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Abstract—Due to the continuous demand for higher bit rates,
the management of the spatio-temporal intersymbol interference
in frequency-selective multiple-input multiple-output (MIMO)
channels becomes increasingly important. For single-input single-
output channels, equalized precoded partial-response signaling is
capable of handling a large amount of intersymbol interference,
but, to date, no equalization scheme with general partial-response
signaling has been presented for the frequency-selective MIMO
channel. Not only does this contribution extend partial-response
signaling to the MIMO channel by proposing a general spatio-
temporal partial-response precoder, but it also develops a mini-
mum mean-squared-error optimization framework in which the
equalization coefficients and the spatio-temporal target response
are jointly optimized. Three iterative optimization algorithms
are discussed, which update (part of) a row of the target
impulse response matrix in each iteration. In particular, the
third algorithm reformulates this row optimization as a lattice
decoding problem. Numerical simulations confirm that the gen-
eral partial-response signaling clearly outperforms the traditional
full-response signaling in terms of the mean squared error and
the bit error rate. The third optimization algorithm has a better
performance but a higher complexity, compared to the first and
the second algorithm.

Index Terms—decision-feedback equalization, lattice decoding,
MIMO frequency-selective channel, minimum mean-squared-
error equalization, partial-response signaling, precoding.

I. INTRODUCTION

BECAUSE of the continuous growth in bit rate and
associated bandwidth, the spatio-temporal (ST) inter-

symbol interference (ISI) caused by frequency-selective (FS)
multiple-input multiple-output (MIMO) channels becomes an
increasingly prominent challenge in the design of high-speed
communication systems. To mitigate this ST ISI, several
equalization schemes have been proposed in the literature.
The optimal detector for uncoded transmission performs max-
imum likelihood sequence detection (MLSD), which involves
a bank of matched filters and the application of the Viterbi
algorithm [1], [2]. Unfortunately, its exponential complexity
in both the number of data streams and the channel memory
is intolerably large for most applications, therefore limiting
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the practicability of this detector. A more practically feasible
alternative is the MIMO linear equalization scheme, in which
linear equalization filters first reduce the ST ISI, and a symbol-
by-symbol detector then recovers the transmitted data [3]. In
contrast to the MLSD, this equalization scheme requires only
limited complexity, but suffers from a (sometimes consider-
able) performance degradation.

Besides the linear equalizers, several nonlinear equalization
schemes for continuous transmission over FS MIMO channels
have been investigated, that combine adequate performance
with low complexity. For example, a decision-feedback equal-
izer (DFE) [3], [4] with the previously detected symbols at the
receiver (RX) as input can completely eliminate the postcursor
ISI provided that the previous symbols were correctly detected.
However, its performance may be severely degraded by the
propagation of erroneous decisions. Error propagation can
be overcome by transferring the feedback structure from
the RX to the transmitter (TX), resulting in an equalization
scheme called Tomlinson-Harashima precoding (THP). The
THP scheme has originally been introduced in the context of
FS SISO channels [5], [6], and has also been described for flat
and FS MIMO channels in [7] and [8], respectively. However,
THP requires a modulo operator at both the TX and the RX,
inducing both a power and a modulo loss.

The equalization performance can also be enhanced by
partial-response signaling (PRS) [9], in which the channel
is equalized to a target impulse response (TIR) with integer
coefficients. In this TIR, a controlled amount of ISI is allowed,
thereby considerably facilitating the equalization task. At the
RX, the data detection is executed based on the equalized
channel output in the extended signal set, after which the
original data is retrieved from these decision by means of a
feedback filter at the RX. However, this feedback structure
is prone to error propagation. Alternatively, the feedback filter
can be omitted when employing a precoder at the TX. Contrary
to THP, this precoder does interestingly not induce any power
loss. A common example of PRS is duo-binary signaling,
where the TIR in z-transform notation is 1 + z−1 [10], [11].

Interestingly, a relation between PRS and lattice-reduction-
aided (LRA) equalization has been established in [12], [13],
[14]. LRA techniques have been applied to flat fading MIMO
channels with only spatial ISI [15], [16], [17], [18]. More
precisely, a lattice reduction algorithm, e.g., the LLL algorithm
[19] or the element-based reduction algorithm [18], first com-
putes a reduced channel matrix that is better conditioned than
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the original channel matrix, i.e., closer to being orthogonal.
Next, the equalizer with respect to this reduced channel is
obtained by either the zero-forcing (ZF) or the minimum
mean-squared-error (MMSE) criterion. After decision, the data
is then recovered by means of the inverse base transformation.
This procedure has been applied to block transmission over
FS channels for single-input single-output (SISO) [20] and
MIMO [21] systems and to mitigate the spatial ISI with low
complexity in MIMO orthogonal frequency division multiplex-
ing systems [22]. Additionally, [16] and [23] have proved that
optimal diversity is reached by the LRA equalizers for a flat
fading MIMO channel and a FS MIMO channel, respectively.
However, continuous transmission, e.g., PRS signaling, might
be preferred over block transmission to avoid guard times
and to allow for time-invariant equalization filters. In [12],
generalized PRS for the flat fading MIMO channel has been
derived from the LRA equalizer by implementing the inverse
base transformation at the TX instead of the RX. The similarity
between PRS and LRA has been emphasized for a FS SISO
channel in [13], [14], in which the channel’s transfer function
is decomposed as the product of a target response and a
reduced channel. The ZF infinite-length equalizer is then
designed for completely equalizing the latter and the target
response inducing the least noise enhancement is considered
as optimal. This optimization is done by means of a look-
up table in [13], but a more advanced algorithm has been
proposed in [14] by reformulating this problem as a lattice
decoding problem [24].

Although PRS has already been described in the literature
for the FS SISO channel [9] and for the flat-fading MIMO
channel [12], no general ST PRS equalization scheme has
been investigated for the FS MIMO channel. Indeed, the
TIR in [12] and [10] is confined to spatial-only components
and temporal-only components, respectively. Moreover, most
contributions assume that the TIR is given [9], [10], [11], and
no optimization with respect to this TIR is performed at all,
resulting in an inferior trial-and-error selection of the target
response.

This contribution focuses on PRS applied to a symbol-
spaced, complex-valued, discrete-time, and FS MIMO chan-
nel. To address the problem of the ISI in the continuous
transmission over the FS channel, a general PRS architecture
is presented, consisting of a ST PRS precoder at the TX and
a ST-DFE (encompassing a forward and a decision-feedback
filter) at the RX. Interestingly, the TIR of the PRS contains
both spatial and temporal components that are complex-valued
as the baseband channel can be complex-valued. Contrary
to the trial-and-error TIR selection often found in literature
[9], [10], [11], the ST-TIR is jointly optimized with the ST-
DFE according to the MMSE criterion. First, the optimal
equalization coefficients can readily be expressed as a function
of the TIR. The resulting MSE is then minimized with respect
to the TIR by three different algorithms. Interestingly, the third
algorithm reformulates the TIR optimization as a sequence
of lattice decoding problems, which can be solved by the
algorithm presented in [24]. In [14], a similar algorithm is
proposed to compute a real-valued TIR in the context of a
FS SISO channel with a whitened-matched filter front-end.

Figure 1. Model of a PRS-ST communication link. The TX consists of the
partial-response precoder, whereas the RX aims to reduce the ISI by means
of a linear feedforward and linear feedback filter.

However, the present contribution significantly differs from
[14], since the real-valued TIR in [14] has been derived
by minimizing a lower bound on the noise enhancement of
the infinite-length ZF equalizer for a SISO channel, whereas
this contribution jointly optimizes the complex-valued TIR
coefficients and more practical, finite-length filters according
to the MMSE-criterion for a MIMO channel.

