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SECONIC: Towards multi-compartmental models
for ultrasonic brain stimulation by intramembrane

cavitation
Thomas Tarnaud, Wout Joseph, Ruben Schoeters, Luc Martens, Emmeric Tanghe

Abstract—Objective: To design a computationally efficient
model for ultrasonic neuromodulation (UNMOD) of morpho-
logically realistic multi-compartmental neurons based on in-
tramembrane cavitation. Approach: A Spatially Extended Neu-
ronal Intramembrane Cavitation model that accurately predicts
observed fast Charge Oscillations (SECONIC) is designed. A
regular spiking cortical Hodgkin-Huxley type nanoscale neuron
model of the bilayer sonophore and surrounding proteins is
used. The accuracy and computational efficiency of SECONIC
is compared with the Neuronal Intramembrane Cavitation Ex-
citation (NICE) and multiScale Optimized model of Neuronal
Intramembrane Cavitation (SONIC). Main results: Membrane
charge redistribution between different compartments should be
taken into account via fourier series analysis in an accurate multi-
compartmental UNMOD-model. Approximating charge and volt-
age traces with the harmonic term and first two overtones results
in reasonable goodness-of-fit, except for high ultrasonic pressure
(adjusted R-squared ≥ 0.61). Taking into account the first eight
overtones results in a very good fourier series fit (adjusted R-
squared ≥ 0.96) up to 600 kPa. Next, the dependency of effective
voltage and rate parameters on charge oscillations is investigated.
The two-tone SECONIC-model is one to two orders of magnitude
faster than the NICE-model and demonstrates accurate results
for ultrasonic pressure up to 100 kPa. Significance: Up to now, the
underlying mechanism of UNMOD is not well understood. Here,
the extension of the bilayer sonophore model to spatially extended
neurons via the design of a multi-compartmental UNMOD-model,
will result in more detailed predictions that can be used to
validate or falsify this tentative mechanism. Furthermore, a
multi-compartmental model for UNMOD is required for neural
engineering studies that couple finite difference time domain sim-
ulations with neuronal models. Here, we propose the SECONIC-
model, extending the SONIC-model by taking into account charge
redistribution between compartments.

Index Terms—Ultrasonic neuromodulation (UNMOD), bilayer
sonophore, intramembrane cavitation, computational modeling,
nanoscale multi-compartmental models, multiscale optimization
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I. INTRODUCTION

ULTRASONIC neuromodulation or UNMOD is a promis-
ing alternative to conventional electrical brain stimu-

lation, due to its high spatial resolution, non-invasiveness,
good safety profile and smaller inter-subject variability of
pressure fields [1]–[17]. Also, the idea to use ultrasonic
neuromodulation as a non-invasive alternative of conventional
deep brain stimulation (deep UNMOD) has been proposed [6],
[7], [18]–[22], based on the fact that multiple-element phased
tranducers are succesfully used for subthalamotomy or tumour
ablation with millimeter precision [23]–[26]. However, neural
engineering studies for UNMOD have been hindered by a
lack of understanding of the underlying mechanism. Although
several tentative mechanisms have been proposed, the interac-
tions between them is not yet clear [27]–[37]. Furthermore,
it would be helpful to understand under which conditions
(ultrasonic waveform, neuron types. . . ) a tentative mechanism
is more dominant. Here, computational simulations help to
separate the effects of different proposed actions by which
acoustical waves modulate neuronal activity. In this study, we
focus on the bilayer sonophore (BLS) model of UNMOD, in
which inflating intramembrane cavitations alter the membrane
capacitance [31]. Previous studies have shown that the BLS-
model predicts several salient features of UNMOD in the
central nervous system [29], [30] (Plaksin-Shoham-Kimmel
(PSK) theoretical model and the Neuronal Intramembrane
Cavitation Excitation (NICE) implementation).

Unfortunately, due to computational stiffness of the PSK-
model, computational studies of the BLS-model have been
restricted to single-compartment point-neurons [19], [29], [30],
[38], [39] and a two-compartment nanoscale model [39],
leaving many important questions within the PSK-framework
unanswered (e.g., importance of the spatial features of the
pressure/velocity field, location of the excitation node, im-
portance of spatially distributed membrane properties, trans-
ferability of previously obtained predictions in the point-
neuron PSK-model to morphologically realistic models, etc.).
As a result, the possibility to simulate the PSK-model in
morphologically realistic neuron models would help to further
validate the underlying assumption that central nervous system
UNMOD is driven by intramembrane cavitation. Another
consideration is that a multi-compartmental morphologically
realistic UNMOD-model is required, in order to allow neural
engineering studies of the single element focused transducer or
transducer phased array, by coupling finite difference time do-
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main (FDTD) ultrasound propagation [20], [40] and neuronal
response simulations.

We presented preliminary results in [41] of the extension
of the NICE-implementation to simulate ultrasonic neuro-
modulation of blue brain project cortical cells [42], [43]
in the NEURON simulation environment [44], [45]. Here,
computational stiffness makes extensive validation and explo-
ration of the parameter space unfeasible within the NICE-
framework, due to steep computational demands and solver
instabilities. In order to improve the computational efficiency
of UNMOD-simulations, a multi-scale optimized framework
(SONIC) was presented by Lemaire et al. (2019), that removes
the smallest timescale set by the ultrasonic frequency from
the computational scheme [39]. The multi-scale approximation
introduced in the SONIC-model, implies that the membrane
charge and gate parameters are changing on a slow millisecond
timescale. These become the state variables of the model, in
terms of which the fastly changing capacitance, intramembrane
gas content and transmembrane voltage are expressed. This
underlying assumption is valid for point neuron-models, where
membrane charge rate of change is determined by relatively
small transmembrane currents. Consequently, accurate and fast
integration of UNMOD is achieved with the SONIC model
in point-neurons [39]. However, in morphologically-realistic
multi-compartmental neurons, strong axial currents are caused
by the large potential oscillations, predicted by the PSK-model
[41]. These axial currents then result in fast oscillations of the
membrane charge, breaking the multi-scale assumption and
resulting in inaccurate integration of the multi-compartmental
SONIC neuron model in terms of neuronal response and
excitation threshold [46].

