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A series expansion of the interaction between a nucleus and its surrounding electron distribution
provides terms that are well-known in the study of hyperfine interactions: the familiar quadrupole
interaction and the less familiar hexadecapole interaction. If the penetration of electrons into the
nucleus is taken into account, various corrections to these multipole interactions appear. The best
known one is a scalar correction related to the isotope shift and the isomer shift. This paper discusses
a related tensor correction, which modifies the quadrupole interaction if electrons penetrate the
nucleus: the quadrupole shift. We describe the mathematical formalism and provide first-principles
calculations of the quadrupole shift for a large set of solids. Fully relativistic calculations that
explicitly take a finite nucleus into account turn out to be mandatory. Our analysis shows that
the quadrupole shift becomes appreciably large for heavy elements. Implications for experimental
high-precision studies of quadrupole interactions and quadrupole moment ratios are discussed. A
literature review of other small quadrupole-like effects is presented as well.

PACS numbers:

I. INTRODUCTION

Atomic nuclei are no mathematical point charges, but
objects with a shape and a size. This affects the way
in which they interact with electrons, especially when
electrons penetrate the nuclear volume and render the
usual ‘far-field’ approximation invalid. These ‘near-field’
effects lead to tiny corrections to all terms in the multi-
pole expansion for the electrostatic interaction between
nuclei and electrons. The correction to the monopole
term corresponds to experimentally well-known phenom-
ena: the isotope shift in atomic spectroscopy and the
isomer shift in Mössbauer spectroscopy. An analogous
correction to the quadrupole term – coined here the
quadrupole shift [96] (QS) – should exist as well. The
existence of such an effect has been touched upon a few
times in the literature of the past decades [1, 2, 3, 4, 5, 6],
but to our knowledge a systematic study is lacking. In
this paper, we present a mathematical treatment of the
quadrupole shift by a twofold application of first-order
perturbation theory, which leads to a simple analytical
expression (Secs. II-III). We point out that in order to
compute numerical values for the quadrupole shift from
first-principles, it is necessary to perform fully relativis-
tic calculations that take explicitly a finite nucleus into
account (Sec. IV). Density Functional Theory calcula-
tions of the quadrupole shift for a set of simple crys-
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tals show that the size of the quadrupole shift strongly
grows with the mass of the isotope, an effect that turns
out to have an electronic rather than a nuclear origin
(Sec. V). Except for the heaviest elements (actinides),
the quadrupole shift is only a minor correction to the
quadrupole interaction. We discuss how it shows up
in experiments, and how it could possibly be exploited
to improve the accuracy of experimentally determined
quadrupole moments (Sec. VI). Especially for the exper-
imental determination of ratios between nuclear electric
quadrupole moments, the accuracy that can be reached
by the most precise molecular beam spectroscopy ex-
periments is good enough to make it relevant in some
cases to take quadrupole shift corrections into account.
The quadrupole shift is only one of a set of small effects
that can affect the regular quadrupole interaction. The
(sometimes fairly old) literature on these other effects is
reviewed in App. A. We suggest that for high-precision
studies it is relevant to revisit these small quadrupole-like
perturbations with modern computational methods.

II. FORMALISM

A. Classical interaction energy without

charge-charge overlap

The classical electrostatic interaction energy between
a positive (nuclear) charge distribution ρ(~r) and a poten-
tial v(~r) due to a surrounding (electron) charge distribu-
tion n(~r ′) is formally given by (with ǫ0 being the electric
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constant)

E =

∫

ρ(~r)v(~r)d~r =
1

4πǫ0

∫ ∫
ρ(~r)n(~r ′)

|~r − ~r ′| d~rd~r ′, (1)

and can be expressed by the standard multipole expan-
sion in spherical harmonics [7]:

1

|~r − ~r ′| =
∑

l,m

4π

2l + 1

rl
<

rl+1
>

Y ∗
l,m(Ω)Yl,m(Ω′), (2)

with r< = min(r, r ′) and r> = max(r, r ′). This leads to
an infinite sum of double integrals, each with the dimen-

sion of energy:

E =

∞∑

l=0

E2l = E0 + E2 + E4 + . . . (3)

(Odd terms will vanish in the cases of interest here, see
Sec. II B.) It is the second term E2 that will be of interest
in the present work:

E2 = hνQ =
1

4πǫ0

4π

5

+2∑

m=−2

∫ ∫

ρ(~r)n(~r ′)
r2
<

r3
>

Y ∗
2,m(Ω)Y2,m(Ω ′)d~rd~r ′. (4)

The frequency νQ is experimentally accessible, and is
called the nuclear quadrupole coupling constant (NQCC).
Due to the varying assignment of r< and r> to ‘nuclear’
(r) or ‘electron’ (r ′) coordinates, quantities as E2 are an
intricate mixture of properties of both charge distribu-
tions ρ(~r) and n(~r). Only in the special case where both
charge distributions do not overlap (r< ≡ r and r> ≡ r ′),
Eq. (1) can be written in terms of properties that depend
entirely on only one of the charge distributions:

E =
∑

l,m

Q∗
lmVlm , (5)

where Qlm and Vlm are the components of the nuclear
multipole moment and electric multipole field tensors of
rank l, respectively:

Qlm =

√

4π

2l + 1

∫

rlρ(~r)Ylm(Ω)d~r (6)

Vlm =
1

4πǫ0

√

4π

2l + 1

∫
1

r ′l+1
n(~r ′)Ylm(Ω ′)d~r ′. (7)

When this formalism is applied to describe nuclei and
electrons, the simplification by Eq. (5) can never be
made: s-electrons and relativistic p 1

2
-electrons have a

non-zero probability to appear at r=0, and therefore the
nuclear and electron charge distributions always overlap.
Nevertheless, motivated by the very small size of the re-
gion where this overlap happens compared to the volume
of the rest of the atom, one can in a first approxima-
tion neglect this concern and apply Eq. (5) to atoms,
molecules and solids. This is where the concept orig-
inates of an electric-field gradient (EFG) tensor (V2m)
that interacts with a nuclear quadrupole moment tensor
(Q2m) to produce an experimentally observable interac-
tion energy (E2). Although E2 itself is a well-defined

observable property, its description by a quadrupole in-
teraction energy only

E2 ≈
+2∑

m=−2

Q∗
2mV2m (8)

rather than by Eq. (4) is an approximation.

B. Overlap corrections

We will now derive explicit expressions for the correc-
tions that need to be added to Eq. (8) to obtain Eq. (4)
(and similarly for other values of l). Rather than us-
ing the multipole expansion in spherical harmonics from
Eq. (2), we start from a Taylor expansion of the electro-
static potential v(~r) = 1/(4πǫ0)

∫
n(~r ′)/|~r − ~r ′| d~r ′ in

the interaction energy of Eq. (1):

E =

∫

ρ(~r)v(~r)d~r = v(0)

∫

ρ(~r)d~r

+
∑

i

vi(0)

∫

xiρ(~r)d~r

+
1

2!

∑

i,j

vij(0)

∫

xixjρ(~r)d~r

+
1

3!

∑

i,j,k

vijk(0)

∫

xixjxkρ(~r)d~r

+
1

4!

∑

i,j,k,l

vijkl(0)

∫

xixjxkxlρ(~r)d~r + O(6). (9)

In order to recognize in this expression the multipole mo-
ments and multipole fields from Eq. (6) and Eq. (7), one
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has to make substitutions like this one (the example is
for the quadrupole moment):

∫

xixjρ(~r)d~r =
1

3

∫

(3xixj − r2δij)ρ(~r)d~r

︸ ︷︷ ︸

Qij

+
1

3

∫

r2ρ(~r)d~r δij , (10)

where Qij are the components of the quadrupole tensor
Q2m (Eq. (6)), but now in Cartesian form. This yields
for the first three even orders in Eq. (9) the following
nuclear multipole moments in Cartesian form:

M =

∫

ρ(~r)v(~r)d~r = eZ (11)

Qij =

∫

(3xixi − r2δij)ρ(~r)d~r (12)

Hijkl =

∫

3 · 5(7xixjxkxl

−fH(xi, xj , xk, xl))ρ(~r)d~r (13)

with fH(xi, xj , xk, xl) = r2
[

xixjδkl +xixkδjl +xixlδkj +

xjxkδil +xjxlδik + xkxlδij

]

− r4

5

[

δijδkl + δikδjl + δilδjk

]

.

The corresponding electric multipole fields in Cartesian
form are:

V = v(0) (14)

Vij = (∂i∂jv(0) − 1

3
∆δij)∆v(0) (15)

Vijkl = ∂i∂j∂k∂lv(0) − fV
ijkl∆v(0) (16)

with fV
ijkl =

[

∂i∂jδkl + ∂i∂kδjl + ∂i∂lδkj + ∂j∂kδil +

∂j∂lδik+∂k∂lδij

]

−∆
5

[

δijδkl+δikδjl+δilδjk

]

. The expres-

sions in Eqs. (11) to (13) and Eqs. (14) to (16) are iden-
tical to the ones in Eqs. (6) and (7), respectively. They
have the same number of degrees of freedom: 1, 5 and 9
for the zeroth, second and fourth order moment/field.

