA histone chaper-

one, whose only A. thaliana homolog AT3G44530 (AtHIRA) is

known to be involved in knox gene silencing during leaf develop-

ment. Reduced HIRA expression levels in A. thaliana give rise to

transversally curled leaves with shorter petioles and often lobes in

the proximal region of the blade (Phelps-Durr et al, 2005).

For husk leaf length, again two regulatory genes have a median

MDI score > 0.05, and 12 genes have a score > 0.01 (Dataset

EV15). The top-2 genes are GRMZM2G475014 (ZmNACTF50) and

GRMZM2G051338 (ZmZCN15). ZmNACTF50 encodes a NAC (No

Apical Meristem) transcription factor and is orthologous to

AT2G43000 (JUNGBRUNNEN 1, AtJUB1) in A. thaliana, whose over-

expression is known to delay leaf senescence and enhance abiotic

stress tolerance (Wu et al, 2012). ZmNACTF50 expression is posi-

tively correlated with husk leaf length.

SNPs in the RNA-seq data have no predictive power for individual
plant phenotypes

After establishing that the variability in transcript and metabolite

levels among individual maize plants can be used to predict gene

functions and individual plant phenotypes, the question remains to

what extent this variability is caused by genetic differences between

plants rather than micro-environmental or stochastic differences.

Indeed, despite the fact that all plants are from the same inbred line

(B104), they still harbor a substantial amount of genetic differences

due to somatic and germline mutations and incomplete inbreeding

(Appendix Table S6). A GWAS analysis using as features 10,311

biallelic SNPs with minor allele frequency (MAF) ≥ 0.05 after miss-

ing data imputation (see Materials and Methods) did not uncover

any reliable evidence linking SNPs to phenotypic differences

(Appendix Fig S15). A single SNP, which is not associated with a

known gene, was found to surpass the significance threshold (Bon-

ferroni-corrected P ≤ 0.01) for ear length, but the corresponding

quantile–quantile (Q-Q) plot displays abnormalities indicating that

this result is likely unreliable (Appendix Fig S15). Given that our

dataset contains a low number of samples from the same inbred line

and that we can only detect SNPs in the coding and UTR regions of

genes from the RNA-seq data, it is far from ideal for GWAS analy-

ses. Nevertheless, the results indicate that the SNPs in the profiled

population do not have a major effect on the measured phenotypes.

To confirm this, we also used a subset of 5,007 informative and

non-redundant SNPs as features in random forest and e-net models

for the phenotypes (see Materials and Methods). None of these

models reached a positive oob R2 score (Appendix Table S7), again

indicating that the SNPs in the plant population do not significantly

influence the phenotypes. Note that the SNPs differentiating the two

plant subpopulations are not expected to feature in these models, as

the effects of the SNPs concerned have already been removed from

the phenotype data during preprocessing. However, the LME models

used for SNP effect removal indicate that also this set of SNPs does

not significantly influence the measured phenotypes

(Appendix Table S1).

Discussion

In this study, we molecularly and phenotypically profiled 60 individ-

ual maize plants of the same inbred line (B104) grown in the same

field. Our purpose was to investigate how much information can be

extracted from this simple experimental design on the function of

genes, and on how gene and metabolite expression relates to plant

phenotypes. Although one may expect that this design should yield

datasets with a low information content, due to the very limited

genetic and environmental variability employed, substantial vari-

ability was found in the transcriptomes, metabolomes, and pheno-

types of the individual plants. Genes involved in processes such as

photosynthesis and stress responses were found to be more variably

expressed across the field than housekeeping genes involved in,

e.g., RNA and protein metabolism, and the expression patterns of

14.2% of the transcripts and 8.11% of the metabolites profiled

▸Figure 7. Predictive models for leaf 16 blade length and width, husk leaf length and ear length.

A–H Graphs plotting predicted versus measured phenotypes are shown for the best-performing whole-transcriptome and metabolome models for each phenotype,
based on the pooled R2 scores in Table 2. (A) Transcriptome e-net model for leaf 16 blade length, (B) metabolome e-net model for leaf 16 blade length, (C)
transcriptome e-net model for leaf 16 blade width, (D) metabolome e-net model for leaf 16 blade width, (E) transcriptome e-net model for husk leaf length, (F)
metabolome random forest model for husk leaf length, (G) transcriptome e-net model for ear length, (H) metabolome random forest model for ear length. The dot
colors represent different outer cross-validation folds. Perfect predictions are located on the diagonal line in each panel.

◀
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exhibited significant spatial patterning, indicating that the variability

uncovered is not merely random noise.

We used the single-plant dataset to predict the function of maize

genes from the function of their co-expression network neighbors

(“guilt-by-association”), and found that field-grown single-plant

transcriptomes overall have higher gene function prediction power

than traditional transcriptome datasets profiling pooled plant

responses to controlled perturbations in a laboratory. We also found

that the single-plant dataset has higher function prediction power

than transcriptome data generated on a maize diversity panel

(Kremling et al, 2018). Furthermore, the single-plant dataset was

found to outperform the controlled perturbation datasets for several

processes that were likely variably active in the field setting used, in

particular abiotic stress responses. This suggests that datasets in

which processes are perturbed more subtly around a common base-

line may hold an advantage for unraveling gene functions. One of

the issues with harsher perturbations is that their effects may propa-

gate further in the cellular networks, and essentially swamp more

subtle variations in other, sideways associated processes, decreasing

the information content of the resulting data. Pooling samples,

although enhancing experimental reproducibility, may similarly

decrease the data information content by smoothing out subtle vari-

ations across samples.