Fortunately, it was demonstrated in our previous study, that
the fourier components of the membrane charge oscillations
are changing on a slow timescale and that most of the signal
energy is contained within the lowest fourier overtones [46].
These results imply that an extension of the multi-scale opti-
mized SONIC-model is possible, by replacing the membrane
charge as a slow state variable with its most important fourier
components. Based on these observations, we introduce as
novelty an extension of the SONIC-model for UNMOD to
multi-compartmental and morphologically realistic neurons.
In particular, the following innovations are being achieved in
this study. First, the required number of fourier components
to accurately describe the charge redistribution and voltage
oscillations is determined. Second, new effective parameter
tables are introduced for the voltage fourier components and
protein gate rates. The dependency of voltage and rates on the
ultrasonic pressure and charge oscillation amplitude is stud-
ied. Third, a computationally efficient multi-compartmental
algorithm SECONIC (Spatially Extended Charge Oscillating
model of Neuronal Intramembrane Cavitation) is proposed and
validated in the nanoscale bilayer sonophore UNMOD model.
Here, as in [46], the nanoscale two-compartmental model
of the bilayer sonophore and surrounding protein islands is
chosen as a test-case for the design of a computationally
efficient and accurate multi-compartmental UNMOD model,
as the exact solution is known by the single-compartment
model due to equipotentiality [46]. Finally, computational

efficiency is compared between the different PSK-models
(NICE, SONIC, SECONIC) through measuring the simulation
time for different ultrasonic pressures and sonophore coverage
fractions.

II. METHODS

The methodology of the NICE, SONIC and SECONIC
models is illustrated schematically in Fig. 1. The values of the
general model constants, definition of variables and functions
and the membrane current dynamics, are the same as in
our previous study on the importance of membrane charge
oscillations in ultrasonic neuromodulation [46].

First, we briefly summarize the PSK-model for ultrasonic
neuromodulation by intramembrane cavitation, in subsection
II-A. For more details, we refer to previous studies of the PSK-
model [19], [29]–[31], [39], [46], Second, we describe the
computationally efficient algorithm SECONIC for UNMOD
in multi-compartmental neuron models, that incorporates fast
charge redistribution and that is based on the SONIC imple-
mentation and the PSK-model, in subsection II-B.

A. The PSK-model of UNMOD by intramembrane cavitation

The PSK-model incorporates the effect of ultrasound-
induced capacitance oscillations in the Hodgkin-Huxley equa-
tions, by inclusion of the capacitive current ID = V dCm

dt :

dQm

dt
= Cm

dV

dt
+ V

dCm

dt
=
Iax

Sc
− gNam

3h(V − VNa)

− gKn
4(V − VK)− gMp(V − VM)− gl(V − Vl). (1)

Here, Qm = CmV is the membrane charge density, Cm

the membrane capacitance and V the transmembrane volt-
age. Iax is the axial current flowing into the considered
compartment and Sc is the compartmental cross-sectional
membrane area. As in previous studies of computational
UNMOD by intramembrane cavitation [29], [30], [38], [39],
[46], a regular spiking cortical Pospischil-neuron model is
used [47]. The membrane conductances and Nernst-potentials
of the sodium, delayed-rectifier potassium, slowly non-
inactivating potassium and non-specific leak currents are given
by (gNa, gK, gM, gl) = (56, 6, 0.075, 0.0205) mS/cm2 and
(VNa, VK, VM, Vl) = (50,−90,−90,−70.3) mV, respectively.
Finally, m, h, n and p are the membrane protein gating
parameters for activation of transient sodium, inactivation of
transient sodium, delayed-rectifier potassium and slowly non-
inactivating potassium, respectively.

The membrane capacitance of the sonophore CBLS depends
on the maximal apex deflection Z (see Fig. 1):

CBLS(Z) =
Cm0∆

a2

[
Z+

a2 − Z2 − Z∆

2Z
ln
(2Z + ∆

∆

)]
. (2)

Here, a = 32 nm is the sonophore radius and ∆ = 1.26 nm is
the gap between the leaflets of the bilipid layer at rest potential.
The rest capacitance is taken Cm0 = 1 µF/cm2.

In this study, a nanoscale model of the bilayer sonophore
(capacitance CBLS, radius a) and surrounding proteins (capaci-
tance CP ≡ Cm0, radius b−a) is considered (Fig. 1(a-b)), with
partial sonophore area coverage fraction fBLS = a2/b2. Here,
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Fig. 1: Schematic overview of used models of the nanoscale bilayer sonophore. (Continued on next page.)
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Fig. 1: (a) Single compartment point model. (b) Multi-compartmental nanoscale model with separate compartments for the
sonophore and the protein islands. Compartments are coupled through the axial resistance RBLS,P. Membrane charge Q(t) (red)
and potential V (t) (blue) oscillations in the sonophore (full lines) and the protein islands (dashed) are shown in the inset. (c)
Pretabulation of effective potential and rate functions in the SONIC (left) and SECONIC (right) models. The SECONIC model
additionally pretabulates the fourier components of the potential oscillations AV,k and BV,k (right). Independent variables of
the tabulated quantities are depicted in green: SONIC tables are functions of the membrane charge Qm, ultrasonic frequency
fUS, intensity IUS, bilayer diameter aBLS and coverage fBLS. SECONIC independent variables additionally include the charge
fourier components AQ,k and BQ,k. (d) Methodology of integration of the Hodgkin-Huxley charge equation. (left, NICE-model)
The membrane capacitance is continuously calculated by the Rayleigh-Plesset (RP) equation, in which the membrane charge
Qm is updated every Tup. (SONIC-model) Integration of the RP equation is replaced by look-up of the potential and rates.
(right, SECONIC-model) The charge oscillations are determined every Tup by minimizing the residual of a set of algebraic
equations. Subsequently, charge oscillations are used as independent variable in the SECONIC look-up tables.

b is the radius of the total model, including both the sonophore
and proteins. Due to the small scale of this structure, the
model is close to equipotential and a point model is accurate
(Fig. 1(a)). The average membrane capacitance Cm is then
expressed in the single-compartment point model as in [30]:

Cm = fBLSCBLS + (1− fBLS)CP. (3)