The remainder of the paper is organized as follows. Section
II mathematically describes the communication link, consist-
ing of a PRS precoder at the TX, a FS MIMO channel,
and a nonlinear ST-DFE at the RX, the latter comprising a
linear feedforward filter and a linear feedback filter operating
on the previously detected symbols. The filters and the ST-
TIR are calculated by minimizing the MSE in section III.
Following the simple optimization with respect to the filters
of the ST-DFE in subsection III-B, the computation of the
optimized TIR is more challenging (subsection III-B). In total,
three iterative optimization algorithms, each performing a row-
by-row optimization of the TIR, are discussed (subsections
III-B1-III-B4). To assess the performance of these algorithms,
the bit error rate (BER) expression is derived in Section IV,
after which numerical results are given in Section V. Finally,
conclusions are drawn in Section VI.

In the following, upper-case (lower-case) boldface letters are
used for matrices (vectors). The notations (·)∗, (·)T , (·)H , E[·],
‖ · ‖, Tr(·), Re[·], Im[·], det(·), and | · | represent the complex
conjugate, transpose, Hermitian transpose, the statistical ex-
pectation, the Euclidean vector norm, the trace, the real part,
the imaginary part, the determinant, and the absolute value,
respectively. Additionally, I , 0, and 1 denote the identity
matrix, the all-zero matrix, and the all-ones column. The
elements of the single-entry matrix Jl,q are zero, except for
the (l, q)th element which equals 1. The set of all integers
ranging from a to b is written as {a, . . . , b}, whereas X ∪ Y ,
X ∩Y , and X\Y denote the union and intersection of the sets
X and Y , and the complement of Y relative to X , respectively.
Finally, an optimized variable is indicated by ·?.

II. SYSTEM MODEL

Fig. 1 displays the system model of an equalized complex-
valued MIMO Nr ×Nt baseband channel with spatio-temporal
PRS (PRS-ST). At the TX, the input consists of Nt con-
tinuous complex-valued data symbol streams, i.e., c(k) =
[c1(k), ..., cl (k), ..., cNt (k)]T with cl (k) denoting the kth sym-
bol from the lth stream. All symbols are independently
and uniformly drawn from the complex symbol set C =
{0, 1, . . . ,

√
M − 1} + j{0, 1, . . . ,

√
M − 1}, where M is assumed

to be an integer power of 4. The binary labels associated with
the elements from C are according to the binary-reflected
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Gray mapping. Next, the symbol vectors c(k) are applied
to the MIMO partial-response precoder at the symbol rate
1/Ts . This precoder is characterized by the target polynomial
Ttar(D) =

∑LT
m=0 T (m)Dm with Gaussian integer Nt × Nt

matrices T (m), m = 0, ..., LT, i.e., T (m) ∈ Z[ j]Nt×Nt with
Z[ j] = {a + jb | a, b ∈ Z}. In contrast to previous work on
PRS that focused mainly on SISO channels (Nt = Nr = 1),
on strictly temporal partial response (T (m) is diagonal), or on
strictly spatial partial response (T (m) = 0Nt for m > 0), the
more general complex-valued MIMO precoder presented here
allows ST components (with spatial-only and temporal-only
components as particular cases). The input sequence {c(k)} is
converted by the precoder into the precoded output sequence
{b(k)} according to

b(k) =

T −1(0) *

,
c(k) −

LT∑
m=1

T (m)b(k − m)+
-

√M
, (1)

where [.]X symbolizes the element-wise modulo-X reduction
to the interval [0, X ) of both the real and the imaginary part.
To avoid any power loss, PRS requires that all entries of
the precoded sequence b(k), just as the elements of c(k),
are independently and uniformly drawn from the symbol set
C. This property is acquired when all entries of T (m) are
Gaussian integers and T (0) is a (complex-valued) unimodular
matrix (Appendix A), since one can easily prove that T −1(0) ∈
Z[ j]Nt×Nt if and only if the determinant of the Gaussian
integer matrix T (0) is restricted to the set {1,−1, j,− j} ([25]
for real-valued matrix).

The components from b(k) are mapped to the M-QAM
constellation, i.e.,

a(k) = 2∆b(k) + (1 + j)∆(−
√

M + 1)1, (2)

where ∆ =
√

3
2(M−1) such that the symbol energy is normal-

ized, i.e., E
[
a(k)aH (k)

]
= INt . The sequence a(k) is then

transmitted over the discrete-time FS Nr × Nt MIMO channel
which encompasses the complex-valued impulse response ma-
trices H (m) and the zero-mean circular symmetric complex
Gaussian noise n(k). The channel input-output relationship is
given by

y(k) =
L(2)

H∑
m=−L(1)

H

H (m)a(k − m) + n(k), (3)

in which the channel impulse response is assumed to be finite,
i.e., H (m) = 0Nr×Nt ∀m < {−L(1)

H , ...,L(2)
H }. The RX first

applies y(k) to the linear MIMO feedforward equalization
filter characterized by the Nt × Nr impulse response matri-
ces W (m). Next, the output of the linear MIMO feedback
filter with impulse response matrices B(m), operating on the
previously detected â(k), is subtracted from the feedforward
filter output. When the decisions â(k − m) are correct, the
decision variable u(k) can be formulated as

u(k) =
L(2)

W∑
m2=−L

(1)
W

L(2)
H∑

m1=−L
(1)
H

W (m2)H (m1)a(k − m1 − m2)

+

L(2)
W∑

m=−L(1)
W

W (m)n(k − m) −
∑
m∈ΦB

B(m)a(k − m), (4)

where both filters are assumed to be finite, i.e., W (m) =
0Nt×Nr ∀m < {−L(1)

W , . . . , L(2)
W } and B(m) = 0Nt ∀m < ΦB

with ΦB = {ΦB(1), ...,ΦB(LB)}. The LB active time instants do
not necessarily coincide with the time-delay indices 1, . . . , LB,
but the only restriction, imposed by causality, is ΦB(i) ≥ 1 for
i = 1, ..., LB. According to (1), the target response vector

uT(k) =
LT∑
m=0

T (m)a(k − m) (5)

and the original sequence c(k) are related by

c(k) =
[
uT(k)

2∆
+ cv

]
√
M

, (6)

where

cv =
(1 + j)(

√
M − 1)

2

LT∑
m=0

T (m)1. (7)

The equalization coefficients are therefore selected such that
the decision variable u(k) from (4) approaches the target
response vector uT(k) as close as possible. Consequently, the
decision on c(k), ĉ(k), follows from replacing the quantity
uT (k)

2∆ in the right-hand side of (6) by the Gaussian integer
which is nearest to u(k)

2∆ , after which the modulo operator maps
this decision to the original M-QAM constellation. The input
of the feedback equalizers, i.e., the decision on a(k), â(k),
is constructed by substituting c(k) for ĉ(k) in the precoder
equation (1), yielding the decision on the vectors b(k), b̂(k),
which are then mapped to M-QAM symbols.