Comparable results were obtained in an earlier study on individ-

ual laboratory-grown A. thaliana plants (Bhosale et al, 2013). One

notable difference with the Arabidopsis results however is that the

maize single-plant dataset performs better at predicting gene func-

tions at higher (less stringent) q-value thresholds, whereas it

performs worse at lower q-value thresholds (using the performance

of traditional treatment/control transcriptome datasets as a base-

line). The opposite trend was observed in Arabidopsis (Bhosale

et al, 2013). This is because, taking the precision of predictions from

the traditional datasets as a baseline for both species, a dispropor-

tionately large fraction of the high-confidence predictions emerging

from the maize single-plant dataset are not supported by existing

maize gene function annotations. The reason for this is unclear. One

difference between both studies is that the individual A. thaliana

plants were grown in the laboratory, as were the pooled samples

they were compared to, while in the present study we use field-

generated data for the individual maize plants. Laboratory- versus

field-based data generation can however not fully explain the

observed precision trend differences, as a decreasing relative preci-

sion trend is also observed when comparing the performance of our

maize single-plant dataset to that of the sampled diversity panel

datasets, for which mature leaf samples were also harvested in the

field (Fig EV5). What makes the maize single-plant dataset unique

however is that it was generated under fully uncontrolled condi-

tions, whereas for all other datasets some form of deliberate control

or treatment was applied. All A. thaliana datasets were generated

under controlled laboratory conditions, which may have influenced

the nature of the data, even for the A. thaliana single-plant dataset

where no differential treatments were performed. Both the maize

SRA datasets and the maize diversity panel data on the other hand

contain major “treatment” factors (controlled treatments or genetic

diversity, respectively), which may again lead to a different kind of

data than profiling untreated individual plants under uncontrolled

conditions. We therefore speculate that profiling individual plants of

the same line under uncontrolled field conditions may lead to

information about gene function that is complementary to the infor-

mation gathered from traditional controlled experiments. This may

help explain why our single-plant dataset produces high-confidence

predictions that are less closely aligned with known gene function

annotations, as most of these were derived directly or indirectly (in-

ferred by orthology) from controlled experiments. Confirming the

potential value of the novel “false-positive” predictions generated

by our field dataset, we found indirect evidence in literature in

support of more than 45% of the top-10 novel regulator predictions

obtained for C4 photosynthesis, the response to chitin and the

response to water deprivation.

Our results indicate that profiling individual plants in the field

may also be useful to identify genes that influence plant phenotypes

under field conditions. We used machine learning models to quanti-

tatively predict phenotypes of individual plants based on leaf gene

expression and metabolome data, and found that leaf phenotypes

could be predicted reasonably well, in particular the blade width of

leaf 16 (max. median oob R2 score = 0.668 for metabolite e-net

model, corresponding Pearson correlation (PCC) between predicted

and observed values = 0.805, Table 2). This is fairly remarkable

given that the models were learned on data for only 50 or 60 plants.

Transcript- and metabolite-based prediction models for leaf pheno-

types reached PCC scores in the range 0.57–0.72 and 0.57–0.81,
respectively. For comparison, a recent study in which maize pheno-

types were predicted from genetic marker and transcriptome data

for 388 different maize lines reported maximum PCC values of 0.56

to 0.66 between predicted and measured phenotypes when using

both genetic markers and transcript levels as features, and maxi-

mum PCC values of 0.51 to 0.61 when using only transcript levels

as features (Azodi et al, 2020). An important difference however is

that the Azodi et al (2020) study predicted mature plant phenotypes

(final plant height, final yield, flowering time) from seedling data,

whereas we predicted actively developing phenotypes from contem-

porarily profiled leaf transcriptome data. Whereas we could gener-

ate decent predictive models for phenotypes that were closely

related to the plant material that was molecularly profiled (length

and width of the ear leaf blade and length of the developing husk

leaf), models learned for more distant phenotypes such as ear length

and especially plant height at sampling time performed worse. This

discrepancy between the Azodi et al (2020) study and ours suggests

that intermediate phenotypes may be inherently less predictable

than final phenotypes, unless the plant material profiled is directly

associated with the phenotype under study. Follow-up experiments

will be necessary to assess whether individual plant datasets can be

used as efficiently as genomic prediction datasets (Azodi et al, 2020)

for predicting final plant phenotypes from molecular data profiled at

an earlier developmental stage.

Together, our results show that profiling individual plants in the

field is a promising addition to the toolbox we have at our disposal

to study the molecular wiring of plants and relationships between

genes and phenotypes, in particular in a field context. More steps

will have to be taken however to realize the full potential of this

new experimental design. A major bottleneck in all transcriptome

profiling-based strategies to associate genes with phenotypes, not

only the single-plant setup but also TWAS and classical systems

biology strategies, is that the models they produce are correlational

rather than causal in nature. A shift to more causal modeling

approaches is direly needed, but not straightforward, as causal
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inference from the high-dimensional datasets generated by tran-

scriptome profiling, which are frequently observational in nature

and contain lots of hidden variables and confounders, is notoriously

difficult. Profiling additional data layers in the single-plant setup,

such as micro-environmental variables, may further improve model-

ing performance and enhance causal interpretability.