Results of the proposed multi-compartmental scheme can
now be compared with the point-model for accuracy. In the
two-compartment nanoscale model (Fig. 1(b)), axial currents
between the sonophore and surrounding protein islands are cal-
culated by Ohm’s law, with axial resistance between the BLS
and proteins RBLS,P (intracellular resistivity ρ = 100 Ωcm
and effective depth of axial current distribution deff = 100 nm)
[39]:

RBLS,P =
ρ

2πdeff
ln
a+ b

a
. (4)

Finally, the dynamics of the insonicated bilipid layer leaflets
are described by a modified Rayleigh-Plesset equation [31]:

d2Z

dt2
+

3

2R(Z)

(dZ

dt

)2

=
1

ρl|R(Z)|
[
Pin +PM +Pec−P0+

PA sin(ωt)− PS(Z)− 4

|R(Z)|
dZ

dt

( 3δ0µs

|R(Z)|
+ µl

)]
. (5)

Here, ρl = 1028 kg/m3 and µl = 0.7 · 10−3 Pa · s are the
mass density and dynamic viscosity of the cerebrospinal fluid
(CSF). µs = 0.035 Pa · s and δ0 = 2 nm is the viscosity

TABLE I: Summary of integration methods
NICE SONIC SECONIC

Tup 25 µs − 50 µs
Rayleigh-Plesset solver

Solver ode113 ode113/ode23t
Abs. Tol. (Z,dZ/dt, na) (0.1 pm, 1 fm/µs, 10−24 mole)

Rel. tol. 0.0001
dtmax 0.025/fUS

Point model (electrodynamics solver)
Solver ode113 −

Abs. Tol. (V, gates) (1 µV, 0.001) −
Rel. Tol. 0.001 −
dtmax 0.025/fUS 50 µs −
Multi-compartmental model (electrodynamics solver)
Solver ode15s

Abs. Tol. (V, gates) (0.1 nV, 10−7)
Rel. Tol. 0.0001
dtmax 0.025/fUS 50 µs

and thickness of the membrane leaflets. R(Z) is the radius of
curvature of the bilayer sonophore. The sonophore dynamics
are governed by a balance of the intramembrane gas pressure
Pin, molecular pressure PM, electrostatic pressure Pec, static
pressure P0 = 105 Pa, membrane tension pressure PS(Z) and
the applied ultrasonic pressure PA (frequency ω = 2πfUS).

The gas pressure Pin is obtained by the ideal gas law. Here,
the dynamics of the intramembrane air concentration na is
determined by [29]:

dna

dt
=

2Sl(Z)Da

ξ

[
Ca − Pin/ka

]
. (6)

Here, ka = 1.63 · 105 Pa ·m3/mol, Da = 3 · 10−9 m2/s and
Ca = 0.62 mM are respectively the Henry constant, diffusion
coefficient and molar concentration of air in CSF. Sl(Z) is
the effective area of a single leaflet and ξ = 0.5 nm is the
thickness of the diffusion boundary layer.

In the NICE-implementation [29], the computational effi-
ciency is improved by decoupling the Rayleigh-Plesset equa-
tion and the Hodgkin-Huxley charge equation by introducing
an update time Tup (Fig. 1(d)). In order to further reduce
the model stiffness, multiscale optimization in the SONIC
model [39] consists of pretabulation the effective membrane
voltage and rates (Fig. 1(c)), e.g., for the membrane voltage
(TUS = 1/fUS):

V ∗ =
1

TUS

∫ TUS

0

Qm

Cm(Z(t))
dt. (7)

The SONIC-tables for the effective membrane potential V ∗

and rate functions α∗X and β∗X (Fig. 1(c)) are then interpo-
lated, while solving the modified Hodgkin-Huxley equation
(Fig. 1(d)).

The Rayleigh-Plesset and electrodynamical equation are
solved by the Matlab® Variable Step Variable Order (VSVO)
ode-solvers [48], [49]: ode113 (order 1-13, Adams-Bashort-
Moulton predictor-corrector pairs), ode23t (order 2-3, trape-
zoidal rule), and ode15s (stiff VSVO-solver, order 1-5, based
on numerical differentiation formulas). Table I summarizes the
used integration methods in the NICE, SONIC and SECONIC
models, including the maximal timestep dtmax, absolute tol-
erances (Abs. Tol.) and relative tolerances (Rel. Tol.).
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Fig. 2: Goodness of fit (quantified by R
2
) to the transmembrane voltage V for two and eight fourier series components NFS, as

function of membrane charge, charge oscillation amplitude and ultrasonic pressure. Full lines represent the numerical solution
(NFS = ∞). (a) Examples of fourier fits with lower and higher R

2
(left and right, respectively). (b) Histogram of incidence

of R
2

for two and eight fourier components. (c) Goodness of fit surfaces as function of charge oscillation amplitude ∆Qm,
membrane charge Qm and pressure amplitude PUS for NFS = 2 (first row) and NFS = 8 (second row). The markers indicate
the example fits of (a) (crosses for (a)(left) and circles for (a)(right), corresponding colour).

B. Computationally efficient multi-compartmental algorithm
for morphologically realistic neurons (SECONIC)

In view of the importance of charge redistribution and
fast oscillations for an accurate multi-compartmental UNMOD
model, fourier series are used to describe the local charge per
compartment:

Q(t) = AQ,0 +

NFS∑
k=1

[
AQ,k cos(kωt) +BQ,k sin(kωt)

]
= AQ,0 +

NFS∑
k=1

[
Qk cos(kωt+ φk)

]
. (8)

Here, AQ,k and BQ,k are fourier components (Qk =√
A2

Q,k +B2
Q,k and φk = − atan2(BQ,k, AQ,k)) and NFS is

the number of fourier series overtones. With similar notation
for the membrane voltage:

V (t) = AV,0 +

NFS∑
k=1

[
AV,k cos(kωt) +BV,k sin(kωt)

]
= AV,0 +

NFS∑
k=1

[
Vk cos(kωt+ ψk)

]
. (9)

Effective parameters can now be defined by solution of the
Rayleigh-Plesset equation until periodicity for the rate func-
tions α∗X , β∗X (in this study, X ∈ {m,n, h, p}: Ng = 4 gate

parameters) and the membrane voltage (AV,0 = Veff , Vk, ψk;
with k = 1 . . . NFS). Consequently, pretabulation of the effec-
tive parameters consists of the calculation of 2Ng + 2NFS + 1
look-up tables (

(
2NFS+5

)
-dimensional: independent variables

are the ultrasonic frequency fUS, the intensity IUS, the bilayer
sonophore diameter aBLS and coverage fBLS, and the charge
fourier components (AQ,k, φk, with k = 1 . . . NFS and AQ,0),
cfr. Fig. 1). Note that the charge oscillation phases φk are
relative w.r.t. the phase of the ultrasonic pressure sine in (5):
it is not possible to set one of these phases φk to zero by
convention (making use of time invariance).