To simplify the notations in (4), the following matrices are
introduced:

W =
[
W (−L(1)

W ) · · · W (L(2)
W )

]
, (8)

B =
[
B(ΦB(1)) · · · B(ΦB(LB))

]
, (9)

G(m) =
[
HH (m + L(1)

W ) · · · HH (m − L(2)
W )

]H
, (10)

and

n̄(k) =
[
nH (k + L(1)

W ) · · · nH (k − L(2)
W )

]H
. (11)

Based on these shorthand notations and ΦG = {−L(1)
H −

L(1)
W , . . . , L(2)

H + L(2)
W }, the decision variable u(k) from (4) can

be rewritten as

u(k) =
∑
m∈ΦG

WG(m)a(k−m)+Wn̄(k)−
∑
m∈ΦB

B(m)a(k−m),

(12)

III. MMSE EQUALIZATION

In this contribution, the MMSE criterion is employed to
jointly optimize the feedforward filter W , the feedback fil-
ter B, and the TIR T =

[
T (0) · · · T (LT)

]
. With

e(k) = u(k) − uT(k) denoting the difference between the
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decision variable u(k) and the target response vector uT(k),
the corresponding normalized MSE is defined as

MSE ,
E

[
| |e(k) | |2

]

E
[
‖a(k)‖2

] = Tr (Re)

E
[
‖a(k)‖2

] = 1
Nt

Nt∑
l=1

MSE(l), (13)

where the expectation is taken over the data symbols and the
noise, and the error covariance matrix Re is given by Re ,
E

[
e(k)eH (k)

]
. More precisely, the lth diagonal element of

Re, denoted by MSE(l) , equals the MSE corresponding to the
lth data stream. The MSE from (13) equals the normalized
sum of all MSE(l) .

First, a simplified notation is developed. The vector yW
contains all channel output samples contributing to the deci-
sion variable u(k). Vectors aT and aB comprise all symbols
contributing to uT(k) and to the input of the feedback filter,
respectively. All remaining data symbols are collected in the
vector aN, i.e.,

yW =
[
yH (k + L(1)

W ) · · · yH (k − L(2)
W )

]H
, (14)

aB =
[
aH (k − ΦB(1)) · · · aH (k − ΦB(LB))

]H
, (15)

aT =
[
aH (k) · · · aH (k − LT)

]H
, (16)

aN =
[
· · · aH (k − m) · · ·

]H
∀m ∈ ΦG\ {ΦT ∪ ΦB} .

(17)

Since all symbols in a(k) are spatially and temporally un-
correlated, all cross correlations between aT, aB, aN are zero
and the autocorrelation matrix of these vectors is equal to
the identity matrix, e.g., E[aTa

H
T ] = I . In this contribution,

the intersection of ΦT = {0, ..., LT} and ΦB is assumed to
be empty by design. Otherwise, the target response matrices
T (m) ∀m ∈ ΦT ∩ΦB would not influence the communication
link’s quality, as the feedback equalizer is capable of removing
the contribution from a(k − m) to e(k), for any m ∈ ΦB.
Based on (3) and the notations in (14)-(17), the input-output
relationship between yW and the data symbols can be rewritten
as

yW = GTaT +GBaB +GNaN + n̄(k), (18)

where

GT =
[
G(0) · · · G(LT)

]
, (19)

GB =
[
G(ΦB(1)) · · · G(ΦB(LB))

]
, (20)

GN =
[
· · · G(m) · · ·

]
∀m ∈ ΦG\ {ΦT ∪ ΦB} . (21)

Consequently, the MSE defined in (13) can be expressed as

MSE =
1
Nt
E

[W (GTaT +GBaB +GNaN + n̄(k))

−BaB − TaT


2]
. (22)

In the subsections below, the optimal W and B are first
formulated for a given T in subsection III-A, after which three
algorithms are presented in subsection III-B to optimize the
matrix T .

A. Optimization over W and B

The optimal coefficients W? and B?, for given T , are
straightforwardly obtained by equating the derivatives of the
MSE in (22) with respect to W and B to zero, yielding [4],
[10]

W? = TGH
T

(
GTG

H
T +GNG

H
N +Rn

)−1
(23)

B? =W?GB (24)

where Rn , E
[
n̄(k)n̄H (k)

]
. The MSEW?,B? is then given

by plugging (23) and (24) into (22), yielding

MSEW?,B? =
1
Nt

Tr
[
TGT H

]
, (25)

where G = INt (LT+1) −G
H
T

(
GTG

H
T +GNG

H
N +Rn

)−1
GT .

For full-response signaling (FRS), i.e., T =
[
INt 0Nt×LTNt

]
,

the expressions in (23) and (24) are verified to simplify to the
standard expressions for the MMSE equalizer [3], [4].

B. Optimization over T

Instead of considering a channel-independent TIR T such
as FRS or duo-binary, this contribution optimizes T by
minimizing (25) subjected to two constraints: (i) all entries
of T must belong to Z[ j], and (ii) det (T (0)) must belong
to {−1, 1, j,− j}. TIRs satisfying these constraints are called
feasible, and ensure that b(k) and c(k) possess identical
statistics (see Appendix A).

Equation (25) reveals that the lth row of T only influences
MSE(l) =

(
TGT H

)
l,l

, the MSE of the lth data stream. Hence,
when the constraint on det (T (0)) is satisfied, constructing a
new target impulse response matrix T ′ by multiplying one
row of T with the complex conjugate of det (T (0)) results in
det(T ′(0)) = 1, while the MSE from (25) remains unaltered.
Therefore, without loss of generality, the second constraint
will be replaced by det (T (0)) = 1 in the sequel.

Although the lth row of T affects only MSE(l) , the rows
of T cannot be chosen independently from each other due
to the constraint det (T (0)) = 1, impeding the optimization
of each row individually. This subsection instead discusses
three iterative algorithms to compute an optimized TIR T?.
In the ith iteration of each algorithm, the TIR is incremented
as follows:

Ti+1 = Ti + Tinc, (26)

where the increment matrix Tinc is a function of Ti . The
corresponding MSEi+1 is given by

MSEi+1 =
1
Nt

Tr
(
Ti+1GT

H
i+1

)
(27)

= MSEi +
1
Nt

Tr
(
TiGT

H
inc + TincGT

H
i + TincGT

H
inc

)
.

(28)

In the ith iteration, Tinc is restricted to consist of only one
nonzero row, namely the row with index l?i . Hence, the ith

iteration focuses entirely on the reduction of MSE(l?i )
i , which

is chosen to be the largest among the reducible MSE(l)
i :

MSE(l?i )
i is defined as the largest diagonal element of the error
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covariance matrix that can be reduced by an increment Tinc
computed by a specific algorithm. More specifically, when
the sequence

(
MSE(m1)

i ,...,MSE(mNt )
i

)
is sorted from large

to small, i.e., MSE(mn )
i ≥ MSE(mn+1)

i for n = 1, ..., Nt − 1,
then l?i = mn if and only if MSE(l)

i is not reducible for
l = m1, ...,mn−1 and MSE(mn )

i is reducible. Further, to guaran-
tee the feasibility of Ti+1, each entry of Tinc must be Gaussian
integer, i.e., (Tinc)l,q ∈ Z[ j] and, when updating a row of
Ti (0), the first Nt elements of the increment must additionally
be a linear combination of the other rows of Ti (0) such that
det(T (0)) does not alter. Initializing T0 as any feasible TIR
results then obviously in an optimized T?, since convergence
to a (local) optimum is guaranteed as the MSE is lowered in
each iteration and bounded below by 0. Unfortunately, this
optimization method does not guarantee convergence to the
global optimum, making the initialization and the computation
of Tinc crucial for the quality of T?. Initializing T0 as FRS
is the most logical choice because the resulting MSE is then
upper bounded by the MSE of FRS.

The first algorithm A1 updates the element of the l?i th row

of Ti inducing the largest decrease in MSE(l?i )
i , yielding a fast

and low-complexity algorithm. The second algorithm A2 is
similar to A1, but updates the element of the l?i th row of Ti
yielding the largest guaranteed decrease, which is defined in
subsection III-B2 and does not only depend on the current Ti ,
but also on the potential of future TIR increments. Due to this
extra information, convergence to a better (local) optimum is
expected at the cost of a slightly larger complexity. In the last
algorithm A3, even better performance is expected as the entire
l?i -th row of Ti is updated by solving a relatively complex
lattice decoding problem. Below, a detailed description of A1,
A2, and A3 is included.