After having inserted into Eq. (9) all substitutions as
in Eq. (10), the interaction energy can be written as

E = M · V
︸ ︷︷ ︸

MI

+
1

3!
{r2}∆v(0)

︸ ︷︷ ︸

MS(1)

+
1

5!
{r4}∆2v(0)

︸ ︷︷ ︸

MS(2)

+
1

2!

1

3

∑

ij

QijVij

︸ ︷︷ ︸

QI

+
1

28

∑

ij

{(xixj −
r2

3
δij)r

2}(∂i∂j −
∆

3
δij)∆v(0)

︸ ︷︷ ︸

QS(1)

+
1

4!

1

105

∑

ijkl

HijklVijkl

︸ ︷︷ ︸

HDI

+ O(6), (17)

where all integrations over the nuclear charge density ρ(~r)
are noted in short-hand by {curled brackets}. Eq. (17)
contains no odd order terms (dipole, octupole,. . .), since
nuclei have no odd order electric moments due to time
reversal symmetry [3]. We see that Eq. (17) contains
dot products between multipole moments and fields as
in Eq. (5): the monopole (MI), quadrupole (QI), hexade-
capole (HDI),. . . interactions. These are the only contri-
butions in the case without charge-charge overlap. Ad-
ditionally, an infinite set of even order correction terms
appears now as well – due to parity, there are no odd
order corrections. In Tab. I, a general naming system
and a corresponding set of symbols are presented: the
nth order quasi multipole moment multiplied (dot prod-
uct) with the nth order quasi multipole field leads to the
nth order multipole shift. From the general trends in this
table one can infer the structure of the higher order cor-
rections that were not explicitly derived in Eq. (17) –
they are shown in the table in red.

There is a qualitative difference between the multipole
fields in the first column of Tab. I and the quasi mul-
tipole fields in all other columns. The multipole fields
depend on the potential v(0) at the nucleus, which de-
pends via integration on the charge distribution every-
where else in the system. Multipole fields are therefore
integrated quantities, determined by the entire density.
The quasi multipole fields depend on the Laplacian of the
potential at the nucleus (∆v(0)), which is by the Poisson
equation proportional to the electron charge density at
the nucleus (n(0)) (∆v(0) = −n(0)/ǫ0). Quasi multipole
fields are therefore point quantities, determined by the
electron density in a single point only.

In the next section, the results of Eq. (17) and Tab. I
for a system of two classical charge distributions will be
translated to a quantum formulation. This will make it
applicable to atoms, molecules and solids. Known exper-
imental consequences of these overlap correction terms
will be summarized in Sec. III. The core of the present
work deals with the first order quadrupole shift QS(1),
which is the first order correction to the quadrupole in-
teraction.

C. Quantum formulation

In order to translate Eq. (17) to quantum mechan-
ics, Hamiltonian operators corresponding to all its terms
are required. The structure of Eq. (17) suggests a
perturbation theory treatment, with the monopole in-
teraction term as the unperturbed Hamiltonian, and
the other terms as small perturbations. The monopole
term depends via r0 on the (small) nuclear coordinate
(r ∝ 10−15 m) and via 1/r ′ on the electronic coordinate
(r ′ ∝ 10−10 m). Among all small corrections in Tab. I,
the two largest ones are the quadrupole interaction QI
and the first order monopole shift MS(1) – both have a r2

in their nuclear parts and a second derivative of the elec-
trostatic potential (leading to 1/r ′3) in their electronic
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TABLE I: Systematic overview of nuclear multipole and quasi multipole moments and electric multipole and quasi multipole
fields that appear in the multipole expansion of two interacting (and overlapping) classical charge distributions. The first
column gives the regular multipole expansion for point nuclei: the monopole, quadrupole and hexadecapole interactions. The
next columns give the quasi multipole moments/fields for every multipole interaction, denoted by a tilde: these are corrections
to the multipole interactions due to electron penetration into an extended nucleus. Colored text is by generalization only, and
is not systematically derived in this work. The objects in each line are spherical tensors of a given rank (rank 0 for line 1, rank
2 for line 2, rank 4 for line 3, . . .).

Order Multipole First order Second order . . .

moment quasi moment quasi moment

/ field / quasi field / quasi field

O(0)

MI:

M ∝ r0Y00

V ∝ v(0)

MS(1):

M̃ (1) ∝ {r2Y00}

Ṽ (1) ∝ ∆v(0)

MS(2):

M̃ (2) ∝ {r4Y00}

Ṽ (2) ∝ ∆2v(0)

. . .

O(2)

QI:

Q ∝ r2Y20

Vij ∝ ∂ijv(0)

QS(1):

Q̃(1) ∝ {r4Y20}

Ṽ
(1)
ij ∝ ∂ij∆v(0)

QS(2):

Q̃(2) ∝ {r6Y20}

Ṽ
(2)

ij ∝ ∂ij∆
2v(0)

. . .

O(4)

HDI:

H ∝ r4Y40

Vijkl ∝ ∂ijklv(0)

HDS(1):

H̃(1) ∝ {r6Y40}

Ṽ
(1)

ijkl ∝ ∂ijkl∆v(0)

HDS(2):

H̃(2) ∝ {r8Y40}

Ṽ
(2)

ijkl ∝ ∂ijkl∆
2v(0)

. . .

. . . . . . . . . . . . . . .

parts. These two leading corrections will be taken as the
small perturbation.

The Hamiltonians that correspond to the entries in
Tab. I operate on the direct product space of wave func-
tions for the nuclear and the electron subspaces. The
ground state of the monopole Hamiltonian is a direct
product between the nuclear ground state and the elec-

tronic ground state wave function. With M̂ = eZ 1̂l

(Eq. (11), 1̂l is the identity operator on the nuclear space)

and V̂ = v̂(0) (Eq. (14), v̂(0) is an operator on the elec-

tronic space that returns the potential at ~r =~0 due to a
given wave function Ψ), the unperturbed monopole in-
teraction Hamiltonian is

ĤMI = eZ 1̂l ⊗ v̂(0). (18)

Evaluating this for the ground state wave function
|I ⊗ Ψ0〉 of the combined nuclear+electronic system leads
to (|I〉 is the ground state of the nucleus, and |Ψ0〉 the
ground state of the electron system with a point nucleus):

Epn
0 = 〈Ψ0 ⊗ I| ĤMI |I ⊗ |Ψ0〉

= 〈I| eZ 1̂l |I〉 · 〈Ψ0| v̂(0) |Ψ0〉
= eZv(0) , (19)

which is the leading term in Eqs. (5) or (17). The label pn
(‘point nucleus’) emphasizes the difference with E0 from

Eq. (3). The quantity v(0) – the electrostatic potential
at the nuclear site for a point nucleus – is accessible by
first-principles codes.

The perturbing Hamiltonian is (see Tab. I for the no-
tation):

ĤP = ĤQI + ĤMS(1) . (20)

In first order perturbation theory, the energy corrections
due to this perturbation are found by evaluating the per-
turbing Hamiltonian in the ground state of the unper-
turbed Hamiltonian. Assuming a non-degenerate ground
state in the electron subspace, it is advantageous to write
the Hamiltonians immediately in a more familiar form
where the electronic matrix elements are already evalu-
ated and are treated as known (=computable) quantities.
After similar algebra as for the monopole Hamiltonian,
this leads to this form for the monopole shift Hamiltonian
(it contains the mean square radius 〈r2〉 of the nucleus
and the electron density n(0) at the position of the nu-
cleus):

ĤMS(1) = − eZ

6ǫ0
n(0) 〈r2〉1̂l. (21)

The quadrupole Hamiltonian ĤQI contains the (spectro-
scopic) quadrupole moment of the nucleus Q and the
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quadrupole field of the electrons Vzz (principle compo-
nent of the electric-field gradient tensor) (see e.g. Ref.[7]):

ĤQI =
eQVzz

4(2I − 1)Ih̄2

[(

3Î2
z − Î2

)

+
1

2
η

(

Î2
+ + Î2

−

)]

.

(22)

Diagonalizing these two Hamiltonians in the nuclear
states leads to the desired energy corrections in first order
perturbation. Formally:

E[1] = Epn
0 + 〈I|ĤMS(1) + ĤQI |I〉

= Epn
0 + 〈I|ĤMS(1) |I〉 + 〈I|ĤQI |I〉

= Epn
0 + E

[1]

MS(1) + E
[1]
QI . (23)

Here, E
[1]

MS(1) is a correction to the monopole energy Epn
0

for a point nucleus due to (s- or p 1
2
-)electron penetration

into the volume of a spherical nucleus. The quadrupole

interaction energy E
[1]
QI is a correction due to the devia-

tion from spherical symmetry of this nucleus.