In this study, SECONIC-tables sample each charge os-
cillation amplitude with step 25 nC/cm2 (0 nC/cm2 to
100 nC/cm2) and the oscillation phase with step 2π/9. Charge
oscillation amplitudes and phases are upsampled fourfold and
twice, respectively, with modified Akima interpolation [50],
[51] (see also section IV). The membrane charge dimension
AQ,0 is sampled with step 5 nC/cm2 (Qm0 − 25 nC/cm2 to
50 nC/cm2)

In addition to currents caused by the effective membrane
voltage, oscillatory axial currents ∆Iax are driven by the
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voltage oscillations:

∆I(i)
ax =

NFS∑
k=1

∑
c∈C(i)

V
(c)
k cos(kωt+ ψ

(c)
k )

Ric

−
V

(i)
k cos(kωt+ ψ

(i)
k )

Ric
. (10)

Superscripts refer to the compartment or segment index, Ric
is the axial compartmental resistance between segment i and
c, and C(i) is the set of compartments that are connected with
segment i.

Because of the conditional linearity in the membrane volt-
age of the equation dQ/dt = Iax/S

(i)
c −

∑
l gl(V − El), we

can calculate the charge oscillation by:

Q
(i)
k ejφ

(i)
k =

1

jkωS
(i)
c

∑
c∈C(i)

V
(c)
k ejψ

(c)
k − V (i)

k ejψ
(i)
k

Ric
. (11)

Or equivalently,

A
(i)
Q,k = − 1

kωS
(i)
c

∑
c∈C(i)

B
(c)
V,k −B

(i)
V,k

Ric
. (12)

B
(i)
Q,k =

1

kωS
(i)
c

∑
c∈C(i)

A
(c)
V,k −A

(i)
V,k

Ric
(13)

Here, the right hand side is dependent on Qk and φk, through
the look-up tables of Vk and ψk. The norm of the vector with
the residuals of (12)–(13) is minimized every Tup = 50 µs
by the Matlab® fminsearch-function (simplex search method,
[52]).

In the specific case of the nanoscale two-compartment
model of the bilayer sonophore and surrounding proteins, we
have SBLS = πa2 and SP = [(1− fBLS)/fBLS]SBLS. Conse-
quently, QBLS = −[(1 − fBLS)/fBLS]QP and φBLS = φP

(or equivalently, AQ,BLS = −[(1 − fBLS)/fBLS]AQ,P and
BQ,BLS = −[(1 − fBLS)/fBLS]BQ,P), reducing (11) to a set
of NFS complex equations.

III. RESULTS

A. Goodness of fit and extension of effective parameters

In [46], we have shown that although the membrane charge
oscillates on a microsecond timescale set by the ultrasonic
frequency, the corresponding fourier series components vary

Fig. 3: Dependency of effective SECONIC-parameters on charge and ultrasound oscillations. Effective displacement Z∗,
membrane potential V ∗, intramembrane gas particles ng, membrane capacitance Cm,eff and rate parameters as function of
membrane charge for different ultrasonic pressure levels at ∆Qm = 0 nC/cm2 (left) and as function of different membrane
charge oscillation amplitudes at PUS = 0 Pa (middle) and at PUS = 50 kPa (right). The applied charge oscillation is a pure
cosine (i.e., Qk = 0 (k > 1) and ∀k : φk = 0), with Q = AQ,0 and ∆Qm = Q1.
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Fig. 4: Detailed illustration of the neuronal response to UNMOD in the SECONIC-model. Insonication of regular spiking
neuron (continuous wave ultrasound, pulse onset and pulse duration set to 100 ms, PUS = 100 kPa (Isp = 321 mW/cm2))
with partial sonophore coverage (fBLS = 0.75, aBLS = 32 nm). Two compartments are used to model the bilayer sonophore
(full lines) and the surrounding protein islands (dashed lines). (a) Membrane charge (red) and voltage (blue) trace. The total
membrane charge per surface area is depicted in black. Charge and voltage oscillations are visible in the inset. (b-c) gate
parameter traces (m, n, h, and p)); (d) membrane capacitance plots. (e-h) Temporal dynamics of effective values and first two
overtones of the membrane potential (e-g) and charge (f-h) at the bilayer sonophore level (e,f) and the protein islands (g,h).

on a slower millisecond timescale. Indeed, fourier overtone
components are determined by the set of equations (12)–
(13), the solution of which is dependent on the ultrasonic
waveform, the sonophore parameters and the effective (time-
averaged) membrane charge. Here, the effective membrane
charge density, determined by the time-averaged Hodgkin-
Huxley equation in Fig. 1(d), will be changing on a slow
millisecond timescale. Consequently, the overtone components
are expected to follow this millisecond timescale as well.
Furthermore, as expected, most of the signal energy of the
charge and voltage traces are contained within the lowest
overtone numbers [46]. These observations are the basis of the
SECONIC-model, which includes a limited number of fourier
components in order to account for the ultrasound-induced
charge redistribution between compartments.