1) Algorithm 1 (A1): In algorithm A1, Tinc is restricted to
the set

{
T

(l,q)
inc , l ∈ {1, . . . , Nt }, q ∈ {1, ..., (LT + 1)Nt }

}
. When

q > Nt , T
(l,q)

inc increments the (l, q)th element of Ti , i.e.,

T
(l,q)

inc = λl,qJl,q q > Nt . (29)

When q ≤ Nt , T
(l,q)

inc adds a multiple of row q of Ti (0) to row
l of Ti (0), i.e.,

T
(l,q)

inc = [ λl,qJl,qTi (0) 0 ] q ≤ Nt, l , q. (30)

In (29) and (30), λl,q must belong to Z[ j], and its optimum
value, λ?

l,q
, is determined by maximizing the decrease δl,q =

MSE(l)
i −MSE(l)

i+1, where MSEi+1 is obtained by plugging (29)
and (30) into (28). For given λl,q , this decrease is verified to
be

δl,q = −2Re
[
λl,q A

]
−

���λl,q
���
2

B (31)

with

A =



(GT H
i )q,l q > Nt(

Ti (0)GNtT
H
i

)
q,l q ≤ Nt, l , q

(32)

and

B =



(G)q,q q > Nt(
Ti (0)GNt,NtT

H
i (0)

)
q,q

q ≤ Nt, l , q
, (33)

Table I
PSEUDOCODE OF ALGORITHM A1

1: T0 = [INt 0], i = 0
2: while ∃ l : MSE(l)

i reducible do
3: Select l?i as largest reducible MSE(l)

i
4: q?

i = arg max
q
δ?
l?
i
,q

5: Compute Ti+1 = Ti+T
(l?
i
,q?

i
)

inc with T
(l?
i
,q?

i
)

inc given by (29)-(30)
6: i ← i + 1
7: end
8: T? = Ti

where GNt and GNt,Nt are constructed by keeping the first Nt

rows from G and the first Nt columns of GNt , respectively.
The optimal Gaussian integer λ?

l,q
that maximizes δl,q is given

by

λ?l,q =

⌊
−A∗

B

⌉
, (34)

where b·e rounds both the real and the imaginary part to the
nearest integer. For given (l, q), the largest decrease of MSE(l)

i

corresponding to the increment T (l,q)
inc with λl,q = λ

?
l,q

is then
given by inserting (34) into (31), which yields

δ?l,q = −2Re
[
λ?l,q A

]
−

���λ
?
l,q

���
2

B. (35)

For given l, MSE(l)
i is called reducible when the largest

reduction of MSE(l)
i resulting from an increment matrix T (l,q)

up ,
i.e., max

q
δ?
l,q

, is larger than 0. Otherwise, MSE(l)
i is irreducible.

In the ith iteration, A1 determines the index l?i such that

MSE(l?i )
i is the largest of the reducible MSE(l)

i . The algorithm

then increments Ti with T
(l?i ,q

?
i )

up , where q?i = arg maxq δl?i ,q ,

and reduces MSE(l?i )
i by an amount δl?i ,q

?
i

. Algorithm A1
terminates when none of the MSE(l)

i can be further reduced.
Due to the greedy nature of this algorithm, the resulting T?

is not guaranteed to be globally optimal. For example, several
small decreases may be better than one large decrease, or one
small decrease in the current iteration could enable a large
decrease in future iterations. Both these events are completely
ignored by this greedy algorithm. Finally, Table I lists the
pseudocode of A1.

2) Algorithm 2 (A2): The structure of algorithm A2 is
identical to the structure of algorithm A1 described in sub-
section III-B1 except that the selection criterion (line 4 in
Table I) exercises more caution. Instead of opting for the TIR
increment T (l,q)

inc inducing the largest decrease in the largest
reducible MSE(l)

i , a more promising TIR increment is chosen.
More precisely, this algorithm selects the TIR increment T (l,q)

inc
inducing the largest guaranteed decrease rather than the largest
current decrease. This guaranteed decrease d?

l,q
is defined as

the sum of two terms:

d?l,q = δ
?
l,q + δ

?
l,q,LB ∀(l, q). (36)

The first term, δ?
l,q

, is defined in (35) and represents the

optimal decrease achieved by the increment T (l,q)
inc in iteration

i. The second term, δ?
l,q,LB, is a lower bound on the maximal
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Table II
CALCULATION OF δ?

l,q,LB

1: Input: Ti, T
(l,q)

inc
2: Ti+1 = Ti + T

(l,q)
inc , δ?LB = 0, m = 0

3: ∀linc, qinc : calculate ∆linc,qinc = δ
?
linc,qinc

using (35) with Ti replaced
by Ti+1

4: while m < Nt do
5: li+1+m, qi+1+m = arg max

linc,qinc
∆linc,qinc

6: δ?LB ← δ?LB + ∆li+1+m,qi+1+m
7: ∆li+1+m, | = 0
8: if qi+1+m ≤ Nt then
9: ∆|,qi+1+m = 0

10: end
11: m← m + 1
12: end

realizable decrease achievable by TIR increments in future
iterations i + 1, i + 2, etc. For given Ti+1, the reduction of the
MSE realized during iteration i + 1 + m, with m > 0, usually
depends on the increments previously performed during iter-
ations i + 1, ..., i +m. To compute the lower bound δ?

l,q,LB, the
increments are constrained in iterations i + 2, i + 3, etc. such
that, for all m > 0, the decrease achieved in iteration i+1+m is
influenced only by Ti+1 and by the increment made in iteration
i+1+m, but not by the increments in iterations i+1, ..., i+m.
This way, the sum of the decreases related to the increments
in the iterations i+1, i+2, etc. represents a lower bound on the
maximum possible decrease, which would be accomplished by
unconstrained increments.

When T (lj,qj )
inc denotes the increment in iteration j, equations

(32) and (33) infer that the MSE reduction achieved in iteration
j depends on the l j th row of Tj and, if qj ≤ Nt , also
on the qj th row of Tj (0). Hence, with the purpose that the
MSE reduction in iteration i + 1 + m is not influenced by the
increments made in iterations i + 1, ..., i + m for any m > 0,
the quantities li+1+m and qi+1+m must be outside the sets
{li+n | n = 1, ...,m} and {li+n | qi+n ≤ Nt, n = 1, ...,m},
respectively. Consequently, the largest value of m to be con-
sidered cannot exceed Nt −1. When {(li+1+m, qi+1+m) | m > 0}
is constructed this way, the MSE reduction corresponding to
iteration i+1+m can be computed from (35) by substituting the
matrices Ti+1 and Ti+1(0) (rather than Ti+1+m and Ti+1+m(0))
for Ti and Ti (0) in (32) and (33). For given Ti and T (li,qi )

up ,
the suboptimal greedy algorithm from Table II selects in each
iteration i + 1, i + 2, ..., i + Nt the constrained increment that
achieves the largest decrease, and sums these decreases to
obtain δ?

li,qi,LB. Subsequently, the guaranteed decrease d?
li,qi

corresponding to T (li,qi )
up then follows from (36).