Up to now, we only profiled a limited amount of plants of one

cultivar in one season and field environment. It remains to be seen

to what extent the resulting models can be generalized to other

cultivars and growth environments. The fact that the single-plant

setup only profiles one specific cultivar at a time may be seen as a

disadvantage with respect to the classical TWAS setup, in which

multiple cultivars are modeled simultaneously. On the other hand,

as the phenotypic effects of expression variants often depend on the

genetic background (epistasis) and environment in which they are

introduced, it might in fact make sense to study the molecular

wiring of a trait in a specific cultivar and environment before

attempting generalizations to other cultivars or growth environ-

ments, in particular for plant species with large pan-genomes such

as maize (Gore et al, 2009; Hirsch et al, 2014; Lu et al, 2015). The

single-plant setup might, for instance, be used for studying an elite

cultivar directly in a target field environment in which yield or stress

tolerance improvements are desired.

More generally, the concept of profiling individuals may also be

useful for unraveling gene networks and linking genes to pheno-

types in other organisms. This is in fact already done regularly for

humans, where performing biological repeats on pools of inbred

individuals is not possible. For most other multicellular model

organisms, the level of individuals appears to have been skipped,

and molecular profiling efforts have moved straight from profiling

pools of individuals in three replicates to profiling single cells. We

therefore advocate a reappraisal of the level of individuals in

systems biology studies.

Materials and Methods

Field trial setup, sampling, and phenotyping

During the summer of 2015, 560 B104 maize inbred plants were

grown under “uncontrolled” field conditions at a site in Zwijnaarde,

Belgium (51°00035.2"N, 3°42056.5"E) with a sowing density of

133,333 plants per hectare. Plants were sown by hand in ten adja-

cent rows of 5.6 m length, 75 cm apart, and each containing 56

maize B104 plants. To the North and West of the B104 plants, the

commercial hybrid “Ricardino” was sown, while to the East, more

B104 plants were grown and to the South, other hybrids and recom-

binant inbred lines were grown, separated from the B104 plants by

a 2.5 m-wide path (Fig 1A).

In total, 200 non-border plants that exhibited a primary ear at

leaf 16 were harvested at the VT (tasseling) stage. Since not all

plants reached this stage at the same time, plants were harvested on

two different dates, 2015-08-25 (164 plants) and 2015-09-02 (36

plants). On each of these days, harvesting and sampling occurred

from 10 am until noon. Damaged plants were discarded to avoid

outliers in the data. The position in the field was recorded for the

harvested plants, and plant height was measured from the plant

base to the collar of the top leaf. The primary ear leaf (leaf 16) of

each selected plant was cut off at the ligule. Leaf 16 blade length

was measured from the ligule to the tip of the leaf, while leaf 16

blade width was measured in the middle between the ligule and the

leaf tip. For molecular data generation, a 10 cm-long part of the leaf

was cut from the middle of the leaf 16 blade, the midrib was

removed (to avoid detection of exogenous metabolites during untar-

geted metabolite profiling), and the resulting mature leaf samples

were stored in liquid nitrogen on the field. Primary ears were also

cut off from the plants, and the length of the ears and husk leaves

(from base to tip) was measured on the field.

RNA-sequencing

Sixty of the 200 leaf samples for individual plants were randomly

selected for RNA-sequencing. Total RNA was isolated with the

guanidinium thiocyanate–phenol–chloroform extraction method

using TRI Reagent (Sigma-Aldrich). Total RNA was sent to GATC

Biotech for RNA-sequencing. Library preparation was done using

the NEBNext Kit (Illumina). In brief, purified poly(A)-containing

mRNA molecules were fragmented, randomly primed strand-specific

cDNA was generated, and adapters were ligated. After quality

control using an Advanced Analytical Technologies Fragment

Analyzer, clusters were generated through amplification using cBOT

(Cluster Kit v4, Illumina), followed by sequencing on an Illumina

HiSeq2500 with the TruSeq SBS Kit v3 (Illumina). Sequencing was

performed in paired-end mode with a read length of 125 bp, in two

batches (see Dataset EV1).

The raw RNA-seq data were processed using a custom Galaxy

pipeline (Goecks et al, 2010) implementing the following steps.

First, the fastq files were quality-checked using FastQC (v:0.5.1)

(Andrews, 2010). Next, Trimmomatic (v:0.32.1) (Bolger et al, 2014)

was used to remove adapters, read fragments with average quality

below 10 and trimmed reads shorter than 20 base pairs. The

trimmed and filtered reads were mapped to the Zea mays B73 refer-

ence genome AGPv3.31 (ftp://ftp.ensemblgenomes.org/pub/plants/

release-31/fasta/zea_mays/dna/) (Schnable et al, 2009) using

GSNAP v:2013-06-27 (Wu & Nacu, 2010). A k-mer size of 12 was

used, the “local novel splicing event” parameter was set to 50,000,

and default values were used for the rest of the parameters. The

option for splitting the bam files into unique and multiple align-

ments was activated, and only the uniquely mapping reads were

kept for the following analyses. The mapping files were quantified

using HTSeq v:0.6.1p1 (Anders et al, 2015) with the option “Inter-

section-strict” and using the Zea mays B73 genome annotation build

AGPv3.31 (ftp://ftp.ensemblgenomes.org/pub/plants/release-31/gff

3/zea_mays/). The resulting raw counts were filtered to only keep

genes with at least 5 counts per million in at least 1 sample. Then,

raw counts were divided by size factors calculated by DEseq2

(v:1.14.1) (Love et al, 2014), resulting in library size-corrected gene

expression values for 18,171 genes across 60 plants. Pseudocounts

of 0.5δ, with δ the smallest non-zero value in the normalized

expression matrix, were added to all gene expression values. The

resulting expression matrix was log2-transformed.

