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Abstract: In contrast to accurate GPS-based localization, approaches to localize within LoRaWAN
networks offer the advantages of being low power and low cost. This targets a very different set
of use cases and applications on the market where accuracy is not the main considered metric.
The localization is performed by the Time Difference of Arrival (TDoA) method and provides discrete
position estimates on a map. An accurate “tracking-on-demand” mode for retrieving lost and stolen
assets is important. To enable this mode, we propose deploying an e-compass in the mobile LoRa
node, which frequently communicates directional information via the payload of the LoRaWAN
uplink messages. Fusing this additional information with raw TDoA estimates in a map matching
algorithm enables us to estimate the node location with a much increased accuracy. It is shown
that this sensor fusion technique outperforms raw TDoA at the cost of only embedding a low-cost
e-compass. For driving, cycling, and walking trajectories, we obtained minimal improvements of 65,
76, and 82% on the median errors which were reduced from 206 to 68 m, 197 to 47 m, and 175 to 31 m,
respectively. The energy impact of adding an e-compass is limited: energy consumption increases by
only 10% compared to traditional LoRa localization, resulting in a solution that is still 14 times more
energy-efficient than a GPS-over-LoRa solution.

Keywords: LoRa; localization; positioning; LoRaWAN; TDoA; tracking; map matching; compass;
sensor fusion

1. Introduction

The Internet of Things (IoT) allows connecting objects to the internet with the use of wireless
sensors. Typical use cases are monitoring temperature, humidity, and soil moisture for smart farming
applications [1,2], condition monitoring of air cargo [3], or monitoring vital signs of cows in rural
areas [4]. Other examples are a bus positioning system [5,6] and asset tracking for logistics [7]. In nearly
all cases, the sensor device transmits this information wirelessly to a gateway or access point which
has a back-haul to the internet. In this manner, the data can be further processed and visualized.
This paper considers the use case of asset tracking.

IoT devices are often powered by batteries, which will sooner or later need replacement,
for example, nodes installed in equipment, pallets, or bikes. For economic reasons, a long-range
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wireless link is also required in order to have a large coverage area with the least amount of access
points or gateways. The advent of Low-Power Wide Area Networks (LPWAN) and their deployment
in many countries [8] brings benefits at the level of scalability (thousands of sensors per gateway),
coverage range (more than 15 km), and power consumption (battery lifetimes up to more than 5 years).
The only constraint is the fact that uplink should (in general) be infrequent and limited in the number
of payload (information) bytes. Some examples of LPWAN standards are NB-IoT [9], SigFox [10],
and LoRaWAN [11].

Many outdoor asset tracking implementations are using a Global Navigation Satellite System
(GNSS) receiver to send GPS coordinates over LPWAN. In [5,6], these implementations are used
to track city buses. In [3,12], similar GPS-based approaches are used to track air cargo and bikes.
Another approach to perform localization is using the network itself to locate sensor nodes without
GPS embedded in the node. The basic principle is that when a node send uplink data to the network,
the incoming packets’ meta-data such as Time of Arrival (ToA) and Received Signal Strength (RSS)
is recorded on the different gateways. The meta-data and gateway locations are then forwarded
to a so-called geo-location solver to estimate the location with a suitable algorithm. The output of
the solver is then a (Latitude, Longitude) coordinate [13]. The provided location estimates are not
as accurate as for GPS (order of a few meters), but an important advantage is that network-based
localization (geo-locating) consumes less power on the mobile node compared to integrating a GPS
receiver in the node. Another clear advantage of using LPWAN for localization is that only one
technology is used for communication and localization, enabling the manufacturing of low cost and
compact sensor nodes. Some use cases of geo-locating using LPWAN include tracking of valuable
assets during transportation such as railway cars, truck trailers, and containers [7]. The main downside
of geo-locating is the relatively low localization accuracy which might not be beneficial for some use
cases. Therefore, this paper will focus on improving this performance metric.