There is a second group of entries with even much
smaller corrections in Tab. I: the HDI, QS(1) and MS(2)

terms all have r4 and 4 derivatives of the electrostatic
potential (→ 1/r ′5). The corresponding Hamiltonians
are:

ĤHDI =
eHVzzzz

128I(I − 1)(2I − 1)(2I − 3)h̄4 ·
[

35Î4
z − 30Î2

z Î2 + 3Î4 + 25h̄2I2
z − 6h̄2I2

]

(24)

ĤQS(1) = − 1

14ǫ0

eQ̃nzz

4(2I − 1)Ih̄2

[ (

3Î2
z − Î2

)

+
1

2
ηQS

(

Î2
+ + Î2

−

) ]

(25)

ĤMS(2) = − eZ

5!ǫ0
∆n(0) 〈r4〉1̂l. (26)

The (diagonal part of the) hexadecapole Hamiltonian,
Eq. (24), is taken from the literature [8], the quadrupole
shift Hamiltonian, Eq. (25), is derived explicitly in [9]
and similar algebra as for the first order monopole shift
Hamiltonian leads to the second order monopole shift
Hamiltonian, Eq. (26). As they are much smaller than
the QI and MS(1) terms, it makes little sense to add
these corrections to the Hamiltonian of Eq. (20) right
away. Rather one should consider a first order pertur-
bation to the Hamiltonian of Eq. (20), which itself was
already a perturbation to the monopole Hamiltonian of
Eq. (18). This means: find the perturbed eigen states of
Eq. (20) in first order, and evaluate the new perturba-
tions as given by the Hamiltonians in Eqs. (24)–(26) in
these eigen states. In the present work, we are interested
in the first place in ĤQS(1) , as it has the symmetry of
a quadrupole interaction: this Hamiltonian, evaluated in
the (approximate) eigenstates for a system with a finite
and quadrupolarly deformed nucleus, gives an additional
contribution to the regular quadrupole interaction. It can
be interpreted as the influence on the quadrupole inter-
action of electron penetration into the nuclear volume:
the quadrupole shift. The quadrupole shift Hamiltonian
of Eq. (25) expresses the influence of the finite nucleus
on the multipole expansion. Evaluating this Hamiltonian
for a density obtained from a first-principles calculation
with a finite nucleus expresses the influence of the finite
nucleus on the electronic wave functions.

There is an alternative way to express this same effect:
consider the Hamiltonian of Eq. (20) up to second order
perturbation. Among others, the second order energy ex-

pression will contain a cross term between QI and MS(1),
which has the same symmetry as the quadrupole interac-
tion (this can be easily seen because the Y00 term of the
monopole shift is a scalar quantity that does not change
the symmetry). Compared to the previous strategy this
method has the advantage that the same Hamiltonian
is kept, but the disadvantage that second order matrix
elements in excited states have to be evaluated. It is
technically easier to evaluate a new perturbation in the
ground state of the previous perturbation. The underly-
ing physics, however, is the same.

The second order perturbation description has been
applied in 1970 by P. Pyykkö for approximate and non-
relativistic calculations in a few test molecules (see also
Fig. 4) [1]. The first order + first order perturbation
description has been used in 2003 by Thyssen et al. [5]
for the case of LiI, albeit in an implicit way that did
not clearly showed the twofold application of first order
perturbation theory. The twofold application of pertur-
bation theory will be the method used in the present
work as well, not at least because it leads to concise ana-
lytical formulas. In 2006, also Karl and Novikov derived
the so-called “contact terms” of the quadrupole interac-
tion. They used the Feynman diagram technique and
evaluated the results for hyperonic atoms [10, 11]. Our
derivation was made completely independent from the
ones by Thyssen et al. and Karl and Novikov, and the
observation that the final expressions agree is a strong
test of mutual correctness.
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D. Zooming in on E2

The regular quadrupole interaction and first order
quadrupole shift together provide our approximation to
E2:

E2 = hνQ ≈ EQI + EQS(1) = hνQI + hνQS(1) .

(27)

Both terms consist each of a product between a nuclear
quantity and an electron quantity. As this shows to which
nuclear and/or electronic properties one gets access by
measuring E2, we discuss them now. The two relevant
nuclear quantities are (see Eqs. (22) and (25)):

ĤQI → eQ =

∫

ρ(~r)(3z2 − r2)d~r ∝ 〈r2Y20〉

(28)

ĤQS(1) → eQ̃ =

∫

ρ(~r)(3z2 − r2)r2d~r ∝ 〈r4Y20〉.

(29)

The quasi quadrupole moment Q̃ has an additional r2

in the integral compared to the quadrupole moment
Q. It is therefore a quantity that bears similarity
with the quadrupole moment 〈r2Y20〉 (through the Y20-
dependence) as well as with the hexadecapole moment
〈r4Y40〉 (through the r4-dependence).

The corresponding electronic quantities are:

ĤQI → Vzz =

(

∂zz − ∆

3

)

v(0) (30)

ĤQS(1) → nzz = − 1

ǫ0

(

∂zz − ∆

3

)

∆v(0). (31)

The integrated quantity (cf. Sec. II B) Vzz is the princi-
pal component of the electric-field gradient tensor. The
point quantity nzz is the main component of the tensor
nij = (∂i∂j − ∆

3 δij)n(0), which has via the Laplacian
two derivatives more than the main component of the
EFG tensor Vzz . nzz can be shown to be proportional to
〈Y2m/r5〉 and therefore bears similarities with the elec-
tric quadrupole field 〈Y2m/r3〉 as well as with the electric
hexadecapole field 〈Y4m/r5〉, cf. Eq. (7).

III. OBSERVABLE CONSEQUENCES

All entries in the (classical) Tab. I correspond to an
experimentally observable correction to the total energy.
The first row lists energy corrections which are a product
of scalar quantities. The leading term after the monopole
contribution MI (or Epn

0 ) is the first order monopole shift

MS(1), which experimentally manifests its presence in the
well-known isomer. The second order monopole shift
MS(2) is only very rarely taken into account. One ex-
ample where it matters is the case of muonic atoms [2, 3]

Quadrupole
 Interaction Shift

Quadrupole+

}

I = 5
2

mI = ± 5
2

mI = ± 3
2

mI = ± 1
2

νQI

2νQI

νQI + νQS

2(νQI + νQS)

FIG. 1: Energy levels for a nuclear spin of I = 5/2. This
picture is not on scale: the shift of the levels as indicated by
the arrow is in the most favorable cases (=heavy nuclei) only
0.1 % of νQI .

(atoms where a muon rather than an electron orbits the
nucleus). Because a muon is much heavier than an elec-
tron, its orbit is much smaller and the overlap with the
nuclear charge distribution becomes much larger. This
makes the second order monopole shift for muons much
larger than it is for electrons [97].

All entries in the second row of Tab. I are dot prod-
ucts between spherical tensors of rank 2. The first one
is the quadrupole interaction term QI, which splits ac-
cording to Eq. (22) energy levels that were degenerate
under the monopole term. An example for the axially
symmetric case (η = 0) and nuclear spin I = 5/2 is
given in Fig. 1. The second term in the second row is
the first order quadrupole shift QS(1), which shifts the
energy levels that were split by the quadrupole Hamilto-
nian, but preserves its overall symmetry (Fig. 1, example
for η = ηQS = 0 [98]). The frequencies (energies) that set
the scale for the quadrupole and quadrupole shift split-
ting are (still considering η = ηQS = 0):

νQI =
eQVzz

h
(32)

νQS = −eQ̃nzz

14ǫ0h
. (33)

(For the sake of lighter notation, we will use from here on
νQS rather than νQS(1) : we will not consider second order
quadrupole shifts and therefore no confusion will be pos-
sible.) The quadrupole shift does not change the overall
symmetry, which in the example of Fig. 1 means that the
1:2 ratio between the two energy differences is preserved.
An experiment that measures such energy differences is
not able to distinguish between the contribution by νQI

and the one by νQS : it measures their sum only. A dis-
cussion of the trends in the order of magnitude of the
quadrupole shift will be given in Sec. VC, and several
experimental and computational strategies to exploit the
quadrupole shift will be suggested in Sec. VI.

Finally, the third row in Tab. I lists dot products be-
tween tensors of rank 4. The leading term here is the



7

hexadecapole interaction for point nuclei. This term
can in principle be distinguished experimentally from a
quadrupole interaction because its symmetry is different
(for instance, in Fig. 1 the 1:2 ratio would be slightly vio-
lated). The HDI appears only for nuclei with l ≥ 2, since
only they have hexadecapole moments (2I ≥ l rule for
2l multipole moments). Whereas the QI is well known
and experimentally accessible by e.g. NMR or Molecular
Beam Spectroscopy (see Sec. VI A), the situation for the
HDI is different. Since it was reported in 1955 for the
first time [12], it has gone through cycles of confirmatory
measurements and refutations. An overview is given in
Ref. [5].