Metabolome profiling

Fifty of the 60 leaf samples selected for RNA-sequencing were addi-

tionally metabolome-profiled. For metabolome analysis, 100 mg of
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frozen, grinded mature leaf 16 material for the selected maize plants

was sent to Metabolon Inc. (Durham, NC, USA). Sample extracts

were prepared using the automated MicroLab STAR® system from

Hamilton Company and divided into five fractions. Samples were

normalized based on dry weight and further processed and analyzed

by Metabolon for untargeted metabolic profiling involving a combi-

nation of four independent approaches: two separate reverse phase

(RP)/UPLC-MS/MS analyses with positive ion mode electrospray

ionization (ESI), RP/UPLC-MS/MS analysis with negative ion mode

ESI and HILIC/UPLC-MS/MS analysis with negative ion mode ESI.

All methods utilized a Waters ACQUITY ultra-performance liquid

chromatographer (UPLC) and a Thermo Scientific Q-Exactive high

resolution/accuracy mass spectrometer interfaced with a heated

electrospray ionization (HESI-II) source and an Orbitrap mass

analyzer operated at a mass resolution of 35,000. Sample extracts

were dried and then reconstituted in solvents compatible to each of

the four methods. Each reconstitution solvent contained a series of

standards at fixed concentrations to ensure injection and chromato-

graphic consistency. One aliquot was analyzed using acidic positive

ion conditions, chromatographically optimized for more hydrophilic

compounds. In this method, the extract was gradient eluted from a

C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using

water and methanol, containing 0.05% perfluoropentanoic acid

(PFPA) and 0.1% formic acid (FA). Another aliquot was analyzed

using acidic positive ion conditions, chromatographically optimized

for more hydrophobic compounds. In this method, the extract was

gradient eluted from the same aforementioned C18 column using

methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was

operated at an overall higher organic content. Another aliquot was

analyzed using basic negative ion optimized conditions using a

separate dedicated C18 column. The basic extracts were gradient

eluted from the column using methanol and water, however with

6.5 mM Ammonium Bicarbonate at pH 8. The fourth aliquot was

analyzed via negative ionization following elution from a HILIC

column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm) using a

gradient consisting of water and acetonitrile with 10mM Ammonium

Formate, pH 10.8. The MS analyses alternated between MS and

data-dependent MS scans using dynamic exclusion. The scan range

varied slighted between methods but covered 70–1,000 m/z. Raw

data was extracted, peak-identified and QC processed using Metabo-

lon’s hardware and software. Compounds were identified by

comparison to library entries of more than 3,300 purified standards

or recurrent unknown entities. Metabolon’s library was based on

authenticated standards that contain the retention time/index (RI),

mass to charge ratio (m/z), and chromatographic data (including

MS/MS spectral data) of all molecules present in the library.

The metabolite profiles used in the downstream analyses were

obtained from the raw data delivered by Metabolon Inc. as follows.

Log2 transformation was applied to the initial matrix containing the

levels of 601 metabolites across 50 samples. Outliers were identified

iteratively using two-tailed Grubbs tests (threshold for outlier detec-

tion was P = 0.01) and converted to missing values (NA). Metabo-

lites with missing values for more than half of the samples were

removed, resulting in a matrix containing the levels of 592 metabo-

lites across 50 samples. To deal with residual missing values, impu-

tation was performed using Bayesian principal component analysis

(BPCA) with 48 components (using the pca function of the pcaMeth-

ods R package, v:1.76.0 with method= “bpca”, scaling= “uv” (unit

variance), npcs = 48). Finally, quantile normalization was applied

to give each sample the same data distribution.

SNP detection and population structure analysis

Aligned reads for variant calling were obtained using HISAT2 v:2.1

(Kim et al, 2015) with default parameters. Variants were identified

using NGSEP v:3.3.2 (Tello et al, 2019). For downstream analyses,

we focused on biallelic SNPs with a minimum genotype quality of

40 and called in at least 48 samples (80% of the population). Miss-

ing calls were imputed using Beagle v:5.1 (Browning et al, 2018)

using default parameters, and only SNPs with minor allele

frequency (MAF) ≥ 0.05 after imputation were kept, resulting in a

dataset of 10,311 SNPs.

A neighbor-joining tree was made based on the SNP dataset with

TASSEL v:5.2.60 (Bradbury et al, 2007), using 1—IBS (identity by

state) as the distance measure while setting the distance from an

individual to itself to zero. The tree was rendered using the polar

tree layout in FigTree v:1.4.3 (Rambaut, 2016). Principal component

analysis (PCA) of the SNP dataset was done with the R package

ggfortify v:0.4.10 (Tang et al, 2016), using at each locus the geno-

type encoding 0, 1, and 2 for the homozygous reference genotype,

the heterozygous genotype, and the homozygous alternative geno-

type, respectively. The PCA results were plotted with the R package

factoextra v:1.0.7 using the repel option.