In [14], the authors introduced the principle of using a compass on top of LoRaWAN raw location
data and tested it for a single route. The goal of this paper is to realize and thoroughly analyze the
LoRaWAN Geo-Tracking by the use of map matching and compass sensor fusion. A significant number
of test routes is examined for different modes of transportation in different networks, not only in
Belgium but also in the Netherlands. Furthermore, the difference between real-time localization and
offline a posteriori localization is compared. The main idea is that we take into account the road
infrastructure, maximum speed of the node, and (communicated) compass heading. Assuming the
tracked item stays on the road network, heading info (e.g., item heading west) can be exploited to
exclude other candidate trajectories (e.g., trajectory heading north). The basic setup for this is shown
in Figure 1. The novelties of this paper are as follows.

(i) A compass sensor fusion implementation for accurate LoRaWAN localization.
(ii) Improved map matching technique to outperform current available LoRa geo-location

possibilities, which works for all LoRa sensor nodes.
(iii) All algorithms are tested with experimental data obtained in different environments and using

different modes of transportation (walking, cycling, and driving). The reproducibility of the
results is also investigated.

The remainder of the paper is structured as follows. Section 2 presents an overview of related
work on LoRa geo-localization methods and improvements proposed in literature. In Section 3,
we describe the trajectories and the data collection method, the algorithm implementations, and the
different investigated scenarios. Section 4 presents and discusses the results that are obtained using
our techniques and compares the energy consumption of our geo-localization solution with GPS-based
solutions. Finally, Section 5 summarizes the paper’s findings and provides recommendations for
future work.
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Figure 1. Measurement environment where a LoRaWAN node is attached to a bicycle. The node
transmits the e-compass directional data to the network and the Time of Arrival is recorded on
all gateways.

2. Related Work

The most accessible and available way to localize sensor nodes in a LoRaWAN network is by
using the RSS metadata that is received by the gateways after an uplink. Such approaches have been
studied in our previous works in [15,16]. In [15], the RSS received from up to three gateways was
converted to a location using different algorithms, yielding a median accuracy between 1250 m and
2500 m. In case of frequent uplinks and when the mode of transportation is known, map matching
further reduced the median error to 700 m. In [16], a mean accuracy around 400 m was obtained with
an RSS fingerprinting method based on the collection of a large training database. Similar accuracies
(around 350 m) were reported in [17] using other fingerprinting methods.

Current LoRaWAN gateways can accurately determine the Time of Arrival (ToA) of an incoming
packet sent by a sensor node. Based on the observed time stamps and the known gateway locations,
a Time-Difference-of-Arrival (TDoA) algorithm can estimate the location more accurately than
RSS-based methods. Previous research [13,15,18] reported a median accuracy around 200 m when
using this method in combination with a maximum likelihood (ML) algorithm. Similar accuracies of
around 100 m were reported in [19] for the case of a privately deployed network with static nodes.
Improving localization accuracy of static nodes is also investigated in [20], where multiple messages
are merged to provide a more accurate estimate. The simulations in [20] showed that it was possible to
achieve an average error of less than 100 m using this method. In [21], an improved TDoA algorithm is
proposed and compared with a Least Squares (LS) approach. Ninety-five percent percentile values
improved from 2200 m to 840 m in a simulated environment. Another approach, correcting the received
timestamps of a mobile node by the use of machine learning in combination with stationary reference
nodes, reported an accuracy around 61 m [22]. However, it is unclear how many reference nodes are
needed, making it potentially unsuitable for large deployments from an economic point-of-view.