Algorithm A2 opts in the ith iteration for the increment
matrix that induces the largest guaranteed reduction, denoted
by d?

l?i ,q
?
i

, of MSE(l?i )
i , where l?i equals the index of the largest

of the reducible MSE(l)
i (as in A1, MSE(l)

i is called reducible
when maxqi δ?l,qi > 0), and q?i = arg max

qi
d?
l?i ,qi

. Consequently,

the pseudocode of A2 differs from A1 only in the selection
criterion in line 4 from Table I. Although this criterion more
carefully selects the increment T (l,q)

inc in A2, the obtained T?

is not guaranteed to be globally optimal. Still, A2 is expected
to yield a better performance than A1, as it can only benefit
from the additional information in the increment selection.
Moreover, the convergence condition for A1 and A2 is the
same, i.e., both algorithms terminate when none of the MSE(l)

i
can be further reduced. Hence, neither algorithm is able to
further lower the MSE when one algorithm is initialized with
the TIR obtained by the other algorithm.

3) Algorithm 3 (A3): In algorithm A3, the ith iteration
determines the optimized increment for an entire row of Ti
rather than a part of row Ti as in the algorithms above.
In this regard, the Hermitian positive-definite matrix G is
first factorized according to its Cholesky decomposition, i.e.,
G = LLH , where L is a lower triangular matrix. Equation
(27) can thus be rewritten as

MSEi+1 =
1
Nt

Tr
(
Ti+1LL

HT H
i+1

)
=

1
Nt

Nt∑
l=1

tl,i+1L2 , (37)

where tl,i+1 equals the lth row of Ti+1. When li denotes the
index of the single row that is updated in the ith iteration, the
updated row tli,i+1 can be obtained by

tli,i+1 = tli,i + tinc, (38)

while the other rows remain unaltered. To satisfy the additional
constraints, all components of the row increment tinc must
belong to Z[ j], and its first Nt components must be a linear
combination of the first Nt components of the other rows tl,i
with l , li . For a more mathematical description, tinc and L
are first decomposed as

tinc =
[
t(0)

inc λ(1)
inc

]
(39)

L =
[
(L(0))H (L(1))H

]H
, (40)

where t(0)
inc and L(0) contain the first Nt elements of tinc and

the first Nt rows of the matrix L, respectively, whereas λ(1)
inc

and L(1) comprise the last NtLT elements of tinc and the last
NtLT rows of L, respectively. In (39), t(0)

inc must be a linear
combination of the first Nt elements of the rows tl,i with l , li ,
which can be expressed as

t(0)
inc =

Nt∑
l=1
l,li

λ (0)
l,inct

(0)
l,i
= λ(0)

incT
(0)
li,i
, (41)

where λ(0)
inc represents the row vector containing all λ (0)

l,inc, t(0)
l,i

consists of the first Nt elements of the lth row of Ti , and T (0)
li,i

is obtained by removing the lith row from Ti (0). For given Ti ,
the increment tinc in the ith iteration is selected to minimize
MSE(li )

i+1. After the substitution of (38), (39), (40), and (41)
into (37), this minimization problem can be reformulated as
the following closest point search:

λ?inc = arg min
λ∈Z[j](LT+1)Nt −1

‖λGlat − x‖
2 , (42)

where Glat =

[
T (0)
li,i
L(0)

L(1)

]
, x = −tli,iL, and λ =

[
λ(0)

inc λ
(1)
inc

]
.

To solve(42), the lattice decoding algorithm presented in [24]
is applied after decomposing all complex-valued quantities in
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Table III
PSEUDOCODE OF ALGORITHM A3

1: T0 = [INt 0], i = 0
2: while ∃ l : MSE(l)

i reducible do
3: Select l?i as largest reducible MSE(l)

i
4: Compute update tinc by solving optimization problem (42)
5: Update Ti+1 by computing tl?

i
, i+1 using (38)

6: i ← i + 1
7: end
8: T? = Ti

(42) into their real and their imaginary parts. This algorithm
searches for a point x̂ from a lattice with generator matrix Glat
that is closest to x, by recursively decomposing the lattice into
lower-dimensional sublattices. Further, MSE(li )

i is reducible
when λ?inc has at least one nonzero element. The pseudocode
of A3 (Table III) is similar to A1 and A2 except that A3
updates in each iteration an entire row of Ti . The increments
Tinc, allowed in A1 and A2, correspond to a vector λ?inc with
exactly one nonzero element, thus forming a small subset of
all increments allowed in A3. Hence, A3 could potentially
further lower the MSE when A3 is initialized with the TIR
derived by either A1 or A2, whereas the reverse is not true,
implying that A3 has superior performance to A1 and A2.

4) Complexity considerations: This section provides some
general remarks on the complexity per iteration of the pro-
posed algorithms. For A1, at most

(
(LT + 1)N2

t − Nt

)
optimal

λ?
l,q

from (34) must be calculated per iteration, which is of
course feasible in polynomial time. In A2, for each increment
in the current iteration, all λ?

l,q
of the next iteration must

be determined as well. Hence, at most
(
(LT + 1)N2

t − Nt

)2

different λ?
l,q

must be computed, yielding, compared to A1, a
larger complexity that is still polynomial in Nt and LT. Clearly,
A3 is the most complex, as each iteration must solve a closest
point problem. Unfortunately, this problem is NP-hard and no
polynomial time algorithm is available (yet) to solve it. Indeed,
the search time of the lattice decoding algorithm in [24] rises
exponentially with the problem’s dimensions, e.g., Nt, LT.

IV. BER EXPRESSION FOR PRS

This section describes how the BER expression for the
MIMO PRS-ST is derived. In [26], the symbol error rate in the
case of SISO PRS with an M-PAM constellation has already
been discussed in detail, and the present contribution extends
this work to obtain the BER for MIMO PRS-ST with an M-
QAM constellation using a two-dimensional binary reflected
Gray mapping.

First, a scaled and translated version v(k) of the decision
variable u(k) is introduced, i.e.,

v(k) =
u(k)
2∆
+ cv (43)

with cv defined in (7). Based on the decomposition of u(k)
from (12), the target response vector uT(k) from (5), and the

mapping rule (2), v(k) can be expressed as

v(k) =
LT∑
m=0

T (m)b(k − m) + isi(k) + nv (k), (44)

where nv (k) = Wn̄(k)
2∆ and isi(k) =

∑
m∈ΦG

E(m)a(k −m) with

2∆E(m) =




WG(m) − T (m) m ∈ ΦT

WG(m) −B(m) m ∈ ΦB

WG(m) m ∈ ΦG\ {ΦT ∪ ΦB}

. (45)

Because (1) yields
∑LT

m=0 T (m)b(k − m) = c(k) +
T (0)d(k)

√
M, where the components of d(k) are Gaussian in-

tegers, v(k) from (44) reduces to v(k) = cex(k)+isi(k)+nv (k)
with cex(k) = c(k) + T (0)d(k)

√
M . At the Rx, the symbol-

by-symbol detector makes a decision ĉex(k) of cex(k) in the
extended symbol set by rounding v(k) to the closest Gaussian
integer. As this procedure is performed for each data stream
individually, the decision of the received symbol at instant k
in the lth stream, ĉ(l)

ex (k) is based on

v (l) (k) = c(l)
ex (k) + isi(l) (k) + n(l)

v (k), (46)

where v (l) (k), c(l)
ex (k), isi(l) (k), and n(l)

v (k) equal the lth
component of the associated vectors v(k), cex(k), isi(k),
and nv (k), respectively. Afterwards, the modulo operator is
applied to ĉ(l)

ex (k), yielding the decision ĉ(l) (k) ∈ C of the
symbol c(l) (k) transmitted in the lth data stream at instant
k. As the error performance does not depend on the symbol
index k, this index is dropped in the sequel. The BER for the
lth data stream, BER(l) , can be expressed as

BER(l) =
∑

(c, ĉ)∈C2

Nbit(c, ĉ)
log2(M)

Pr(c(l) = c, ĉ(l) = ĉ), (47)

in which Nbit(c, ĉ) represents the number of bits by which the
binary labels of c and ĉ differ. In Appendix B, an elaborate
discussion is given on how the following simple but accurate
approximation for BER(l) is derived from (47):

BER(l) ≈
1

log2(M)
Ea

[
4Q *.