IV. COMPUTATIONAL ASPECTS

A. Formulation in spherical notation

The electronic part nzz of the quadrupole shift will be
calculated with a first-principles code and must therefore
be translated in spherical form as it is common in such
codes:

nzz =
2√
3

√

15

4π
lim
r→0

1

r2
n20(r). (34)

The spherical component of the density, n20(r), which en-
ters this expression, is the radial part of the (l=2, m=0)
component of expansion of the density n(~r) in spherical
harmonics:

n(~r) =
∑

lm

nlm(r)Ylm(Ω). (35)

The l=2 components are closely related to Cartesian sec-
ond derivatives [13], which is the reason why they appear
in the electric-field gradient and related quantities.

B. Computational details: the FPLO code

All calculations in this paper have been performed
by the Density Functional Theory solid state code
FPLO [14] (version 8.00-31), which is is a full-potential
band structure scheme and based on linear combina-
tions of overlapping non-orthogonal atom-centred or-
bitals. The core relaxation is properly taken into ac-
count (so called all-electron method). We used the
Local Density Approximation (LDA) for the exchange-
correlation functional [15]. FPLO can perform non-
relativistic, scalar-relativistic as well as fully-relativistic
calculations [16, 17]. In the latter, the Dirac Hamilto-
nian with a general potential is solved. Recently, a finite
nucleus has been implemented in FPLO, which is crucial
for the present work (Sec. IVC).
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distance to nucleus [a0]
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0.2

0.3

0.4

0.5

n
20

 [
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a 03 ]

0 0.0005 0.001 0.0015
0

0.005

FIG. 2: The density component n2m(r) including inset, which
zooms in the region around r = 0 ) for a point nucleus (p.n.,
dashed lines) and a finite nucleus (f.n., full lines) plotted in de-
pendence of r. The different methods are indicated by differ-
ent colors: non-relativistic (NREL, yellow), scalar relativistic
(SREL, red) and full relativistic (FREL, green). This calcu-
lation for the hcp metal Re was done by FPLO. All quantities
are given in atomic units.

C. Relativity and the role of a finite nucleus

In order to obtain nzz, the limit of n20(r)/r2 for r→0
must be calculated, cf. Eq. (34). It matters whether
this is done within a non-relativistic (NREL), a scalar-
relativistic (SREL) or a fully relativistic (FREL) frame-
work.In the NREL or FREL formulations (no matter if a
point or a finite nucleus is used in the calculation) n2m(0)
is exactly zero as it should be due to angular selection
rules (Fig. 2). In the SREL approximation, the (l=2, m)
density, created from two divergent p1/2 functions, is to
some extent wrongly non-zero at r = 0. This makes
SREL-based methods (with or without a point nucleus)
essentially useless for calculating properties that depend
on n20(r→ 0), and we will therefore not consider SREL
any further.

For a point nucleus, the ratio of n20(r) and r2 con-
verges for the limit r→0 in a NREL formulation, but not
in a FREL formulation (Fig. 3). Since this ratio at r=0
is an observable quantity (see Eqs. (34) and (33)), the di-
vergence for the better method (FREL vs. NREL) cannot
be physical. And indeed, the divergence disappears if the
approximation of a point nucleus is dropped and a finite
nucleus is used in the calculation (Fig. 3). Numerical
values for this ratio turn out to be much larger for FREL
compared to NREL, especially for heavy elements.



8

0 0.0005 0.001 0.0015 0.002
distance to nucleus [a0]

0

50000

NREL p.n.
SREL p.n.
FREL p.n.
NREL f.n.
SREL f.n.
FREL f.n.n

20
/r

2  [
e/

a 05 ]

FIG. 3: The density component n2m(r)/r2 for a point nucleus
(p.n., dashed lines) and a finite nucleus (f.n., full lines) plot-
ted in dependence of r. The different methods are indicated
by different colors: non-relativistic (NREL, yellow), scalar
relativistic (SREL, red) and full relativistic (FREL, green).
This calculation for the hcp metal Re was done by FPLO. All
quantities are given in atomic units.

The divergence of nzz in a fully relativistic point nu-
cleus calculation might appear to be worrying at first
sight. Wouldn’t that mean that the quadrupole shift in
Eq. (33) is infinite? The answer is: no, because the oper-
ator corresponding to nzz (Eq. (31)) does not have to be
evaluated in the ground state for the point nucleus (which
is the case that diverges at r = 0), but in the ground state
after having added the two perturbations of Eq. (20) that
describe the effect of quadrupolarly deformed finite nu-
cleus (where the divergence is absent). The latter ground
state can be constructed from the ground and excited
states of the point nucleus case, applying the common ex-
pression for the eigenfunctions in first order perturbation.
This would, however, lead to rather lengthy expressions
and to the inconvenience of having to use excited states.
A pragmatic workaround is to use instead the ground
state as calculated in a first-principles code that takes a
finite nucleus into account. This is hardly an approxima-
tion, as it was exactly the purpose of the perturbations
in Eq. (20) to express the presence of a finite nucleus.
Therefore, we conclude that the quadrupole shift can be
obtained by evaluating the operator for nzz in Eq. (31)
for the ground state of the atom, molecule or solid calcu-
lated fully relativistically and with a finite nucleus taken
into account. This quadrupole shift has to be added to
the contribution obtained by evaluating the operator for
Vzz in Eq. (30) in the ground state of the point nucleus

case (and not in the ground state of the finite nucleus
case, as the regular QI is really a perturbation to the
point nucleus).

D. Comparison with the PCNQM method

We have described in the previous sections a proce-
dure to obtain the influence on the quadrupole interac-
tion of electron penetration in a finite nucleus by two
subsequent applications of first order perturbation the-
ory combined with finite nucleus calculations (Eq. (33)
and Figs. 2 and 3). An alternative to this procedure
is the point charge nuclear quadrupole moment method
(PCNQM) [18, 19, 20]: the electric-field gradient is not
obtained as the expectation value of an operator, but is
determined from the way how the total energy of the
system changes upon inserting an artificial array of point
charges around the nucleus. In this method, only total
energies are required to obtain the electric-field gradient,
which makes it particularly useful when the proper op-
erator for the field gradient is not explicitly known. The
latter is for instance the case as soon as a finite nucleus
is used (Eq. (22) is valid for a point nucleus only), or
for fully relativistic calculations at the 2-component level
(a complicated and not yet performed ‘picture change’
transformation would be needed to find the 2-component
version of the EFG operator [18].) The difference in
EFGs between a ‘finite nucleus + PCNQM’ calculation
and a point nucleus calculation (either with the regu-
lar EFG operator or with PCNQM) gives the effect of
electron penetration in the nucleus. One case where this
difference is explicitly calculated is for 127I in LiI (Ref. [6]
and Fig. 4). With PCNQM, the quadrupole shift can be
obtained only numerically: there is no analytical expres-
sion as Eq. (33).

In passing, we note here that a method that is quite
analogous to PCNQM has been recently developed for
the first order monopole shift correction MS(1) (isotope
shift, isomer shift) [21, 22] as well.

V. NUMBERS AND TRENDS

In the present section, we will perform actual calcu-
lations with the formalism described in Secs. II and IV,
and examine trends in the relevant quantities: the nu-
clear quasi-quadrupole moment Q̃, the electronic point
property nzz, and their product: the quadrupole shift
νQS .

A. Trends in Q̃

Consider a phenomenological model for a nucleus: a
deformed sphere, with a radius R(θ) given by [23]:

R(θ) = a (1 + β2Y20(θ) + β4Y40(θ) + . . .) , (36)
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TABLE II: The nuclear radius a, quadrupole moment Q, de-
formation parameter β2 and quasi quadrupole moment Q̃ of
a few isotopes.

Isotope a [fm] Q [fm2] β2 Q̃ [fm4]

9Be 2.84 5.3 0.22 43
47Ti 4.61 30.2 0.09 644

111Cd 5.95 83.0 0.07 2 934
138La 6.34 45.0 0.03 1 808
179Hf 6.84 379.3 0.15 17 760
187Re 6.93 207.0 0.07 9 945
189Os 6.95 85.6 0.03 4 138

where a is called the monopole radius and the βi are
deformation parameters. The monopole radius depends
in the first place on the atomic mass number A of the
nucleus, and the main trend through a lot of experimental
values can be summarized by [24][99]

a(A) = 1.489 A0.294 fm. (37)

Values for β2 fall rarely outside the range [−0.3, +0.3]
(Ref. [25] in combination with Eq. (38)). As β4 is even
smaller and enters only quadratically in the expressions
we will need, it can be neglected for our purposes. Keep-
ing only the linear order for β2, we can now express the
quadrupole moment and the quasi quadrupole moment
in terms of a and β2:

eQ ≃ 3

√

4π

5

eZ

2π
β2a

2 (38)

eQ̃ ≃ a2 · eQ. (39)

The term quadratic in β2 as well as the quadratic β4

term give corrections to Eqs. (38) and (39) at the level
of a few percent only, while they make the expressions
considerably more involved – see Ref. [9].