To determine the required number of fourier series com-
ponents and to improve our understanding of the expected
accuracy of the SECONIC solver for different ultrasonic
waveforms, we study the goodness of the non-linear least
squares fourier series fit to the membrane voltage in Fig. 2.
The goodness-of-fit is quantified by the adjusted R-squared
R

2
= 1 − (1 − R2) Ns−1

Ns−2NFS−1 , with Ns the number of

sample points in the potential trace. The metric R
2

is mostly
used in statistics, but its definition is also useful here to
quantify the goodness-of-fit of a predictive model without
statistical basis. Here, R2 = 1 − SSE/SStot (SSE is the

sum of squared errors between the fit and the voltage trace,
SStot is the squared sum of the samples of the voltage trace)
can be interpreted as the fraction of signal energy of the
voltage trace that can be explained by the fourier series fit.
R2 will automatically increase with NFS, while R

2
corrects

for overfitting and as a result gives a better measure of
how many fourier series components should be taken into
account. The best goodness of fit is obtained for small ultra-
sonic intensities, regardless of the charge oscillation amplitude
(Fig. 2(a)(right)). Conversely, the adjusted R-squared value
decreases for increasing intensities (Fig. 2(left)), due to the
non-linear relation between the membrane voltage and the
ultrasonic pressure (through the Rayleigh-plesset equation (5)
and membrane capacitance formula (2)). For eight fourier
series components NFS = 8 (Fig. 2(c)(lower row),(b)), very
good fits are obtained (minimum, mean and standard deviation
of R

2
is 0.96, 0.9976 and 0.0047, respectively). Furthermore,

also for NFS = 2 (Fig. 2(c)(upper row),(b)), satisfactory fits
are obtained with minimum, mean and standard deviation
of R

2
equal to 0.61, 0.98, and 0.0412. As mentioned, the

lowest R
2

values are due to very high ultrasonic pressures.
Consequently, the best performance of the SECONIC model
is expected at low ultrasonic pressures, especially for lower
numbers of considered fourier series components NFS.

The overtone fourier components that describe the mem-
brane charge oscillations will influence the neuronal dynamics
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Fig. 5: Analysis of numerical errors in SECONIC by hybrid NICE-MC and SECONIC simulations in the nanoscale multi-
compartmental model. Insonication of regular spiking neuron (continuous wave ultrasound, pulse onset and pulse duration
set to 100 ms, PUS = 100 kPa (Isp = 321 mW/cm2)) with partial sonophore coverage (fBLS = 0.75, aBLS = 32 nm). The
effective value and first two overtones of the membrane charge (top, bottom) and the membrane voltage (middle) are determined
for the NICE-MC model (dashed lines: QNICE,MC

k and V NICE,MC
k obtained from the NICE-MC solution QNICE,MC(t) and

VNICE,MC(t)) in the bilayer sonophore compartment (left) and the protein islands (right). By the SECONIC formulation, charge
fourier components Qk are derived from the NICE-MC voltage fourier components Vk (V NICE,MC

k → Qk, top) and from the
NICE-MC effective charge component (ANICE,MC

Q,0 → {AQ,i, BQ,i}, bottom). Similarly, voltage fourier components Vk are
derived from NICE-MC charge fourier components Qk (QNICE,MC

k → Vk, middle). Here, the arrow-symbol (→) should be
interpreted as the action of the SECONIC-model: X → Y , XNICE,MC SECONIC−−−−−−−→ Y .

in (1) (Fig. 1(d)), indirectly via their influence on the effective
potential and rate functions. This is investigated in Fig. 3,
where the effective rate parameters, displacement, membrane
voltage, capacitance, and intramembrane gas content are
shown as function of the oscillation amplitude and ultrasonic
pressure. We observe that larger charge oscillations imply a
stronger electrostatic interaction. As a consequence, effective
displacement and membrane voltage are inversely proportional
to the amplitude of the charge oscillation. Thus, ultrasonic
pressure and membrane charge oscillation amplitude have
opposing influence on the membrane capacitance and effective
potential (cfr. different columns in Fig. 3). However, the effect
of ultrasonic intensity and oscillation amplitude on the rate
functions is similar, via the proportionality between voltage
and charge oscillations. Here, also the order of magnitude of
the influence of charge oscillation amplitude and ultrasonic
pressure on the rate functions is comparable.

B. SECONIC: accuracy in the nanoscale BLS-protein model
Fig. 4(a-d) shows the neuronal response for insonication

with Isp = 321 mW/cm2 (i.e., PUS = 100 kPa; fBLS = 0.75,
aBLS = 32 nm) in the SECONIC model with NFS = 2.
This case could be compared with the results for the NICE
and SONIC model in [46](Figs. 2–3). The predicted neuronal
response in the SECONIC model is similar to the results
obtained by the NICE model or SONIC single-compartment
model. In particular, both the SECONIC multi-compartmental
and SONIC single-compartment model predict a single action
potential at the end of the stimulation duration. In contrast to
the SONIC-MC model, no repetitive spiking response is ob-
served for this insonication case in the SECONIC-MC model,
implying that SECONIC is accurately taking into account fast
charge redistribution. Furthermore, the temporal evolution of
the effective values and first two overtones of the membrane
voltage and charge in the SECONIC model (Fig. 4(e-h))
demonstrate qualitatively similar trends as the results predicted
by the NICE-MC model (dashed lines, Fig. 5).

However, some deviations between the SECONIC and
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Fig. 6: Accuracy and computational efficiency of the NICE and SONIC point-neuron models. Response of regular spiking
neuron (fUS = 500 kHz) for different insonication intensities and sonophore coverage fBLS (left; total membrane charge trace)
and corresponding simulation time (right) for the NICE (top) and SONIC (bottom) point-neuron model.

NICE model responses are observed. Most importantly, the
SECONIC bilayer sonophore voltage-oscillations reach more
depolarized values compared to NICE. Consequently, the
membrane capacitance oscillation also extends to larger val-
ues in the SECONIC model. These discrepancies can likely
be explained by the limited number of fourier components
(NFS = 2) in combination with insufficient sampling of the
independent variables of the SECONIC-table (see section IV).