,

0.5 − Re
[
isi(l)

]

σ
n(l)
v

+/
-

]
, (48)

where Q(·) represents the tail distribution function of the
standard normal distribution, σ

n(l)
v

equals the standard de-
viation of the real part of n(l)

v (k), and Ea[·] denotes the
expectation over all symbols contributing to Re

[
isi(l)

]
. The

computational complexity in (48) increases exponentially with
channel and filter length, thus rapidly becoming prohibitively
large in numerical simulations. To circumvent this complexity
problem, a large number, Nlarge, of realizations of Re

[
isi(l)

]

is generated, and the expectation in (48) is replaced by the
arithmetical average.

V. NUMERICAL RESULTS

This section characterizes the performance of the optimiza-
tion algorithms (A1, A2, and A3) discussed above by numer-
ical simulations for three scenarios, whose simulation settings
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Table IV
SIMULATION SETTINGS

• 4-QAM constellation •ΦB = {4, 5}

• 3500 channel realizations • L(1)
H = 0, L(2)

H = 25

•PRS settings: •Scenarios:

FRS (LT = 0, T (0) = I) S1: µ = 2, L(1)
w + L(2)

w + 1 = 13
PRS-S (LT = 0; A1, A2 and A3) S2: µ = 2, L(1)

w + L(2)
w + 1 = 21

PRS-ST(LT = 3; A1, A2 and A3) S3: µ = 5, L(1)
w + L(2)

w + 1 = 13

are summarized in Table IV. In all scenarios, the channel
H (m) is a FS Rayleigh-fading 4 × 4 MIMO channel with
an exponentially decaying power delay profile with base µ,
i.e., E

[���(H (m))(p,q)
���
2]
= µ−(m+L(1)

H ), p, q ∈ {1, ..., 4}, and m ∈

{−L(1)
H , . . . , L(2)

H }. All channel taps are further assumed to be
spatially and temporally uncorrelated. Moreover, all compo-
nents of the circular symmetric Gaussian noise n(k) are also
spatially and temporally uncorrelated and possess variance N0,
whereas the components from a(k) belong to a Gray-mapped
4-QAM constellation. In the first scenario S1, a severely FS
channel (µ = 2) is equalized using a DFE consisting of
a 13-tap feedforward filter and a 2-tap feedback filter with
ΦB = {4, 5}. Extending the feedforward filter to 21 taps in the
second scenario S2 evidently improves the performance at the
cost of a larger complexity. The third scenario S3 is identical
to S1, except that the FS channel is less severe (µ = 5).
In all scenarios, a comparison is made between: (i) PRS-ST,
whose TIR consists of both spatial and temporal components
(LT = 3); (ii) spatial-only PRS (PRS-S), whose TIR possesses
only spatial components (LT = 0); and (iii) traditional FRS.

This discussion principally focuses on the performance in
terms of MSE and BER (Nlarge = 4 · 107), because the
former is the objective function of the optimization, whereas
the latter is an important performance measure in practice.
In the case of S1, Fig. 2, depicts the 1/MSE and the BER
performances averaged over 3500 channel realizations as a
function of SNR = Eb

N0
with Eb the transmitted energy per bit.

Furthermore, Table V lists the SNR in dB needed to achieve
a BER of 10−8 in all scenarios. What is immediately apparent
is the significant improvement achieved by PRS compared
to FRS. Indeed, the smaller MSE accomplished by PRS is
a direct consequence of the additional minimization over T ,
but, more interestingly, Fig. 2 and Table V reveal that also
the BER of the PRS is significantly lower compared to FRS.
One noteworthy example is the drastic reduction of the error
floor by considering PRS instead of FRS in S1 (Fig. 2).
Moreover, the longer feedforward filter in S2 allows PRS even
to completely remove the error floor encountered by FRS or
at least to lower it to below 10−8. Finally, PRS accomplishes
a reduction up to nearly 16 dB in SNR to reach a target BER
of 10−8 in S3 (Table V).

Significant differences in average performance occur be-
tween the algorithms when the TIR has both spatial and
temporal components (LT = 3). In this configuration, A3 not
only yields an average MSE that is smaller than the MSEs of
A1 and A2, but, more importantly, also drastically lowers the
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SNR(dB)
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1
/
M
S
E
(d
B
)

A3

A2

A1

PRS-S

FRS

PRS-ST

5 10 15 20 25 30
SNR(dB)

10-8

10-6

10-4

10-2

BER
PRS-S

FRS

A1

A3

PRS-ST

A2

Figure 2. Scenario S1: average MSE (upper plot) and average BER (lower
plot) with µ = 2 and a 13-tap W . Compared to FRS, PRS drastically improves
the performance. In particular, PRS-ST optimized using A3 considerably
reduces the BER floor.

BER. For instance, only A3 is able to reduce the error floor
below 10−8 in S1, whereas its SNR required to reach a BER of
10−8 in S2 is approximately 3.0 dB and 2.5 dB lower compared
to A1 and A2, respectively; in S3 the gain of A3 compared
to A1 and A2 is about 2.2 dB and 1.5 dB, respectively. These
results therefore imply not only that A1 and A2 do not yield
the global optimum, but also that A3 is to be preferred when
performance is essential. Furthermore, the numerical results
confirm our expectation that A2 outperforms A1 on average.
However, the gain of A2 compared to A1 on average turns
out to be quite moderate: a lower error floor is achieved in S1
(factor 2), whereas the SNR required to meet the BER target
decreases by less than 0.8 dB in S2 and S3.

When the TIR has only spatial components, i.e., LT = 0,
the performance difference between A1, A2, and A3 is almost
negligible for all scenarios. Indeed, T contains only T (0), lim-
iting the increments in all algorithms to the set of consecutive
row additions. All algorithms are therefore similar, resulting in
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Table V
SNR IN DB NEEDED TO REACH AN AVERAGE BER = 10−8

Scenario FRS PRS-S PRS-ST

A1 A2 A3 A1 A2 A3

S1 - - - - - - 22.17

S2 - 21.44 21.43 21.37 17.40 17.10 14.64

S3 31.69 18.65 18.51 18.40 17.79 17.00 15.53
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Figure 3. Scenario S2: scatter plot of the points (SNRPR
A3, SNRY), where

SNRY equals SNRFR, SNRPR
A1 and SNRPR

A2 in the left, middle, and right
plot, respectively. All points above/below the solid straight line represents
realizations for which SNRY is larger/smaller than SNRPR

A3.

nearly identical average MSE and BER performance such that
the least complex A1 is here the most attractive. For LT = 0,
the minimization of (25) is structurally identical to the lattice
reduction problem from [18]. Indeed, A1 corresponds to the
element-based lattice reduction (ELR) algorithm from [18],
while A3 is similar to the improved ELR algorithm.

At low SNR, the matrix G in (25) closely resembles a
scaled identity matrix. Consequently, FRS is optimum for
infinite noise power, causing the optimized PRS to converge
to FRS for low SNR. The performance improvement of PRS
is therefore mainly noticeable at high SNR.

As for the mildly selective channel in S3, all PRS config-
urations outperform FRS, but the difference between PRS-S
and PRS-ST is less significant. Hence, the improvement of
PRS can mainly be attributed to the spatial components in
T (0) and to a lesser extent to the temporal components in
{T (m) | m > 0}. As the mildly FS channel generates relatively
small temporal ISI, this observation is not unexpected.