Analysis and correction of systematic effects in the
single-plant data

To assess sequencing batch effects, day-of-harvest (DOH) effects,

SNP population structure effects, and spatial autocorrelation effects

on the transcriptome dataset, the following linear mixed-effects

(LME) model was used:

y¼ βI þβbxbþβdxdþβsxsþ ε (1)

Here, y is a vector of log2 expression levels for a given gene g

across samples. βI is the intercept (average gene expression), and

βb, βd, and βs are coefficients for the batch, DOH, and SNP effects,

respectively. The vectors xb, xd, and xs encode the batch, DOH, and

SNP groups across the sampled plants, using 0 for the reference

group of plants (= biggest group for the effect concerned) and 1 for

the alternative group. The model errors ε follow a multivariate

normal (MVN) distribution with a spherical covariance structure:

ε~Nð0,∑Þwhere∑
ij

¼ σ2 nIijþð1�nÞcorSpherði, jÞ� �
(2)

corSpherði, jÞ¼ dij<r 1�1:5
dij
r
þ0:5

dij
r

� �3

otherwise 0

8><
>:

where ∑ is the covariance matrix, σ is the overall magnitude of

expression noise for gene g (comparable to the standard deviation

of a univariate normal distribution), and n is a nugget parameter

bounded between 0 and 1 quantifying the proportion of independent

and identically distributed (i.i.d., i.e., not spatially autocorrelated)

noise in the expression of gene g. The “corSpher” function decreases
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from 1 to 0 as the field distance dij between plants i and j increases.

The spherical covariance structure was chosen as it gave the most

meaningful range estimates (within bounds of the field when n

≠ 1), but other covariance structures yield similar results. r is a

range parameter related to the distance at which the expression of

gene g becomes independent between plants. If n = 1 or r = 0, the

model reduces to a simple linear regression model.

The model was optimized using restricted maximum likelihood

estimation (REML) using the gls function of the nlme package v:3.1-

148 (Pinheiro et al, 2019) in R v:4.0.2. The parameters βI, βb, βd, βs,

σ, n, and r are estimated from the data for each gene. In case of

convergence errors (when n approaches 1 or r approaches 0), ordi-

nary least-squares (OLS) regression was used instead.

The same model and estimation procedure were used on the

metabolome and phenotype data, except that the sequencing batch

effect is not relevant for these datasets and was hence left out of the

model. To assess the proportion of variance explained by systematic

effects in the transcriptome, metabolome, and phenotype datasets,

we estimated R2 values for the LME model effects per gene/metabo-

lite/phenotype as described in Nakagawa and Schielzeth (2013).

There is however no consensus on how to estimate R2 in LME

models, so these values should be approached with caution. The

total proportion of variance explained by the fixed model effects

was calculated as:

R2
fix ¼

varðfÞ
varðfÞþvarðεÞ (4)

where varðεÞ is the error variance and var(f) is the variance of all

fixed effects combined, i.e., varðfÞ¼ var βbxbþβdxdþβsxsð Þ. The

proportion of variance explained by each fixed effect component

separately is calculated similarly, e.g., for the DOH effect:

R2
DOH ¼ varðβdxdÞ

varðf ÞþvarðεÞ (5)

Although the batch, DOH, and SNP effects are not significantly

correlated (10,000 permutation tests, P > 0.10),

var βbxbþβdxdþβsxsð Þ¼ var βbxbÞþvarðβdxdÞþvarðβsxsð Þ and

hence R2
f ix ¼R2

batchþR2
DOH þR2

SNP only holds approximately due to

limited sampling effects.

The proportion of variance contained in the model residuals (er-

rors) is calculated as:

R2
ε ¼

varðεÞ
varðfÞþvarðεÞ (6)

As a proportion (1 − n) of the noise is estimated to be spatially

autocorrelated and a proportion n is estimated to be i.i.d.,

R2
cov ¼ð1�nÞR2

ε and R2
iid ¼nR2

ε were taken as crude measures for the

proportion of variance explained by spatial autocorrelation effects

and i.i.d. noise, respectively. Again, these R2 values need to be inter-

preted cautiously.

As we want to assess the use of inter-individual variability

among comparable field-grown plants for predicting gene functions

and plant phenotypes, between-group variability caused by batch,

DOH, and SNP effects was removed from the data before down-

stream analyses.

Spatial autocorrelation analyses

Spatially autocorrelated transcripts, metabolites, and phenotypes

were detected using Moran’s I with an inverse distance-weighted

matrix in the Ape package v:5.4 (Paradis & Schliep, 2018) in R

v:4.0.2. The P-values computed by the Ape package were

adjusted for multiple testing with the Benjamini–Hochberg (BH)

procedure (Benjamini & Hochberg, 1995), which controls the

false discovery rate (FDR). The z-scored profiles of transcripts

and metabolites with q ≤ 0.01 were assigned to clusters using

hierarchical clustering (“hclust” function in R using “ward.D2”

linkage). Associations between a given spatially autocorrelated

transcript or metabolite cluster and any phenotypes were

assessed by testing for Pearson correlation between the average

z-scored gene expression profile of the cluster and the phenotype

profiles. The resulting P-values were corrected per phenotype

using the BH method.

Analysis of gene and metabolite expression variability

Coefficients of variance (CVs) were calculated on non-log trans-

formed transcriptome and metabolome data for the individual plants

after correction for sequencing batch, DOH, and SNP effects (see

above). To this end, the corrected data were inverse log2-trans-

formed and, for the transcriptome data, a pseudo-count was

subtracted from this back-transformed matrix so that the minimal

expression value in the matrix was again zero.