By Eqs. (38)-(39), one can get a reasonable estimate

for Q̃ by inserting the monopole radius from Eq. (37)
and the experimental quadrupole moment Q (e.g. from

Ref. [25, 26, 27]). In this way, we obtain values for Q̃ in
the order of 104 − 105 fm4 for heavy elements (Tab. II).
The Eqs. (38)-(39) show that in order to get a large quasi

quadrupole moment Q̃, the nucleus should be large (a is
large) and strongly deformed (Q or β2 are large). The
former implies heavy elements, while the latter is most
easily fulfilled for heavy elements as well.

B. Trends in nzz

In order to get a feeling for the order of the magnitude
of the electronic parts of the O(2) interactions in Tab. I,
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Z
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ν Q
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FIG. 4: The logarithm of the ratio of νQS and νQI as a func-
tion of the mass number A. Blue diamonds: artificial crys-
tal structures (see text and Ref. [9]), fitted by the red line
(Eq. (40)). Orange triangles (down): experimental crystal
structures (see Tab. III). The yellow triangle (up) [5], green
square [6] and red circles [1] are values from the literature,
see text. Inset: the same data but now as a function of Z,
fit by Eq. (41). The nuclear (green) and electronic (orange)
contributions of Eq. (42) are shown as well, shifted to match
in the endpoint.

we have calculated both Vzz (the electronic part of the
QI) and nzz (the electronic part of the first order QS)
for some hexagonal close-packed (hcp) metals throughout
the periodic table. The results are shown in Tab. III.
Both quantities increase with the mass of the element.
But compared to Vzz , which increases over two orders of
magnitude, nzz is much more sensitive to the mass of the
element and increases over eight orders of magnitude.

In order to verify to which extent this conclusion ob-
tained from Tab. III is valid for other crystal struc-
tures than hcp, we investigated two series of purpose-
built body-centered tetragonal (bct) crystals with differ-
ent c/a ratios (0.8 and 1.2), and this for several elements
throughout the periodic table. The results are reported
in Ref. [9] and show the same trend as Tab. III. We con-
clude that the mass of the element has a larger influence
on the magnitude of nzz than the lattice parameters or
the crystal structure.

C. Trends in the quadrupole shift

How do the nuclear part from Sec. V A and the
electronic part from Sec. VB combine to produce a
quadrupole shift? The frequencies νQI (for the QI –
Eq. (32)) and νQS (for the QS – Eq. (33)) for a set of
hcp and bct metals are reported in Tab. III, together
with their ratio |νQS/νQI |. Experimental lattice parame-
ters were used [28, 29], and nzz and Vzz were determined
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TABLE III: For a few atoms/nuclei that experimentally condense in the hcp crystal structure (except for Pa, bct), this table

lists the nuclear properties Q and Q̃ (determined as in Table II), the electronic properties Vzz and nzz/ǫ0 (calculated by FPLO,
see text), the quadrupole νQI and quadrupole shift νQS frequencies they give rise to (Eqs. (32) and (33)) (mind the different
MHz and kHz units), and the ratio of the latter.

Isotope I Q Q̃ Vzz nzz/ǫ0 νQI νQS |νQS/νQI |

[fm2] [fm4] [1021V/m2] [1042V/m4] [MHz] [kHz]

9Be 3/2 5 42 −0.08 −6.07·10−2 −0.1 10−8 5·10−9

47Ti 5/2 30 644 1.61 3.27·10+3 11.8 −0.04 3·10−6

49Ti 5/2 25 539 1.61 3.27·10+3 9.6 −0.04 3·10−6

111Cd 5/2 83 2 934 7.48 2.94·10+5 150.0 −14.9 1·10−4

177Hf 7/2 337 15 652 7.89 1.26·10+6 642.3 −341.4 5·10−4

179Hf 9/2 379 17 760 7.89 1.26·10+6 723.9 −387.4 5·10−4

185Re 5/2 218 10 386 −5.51 −1.81·10+6 −290.3 324.9 1·10−3

187Re 5/2 207 9 945 −5.51 −1.81·10+6 −275.6 311.1 1·10−3

189Os 3/2 86 4 138 −6.65 −2.91·10+6 −137.6 208.1 2·10−3

231Pa 3/2 −172 -9 357 15.14 8.11·10+6 −629.8 1309.7 2·10−3

fully relativistically with a finite nucleus for nzz and a
point nucleus for Vzz (see Sec. IVB). Q was taken from

the literature [27] and Q̃ was determined as explained in

Sec. VA. The trends of nzz and Q̃ to be larger for heavy
elements, cooperate to produce a νQS of which the rel-
ative importance with respect to νQI is rather smoothly
increasing with the atomic number A.

This can be seen more clearly in Fig. 4 (blue dia-
monds), which summarizes results for a larger set of
28 elements in different crystal structures: hcp with
c/a=1.633 and 0.8 and bct with c/a=1.2 and 0.8, always
with the experimental volume per atom (details are given
in Ref. [9]). These data can be fit with the simple func-
tions

|νQS | = 5.46 · 10−12 A
11
3 |νQI |, (40)

|νQS | = 3.26 · 10−11 Z4 |νQI |, (41)

which are shown in Fig. 4 (red lines). The orange tri-
angles (down) in Fig. 4 correspond to the experimental
crystal structures from Tab. III – they accurately follow
the same trend.

By taking the ratio of Eqs. (33) and (32) and by

filling out the lowest order expressions for Q and Q̃
(Eq. (38)), the following simple analytic analogue for
Eqs. (40) or (41) is obtained:

νQS =

(

− 1

14
a2 nzz

ǫ0

1

Vzz

)

νQI . (42)

Since a = 1.26 Z1/3 fm (obtained from the data of
Ref. [24] plotted as a function of Z), the nuclear part
a2 scales with Z2/3. In order to fulfill the observed
Z4 dependence in Eq. (41), the electronic part should

scale with Z10/3: nzz/(ǫ0Vzz) = 2.87 · 10−10 Z10/3 fm−2.
These two contributions are shown as the green (nu-
clear) and orange (electronic) lines in the inset of Fig. 4.
From this picture, it is clear that the electronic term
contributes most to the increase of the quadrupole shift
with A or Z. From Tab. III, we see that this is due to
the strong increase of nzz.

Eq. (41) provides a quick way to estimate the order
of magnitude of the quadrupole shift, for any element in
any crystal structure, and without the need for a finite
nucleus calculation. The only quantity that is required
is νQI , which can be provided by several first-principles
codes. As the scatter of the data points for heavier ele-
ments shows, such an estimate can be one order of mag-
nitude above or below the actual value. For isotopes with
A >∼ 175 (Z >∼ 60), the quadrupole shift can reach 0.1-
1.0% of the regular quadrupole interaction.

There are a few cases reported in the literature from
which QS information can be deduced. These are shown
in Fig. 4 as well. The yellow triangle (up) was calculated
by J. Thyssen et al. with a method very similar to ours
for the single case of the LiI molecule. They found the
ratio |νQS/νQI | for 127I to be 5 · 10−5. The green square
corresponds to 127I in the same LiI molecule, obtained by
the PCNQM method by Van Stralen and Visscher [6]. A
few estimates for the quadrupole shift obtained by sec-
ond order perturbation theory were published in 1970 by
P. Pyykkö [1]. Those estimates were given relative to a
pseudo quadrupole interaction only (A 1 and Ref. [30]).
After converting these numbers, it turns out that for the
LiBr molecule the ratio of νQS and νQI is about 10−10

for 6Li and 10−6 for 81Br (red circles in Fig. 4). These
numbers follow the same trend as the quadrupole shift in
first order perturbation, but are 1-2 orders of magnitude
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smaller – this might be due to the fact that these were
non-relativistic calculations.

D. Other small perturbations to the quadrupole

interaction

When dealing with a quadrupole-like interaction that
is as small as the quadrupole shift, it becomes relevant
to take into account similarly small quadrupole-like inter-
actions and perturbations of the quadrupole interaction
that have a different origin. Some of these interactions
have been proposed decades ago, in an era during which
it was impossible to compute accurate values for them.
Given the enormous advances in the possibilities of first-
principles calculations since that time, it is worthwhile
to list these effects here, to discuss them shortly, to put
them into a general picture and to refer to the original lit-
erature. This is done in App. A, where we will deal with
second order effects of magnetic origin, the isotopologue
anomaly and the influence of temperature.