This paper will report results from experiments in real public LoRaWAN networks, without using
GPS or any other additional infrastructure. Furthermore, it will consider non-stationary nodes and
will compare the proposed method with available state-of-the-art TDoA algorithms.
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3. Materials and Methods

3.1. Data Collection and Trajectories

The device for which we estimate its location and trajectory is a LoRaWAN sensor node (MCS
iTalks 1608). This device is provisioned on either the Proximus (Belgium) or KPN (Netherlands)
LoRa network. The device is configured to have the highest possible uplink frequency possible:
every 5 s a 5-byte packet is transmitted on spreading factor (SF) 7. The airtime for this packet is 50 ms:
this transmission configuration complies with the ETSI regulations of a 1 percent duty cycle [23].
The transmitted packets are received by the numerous gateways deployed in the outdoor area around
the node, after which they are forwarded to the network server. The following data are available:

• A payload (5 bytes) from the device, containing the 5 compass values (also called heading or
bearing) recorded during the last 5 s. Due to the unavailability of such a node, the compass values
are emulated on a (Samsung Galaxy A20E) smartphone application (OSMTracker for Android),
which was carried with the device.

• RSS value received at each gateway with its ID.
• Signal-to-Noise Ratio (SNR) of the received packet at each gateway with its ID.
• Timestamp of the received packet (nanosecond resolution) at each gateway denoted with its ID .

Furthermore, the network topology of all gateways is known for both Proximus and KPN
networks (latitude/longitude coordinates for each gateway ID). The recorded data allow processing
the data and converting them into the most likely locations and/or trajectory using a suitable algorithm.
In order to estimate the localization accuracy, the ground truth (and time) was logged with a GPS
application on the smartphone (OSMTracker for Android).

The LoRa device and the smartphone were carried in the front pocket of a jacket along 7 trajectories
and using different transportation modes. The ground truth trajectories are shown in Figure 2 as a
black trace. Each transportation mode (walking, cycling, and driving) was tested twice in a different
area. For the second walking trajectory, we traveled the exact same trajectory (noted by “Walking 2A”
and “Walking 2B”). Repeating the measurements in the same and/or different areas allows us to check
the reproducibility of our results. The characteristics of the trajectories such as duration, velocity and
distance are shown in Table 1. Nearly all measurements were performed in Ghent (Belgium) and made
use of the Proximus network. The measurements for driving trajectory 1 is the only exception which
was done in Eindhoven (Netherlands) and made use of the KPN network.

Table 1. Characteristics for the 7 mobile trajectories.

Trajectory Duration Distance Avg. Velocity

Walking 1 40 min 3.1 km 4.6 km/h
Walking 2A 20 min 1.8 km 5.2 km/h
Walking 2B 19 min 1.8 km 5.4 km/h
Cycling 1 34 min 10.6 km 19 km/h
Cycling 2 21 min 6.5 km 19 km/h
Driving 1 18 min 16.2 km 55 km/h
Driving 2 19 min 8.5 km 26 km/h
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Figure 2. Trajectories with different mobility: left (walking), middle (cycling), and right (driving).
The black trace denotes the ground truth. Localization by raw TDoA is shown as coloured dots.
Gateways are shown as black triangles. The colored trace is the final result of combining TDoA and
absolute compass heading in the map matching algorithm (Scenario OC-Abs. Heading).

3.2. Algorithm

The algorithms described hereafter were implemented in Python. Algorithm 1 shows the
pseudocode of the map matching method with compass sensor fusion. The variables and different
steps are discussed in the text below. The algorithm is initialized based on the first TDoA measurement
(TM0) for which the TDoA solver can calculate a location (L0), i.e., if three gateways receive a packet.
Next, a predefined number of other locations (MP) are selected around this location and their
probability is initialized to one, e.g., the 1000 closest grid points to the current position. This ensures
that the algorithm can recover from initially noisy data, e.g., 1000 grid points on a grid with a size of
10 m results in covered surfaces of around 50 hectares (the exact area depends on the density of the
road network). This initialization phase forms the starting point of all possible paths that are kept in
the memory of the location tracking algorithm (paths).
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Algorithm 1: Map matching with compass data.
Input: compass data + TDoA measurements (TMS)
Result: map matched trajectory (MMT)
MoT ←mode of transportation (known in advance);
TM0 ← first TDoA measurements;
L0 ← location based on TM0;
tprev ← first timestamp;
MP← 1000;
// maximum number of paths in memory
LR ← real time location
paths← list with MP grid points closest to L0 initialized with probability 1;
// iterate over all TDoA measurements
for TM ∈ TMS do

t← current timestamp;
∆t← t− tprev;
tmp← empty list;
for path ∈ paths do

P← current probability of path;
E← current endpoint of path (parent);
RGP← reachable grid points along roads with MoT within time span ∆t starting from
E;