To assess potential bias in metabolite CV depending on the

average levels of metabolites, a linear regression trendline was

fit for the log10(CV
2) versus log10(mean) relationship. To assess

the bias in transcript CV depending on the average expression of

genes, a trendline was fit for the CV2 versus mean relationship

with a generalized linear model (GLM) of the gamma family

with identity link of the form CV2ðxÞ¼ a=xþb for gene expres-

sion profiles x with fitting parameters a and b, as in Brennecke

et al (2013). We used code for this based on the “Bren-

neckeGetVariableGenes” function in the M3Drop R package

(Andrews & Hemberg, 2019). The 5% genes with the lowest

mean expression were removed from the variance analysis

before fitting the transcriptome trendline. To correct for the

observed mean–variance relationships, a normalized CV score

was computed for each transcript or metabolite profile x as in

Cortijo et al (2019): normCVðxÞ¼ log2 CV2ðxÞ=trendðxÞ� �
, with

trendðxÞ the value of the fitted trendline at the mean of x. The

top and bottom 10% of genes ranked by decreasing normCV

score were labeled as highly variable and lowly variable genes,

respectively.

For comparison with the expression data of Cortijo et al (2019),

the raw mapped read counts for two time points in the latter dataset

(ZT06 and ZT20) were filtered, normalized, and log2-transformed as

described above for the maize single-plant dataset. Sequencing

batch effects were removed for each time point separately as

described in Cortijo et al (2019), based on spike-ins using the

“RUVg” function in the RUVSeq R package (Risso et al, 2014) (with

the internal RUVSeq log-transform and inverse log-transform func-

tionality disabled). Inverse log-transformation, trendline fitting, and

computation of normCV scores were done as for the maize single-

plant dataset.
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Clustering analyses

The transcriptome and metabolome datasets were z-scored and

jointly clustered using the ward.D2 hierarchical clustering method

(Murtagh & Legendre, 2014) included in the R stats package

(v:4.0.2), and using squared Euclidean distance as the distance

measure. The same protocol was used for clustering the RNA-seq

datasets sampled from the Sequence Read Archive v. 2018/01/30
(https://www.ncbi.nlm.nih.gov/sra) (Leinonen et al, 2011) (see

further). Additionally, the single-plant transcriptome dataset was

analyzed using the biclustering algorithm ENIGMA v:1.1 (Maere

et al, 2008). For biclustering, the log2 expression values were trans-

formed to log2 fold changes with respect to the mean gene expres-

sion across the individual plants. Default parameter settings were

used, except for “fdr” = 0.005, “fdrBiNGO” = 0.01, “namespaces” =
biological_process and “pvalThreshold” = 0.5943369. The latter

threshold is the standard deviation of the log2 fold changes across

the entire RNA-seq dataset, which, by lack of differential expression

P-values for the single plants, is used by ENIGMA as a threshold for

discretizing transcript log2 fold changes into the categories “upregu-

lated”, “downregulated” and “unchanged”.

Gene Ontology (GO) enrichment analyses

The gene ontology file used for GO enrichment analyses was down-

loaded from the Gene Ontology knowledgebase (http://www.gene

ontology.org) (The Gene Ontology Consortium, 2017). A GO annota-

tion file for maize B73 AGPv3.31 genes was parsed from the func-

tional annotations provided by PLAZA (Proost et al, 2015),

development version cnb 02, on November 27, 2017. To ensure that

all the functional annotations found for the genes in the AGPv2

maize genome were included in our analyses, we also included the

maize gene functional annotations provided by the older PLAZA 3.0

platform (Proost et al, 2015), taking into account gene identifier

changes from AGPv2 to AGPv3 as recorded in MaizeGDB (https://

www.maizegdb.org) (Portwood et al, 2018). Given the lack of maize

genes annotated to the C4 photosynthesis category in GO, we manu-

ally added annotations to this category for 78 genes identified as C4

genes by Li et al (2010). In all GO enrichment analyses, enrichment

P-values were calculated using hypergeometric tests and adjusted for

multiple testing (q-values) using the Benjamini–Hochberg (BH)

procedure (Benjamini & Hochberg, 1995). For GO enrichment analy-

ses on (bi)clustering results, multiple testing correction was done for

each cluster separately. Genes annotated to the categories “DNA

binding transcription factor activity” (GO:0003700), “signal trans-

ducer activity” (GO:0004871), and “regulation of transcription - DNA-

templated” (GO:0006355) were combined in a list of potential regula-

tors (Dataset EV17), for use in the ENIGMA analysis, the literature

screen for evidence supporting our gene function predictions, and

some of the phenotype prediction models, namely those that use a

predefined list of regulators as potential predictors (see further).

Correlation network generation for gene function prediction

For each pair of genes x and y in the single-plant transcriptome

dataset, a “spatially adjusted Pearson correlation” was computed by

z-scoring the log2 gene expression profiles of both genes and fitting

the following model to the data:

y¼ βxþε (7)

with β the correlation coefficient and ε an error term with a spheri-

cal covariance structure as in Equation 2. Model parameters (β and

the spherical covariance parameters r, n, σ) were optimized with

restricted maximum likelihood optimization (REML) using the gls

function of the nlme package v:3.1-148 (Pinheiro et al, 2019) in R

v:4.0.2. Although there is an asymmetry in the regression equation,

swapping x and y for gene pairs with a range estimate r above zero

gave parameter estimates that were not meaningfully different.

For most gene pairs r converged to zero or n converged to 1,

which means the best-fit model is one without spatial covariance,

yielding the exact same correlation coefficient β and corresponding

P-value as a normal ordinary least-squares (OLS) regression or Pear-

son correlation on the z-scored variables (up to rounding errors).

For about 23% of the gene pairs, r converged to a non-zero distance.

This means that for these gene pairs, there would be spatial struc-

ture left in the residuals of an OLS regression, violating the assump-

tion of independence in OLS regression. All P-values were

Bonferroni-corrected, and correlations with corrected P-values ≤
0.01 were included as edges in the correlation network.