VI. EXPERIMENTAL IMPLICATIONS OF THE

QUADRUPOLE SHIFT

A. Accuracy of quadrupole interaction

experiments and calculations

In order to see whether or not the presence of the
quadrupole shift can be experimentally detected, we
should assess the accuracy that can be achieved in
quadrupole interaction experiments. In order to find out
which kind of information can be extracted if such ex-
periments are combined with first-principles calculations,
the best achievable accuracy in such calculations will be
discussed as well.

Experimental methods can be either non-radioactive
ones as nuclear magnetic resonance (NMR) spectroscopy,
nuclear quadrupole resonance (NQR) spectroscopy, laser
spectroscopy (LS) and molecular beam spectroscopy
(MBS), or radioactive ones as Mössbauer spectroscopy
and perturbed angular correlation (PAC) spectroscopy.
These methods can be applied to atoms and molecules
(LS, MBS, NMR, NQR) or to solids (NMR, NQR,
Mössbauer, PAC). A typical NQCC νQ is of the order
of magnitude of 100 MHz. These are the lowest achiev-
able experimental error bars on νQ for each method:
5 kHz for NMR or NQR on single crystals with an axi-
ally symmetric EFG [31, 32], 100 kHz for NMR or NQR
on powder samples with a non-axially symmetric EFG
[31, 32], 5 MHz for LS on atomic beams [33], 5-20 Hz
(!) for MBS [34, 35], 500 kHz for PAC [36, 37, 38] and
Mössbauer spectroscopy [39]. When compared to the the
quadrupole shift values in Tab. III (typically 100 kHz
for A>∼150), it is clear that only NMR in solids and es-
pecially Molecular Beam Spectroscopy on molecules are

sensitive to the quadrupole shift – provided the isotope
under consideration is sufficiently heavy.

First-principles calculations in solids are commonly
done at the level of density functional theory (DFT), or
with DFT as a starting point. DFT has been used with
considerable success to calculate electric-field gradients
in solids, see e.g. Refs. [28, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52]. As a rule of thumb, the DFT
prediction is within 10% of the experimental value.

First-principles calculations for (small) molecules can
resort to Hartree-Fock calculations with correlation cor-
rections. These are computationally much more demand-
ing, but can in principle provide an arbitrary high preci-
sion. The recent literature [53, 54, 55, 56, 57, 58] shows
that correlation corrections using coupled cluster theory
with single, double and (perturbatively) triple excitations
(CCSD(T)), combined with sufficiently large basis sets
and – where needed – with a (semi-)relativistic Hamilto-
nian, provides highly accurate EFGs for small molecules.
It has been claimed [59] that in this way an absolute ac-
curacy with 4 significant digits can be reached. This is
considerably better than the accuracy which DFT can
provide for the EFG in solids. For molecules that are
too demanding for a CCSD(T) treatment, DFT with the
recently proposed CAMB3LYP* functional can be an al-
ternative [60]. DFT for EFGs in small molecules can be
very unreliable [60].

At non-zero temperatures, vibrational states will be
populated in solids and molecules, and in molecules ro-
tational states as well. This will influence the electric-
field gradient. In solid state calculations, this has so far
only rarely been taken into account [61]. In molecules,
the effect of temperature is routinely taken into account
in calculations [56, 62] as well as in the analysis of ex-
periments [63, 64, 65]. This allows an even more de-
tailed comparison between experiment and theory for
molecules.

B. Determination of Q and Q̃: method

With the experimental accuracies listed in the previous
section, it is clear that experimental nuclear quadrupole
coupling constants νQ for NMR on single crystals and for
molecular beam spectroscopy on molecules are affected
by the quadrupole shift. This means that the experi-
mentally determined value for νQ would have a different
value (outside the error bar) if the quadrupole shift could
be “switched off”. It does not mean, however, that by
such an experiment the quadrupole shift itself can be de-
termined: the QS manifests itself as an addition to the
regular quadrupole interaction, and is indistinguishable
from it (Eqs. (32) and (33)):

νQ ≈ νQI + νQS = Q
eVzz

h
− Q̃

enzz

14ǫ0h
. (43)

The second term of this equation is even in the most fa-
vorable cases 2-3 orders of magnitude smaller than the
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first term (Fig. 4). If νQ is measured, if Vzz is calculated
from first-principles and if νQS is neglected, then the
quadrupole moment Q can be determined from Eq. (43).
This has become the preferred procedure to determine
nuclear quadrupole moments (e.g. [27, 27, 43, 60, 66, 67,
68, 69]).

If Vzz could be calculated with an arbitrary high pre-
cision, the precision of the resulting Q is limited by ne-
glecting νQS . One could choose not to neglect νQS , and
apply Eq. (43) to at least two νQ measurements in order
to determine simultaneously a more precise value of Q
and Q̃ (or Q and a2). This would be meaningful only in
cases where the absolute deviations on the computed Vzz

and nzz values are small enough to make the uncertainty
in νQI smaller than the value of νQS . The only hope to
realize this is in the case of sufficiently heavy elements,
for which, however, it might not yet be feasible to achieve
the requested computational accuracy.

C. Quadrupole moment ratios: the quadrupole

anomaly

When it is not possible to know experimentally the
value of a quadrupole moment with sufficient accuracy,
the next best thing to know are ratios of quadrupole mo-
ments for two different isotopes, or for two different iso-
meric states of the same isotope. As soon as a later
experiment succeeds to determine one of the quadrupole
moments in the ratio, the other one is known as well.

The ratio Q1/Q2 of two quadrupole moments is com-
monly measured as the ratio νQ,1/νQ,2 of two nuclear
quadrupole coupling constants. Indeed, in the absence of
a quadrupole shift, both ratios are identical if the two iso-
topes or isomers are in the same environment and there-
fore experience the same Vzz (Eq. (43)). The presence
of the quadrupole shift, however, spoils the equality of
both ratios. It is straightforward to show that the ratio
of quadrupole coupling constants is equal to

νQ,1

νQ,2
=

Q1

Q2
(1 + δ)

with δ =
nzz

14ǫ0Vzz

(
a2
2 − a2

1

)
+ O

(
a4

i

)
. (44)

This formulation is strongly reminiscent to the Bohr-
Weisskopf effect [70] for magnetic hyperfine interactions,
where the ratio between two magnetic hyperfine inter-
action frequencies for two isotopes/isomers at identical
sites is given by

ν1

ν2
=

µ1

µ2
(1 + ∆) . (45)

Here µ1 and µ2 are the nuclear magnetic moments of the
two isotopes/isomers, and ∆ is the hyperfine anomaly.
The ratio µ1/µ2 can be determined from hyperfine ex-
periments on the two free isotopes/isomers in a known
externally applied magnetic field. Comparison with
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FIG. 5: The logarithm of the quadrupole anomaly δ as a
function of the mass number A, as given by Eq. (46). The
value of n indicates the mass number difference between the
heaviest (A) and lightest (A − n) isotope. The curves for
n = 2 (full red line), n = 5 (blue dashed line) and n = 10
(yellow dot-dashed line) are shown. For 47Ti, 179Hf and 187Re
(all n = 2) log |δ| can be calculated explicitly from Tab. III
(orange triangles).

the ratio as determined from experiments with the iso-
topes/isomers incorporated in solids or molecules pro-
vides the value for ∆, which can be as large as 2 % for
heavy elements like 185.187Re [71]. ∆ is nonzero because
electrons that penetrate the nucleus do not interact with
a point nucleus magnetic moment but with the spatial
distribution of the magnetic moment over the nuclear
volume. This slightly affects the effective hyperfine field.
Therefore, the hyperfine anomaly is sensitive to the de-
tails of nuclear structure, and can be used to test theo-
retical nuclear models.

In the same way the δ from Eq. (44) – which can be
called in analogy the quadrupole anomaly – probes de-
tails of the nuclear charge distribution by electrons that
penetrate into the nuclear volume. From Eq. (44), it
can be seen that δ is sensitive to the electronic quanti-
ties, nzz and Vzz , and the difference between the squared
monopole radii of the two isotopes/isomers that are in-
volved.

In order to find a general trend and order of magni-
tude estimate for δ, we combine the analytical function
of Eq. (42) with the fitted function of Eq. (40) and the
square of Eq. (37) to obtain a numerical approximation
for the electronic part nzz/(14ǫ0Vzz) in Eq. (44). By in-
serting this and the square of Eq. (37) for two different
isotopes in the definition of δ, the following dependence
of |δ| on the isotope mass number emerges:

|δ(A)| = 5.46 · 10−12 A3.079 (A0.588 − (A − n)0.588).

(46)
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TABLE IV: Ratios of experimental quadrupole coupling constants for two different isotopes in two different diatomic molecules,
collected from the literature. Only cases where the error bar on this ratio has been determined directly from the fit to the
experimental data are reported (this error bar can be slightly different from what one would obtain using the error bars on the
individual frequencies, see the discussion in Ref. [35]). The experimental value of the EFG (in 1021V/m2) and the estimated
value of δ (Eq. (46)) are given as well.