To better understand where numerical errors can emerge in
the workflow of the SECONIC model, an intermediary result
is shown in Fig. 5. Here, as a benchmark, voltage and charge
fourier components are determined from the NICE-MC simu-
lation results. In Fig. 5(a-b) the charge fourier components are

determined within the SECONIC framework ((12) –(13)) from
the NICE-MC voltage components Vk. Here, the calculated
charge components (Vk → Qk; full lines) follow the expected
NICE-MC components (Qk; dashed lines). There is significant
noise on the charge components that are calculated from the
corresponding voltage components (Vk → Qk), both in the
bilayer sonophore and protein islands (Fig. 5(a) and Fig. 5(b),
respectively). This can be explained by the fact that the charge
oscillations components are derived from the potential differ-
ence between both compartments: as the bilayer sonophore
and protein islands are close to equipotential, this potential
difference is almost zero and susceptible to small numerical
errors in the determination of the fourier components or in the
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Fig. 7: Accuracy and computational efficiency of the NICE, SONIC and SECONIC nanoscale multi-compartmental models.
Response of regular spiking neuron (fUS = 500 kHz) for different insonication intensities and sonophore coverage fBLS

(left; total membrane charge trace) and corresponding simulation time (right) for the NICE (top), SONIC (middle), and the
SECONIC (bottom; NFS = 2) nanoscale multi-compartmental model.
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NICE-MC solution. In Fig. 5(c-d) the voltage fourier compo-
nents are determined by look-up in the SECONIC-tables of the
NICE-MC charge components Qk (Qk → Vk; dashed lines).
A small deviation is seen from the expected NICE-MC voltage
components Vk, explained by errors due to the restricted
number of considered fourier components (here, NFS = 2)
and interpolation errors (dependent on the sampling resolution,
interpolation method and upsampling method). Note, that there
is no error on the voltage components Qk → Vk in the protein
island compartment (in Fig. 5(d), the components Qk → Vk

(full) and Vk (dashed) coincide). Indeed, in the protein island
compartment, the capacitance is constant Cm(t) ≡ Cm0 and
voltage component look-up is exact. Finally, in Fig. 5(e)-(f)
charge components are calculated from the zeroth order NICE-
MC charge (AQ,0 → Qk; full lines) by minimisation of the
residual of the SECONIC-equations (12)–(13), supplemented
with the look-up tables. Comparison with the predicted NICE-
MC solution (Qk dashed lines) demonstrates a similar error
as for the voltage component look-up Qk → Vk in Fig. 5(c-
d). Solving the SECONIC-equations ((12)–(13)) corresponds
with finding a self-consistent solution for the charge oscil-
lations. The accuracy of this solution is only dependent on
the number of considered fourier components NFS and the
interpolation of the SECONIC look-up tables. The SECONIC
charge oscillation solution (AQ,0 → Qk; Fig. 5(e-f)) does not
depend on small numerical errors that arise in the NICE-MC
solution or in the calculation of the fourier components Qk

and Vk: consequently, the observed noise in the intermediate
result Vk → Qk (Fig. 5(a-b)) is not present in the final charge
oscillation SECONIC-solution AQ,0 → Qk (Fig. 5(e-f)).

C. SECONIC: Simulation efficiency in the BLS-Protein model

In this section, we compare the required simulation time for
insonication during 100 ms between the SONIC, SECONIC
and NICE single and multi-compartmental models. Results are
shown in Fig. 6 (point-model) and Fig. 7 (nanoscale multi-
compartmental model): simulations are performed on a 20 core
server (2.2 GHz clock rate, 192 GB RAM). Simulation times
of the faster SONIC and SECONIC models are averaged over
10 trials. These simulation times per 100 ms insonication are
meant as a rough measure of computational efficiency.

First, in the NICE model the required simulation time
increases with ultrasonic intensity, independent of the neuronal
response. In contrast, simulation time in the SONIC and
SECONIC models reflects the neuronal activity. As observed
by [39], this is explained by the fact that the computational
complexity of the NICE model is determined at the timescale
set by the ultrasonic period. Consequently, neuronal activity
will hardly affect the computational stiffness in the NICE-
model, while increased stiffness in the equation set is caused
by the larger leaflet displacements at higher pressures. How-
ever, in the SONIC and SECONIC model, neuronal stiffness
is not influenced by the increased leaflet deflection, but by
increased neuronal activity via the variable-step differential
solvers.

Second, the simulation time per 100 ms insonication is
in the order of hours and seconds for NICE and SONIC,

respectively. In both frameworks, the walltime for the two-
compartment model is slightly lower than twice the simulation
time of the single-compartment model. Walltimes are in the
order of minutes for the SECONIC model.

Third, as discussed earlier, the single- and multi-
compartmental NICE model and the single-compartment
SONIC model yield similar neuronal response results (cfr.
Fig. 6 and Fig. 7). This indicates that a single-compartment
model is sufficient for the nanoscale bilayer sonophore and that
SONIC is an accurate and efficient implementation of single-
compartment UNMOD models. However, the SONIC imple-
mentation applied to the two-compartment model (SONIC
(MC); Fig. 7) is inaccurate, especially for sonophore coverage
fBLS closer to 0.5. The SONIC model does not take into
account fast charge oscillations caused by strong axial currents
in multi-compartmental models. Here, the SECONIC model
(SECONIC (MC), Fig. 7) takes into account these charge
oscillations. For two fourier components (NFS = 2) and with
the used sampling, predicted neuronal response is accurate if
the applied ultrasonic intensity is not too high. For higher
pressures PUS > 100 kPa (Ispta > 321 mW/cm2), the quality
of the simulation results starts to decrease with the ultrasonic
intensity. This is expected as also the goodness of the fourier
series fit to the voltage trace decreases with ultrasonic intensity
(cfr. Fig. 2).

IV. DISCUSSION

The PSK-UNMOD model and its potential generalization
to multi-compartmental models is investigated, resulting in the
SECONIC-model that includes fast charge redistribution be-
tween compartments in the multi-scale optimized scheme. The
SECONIC-model is a step in the direction of morphologically
realistic UNMOD models.

In this study, the SECONIC framework is tested and com-
pared with the NICE and SONIC models in the nanoscale
model of the BLS-Protein structure, also investigated in [39],
[46]. Due to the small spatial scale, the considered model
can be assumed to be close to equipotential, implying that
results of multi-compartmental models have to reproduce
the single-compartment solution. Consequently, this nanoscale
BLS-Protein model is ideally suited for the first design of
an accurate and computationally efficient multi-compartmental
scheme, because the exact solution is known by the point-
model approximation, thus allowing us to assess the accuracy
of the SECONIC-simulations. We note that fast charge redis-
tribution in this nanoscale model is also relevant for larger
morphologically realistic neurons. Indeed, we found charge
oscillations with amplitude in the order of 60 nC/cm2, upon
application of a sinusoidal capacitance oscillation (amplitude
equal to 80% of the local capacitance) in a blue brain project
cortical cell [42], [43]. The amplitude of the charge oscillation
is expected to depend on the interplay of several factors,
such as the ultrasonic waveform, the axial resistance between
compartments, the compartmental membrane area. . . Here,
further studies will be necessary, to determine the required
number of fourier components NFS in the SECONIC-model
at different locations of the morphologically realistic neuron
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for a given ultrasonic stimulus waveform, which is expected to
depend also on the local amplitude of the charge oscillation.