The expression correlation network obtained from the single-

plant dataset was compared with networks obtained from traditional

RNA-seq datasets sampled from the Sequence Read Archive

(https://www.ncbi.nlm.nih.gov/sra) (Leinonen et al, 2011). The

raw RNA-seq data downloaded from the SRA in first instance

involved all transcriptome data on Zea mays profiled with Illumina

sequencing platforms. Only runs profiling mRNA (as opposed to,

e.g., small RNAs) with an average read length > 30 bp and ≥ 4.106

reads were retained. In many cases, the meta-information obtained

from SRA did not specify the genotype and tissue profiled in the

RNA-seq experiments. We therefore used information from the

BioSample database (https://www.ebi.ac.uk/biosamples/) to select

only RNA-seq datasets produced on leaves of the maize inbred line

B73, discarding crosses, mutants, and NILs. Only samples with a

unique BioSample ID were retained to avoid data replication. This

led to a compendium of 470 unique RNA-seq samples (Dataset

EV8), which were preprocessed and normalized in the same way as

the single-plant samples. As an additional data quality filtering step,

samples with < 80% uniquely mapping reads, samples with a

clearly divergent data distribution and samples with less than

20,000 expressed genes were discarded. This resulted in a compen-

dium of 407 RNA-seq samples, which we randomly sampled with-

out replacement to extract 500 compendia of 60 samples. For each

of these randomly sampled compendia, a correlation network was

built using Pearson correlation. Note that in contrast to the single-

plant dataset, spatial autocorrelation correction is not necessary for

the datasets sampled from SRA. Every sampled network was thresh-

olded to obtain the same number of edges as obtained for the single-

plant network.

The single-plant network was additionally compared with

networks inferred from expression data on a maize diversity panel

(Kremling et al, 2018). To maximize the comparability of the diver-

sity and single-plant networks in terms of the tissue and time of day

profiled, we focused on 210 Leaf Mature Adult Day (LMAD) samples

in the Kremling et al (2018) dataset. The diversity samples were

preprocessed and normalized in the same way as the single-plant

samples, and 100 compendia of 60 samples were randomly sampled
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without replacement from the diversity dataset. A Pearson correla-

tion network was built for each diversity compendium and thresh-

olded to obtain the same number of edges as in the single-plant

network.

Gene function prediction

Gene functions (GO biological process annotations) were predicted

from the single-plant correlation network, the 500 sampled SRA

networks, and the 100 sampled diversity networks using a

command-line version of PiNGO (v:1.11) (Smoot et al, 2011).

PiNGO predicts the function of a given gene based on the GO anno-

tations of its neighbors in a given network, using hypergeometric

GO enrichment tests on the gene’s network neighborhood. The

resulting P-values were adjusted for multiple testing (for each input

network separately) using the BH method. The overall function

prediction performance of the single-plant and sampled networks

was calculated as in Bhosale et al (2013). Recall and precision of the

functional predictions for a given gene in a given network were

calculated as described by Deng et al (2004) using the known maize

GO annotations as gold standard, and the overall recall and preci-

sion values for the given network were obtained by averaging across

all genes in the network. Next to this overall analysis of gene func-

tion prediction performance, we also assessed how accurately the

SRA networks and the single-plant network predicted genes

involved in specific GO biological processes. For these analyses,

recall (R) and precision (P) were calculated in the traditional way as

R¼ tp=ðtpþ fnÞ and P¼ tp=ðtpþ fpÞ with tp the number of true posi-

tives, fp the number of false positives, and fn the number of false

negatives identified.

For every GO category and overall, the recall, precision, and F-

measure (harmonic mean of recall and precision) of the predictions

were calculated for every network at prediction q-value thresholds

ranging from 10−2 to 10−11. Undefined precisions and F-measures,

resulting from a network not producing any predictions at a given q-

value threshold, were set to 0 in order to reflect poor performance

of the network at the q-value concerned. The relative prediction

performance of the single-plant network with respect to the sampled

SRA networks was classified as very good, good, average, poor, or

very poor as in Bhosale et al (2013), based on the root mean square

deviation of the single-plant network F-measures from the 25th, 50th,

and 75th percentiles of the sampled network F-measures over the

FDR subrange in which either the single-plant network or at least

250 of the 500 sampled networks, or both, exhibited non-zero F-

measures.

Predictive models for phenotypes

Phenotypes were regressed on the expression of single genes and

metabolites using a mixed model with the following formulation:

y¼ β0þβxþ ε (8)

with x the log2 expression profile of a given gene or metabolite

and y the corresponding vector of phenotype values across plants.

The error ε is assumed to follow a multivariate normal distribution

with a rational quadratic distance-based covariance function. That

is, the covariance of ε is described by:

covði, jÞ¼ σ2� nþð1�nÞ�corRatioði, jÞð Þ (9)

where σ is the magnitude of the noise and the nugget n determines

which proportion of the residuals is governed by spatial auto-

covariance. The correlation function corRatio(i,j) between two

samples i and j is given by:

corRatioði, jÞ¼ 1= 1þ dij=r
� �2� �

(10)

with dij the physical distance between plants i an j in the field. The

range parameter r is related to the distance at which two plants

become independent of one another. The ratio kernel was chosen

because it gave meaningful range estimates (Appendix Fig S16)

and the best overall performance as measured by BIC. Regression

analyses were performed using the nlme package (v:3.1-148) (Pin-

heiro et al, 2019) in R (v:4.0.2). P-values were adjusted for each

phenotype separately using the BH method.