Molecules Isotopes νna/νma V exp
zz |δ| Ref.

6Li19F, 7Li19F 6Li/7Li 0.020161 ± 0.000013 -0.44 5.9 · 10−10 [72]
6Li127I, 7Li127I 6Li/7Li 0.02028 ± 0.00014 -0.18 [63]

41K19F, 39K19F 41K/39K 1.217699 ± 0.000055 -5.6 1.3 · 10−7 [73]
41K127I, 39K127I 41K/39K 1.2174935 ± 0.0000099 -3.0 [74]

87Rb19F, 85Rb19F 87Rb/85Rb 0.4838301 ± 0.0000018 -10.7 9.6 · 10−7 [35]
87Rb35Cl, 85Rb35Cl 87Rb/85Rb 0.483837 ± 0.000022 -8.2 [75]

This expression estimates the order of magnitude of δ for
two isotopes with mass numbers A and A − n. Curves
for log |δ(A)| for n = 2, 5 and 10 are shown in Fig. 5. We
observe that the quadrupole anomaly strongly increases
with A (or Z), due to the increase of nzz. Mass number
differences of 10 yield a value for δ that is an order of
magnitude larger than mass number differences of 2. For
the 3 elements in Tab. III for which information for 2
isotopes is provided, Eq. (46) can be compared by values
obtained by filling out the quantities of Tab. III directly
into Eq. (44). The values are shown by the orange trian-
gles in Fig. 5 and correspond to the red fit (n = 2). This
comparison shows that Eq. (46) is within one order of
magnitude indeed a good estimate for δ. The experimen-
tally achievable accuracy of quadrupole moment ratios is
of the order of 10−6 (see Tab. IV). This means that for
many isotopes the presence of δ affects the experimental
values.

Unfortunately, whereas in Bohr-Weisskopf experiments
the unperturbed ratio µ1/µ2 can be determined from ex-
periments on free nuclei in an externally applied mag-
netic field, this is not possible for quadrupole interaction
measurements: electric-field gradients that can be gener-
ated by man-made devices are too small to allow mean-
ingful quadrupole interaction measurements [76]. There-
fore, a slightly different method has to be used. One
could perform 4 quadrupole interaction experiments on
two isotopes (‘m’ and ‘n’) of the same element, each of
them being part of two different molecules (‘A’ and ‘B’).
For instance, mX in mXA and mXB molecules, and nX
in nXA and nXB molecules. This yields four exper-
imental frequencies νA

m, νA
n , νB

m and νB
n . By applying

Eq. (44) twice, it can be seen that the NQCC ratios are
not necessarily identical to each other for the two differ-
ent molecules, with the difference being determined by
nzz/Vzz:

νA
m

νA
n

=
Qm

Qn

(

1 +
nA

zz

14ǫ0V A
zz

(
a2

n − a2
m

)
)

(47)

νB
m

νB
n

=
Qm

Qn

(

1 +
nB

zz

14ǫ0V B
zz

(
a2

n − a2
m

)
)

. (48)

As long as the quadrupole shift (∝ nzz) does not play
a significant role, the two experimental frequency ratios
at the left-hand side are within their error bars identical
to each other. If, however, the quadrupole shift would
be large enough, these two experimental frequency ratios
would differ from each other. This is a completely experi-
mental procedure to detect the presence of the quadrupole
shift effect. Tab. IV lists a collection of experimental
NQCC-ratios in diatomic molecules determined for three
such sets of 4 experiments, which gives an impression of
the experimental accuracy that can be achieved. The es-
timated order of magnitude for |δ| (Eq. (46)) is given too.
For none of these cases, δ is expected to be large enough
to affect the experimental ratios. Tab. IV combined with
Fig. 5 suggests that if the best experimental accuracies
of 10−6 can be achieved for isotopes with A≥150, then
the influence of δ could be observed. The heavier the ele-
ment and the larger the size-differences between the two
isotopes, the more likely large δ-values are. Interestingly
enough, the quadrupole coupling constant ratios for the
two K isotopes in the KF and KI molecules differ from
each other in the 4th digit, and this difference is an or-
der of magnitude larger than the experimental error bars.
Given the estimate for δ, the quadrupole shift is expected
to give an effect in the 7th digit at best. It is therefore
unlikely that this set of K-experiments represents an ex-
perimental observation of the quadrupole shift (it could
be due to one of the other effects discussed in App. A, or
due to an experimental problem). Nevertheless, it would
be interesting to perform similar experiments with the
same accuracy for heavier elements, where δ is expected
to be larger.

One step further is to solve the system of the two equa-
tions (47) and (48) for the unknown quantities Qm/Qn
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and
(
a2

n − a2
m

)
:

Qm

Qn
=

νmb

νnb

na
zz

14ǫ0V a
zz

− νma

νna

nb
zz

14ǫ0V b
zz

na
zz

14ǫ0V a
zz

− nb
zz

14ǫ0V b
zz

(49)

a2
n − a2

m =

νma

νna
− νmb

νnb

νmb

νnb

na
zz

14ǫ0V a
zz

− νma

νna

nb
zz

14ǫ0V b
zz

. (50)

All quantities at the right-hand side of these equations
can either be measured or calculated, such that the quan-
tities at the left-hand side are effectively determined by a
combination of experiment and theory. Clearly, this is a
game with very small numbers. The difference between
the two frequency ratios in the numerator of Eq. (50)
is of the same order of magnitude as the δ in Eq. (44):
10−5 for heavy elements. The same considerations as
in Sec. VI B apply here: an extreme accuracy in experi-
ments as well as in calculations is needed in order to get
to a reliable conclusion. Furthermore, the procedure as
described here can be disturbed by the presence of a few
other small quadrupole-like effects that are discussed in
Sec. VD and App. A.

VII. CONCLUSIONS AND OUTLOOK

In this work, we described how electron penetration
in the nuclear volume leads to the quadrupole shift: a
small perturbation of the regular quadrupole interaction,
which depends on the second derivative of the electron
charge density at the nucleus (nzz), as well as on the

size and shape of the nucleus (Q̃). An explicit expres-
sion for the quadrupole shift that can be implemented
in a band structure code was derived, and DFT calcu-
lations were performed for a set of crystalline materials.
It was shown that meaningful numerical values for the
quadrupole shift can be obtained only for fully relativis-
tic calculations that take a finite nucleus into account.
Therefore, the quadrupole shift is one of the few cases
where the commonly used scalar-relativistic approxima-
tion is definitely insufficient.

The quadrupole shift is a small effect. Its order of
magnitude appears to be related in the first place to the
atomic number A of the element under consideration, and
to a lesser extent to the crystal structure (Fig. 4). This
is predominantly due to the way how nzz depends on Z.
The quadrupole shift is orders of magnitude smaller than
the regular quadrupole interaction for most elements, but
can reach 1% to perhaps 10% near the actinide region.

We have pointed out how the quadrupole shift can play
a role in a more accurate determination of quadrupole
moments and quadrupole moment ratios. The compari-
son of two accurately measured quadrupole coupling con-
stant ratios provides a purely experimental way to ob-
serve the presence of the quadrupole shift. For suit-
able cases, the required experimental accuracy can be
reached by e.g. molecular beam spectroscopy. With fur-

ther advances in the absolute accuracy of ab initio calcu-
lations for nzz and Vzz , awareness of the existence of the
quadrupole shift will help to extract more precise nuclear
information from quadrupole coupling experiments.

Suggestions for further work are at the conceptual,
computational as well as on the experimental level. Con-
ceptual: it remains to be understood which features of
the electron density are responsible for the observed Z-
dependence of nzz and for the dependence of nzz for a
given element on the crystal structure. Understanding
those mechanisms would help to single out situations
where the quadrupole shift is maximized. Computa-
tional: in the present work, only DFT calculations for
solids were performed, whereas the most accurate exper-
iments are available for molecules. DFT for molecules is
not likely to provide very accurate results, but quantum
chemical calculations can do much better in this respect.
It would be interesting to examine for instance the value
of the quadrupole shift for heavy elements in a set of
molecules. Experimental: sets of 4 quadrupole coupling
experiments as in Tab. IV, done for heavy elements and
with high accuracy, provide a way to observe the pres-
ence of the quadrupole shift experimentally. It would
be most efficient to make first a computational study, to
identify among those molecules that are experimentally
most easily accessible the ones where a large quadrupole
shift is most likely.
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APPENDIX A: OTHER SMALL

PERTURBATIONS TO THE QUADRUPOLE

INTERACTION

As announced in Sec. VD, this appendix discusses sev-
eral other small quadrupole-like effects that might be of
similar magnitude of the quadrupole shift.