The discussion above considers only results that are aver-
aged over 3500 channel realizations. To better understand how
FRS and PRS affect the BER performance of an individual
realization, SNRFR, SNRPR

A1, SNRPR
A2, and SNRPR

A3 are defined
to denote the SNR required for a particular realization to reach
a BER of 10−8 for FRS and for the three algorithms for PRS,
respectively. The scatter plots from Fig. 3 compare SNRPR

A3 to
SNRFR, SNRPR

A1, and SNRPR
A2, for 3500 channel realizations in

the case of S2 and LT = 3 (PRS-ST). In these plots, a scatter
point is labeled ‘floor’ when the target BER of 10−8 cannot
be reached due to an error floor. Immediately evident from
the plots is that nearly all scatter points are above the line
connecting all points where the SNR on the ordinate equals
SNRPR

A3. Hence, apart from some exceptions, e.g., channels
with SNRFR < SNRPR

A3, PRS optimized with A3 requires the
lowest SNR to reach the target BER. Additionally, the MSE
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Figure 4. Histogram of number of iterations required for convergence of
A1-A3 for a 21-tap feedforward filter with LT = 3 and SNR = 20 dB for
both Nt = Nr = 4 and Nt = Nr = 6. Additionally, the relative runtimes
with respect to A1 are also listed for A2 and A3. A small number of high-
complexity iterations results in almost instant convergence for algorithm A3,
whereas A1 and A2 require more, but significantly less complex iterations.

achieved by A3 has been numerically verified to be the lowest
for all realizations (not shown). These observations not only
corroborate the superiority of A3 in terms of the MSE, but also
illustrate that a smaller MSE does not necessarily guarantee
a smaller BER. Next, the largest gain from applying A3 is
observed for unfavorable channels, i.e., realizations requiring
a rather large SNRFR, SNRPR

A1, and SNRPR
A2, whereas only minor

gains are obtained for favorable realizations with smaller
values for SNRFR, SNRPR

A1, and SNRPR
A2. Extra simulations

confirm that all conclusions apply also to scenarios with
different filter lengths and/or base µ.

While the MSE of A3 is numerically verified to be the
lowest for all channels, A1 and A2 are only locally optimal.
As for their relative performance, results above confirm that
A2 outperforms A1 on average, as expected. However, A1
could yield better performance than A2 for a specific channel
as a sequence of increments in A1 could enable a large future
decrease that was not considered by A2. A scatter plot (not
shown) similar to Fig. 3 comparing the MSE of A1 and A2
at SNR = 20 dB supports this claim. For about 92.5% of the
channels, the outcome of A1 and A2 is identical, while A2 is
superior for 6.5% and A1 outperforms A2 only for <1%.

Above, the optimal row index l?i corresponds to the largest
reducible MSE(l)

i . However, an alternative selection criterion
for l?i could be envisaged as well. For instance, the row l?i
could be chosen such that Tinc induces the maximal reduction
in MSEi . For all algorithms, comparing both selection criteria
in terms of the SNR required to attain a target BER of
10−8 for 3500 channels reveals that for up to 90% of all
channel realizations the performances are identical. Moreover,
each criterion is superior in about half of the remaining
realizations. Hence, on average, both criteria yield comparable
performance. The numerical results also confirm that both
criteria require on average nearly the same number of iterations
to converge. Contrary to the alternative criterion, the original
criterion does not require the computation of max

q
δ?
l,q

for all

l in each iteration; therefore, the original criterion is preferred
over the alternative as it runs faster with similar performance.
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Another key feature of the algorithms is the computational
complexity. Fig. 4 therefore presents the histogram (3500
channels) of the number of iterations required for conver-
gence in the case of LT = 3, S2, and SNR = 20 dB for
Nt = Nr = {4, 6}. An extra table lists also the runtimes R
of A2 and A3 relative to the runtime of A1, RA1. In the case
of A1 and A2, convergence is reached for at least 90% of the
channels after 2Nt iterations, whereas only approximately Nt

iterations are needed for A3. However, RA3 is significantly
larger than RA1 and RA2, as the complexity of the lattice
decoding problem rises exponentially with the product NtLT,
and the complexity of one iteration thus rapidly becomes
substantial. Compared to A1, RA2 is in Fig. 4 approximately
2.5 times as large as RA1, because A2 requires not only slightly
more, but also somewhat more complex iterations than A1.
Therefore, algorithms A1 and A2 are to be preferred when
either performance is subordinated to complexity or when all
algorithms yield similar performance, e.g, at low SNR or for
PRS-S. When performance is critical, A3 should be employed.

Above, all simulations are conducted with T initialized as
FRS. Additional simulations show, however, that when T0 is
initialized with a random feasible TIR, A1 and A2 get trapped
in local minima whose performance is often significantly
worse than FRS. On the other hand, numerical results suggest
that A3 can achieve its excellent performance irrespective of
the initialization.

VI. CONCLUSION AND REMARKS

While the TIR of PRS systems operating on MIMO chan-
nels in the literature is mainly restricted to be spatial-only
or temporal-only, this paper discusses an equalization scheme
with PRS, where a FS MIMO channel is equalized with respect
to a general ST-TIR. Importantly, this TIR and these equalizers
are jointly optimized according to the MMSE criterion. First,
optimal equalization coefficients for a given TIR are derived.
Next, three iterative algorithms are described that perform a
row-by-row optimization of the TIR by updating the row of T
with the largest reducible MSE. The least complex A1 updates
in each iteration the entry of the row yielding the largest
decrease of the largest reducible MSE. A2 is similar to A1,
but considers also the potential of future updates. The most
complex A3 updates in each iteration an entire row by solving
a lattice decoding problem. Further, this contribution derives
the BER expression along with an accurate approximation. The
numerical results confirm that optimized PRS substantially
outperforms FRS in terms of both the MSE and the BER.
These performance improvements are mostly noticeable at
high SNR, since PRS converges to FRS when the noise
power becomes infinite. Whereas A2 yields on average only a
minor enhancement compared to A1, A3 achieves a superior
performance, justifying its larger complexity. However, the
performance differences between the algorithms are negligibly
small for a spatial-only TIR, making the low-complexity A1
more preferable in this situation.

While all channel state information is assumed to be perfect
in this study, the design of a algorithm that is robust to delayed
and/or noisy channel estimates is also of particular interest.

Therefore, our paper [27] discusses the robust and joint design
of the ST-TIR and a linear pre-equalizer at the transmitter
while channel estimation errors and delays are present.

APPENDIX A

Proposition 1. When all entries of the sequence {c(k)}
are independently and uniformly drawn from the set C =
{0, . . . ,

√
M − 1} + j{0, . . . ,

√
M − 1} and b(k) is constructed

according to

b(k) =

T −1(0) *

,
c(k) −

LT∑
m=1

T (m)b(k − m)+
-

√M
, (49)

where [·]X equals the element-wise modulo-X reduction of
the real and the imaginary part, and (i) all entries of the
matrices T −1(0) and all T (m) are Gaussian integers, and (ii)���det(T −1(0)��� = 1, then also all entries of the sequence {b(k)}
are independently and uniformly drawn from C.