CD ← compass data between tprev and t;
// update new path probabilities
for CP ∈ RGP do

// CP: candidate position
RS← road segments between E and CP;
// compass probability
Pcomp ← probability of RS given CD;
// tdoa probability
Ptdoa ← probability of CP given TM;
pathnew ← path + RS + CP;
Pnew ← P · Ptdoa · Pcomp;
add (pathnew, Pnew) to tmp

end
end
paths← retain MP paths from tmp based on highest probability;
LR ← endpoint of most likely path from tmp tprev ← t;

end
MMT← reconstruct trajectory along path with highest probability in paths

Then, for the subsequent TDoA measurements (TM), all reachable grid positions (RGP)
starting from the path’s current endpoint (E) are determined for all paths in memory, by using the
surrounding road network; the elapsed time since last location update (∆t); the known mode of
transportation (MoT); and OpenStreetMap metadata, i.e., maximum speed, road type, and one-way
information. These reachable grid positions are the candidate positions for the next location update.
Transitions between grid points are constrained by the road infrastructure. Each candidate position
(CP) retains a link to its parent (i.e., the previous endpoint E), a list with visited road segments RS,
and a probability that represents this new branch along the road network. This new path (branch)
and updated probability are added to the temporary list (tmp) as a tuple (pathnew, Pnew). The updated
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probability is the product of the previous probability P with a TDoA and compass contribution
(Ptdoa and Pcomp).

Ptdoa is based on the probability of the TDoA measurements given CP, the gateway locations,
and the standard deviation of LoRa TDoA measurements, e.g., 383 m in our experimental validation.
Pcomp is based on the probability of the compass data between tprev and t given the bearing of the
visited road segments RS and is calculated with a standard deviation of 60◦.

The MP paths with the highest probability are retained and serve as input for the next iteration.
After all TDoA measurements are processed, the entire trajectory of the path with highest probability
in memory is reconstructed. The trajectory is only estimated after all measurements are processed but
it is also possible to provide real time location output by retaining the endpoint of the most likely path
from tmp in each iteration.

3.3. Scenarios

Different scenarios are evaluated, all of which are applicable for different use cases.
First, we distinguish between Real-Time (R) Tracking and Offline Tracing (O). In the case of Real-Time
Tracking, the localization result is made available immediately after the packet was received. For the
case of offline tracing, it is assumed one only requires the fully estimated trajectory at a later instance
(this can provide a more accurate trajectory estimation thanks to more data being used). Second, we also
differentiate between a device which does not contain a compass (A, for agnostic) and a device that
does contain a compass sensor (C). To emulate a device without compass, we ignore the recorded
compass data in our algorithms. We denote the agnostic or compass-enabled device by the letters “A”
and “C”, respectively. It is therefore possible to combine these considerations into 4 scenarios:

• RA: Real-Time Agnostic: Tracking is needed in real-time and no compass is available in the device
• RC: Real-Time Compass-enabled: Tracking is needed in real-time and compass data are available.
• OA: Offline Agnostic: Offline Tracing at a later instance is needed, the device has no compass

data available.
• OC: Offline Compass: Offline Tracing at a later instance is needed with a compass-enabled device.