1. Second order effects of magnetic origin

Van Vleck, Rabi, Foley and Ramsey [77, 78, 79] dis-
cussed half a century ago a pseudo quadrupole interac-
tion in molecules that has a magnetic origin. This has
been later elaborated upon by P. Pyykkö, especially for
the case of metals [30, 80]. Mathematically, this pseudo
quadrupole interaction arises in the same way as the
quadrupole shift when the latter is derived by second
order perturbation theory (see the end of Sec. II C).
The small perturbing Hamiltonians are now the ones
that give rise to the magnetic hyperfine field: the nu-
clear spin/electron orbit Hamiltonian (Ĥ1), the nuclear

spin/electron spin dipole-dipole Hamiltonian (Ĥ2) and

the Fermi contact Hamiltonian (Ĥ3). In second order

perturbation, the square of Ĥ1, the square of Ĥ2 and
the cross-term of Ĥ2 and Ĥ3 contain an Î2

z operator that
gives rise to a quadrupole-like interaction (compare to
Eq. (22), provided axial symmetry (η = 0) is present).

Such a term is included even in first order in Ĥ1. These
pseudo quadrupole interactions were shown to be at the
level of 10−4-10−6 of the regular quadrupole interaction
in molecules [30, 78, 79], and reach in favorable cases up
to 1% in metals [30]. The values in molecules are there-
fore of the same order of magnitude as the quadrupole
shift (Fig. 4 and Tab. III).

Strictly spoken, these quadrupole-like contributions
have a different status than the quadrupole shift in
Sec. II. The quadrupole shift Hamiltonian (Eq. (25))
has exactly the same structure as the quadrupole in-
teraction Hamiltonian (Eq. (22)), and they are there-
fore completely indistinguishable from each other. The
quadrupole-like interactions discussed in the present sec-
tion have in the first place a Î2

z dependence which splits
the nuclear levels in a quadrupole-like manner as long as
the environment has axial symmetry (η = 0). The im-
portant case of linear molecules has this symmetry. In
less symmetrical environments, one could in principle dis-
tinguish between these quadrupole-like interactions and
the quadrupole shift. As this symmetry breaking is it-
self a small effect, however, such considerations are not
expected to be of much practical value.

For completeness, we mention two other sources of
quadrupole-like interactions, which are believed [80] to
be even smaller than the previously described ones: the
influence of an external magnetic field [81, 82] and nu-
clear polarization [83].

2. The isotopologue anomaly

Through high-precision molecular beam experiments,
Cederberg et al. have drawn attention to the fact that
the quadrupole interaction at nucleus B in an AB di-
atomic molecule slightly depends on which isotope is
taken for element A. For the isotopologues[100] 7Li127I
and 6Li127I, this isotopologue anomaly is 0.007% of the
regular quadrupole interaction at 127I (an absolute shift
of 14 kHz) [63]. For 41K127I and 39K127I, the relative ef-
fect at 127I was 10 times smaller (0.0007%, absolute shift
of 0.6 kHz) [74], while for 39K81Br and 39K79Br there
was no effect found at all on 39K [74]. The origin of
the isotopologue anomaly is not understood [63, 74], but
from the literature review we present in Tab. V, a cor-
relation between the relative value of the isotopologue
anomaly and the relative mass number change for the A-
isotope is clearly present. The 50% relative mass change
between hydrogen and deuterium results in an isotopo-
logue anomaly of 0.2-1.0%. It tends to be lower for the
33% mass change between deuterium and tritium (0.1-
0.6%), although the error bars prevent unambiguous con-
clusions. Much smaller but definitely non-zero frequency
differences are observed for LiI and KI as well (0.007%
and 0.001%). Tab. V suggests that these isotopologue
anomalies tend to become undetectably small for rela-
tive mass number changes below 5%.

The isotopologue anomalies as presented in Tab. V
were obtained as the difference between (ν=0, J=0)-
terms in the vibrational/rotational expansion of the
quadrupole coupling (see e.g. Eq. (19) in Ref. [34]).
This lowest order term is not exactly equal to the static
quadrupole coupling constant at the equilibrium inter-
nuclear separation, due to the presence of an additional
constant (the αB2 term in Eq. (18) of Ref. [34]) which is
mass-dependent and therefore isotope-dependent. This
αB2 term could therefore be an obvious candidate to ex-
plain the observed frequency difference. However, Ceder-
berg et al. have shown for CsF that αB2 is negligi-
ble [90], because it is an order of magnitude smaller
than the (ν=2, J=0)-term, which itself is experimen-
tally known to be small. We verified that the same
argument holds true for LiI (∆mrel = 14%) [34] and
HI (∆mrel = 50%) [85, 91]. Therefore, it is safe to con-
clude that the larger as well as the smaller frequency
differences in Tab. V are not significantly influenced by
the αB2 term and represent a real difference between
two static quadrupole coupling constants, a difference of
which the origin remains to be understood.

Isotopologue anomalies in the kHz region can be of the
same order of magnitude as the quadrupole shift νQS .
Their existence puts further limitations on the numeri-
cal information that can be extracted from a comparison
of experimental quadrupole coupling constants and first-
principles calculations. Indeed, the first-principles val-
ues for Vzz and nzz that appear for instance in Eqs. (49)
and (50) can only be calculated for specified elements in
the molecule, not for the isotopes. On the other hand,
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molecule A molecule B νQ,A νQ,B ∆ν ∆νrel ∆mrel Ref.

(MHz) (MHz) (kHz) (%) (%)
1H81Br 2H81Br 447.9(14) 443.363(105) 4537(1500)* 1.023% 50.0% [84]
1H79Br 2H79Br 535.4(14) 530.648(74) 4752(1500)* 0.896% 50.0% [84]
1H37Cl 2H37Cl -53.436(95) -53.037(113) -399(200)* 0.752% 50.0% [84]
1H35Cl 2H35Cl -67.800(95) -67.417(98) -383(200)* 0.568% 50.0% [84]
1H127I 2H127I -1828.059(51) -1823.226(54) -4833(100)* 0.265% 50.0% [85, 86]
2H35Cl 3H35Cl -67.417(98) -67.0(6) -417(700) 0.622% 33.3% [84]
2H79Br 3H79Br 530.648(74) 530(2) 648(2100) 0.122% 33.3% [84]
2H81Br 3H81Br 443.363(105) 443(2) 363(2100) 0.082% 33.3% [84]
2H37Cl 3H37Cl -53.037(113) -53.0(6) -37(700) 0.070% 33.3% [84]
6Li127I 7Li127I -194.33834(20) 194.35241(20) 14.07(40)* 0.007% 14.3% [63]
35Cl45Sc 37Cl45Sc 68.2067(29) 68.2062(29) 0.5(6.0) 0.000% 5.4% [87]
39K127I 41K127I -85.471138(7) -85.471721(12) 0.583(20)* 0.001% 4.8% [74]
63CuOC-127I 65KOC-127I -593.465(9) -593.485(10) 20(20) 0.003% 3.1% [88]
79Br39K 81Br39K -5.032957(9) -5.032957(9) 0.000(20) 0.000% 2.5% [74]
79Br45Sc 81Br45Sc 65.2558(32) 65.2597(38) -3.9(7.0) 0.000% 2.5% [89]

TABLE V: The isotopologue anomaly for a set of diatomic molecules. First two columns: the molecules with their isotopes
– the isotope for which the NQCC is measured is put in bold. Second two columns: the NQCC in MHz. ∆ν: the difference
between the preceding two columns (kHz) – cases where the error bar allows to conclude the difference is not zero, are labeled
by a “*’”. ∆νrel: relative frequency difference (%). ∆mrel: relative change in atomic mass number for the neighboring isotope
(%).

the purely experimental determination of the presence
of a quadrupole shift by 4 NQCC measurements as in
Eqs. (47) and (48) is not disturbed by the isotopologue
anomaly, as long as one makes sure that the isotopes for
A and B in the (m,n)XA and (m,n)XB molecules remain
identical in all 4 cases.

3. Temperature and vibrations

The entire discussion so far implicitly assumed static
molecules or crystals (0 K and no zero point vibrations).
At non-zero temperatures, vibrational states will be

populated, and in molecules rotational states as well.
These will influence the electric-field gradient and
therefore the quadrupole interaction. The effect is in the
range of 1-10%, and should therefore certainly be taken
into account in high-precision studies. In molecules,
this effect can be described with high accuracy using
a Schlier-Dunham treatment [34, 63, 64, 65], and
quadrupole coupling experiments are routinely analyzed
according to this formalism [34, 63, 85, 87, 89, 91].
Similar studies in solids are rare – see e.g. Ref. [61] for
hcp-Cd, where a contribution of 1.6% due to zero-point
vibrations was found.
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Communications, 282:562, 2009.

[34] J. Cederberg, D. Olson, A. Nelson, D. Laine, P. Zimmer,
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