A. Voltage and charge fourier series components - accuracy

The first consideration during the construction of the
SECONIC-model, is the number of fourier series components
NFS that should be included in the multi-scale optimized
scheme. Furthermore, it would be interesting to know how
the required NFS, or conversely the accuracy of SECONIC,
depends on the applied ultrasonic waveform and the expected
charge oscillation amplitude. This is investigated by means of
the fourier series goodness of fit, quantified by the adjusted
R2 value. The goodness of fit is high for two fourier com-
ponents (mean R

2

FS=2 = 0.98, standard deviation 0.0412),
although outliers with weaker goodness of fit are observed
for a small number of fourier components at high ultrasonic
pressures and low charge oscillation amplitudes (minimum of
R

2

FS=2 = 0.61) (Fig. 2). Consequently, for a given number
of fourier components, best performance of the SECONIC-
model is expected at lower ultrasonic pressure levels. Next,
the dependency of effective parameters on charge oscillation
fourier components can be pretabulated (Fig. 3). We observe
an inverse proportionality between the effective potential mag-
nitude and the magnitude of the charge oscillation. In contrast,
rate functions and membrane voltage oscillations increase with
charge oscillations. Consequently, fast charge redistribution
will impact neuronal excitability through its influence on the
rate functions and the effective potential.

At the lower ultrasonic pressure levels (PUS / 100 kPa)
accurate integration of the PSK-model is obtained within
reasonable simulation time (one to two orders of magnitude
faster than NICE-MC) (Figs. 6-7). Furthermore, contrary to the
NICE-implementation, simulation efficiency depends only on
the neuronal activity in both the SECONIC and SONIC mod-
els. E.g., at PUS = 100 kPa and for NFS = 2, the neuronal
response (quantified by the membrane voltage and charge,
capacitance, protein state traces, and fourier component trends)
is similar to the solution obtained in the NICE-model (Fig. 4).
A minor inacurracy, observed at this pressure level, consists
of a larger oscillation amplitude of the membrane capacitance,
caused by the membrane potential reaching more depolarized
values. Discrepancies within the SECONIC solver at higher
pressure levels can be explained by the small number of
considered fourier components NFS = 2 and by interpolation
errors during SECONIC table look-up. Indeed, in Fig. 5 it can
be observed that the magnitude of the discrepancy between the
calculated (AQ,0 → {AQ,i, BQ,i}) and exact charge oscillation
(Fig. 5(e-f)), is similar to the table look-up error (Fig. 5(c-d)).

B. Computational efficiency of SECONIC - pretabulation

Although efficient simulation of multi-compartmental ultra-
sonic neuromodulation is possible by pretabulation of voltage
fourier components and rate functions, it should be noted that
an initial cost is required for the calculation of the look-up
tables. Similarly as in the SONIC model for point neurons
[39], these tabulation calculations have to be performed only
once. More importantly, parallelization of the tabulation is

straightforward, as opposed to simulations within the NICE-
framework. For the realisation of a morphologically realistic
UNMOD model, this parallelization step is indispensible.
Indeed, as observed in Figs. 6–7, the simulation time increases
with the number of compartments and is already in the order
of 5 to 22 hours for the fully sequential two-compartment
NICE-model: rough extrapolation predicts excessive simula-
tion times for multi-compartmental morphologically-realistic
models with hundreds to thousands of compartments. Another
consideration is that the model stiffness is expected to increase
with the number of compartments as well, resulting in solver
instability or low accuracy (the achievable solver tolerance
level is limited by the machine precision in case of very
high stiffness) in a model that is not multi-scale optimized.
Nevertheless, an important limitation is that, due to the non-
linearity of the mechanical Rayleigh-Plesset equation, the
independent parameter space scales exponentially with the
number of considered fourier series components and acoustic
field properties. For example, tabulation with two fourier series
components NFS = 2, with 5 and 9 uniformly distributed
unique values for the charge oscillation amplitude (0 nC/cm2

to 100 nC/cm2 with step 25 nC/cm2) and phase (0 to 2π
with step 2π/9), respectively, and with 30 values for the DC
component of the membrane charge (i.e., 52 ·92 ·30 = 60 750
simulation cases) takes about 3 to 22 hours on one supercluster
node (36 processors per node, 2.3 GHz clock rate) for low and
high ultrasonic pressure, respectively. Increasing the number
of fourier components to NFS = 3, higher sampling resolution
(e.g., 4 and 2 times more samples for the oscillation amplitude
and phase, respectively), or tabulation of 50 ultrasonic intensi-
ties, would increase the required computational resources with
factors 45, 64 and 50, respectively. Fortunately, a reasonable
goodness of fit is already obtained with two fourier series
components, except for large pressure amplitudes (R

2 ≥ 0.61).

Besides the number of considered fourier components NFS,
also the sampling resolution of the SECONIC look-up ta-
bles is important. Here, an optimization is introduced in the
trade-off between the required resources for pretabulation,
the SECONIC runtime for simulating the neuronal response
and the simulation accuracy: in a post-processing step after
tabulation, SECONIC-tables are upsampled with a modified
Akima method [50], [51] (cfr. section II). This upsampling
step is relatively fast and allows to reduce the sampling
resolution during the pretabulation step, effectively reduc-
ing the required cluster resources. Furthermore, this post-
processing step results in a better compromise between the
simulation runtime and accuracy for a given table resolution,
because the faster (lower order) linear interpolation method
is used at runtime. Our results indicate that the modified
Akima method is favourable here, as compared to spline
or cubic interpolation. As future work, we intend to further
investigate the optimal sampling of the independent parameter
ranges, the ideal upsampling method and rates (e.g., different
interpolation methods might be more suitable for the different
table dimensions), number of fourier components, etc., in order
to minimize the required resources for the preparation of the
look-up tables and the simulation duration for a given level of
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Fig. 8: Accuracy and computational efficiency of the SECONIC-model in the bilayer sonophore-protein structure with partial
protein coverage. Response of regular spiking neuron (fUS = 500 kHz) for different insonication intensities and sonophore
coverage fBLS (left; total membrane charge trace) and corresponding simulation time (right) for the SONIC point-neuron (top),
SONIC multi-compartmental (middle), and the SECONIC (bottom; NFS = 2) nanoscale multi-compartmental model. Voltage
sensitive membrane conductance gains are restricted to the protein islands in the multi-compartmental models and scaled with
the areal protein coverage in point neuron models.
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simulation accuracy. This optimization of pretabulation and
post-processing settings is likely dependent on the studied
ultrasonic waveform and neuron type (e.g., higher number of
fourier components at higher ultrasonic pressure levels).