For each of the 4 scenarios we consider at least 2 methods/algorithms to perform the respective
localization and evaluate them for the different trajectories. For the cases that use compass data,
there are 2 possibilities. In the first implementation, it is assumed that the compass produces absolute
headings. For example, 0 degrees means the asset moves towards the North. This implementation can
be used for cases for which it is known how the compass was installed relative to the tracked device,
e.g., for tracking bicycles. The second implementation does not rely on this assumption and uses only
relative headings, e.g, a transition from a 90 to a 180 degree bearing or from a 30 to a 120 degree bearing
means a turn (of 90 degrees) to the right. For example, this method can be used for tracking parcels in
transit, where we do not know the absolute orientation of the installed compass node relative to the
direction of movement of the tracker. Table 2 gives an overview of all the methods used in this paper.

Table 2. Overview of the different methods used to obtain the real-time estimated locations and/or
reconstructed trajectory.

Scenario Method Output Map Matched Compass Used Description

RA
Semtech Real-Time location no no TDoA solver from Semtech [24]

Semtech mm Real-Time location yes no solver, next ’snap to road’ [13]
TDoA mm Real-Time location yes no algorithm 1 with Pcomp=1 and output LR

OA Semtech mm Reconstructed Trajectory yes no solver, next estimate trajectory [13]
TDoA mm Reconstructed Trajectory yes no algorithm 1 with Pcomp=1 and output MMT

RC Rel. Heading Real-Time location yes yes-Relative algorithm 1 with output LR
Abs. Heading Real-Time location yes yes-Absolute algorithm 1 with output LR

OC Rel. Heading Reconstructed Trajectory yes yes-Relative algorithm 1 with output MMT
Abs. Heading Reconstructed Trajectory yes yes-Absolute algorithm 1 with output MMT
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An illustrative example showing the difference between the use of relative and absolute compass
headings is shown is Figure 3. The performance of all our implementation methods for the various
scenarios is compared to a state-of-the-art commercial solver from Semtech [24], which takes the raw
timestamps and gateway locations as inputs.

Figure 3. Left figure: compass is misaligned (parcel tracking use case) and heading goes from 45◦ to
135◦. We only know that the relative heading is therefore +90◦, e.g., a turn to the right. Right figure:
compass is aligned (bicycle tracking use case) and heading goes from 0◦ to 90◦. We now know the
tracker went from South–North to East–West on the road map.

4. Results

4.1. Localization Accuracy

Figure 4a–d shows the accuracy CDF of the various scenarios, methods, and trajectories.
The median (p50) and 90th percentile (p90) accuracy metrics are obtained from each CDF and are
summarized in Table 3. The tracking results from method RA/Semtech for the walking, cycling,
and driving mobility cases are displayed as dots on the different respective maps in Figure 2.
The estimated trajectory of the OC/abs heading scenario is also shown as a colored trace on the
maps. Throughout this paper each estimated result (localization on the map, accuracy CDF) is
denoted by a different color according to the mobility scenario being evaluated: red corresponds with
walking, while green and blue are assigned to cycling and driving. From the maps we can clearly
see the improvement made: while the dots give a very rough estimate about the location in real-time,
our tracing result nearly overlaps with the ground truth.

Relative improvements (in percentages) when comparing a method to the RA/Semtech traditional
localization solver (no compass, no map matching) are shown in Table 4. This table shows that all
our methods result in improvements ranging from 1 to 92 percent when compared to the Semtech
localization solver. Large improvements are possible, especially when the mobility is low. According to
all four CDFs the walking (red lines) did better then the cycling (green lines), which in turn did better
than the driving (blue lines) mobility case. This is due to the fact fewer candidate positions are selected
for slower modes of transportation (MoT). Regardless of the method used, a minimum improvement
of 45 percent is possible for the walking/slow moving case. Therefore, our first recommendation is
to let the user supply a mobility motion indicator to each asset to be tracked in case the asset is very
likely to be constrained on the road infrastructure (e.g., a bicycle).
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(a) (b)

(c) (d)

Figure 4. CDFs of the different scenarios evaluated for the walking 1, cycling 1, and driving 1 trajectories.
(a) Real-time Agnostic (RA) scenario: tracking in real-time and no compass is available in the device.
(b) Offline Agnostic (OA) scenario: offline tracing at a later instance, the device has no compass.
(c) Real-time Compass (RC) scenario: tracking is needed in real-time and a compass is available.
(d) Offline Compass (OC) scenario: offline tracing with a compass enabled device.