Proof: Equation (49) can be interpreted as a finite-state
machine with input, state and output at instant k given by
ck , sk = [bT

k−1, b
T
k−2, ..., b

T
k−Lt

]T and bk , respectively. Next, all
components of the initial state s0 are assumed to belong to the
set C. As the elements of T −1(0) and T (m) with m = 1, ..., LT
are Gaussian integers, and ck ∈ CNt , (49) guarantees that also
bk ∈ C

L if sk ∈ CLTNt . As s0 ∈ C
LTNt by assumption,

we prove by induction that bk ∈ CNt for k = 0, 1, ..., K and
sk ∈ C

LTNt for k = 1, 2, ..., K .
The joint probability mass function of b0, b1, ..., bK condi-

tioned on s0 can be expressed as

Pr[b0 = β0, ..., bK = βK |s0 = σ0] =
K∏
k=0

Pr[bk = βk |sk = σk]

(50)
with βk ∈ C

Nt and σk ∈ C
LTNt for k = 0, ..., K . When sk =

σk , the only value of ck ∈ CNt giving rise to bk = βk is
ck = γk , where γk = [T (0)βk + [T (1), ...,T (Lt )]σk]√M .
Hence,

Pr[bk = βk |sk = σk] = Pr[ck = γk] = M−Nt , (51)

where the right-most equation results from the statistical
properties of ck . Thus, (50) becomes

Pr[b0 = β0, ..., bK = βK |s0 = σ0] = M−(K+1)Nt , (52)

which depends neither on (β0, ...,βK ) nor on σ0. This indi-
cates that all entries of the vectors b0, ..., bK are independently
and uniformly drawn from C.

APPENDIX B

This appendix discusses the detailed derivation of (48),
which is an approximation of (47).

First, all pairs of symbols (c(l)
ex , ĉ

(l)
ex ) in the extended symbol

constellation corresponding to the pair (c(l), ĉ(l)) after the
modulo operator are expressed as (c(l)+d (l)

√
M, ĉ(l)+ d̂ (l)

√
M)

with (d (l), d̂ (l)) ∈ Z[ j]2. Additionally, all symbols a(k − m)
that contribute to isi(l) are collected in the vector a(l) . This
appendix employs the notations p(l) (r) and p(l) (r |s) to denote
the probability mass functions Pr(r(l) = r) and Pr(r(l) =
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r |s(l) = s), where r(l) and s(l) are vectors of discrete random
variables. The probability Pr

(
c(l) = c, ĉ(l) = ĉ

)
in (47) is then

rewritten as

p(l) (c, ĉ)=
∑

(d, d̂)∈Z[j]2

∑
a

p(l)
(
c, ĉ, d, d̂,a

)
(53)

=
∑

(d, d̂)∈Z[j]2

∑
a

p(l)
(
ĉ, d̂ |c, d,a

)
p(l) (d |c,a) p(l) (c,a) .

(54)

Next, the symbols cd = c + d
√

M and ĉd̂ = ĉ + d̂
√

M
in the extended symbol set are defined, allowing to rewrite
p(l)

(
ĉ, d̂ |c, d,a

)
as

p(l)
(
ĉ, d̂ |c, d,a

)
= Pr

(
cd + isi(l) (a) + n(l)

v ∈ D(ĉd̂)
)
, (55)

where D (·) represents the decision region of a symbol in the
extended symbol set, and the notation isi(l) (a) emphasizes the
dependence of isi(l) on the vector a. Because the right-hand
side of (55) is affected by only the difference ĉ + d̂

√
M − c −

d
√

M − isi(l) (a), (55) reduces to

p(l)
(
ĉ, d̂ |c, d,a

)
= Pr

(
c + isi(l) (a) + n(l)

v ∈ D(ĉd− )
)
, (56)

where ĉd− = ĉ + d−
√

M with d− = d̂ − d. After substituting
(56) into (53) and replacing the summation over (d, d̂) ∈ Z[ j]2

by a summation over (d, d−) ∈ Z[ j]2, only p(l) (d |c,a) in (53)
depends on d. As the summation of p(l) (d |c,a) over all d
amounts to 1, (53) can be written as

p(l) (c, ĉ) =
∑

d−∈Z[j]

∑
a

F (c − ĉd−,a, n
(l)
v )p(l) (c,a), (57)

where F (c − ĉd−,a, n
(l)
v ) is a shorthand notation for

Pr
(
c + isi(l) (a) + n(l)

v ∈ D(ĉd− )
)
. Plugging (57) into (47) then

yields

BER(l) =
∑
a

∑
c∈C

G(c,a) Pr(c(l) = c,a(l) = a), (58)

where

G(c,a) =
∑

ĉd− ∈Z[j]

Nbit(c, ĉd− )
log2(M)

F (c − ĉd−,a, n
(l)
v ) (59)

and the function Nbit(c, ĉ) is generalized to the extended
symbol set, i.e., Nbit(c, ĉ) = Nbit(c, ĉd− ) for all d− ∈ Z[ j].
Unfortunately, the summation over all ĉd− in (59) consists of
an infinite number of terms, prohibiting the exact evaluation
of BER(l) . However, the properties of the binary reflected
Gray mapping impose not only that horizontally and vertically
neighboring symbols in the extended symbol set only differ in
one bit, but also that diagonally neighboring symbols differ
only in two bits, justifying the approximation Nbit(c, ĉd− ) ≈
Nbit,≈(c − ĉd− ), where

Nbit,≈(x) =




0 x = 0
1 (Re [x] = 0) ∨ (Im [x] = 0)
2 otherwise

. (60)

The approximation Nbit,≈(x) is visualized in Fig. 5. Inter-
estingly, the number of errors in the decision areas adjacent

x=0

bit,
=0

N
bit,
=1

N
bit,
=1

N
bit,
=1

N
bit,
=2

N
bit,
=1

N
bit,
=2

N
bit,
=2N

bit,
=2

Figure 5. Visualization of the approximation Nbit,≈ (x). The white, light gray,
and dark gray areas represent the areas for which Nbit,≈ = 0, Nbit,≈ = 1 and
Nbit,≈ = 2 , respectively.

to x = 0 within the dashed square is not altered. For
M = 4, the approximation is actually an upper bound as only
additional errors are introduced. Replacing in (59) Nbit(c, ĉd− )
by Nbit,≈(c − ĉd− ) yields the function G≈(a) that no longer
depends on c, i.e.,

G≈(a) =
∑

x∈Z[j]

Nbit,≈(x)
log2(M)

F (x, a, n(l)
v ). (61)

The infinite summation over x in (61) can then be replaced by
the summation over two regions characterized by Nbit,≈(x) = 1
and Nbit,≈(x) = 2, respectively. This results in

G≈(a) = Q *
,

0.5 − isi(l)
R (a)

σ
n(l)
v

+
-
+Q *

,

0.5 + isi(l)
R (a)

σ
n(l)
v

+
-

+Q *
,

0.5 − isi(l)
I (a)

σ
n(l)
v

+
-
+Q *

,

0.5 + isi(l)
I (a)

σ
n(l)
v

+
-
, (62)

where Q(·) represents the tail distribution function of the stan-
dard normal distribution, isi(l)

R (a) = Re
[
isi(l) (a)

]
, isi(l)

I (a) =
Im

[
isi(l) (a)

]
, and σ

n(l)
v

equals the standard deviation of the

real part of n(l)
v , which is given by σ(l)

w =

√
(WRnWH )l, l

8∆2 .
Substituting G≈(a) for G(c, a) in (59) yields the approximation
of BER(l) . Moreover, the rotational symmetry of the QAM
constellation can be exploited by remarking that Pr(a) =
Pr(−a) = Pr( ja) = Pr(− ja), simplifying (62) to

BER(l) ≈
1

log2(M)
Ea

[
4Q *

,

0.5 − isi(l)
R (a)

σ
n(l)
v

+
-

]
. (63)

As Nbit,≈(x) maintains the number of bit errors in the decision
areas adjacent to the decision area of the symbol c, the
approximation (63) is expected to be very accurate when
isi(l) (a) and σ

n(l)
v

are small compared to 1, e.g, in the case of
powerful equalization and large SNR.
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