Elastic net (e-net) and random forest methods were used to

learn multi-feature predictive models for the phenotypes using

the z-scored log2 transcript levels, metabolite levels or both as

features. E-net and random forest models were also built using

as features only the transcript levels of a predefined set of regu-

lators (Dataset EV17) and using as features a set of 5,007 SNPs.

These were derived from the previously identified set of 10,311

biallelic SNPs by removing 2,246 SNPs that were heterozygous

for all plants (and thus uninformative) and collapsing 939

groups of perfectly correlated SNP profiles (involving 3,997 SNPs

in total) into 1 representative profile per group.

E-net and random forest models were built with the scikit-

learn package (v:0.21.0) (Pedregosa et al, 2011) in Python. For e-

net models, the maximum number of iterations (parameter

“max_iter”) was set to 106. For random forest models, the

number of estimators, i.e., the number of averaged trees, was set

to 500, the “criterion” parameter was set to “mse”, and the

“bootstrap” parameter was set to “True”. For each phenotype,

models were built with each method on each feature set using

10-fold nested cross-validation. For each of the 10 outer folds, 4

inner folds were used to tune the model hyperparameters (the

shrinkage parameter α and the L1-ratio ρ for elastic nets; the

“max_features” parameter with possible values “sqrt”, 0.33,

“log2” and “None” and the “min_samples_split” parameter with

possible value 2, 3, 4, and 5 for random forests). After complet-

ing the inner cross-validation, the combination of hyperparame-

ters that scored best on test data across the 4 folds was used to

retrain the model on all 4 folds combined, yielding 10 trained

models with optimized hyperparameters per phenotype (Grid-

SearchCV function in scikit-learn). Each of the 10 models was

used to predict the phenotypes of the hold-out samples (6 per

fold for transcripts, 5 for metabolites) for the fold it was trained

on, yielding 60 transcriptome-based or 50 metabolome-based “test

data” predictions in total, one for each sample.

The “out-of-bag” (oob) R2 score, defined as R2 ¼ 1�∑ yi� ŷið Þ2=
∑ yi�yð Þ2 where ŷi and yi are the predicted and observed pheno-

types for sample i, respectively, and where y is the mean of the

observed phenotypes, was used to measure how well the predic-

tions align with the true phenotypes. Note that the meaning of this

oob R2 is different from the classical meaning of R2, which is the

percentage of variance explained by a linear model. As opposed to
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the classical R2, the oob R2 can become negative when the sum of

squared errors (numerator) is larger than the variance of the data

(denominator). When all predictions y
i
equal the mean y, the oob R2

equals zero. A negative oob R2 score indicates that the model does

worse than assigning the mean phenotype value of the test samples

to all test samples. Positive oob R2 scores indicate that the model

does better than predicting the mean, and a model that perfectly

predicts the unseen phenotypes has an oob R2 score of one. We

report two oob R2 scores for each model, the “pooled R2” score and

the “median R2” score. For calculating the pooled R2, the test set

predictions of all folds were taken into account together to calculate

one oob R2 value that summarizes all folds. The “median R2” score

is the median of the oob R2 scores calculated for each fold indepen-

dently.

For modeling methods that use built-in feature selection/
reduction techniques, such as e-nets and random forests, an

analytical statistical framework to assess whether models

perform better than expected by chance is lacking. A typical

solution used is to compute empirical P-values by applying the

same data analysis to a large number of datasets that follow

the null hypothesis of no relation between the dependent and

independent variables, and comparing the parameter values and

performance measures of the model to their empirical null

distributions (Ojala & Garriga, 2010; Riedelsheimer et al, 2012;

Steinfath et al, 2010). 500 datasets following the null hypothe-

sis of no relation between gene or metabolite expression and

phenotypes were generated by randomly permuting the pheno-

types among the plants. The following formula (Ojala &

Garriga, 2010) was used to calculate P-values for the original

oob R2 scores:

p¼nþ1

kþ1
(11)

where n is the number of times that a permuted model gave an

equal or better R2 score than the “true” model and k is the number

of permutations. Following Ojala & Garriga (Ojala & Garriga,

2010), the standard deviation on the empirical P-value can be

calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P∗ð1�P∗Þ

k

q
, where P* is the true P-value. This underly-

ing true P-value is unknown, but at the critical P* = 0.05, the

calculated standard deviation on the empirical P-value when using

500 permutations is 0.0097, which is sufficiently low for our

purposes.

GWAS analysis

GWAS analysis was performed in TASSEL v:5.2.60 (Bradbury et al,

2007) with mixed linear models (MLMs) encoding population struc-

ture as a fixed effect and a kinship matrix as random effect. To

account for population structure, the plant coefficients for the first

two principal components of the SNP-based PCA were used as

covariates (see above). Note that this population structure correc-

tion is not strictly necessary as the observed population structure

effect was already removed from the phenotype data during prepro-

cessing. The kinship matrix was built within TASSEL using the

option “Centered identity by state IBS” with default parameters.

Manhattan and Q-Q plots were made using the R package qqman

v:0.1.4 (Turner, 2018).

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• RNA-seq data: Dataset EV1 and ArrayExpress E-MTAB-8944

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-

8944).
• Metabolomics data: Dataset EV1 and Zenodo (https://zenodo.

org/record/4034433).

• Phenotype data: Dataset EV1 and Zenodo (https://zenodo.org/

record/4034433).

• Data analysis scripts: Zenodo (https://zenodo.org/record/

4034433).

Expanded View for this article is available online.
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