Table 3. Summary of the obtained p50/p90 accuracies (in meters) for the various scenarios, methods,
and trajectories.

Scenario Method
Transportation Mode

WALK 1 WALK 2A WALK 2B CYCLE 1 CYCLE 2 DRIVE 1 DRIVE 2

RA
Semtech 175/413 187/494 226/501 175/433 197/704 242/1165 206/599

Semtech mm 75/203 102/169 101/209 142/328 159/469 208/574 177/436
TDoA mm 60/122 69/147 58/120 100/226 141/290 181/384 157/421

OA TDoA_mm 52/89 39/63 68/120 87/222 147/417 140/268 126/291
Semtech_mm 52/146 48/89 30/175 124/288 169/569 239/881 160/460

RC Rel. Heading 52/107 45/149 49/149 99/230 149/319 164/397 154/421
Abs. Heading 30/84 21/137 20/75 60/184 94/280 121/262 148/367

OC Rel. Heading 52/104 22/42 41/137 86/241 156/412 109/264 118/359
Abs. Heading 31/69 17/35 19/47 29/193 47/289 84/262 68/227
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When considering the cases for a device without compass (scenarios RA and OA), we see from
Table 4 that the best approach is to work with the raw timestamps instead of processed locations for
the map matching algorithm: TDoA mm performance is always better than Semtech mm. This is our
second recommendation and its impact is also visible in Figure 4a,b.

Table 4. Percentual reduction in median positioning error for the various scenarios, methods,
and trajectories.

Scenario Method
Transportation Mode

WALK 1 WALK 2A WALK 2B CYCLE 1 CYCLE 2 DRIVE 1 DRIVE 2 AVERAGE

RA
Semtech Reference Reference Reference Reference Reference Reference Reference Reference

Semtech mm 57 45 55 19 19 14 14 32
TDoA mm 66 63 74 43 28 25 24 46

OA TDoA_mm 70 79 70 50 25 42 39 54
Semtech_mm 70 74 87 29 14 1 22 42

RC Rel. Heading 70 76 78 43 24 32 25 50
Abs. Heading 83 89 91 66 52 50 28 66

OC Rel. Heading 70 88 82 51 21 55 43 59
Abs. Heading 82 91 92 83 76 65 67 79

Table 3 shows that offline tracing (scenarios OA and OC) gives better localization results than their
tracking counterparts (scenarios RA and RC). This is due to the fact that when the route is reconstructed
all historic data from the start till the end of the measurement are used. Our third recommendation is
therefore to implement a feature for which the tracing history can be viewed along with its current
most likely localization result.

Relative comparisons for the cases with a compass versus no compass are further shown in
Table 5. This table shows that using sensor fusion with a compass improves the localization results:
Depending on the mobility a real time median accuracy improvement of up to 70% was possible when
the sensor was aligned (which provides an absolute heading = 0 degrees for a moving asset heading
South–North). For the reconstructed tracing result, this improvement was up to 72% in the aligned
case. When the sensor was not aligned (relative heading) the improvement was up to 35% in the
real-time tracking case to 44% for the reconstructed tracing case. The final recommendation is therefore
to embed a compass in the LoRa sensor node and align it with the movement direction (if possible)

Table 5. Relative improvement percentage when comparing the scenarios with compass to the absence
of such compass.