In this context, we also intend to address as future work the
limitation that all analysis is performed for continuous-wave
UNMOD, because the used regular spiking cortical model is
not excitable with pulsed low duty-cycle ultrasound, except at
very high intensity [30]. E.g., a comparison with low-threshold
spiking cell dynamics, that is sensitive to pulsed ultrasound,
will allow us to determine the accuracy and efficiency of
SECONIC for pulsed waveforms. Here, one limitation intrinsic
to multi-scale optimized frameworks (SONIC or SECONIC)
is that transient effects due to discontinuities will not be
taken into account (i.e., only the steady-state effect of the
discontinuity is expressed in the model). Fortunately, steady
state is reached in the majority of cases after one to a few
ultrasonic cycles, implying that the multi-scale approximation
will only impact the neuronal response at very short duty
cycles. Another consideration is that at very short duty cycles,
the pulse will have a duration in the same order of magnitude
as the SECONIC or SONIC discretization timestep, impacting
the solution [39]. However, as the SECONIC-model includes
no further approximations on discontinuity-induced transients
with respect to the SONIC-model, similar good accuracy of
the neuronal response is expected as in [39] for duty cycles
above 5% and for a pulse repetition frequency below 10 kHz.

C. Partial protein coverage in the nanoscale BLS

Previous computational studies of the bilayer sonophore
with surrounding protein islands, have not yet taken into ac-
count the reduction in voltage-sensitive gains with increasing
sonophore coverage fBLS [30], [39]. Indeed, the coverage of
proteins fP is complementary to that of bilayer sonophores
(fP = 1−fBLS): this can be taken into account for point neu-
rons by calculating the average conductance (gX = fPgX,P,
with gX,P the protein island conductance of ion X, cfr. eq. (3))
and for multi-compartmental neurons by omitting voltage-
sensitive gains from the bilayer sonophore compartments.
Accounting for partial protein coverage will influence the
excitability of the structure as function of the coverage fraction
fBLS [46].

In this study, we opted to demonstrate results without taking
the consideration of partial protein coverage into account: i.e.,
voltage-sensitive gains are present over the whole BLS-Protein
structure (cfr. Fig. 1(a-b)). Although this assumption is not
biologically realistic, this approach allowed us to compare the
results more easily with prior work. Here, it is important to
note that the main focus of this study is to design a multi-
scale optimized framework that accounts for charge oscilla-
tions in BLS-models in general. In other words, although we
used the bilayer sonophore and surrounding protein islands
as a test-model, SECONIC should result in accurate and
efficient integration of other multi-compartmental BLS-models
as well (e.g., a myelinated axon, in which voltage-sensitive
proteins are present at each node of Ranvier compartment).
Consequently, the biological realism of the used BLS-Protein

model is of lower importance for the interpretation of the
performance of SECONIC.

Another consideration is that the BLS-Protein model with-
out accurate description of partial protein coverage demon-
strates more clearly the limitation of the SECONIC model at
higher ultrasonic pressures (PUS > 100 kPa) for NFS = 2,
allowing us to discuss the constraints of the SECONIC model
with a limited number of fourier components (see also sub-
section IV-A and IV-B). In contrast, the SECONIC model
in the BLS-Protein structure that accounts for partial protein
coverage is already very accurate for NFS = 2 over the whole
simulated ultrasonic pressure range (up to PUS = 600 kPa).
For completeness, this result is presented in Fig. 8. In Fig. 8
it can also be observed that the multi-compartmental SONIC
model is not excitable when partial protein coverage is taken
into account, in agreement with [46].

V. CONCLUSION

We propose a computationally efficient algorithm SEC-
ONIC for multi-compartmental neurons in which fourier series
components of the potential and charge are utilized. Each
ultrasonic period, the charge oscillation can then be obtained
by solving a single algebraic equation.

This extension of the SONIC model to multi-compartmental
models is based on the observation that, although charge
and voltage oscillate on a timescale set by the ultrasonic
frequency, their fourier components are slowly changing. The
goodness of the fourier fit is investigated to predict the ex-
pected performance of SECONIC: higher ultrasonic pressures
will result in greater non-linearity and a larger number of
required fourier components. Nevertheless, satisfactory fits
are generally already obtained with only two overtones for
PUS / 100 kPa. Subsequently, the dependency of the effective
electrodynamical parameters and voltage fourier amplitudes
on the charge oscillation amplitude and ultrasonic pressure
is studied. Charge oscillations and ultrasonic pressure have
opposite effects on the effective capacitance, voltage and dis-
placement: e.g., effective membrane potential is decreased by
stronger charge oscillations but increased by larger ultrasonic
pressure. Conversely, the potential oscillation amplitudes and
effective rate constants experience similar dependency on the
ultrasonic intensity and charge oscillation amplitude.

Finally, we demonstrate that the proposed multi-
compartmental implementation SECONIC with NFS = 2
yields accurate and fast integration in a nanoscale model of
the bilayer sonophore and surrounding proteins for lower
ultrasonic pressure. Due to multiscale optimization, simulation
efficiency of SECONIC does not depend on the maximal
leaflet inflation, but is exclusively determined by the neuronal
activity. Higher number of considered fourier components
and/or improved resolution of the effective SECONIC-tables is
required for accurate simulation at higher ultrasonic pressure
levels (PUS ' 100 kPa). As future work, we intend to
apply the SECONIC model for the investigation of ultrasonic
neuromodulation by intramembrane cavitation in blue brain
project cortical models in the NEURON environment.
The subsequent step would then also incorporate FDTD
simulations of the induced pressure field in the human brain.
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