Scenario Method
Transportation Mode

WALK 1 WALK 2A WALK 2B CYCLE 1 CYCLE 2 DRIVE 1 DRIVE 2

RC vs RA Rel. Heading 13 35 16 1 −6 9 2
Abs. Heading 50 70 66 40 33 33 6

OC vs OA Rel. Heading 0 44 40 1 −6 22 6
Abs. Heading 40 56 72 67 68 40 46

4.2. Discussion

Table 4 shows that regardless of the method used, improvements (between 1% and 92%) are
obtained for all seven trajectories. This clearly demonstrates that our methods increase accuracy of the
raw output of the Semtech localization solver (“Semtech”), which here serves as reference method.
Map matching these raw outputs (“Semtech mm”) always produces better results, with improvements
between 14% and 57%. Working with the raw timestamps (TDoA mm) instead of already processed
locations in our map matching algorithm gives additional improvements. In Table 4, we note all
percentages of TDoA mm are better than Semtech mm regardless if the scenario is offline tracing (OC)
or real-time tracking (RA). When adding relative compass data to our TDoA mm algorithm, further
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improvement of accuracy is shown in Table 5 for nearly all (6/7) trajectories with only 1 exception for
the second cycling trajectory (the degradation was only 6 %). When the compass is indicating 0 degrees
for a movement from South to North and does not “rotate”, while the tracker (and asset) are in transit
(absolute compass) additional improvement is always guaranteed (Table 5) for all trajectories. Table 3
shows that our algorithm provides a median accuracy lower then 85 m while the Semtech solver
median accuracy is always higher than 175 m. The same reasoning can be done for 90th percentile
error which is always larger than 400 m, while our algorithm guarantees less then 290 m for this metric
on all trajectories. The observations are summarized in Table 6.

Table 6. General observations.

Test Case True For

All methods better than Semtech 7/7 trajects
Semtech mm better than Semtech 7/7 trajects

TDoA mm better than Semtech mm
(RA and OA) 6/7 trajects

Adding relative compass improves results
(RC vs RA and OC vs OA) 6/7 trajects

Adding absolute compass improves results
(RC vs RA and OC vs OA) 7/7 trajects

p50 Semtech >175 m and p50 OC-Abs <85 m 7/7 trajects
p90 Semtech >400 m and p90 OC-Abs <290 m 7/7 trajects

When repeating the measurement along the exact same trajectory on a different day (“Walking
2A” and “Walking 2B”), we observe two different raw Semtech localization results (orange vs. red dots
in Figure 2). After application of our OC/Abs algorithm, the same trajectory is estimated which in turn
overlaps the ground truth trace. This clearly demonstrates the reproducibility of the obtained results.

The above analysis shows that the map matching algorithm delivers a first accuracy improvement
over the raw data, as it is able to restrict to paths that are physically possible, given the road
network topology and speed limits (with margin). Adding compass data further reduces localization
errors. Absolute heading data gives information on the estimated travel direction, possibly excluding
other candidate paths that remained after map matching. If absolute heading data is not available,
relative heading data is still able to detect direction changes. When mapping these direction changes
(e.g., a turn right of 60 degrees) to the road network, it is clear that certain trajectories will be more
likely than others. Results confirm that the algorithm intelligently makes use of recorded location
and heading data, by investigating to what extent these input data match with the different possible
trajectories along the road network. It can be expected that results will be better for sparse road
networks, as fewer alternatives are available. On the other hand, for grid street plans like in New York,
the algorithm might have more trouble distinguishing between two parallel streets, as such grid plan
contains only two street directions and allows only 90 degree turns.

4.3. Energy Consumption

In this section we briefly compare two common tracking implementations in terms of energy
consumption. First, we calculate the energy consumption when a node sends its GPS coordinates
using a GNSS receiver over LoRaWAN (GPS-over-LoRa). In the second implementation, we consider
the proposed LoRaWAN tracking with compass. For both implementations, we consider a tracking
update interval of 5 s and we quantify the energy consumption in mAh. For a node equipped with a
GNSS module, the minimum on-time for a location fix is about 1 s [25]. During this acquisition period
the receiver typically consumes 30 mA [25]. Therefore, the consumed acquisition energy per location
update is

EGPS =
1

3600
∗ 30 = 0.0083 mAh (1)
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Transmission of 5 bytes on SF7 over LoRaWAN takes 0.05 s airtime while consuming 40 mA of
current in a typical transceiver [26]. Therefore, the consumed energy per location update is

ELoRa =
0.05
3600

∗ 40 = 0.00056 mAh (2)

The energy consumption for continuous sampling with a (low-power) typical magnetometer
sensor [27] is very low and and can be estimated as

Emagneto =
5

3600
∗ 0.040 = 0.000056 mAh (3)

The energy reduction factor R for our proposed LoRa+compass solution versus a GPS over LoRa
implementation is approximately given by

R =
EGPS−over−LoRa
ELoRa+compass

=
EGPS + ELoRa

ELoRa + Emagneto
= 14 (4)

Our approach is thus 14 times more energy efficient than a GPS-over-LoRa solution.
Furthermore the price of integrating a magnetometer (e.g., LIS3MDL) is lower when compared
to integrating a GNSS receiver (e.g., CAM-M8Q): 0.8€ compared to 13€ (for an order quantity of
500 samples). Although a GPS-based solution will still deliver superior accuracies, the lower cost
and energy consumption will make our solution preferable for use cases where positioning accuracy
requirements are not so strict (e.g., tracking of truck trailers). Although we only compared two
tracking implementations, there are some other solutions such as Wi-Fi scanning and transmitting
MAC addresses and signal strength levels of access points in the area over LPWAN, followed by a
calculation in a dedicated server (e.g., Skyhook). The accuracy and energy consumption are in between
the two earlier investigated approaches. A disadvantage of this method is maintaining an accurate
and up to date database with respect to the locations of the access points. For more information on this
implementation we refer to the work in [28].

5. Conclusions

In this paper, we proposed methods to track and trace assets building on a combination of
LoRaWAN technology and a compass sensor. When comparing with a standard TDoA solver (Semtech),
we obtained an improvement between 14% and 79% depending on the mobility scenario (walking,
cycling, and driving) and whether the result should be immediately available (Real-Time-Tracking)
or known at a later instance (Offline-Tracing). These improvements were possible thanks to the
map matching algorithm proposed in this paper. Combined with a compass in the sensor node,
the bearing information is transmitted periodically to give prevalence to specific paths for which the
bearing matches the heading of the road segment. Using this sensor fusion approach, an additional
improvement between 1% and 72% was obtained compared to TDoA map matching. The improvement
depends on the mobility of the node/asset, usage of the compass node (fixed or rotatable) and whether
the result should again be immediately available (Real-Time-Tracking) or known at a later instance
(Offline-Tracing). Our best result was obtained for a walking scenario with a fixed (0 degrees means
towards “North”) compass for which we obtained a median accuracy of 17 m (an improvement of 91%
versus Semtech). All results were obtained from experiments and the reproducibility was verified.
Although our results are not as accurate as GPS, we clearly demonstrated that our implemented
geo-tracking is 15 times more energy efficient and far less expensive to implement. Further research
directions are using the same techniques for LoRaWAN networks which only have RSS values available
and future networks which have also Angle of Arrival (AOA) capabilities. Other future work is to
expand our implementations to other LPWAN technologies such as SigFox and Narrow-band IoT.
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Abbreviations

The following abbreviations are used in this manuscript.

GPS Global Positioning System
LoRaWAN Long-Range Wide Area Network
TDoA Time Difference of Arrival
LoRa Long Range
IoT Internet of Things
LPWAN Low-Power Wide Area Network
NB-IoT Narrowband Internet of Things
GNSS Global Navigation Satellite System
RSS Received Signal Strength
ToA Time of Arrival
ML Maximum Likelihood
SF Spreading Factor
SNR Signal-to-Noise Ratio
CDF Cumulative Distribution Function
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