
Improving resource utilization with Virtual Media
Function decomposition

Gourav Prateek Sharma, Didier Colle,
Wouter Tavernier, Mario Pickavet

IDLab, Department of Information Technology
Ghent University - IMEC,

Email: {gouravprateek.sharma, didier.colle, wouter.tavernier, mario.pickavet}@ugent.be

Abstract—For many years, media transport and processing in
professional media environments have been accomplished using
specialized hardware. The flexibility of IP networking and Media
Function Virtualization (MFV) can enable broadcasters to build
cost-efficient architectures for the deployment of media services.
These architectures can be further exploited to perform decompo-
sition of Virtual Media Functions (VMFs) resulting in improved
utilization of the MFV Infrastructure (MFVi) resources. To this
end, this paper presents an algorithm aimed at optimizing the
VMF Forwarding Graphs (VMF-FGs) media services. A first-
fit based heuristic is also proposed for deploying media services
on a given MFVi. The evaluation results indicate that VMF-FG
decomposition can significantly improve the request acceptance
ratio and reduce resource requirements.

Index Terms—media, broadcast, IP, production, decomposi-
tion, square-division, SMPTE, video, 4K

I. INTRODUCTION

TV broadcasters are facing multiple challenges in order
to survive in the current competitive TV industry. The key
challenge is to minimize the total incurred costs, i.e. Capital
Expenditure (CAPEX) and Operational Expenditure (OPEX)
while still offering high-quality media services to its customers
[1]. The pressure to reduce costs has forced broadcasters to
explore more cost-efficient architectures for media production.
In legacy broadcast studios, media processing and transport are
typically achieved using bespoke hardware appliances. The
fixed-function hardware usually results in high-performance
both in terms of the amount of total traffic rate and latency,
in addition to lower power-consumption [2]. However, these
hardware appliances tend to be inflexible and rigid. Moreover,
replacement/up-gradation of proprietary hardware is hard due
to their high cost and long design (ASIC) cycle.
In recent years, broadcasters have been looking into
Commercial-Off-the-Shelf (COTS) alternatives to the special-
ized hardware. The idea is to use standard IT hardware (e.g.,
compute, network, and storage) for media transport and pro-
cessing. On one hand, IP networking can carry media streams
inside broadcast studios and on the other hand, general-
purpose hardware (e.g. Intel Xeon servers) can run software
instances of Media Functions (MFs) [3].
The deployment of network services in Network Function
Virtualization (NFV) environment has been studied extensively
[4]. However, due to the peculiar characteristics of Virtual
Media Functions (VMFs) vis-a-vis Virtual Network Functions

(VNFs) (discussed in section II), a special attention towards
Media Function Virtualization (MFV) is required. Therefore,
the problem of efficient deployment of media services in a vir-
tualized broadcast studio needs to be studied, i.e., how special
opportunities arising as a result of IP-based media transport
and virtualization of media processing can be exploited?.
Especially, algorithms to optimize the VMF Forwarding Graph
(VMF-FG) for a media service to produce another VMF-
FG; which is functionally equivalent to the original VMF-FG
but less resource-intensive, are required. To the best of our
knowledge, there has been a limited work exploiting these
opportunities [5]. Furthermore, physical resources need to
be allocated to the media services; that is accomplished by
solving the VMF Placement and Chaining (VMF-PC) problem.
The rest of this paper is organized as follows. In section
II, we provide the related work and background information
about various technologies involved in a professional media
environment with a focus on MFV. Section III describes the
problem of VMF-FG decomposition, an algorithm to solve
VMF-FG decomposition and a first-fit based heuristic to solve
VMF placement and chaining (VMF-PC). Section IV presents
and discusses the performance of the proposed algorithm and
the heuristic and Section V concludes the paper as well as
discusses the potential future research.

II. BACKGROUND

A. Media Transport

Media broadcast facilities have traditionally relied upon Se-
rial Digital Interface (SDI) technology to interconnect various
equipment in broadcast studios [3]. Media streams are carried
as serial digital signals which are circuit-switched, i.e., a non-
blocking switching matrix connects a specific switch’s input
to a specific output. Media transport based on SDI is robust,
deterministic, and reliable. As no multiplexing of signals is
possible in SDI, each signal in SDI is carried over a separate
coaxial cable resulting in a large number of cables. Moreover,
broadcasters are finding it difficult to transport newer high-
resolution media streams (e.g., 4K or 8K) over SDI. Since
the bitrate of uncompressed streams can be as high as tens
of Gbps, the switching becomes impractical or too expensive
with the current SDI routers. Lately, as an alternative to SDI,
IP networking is gaining great attention among broadcasters
[6].

In IP-based studios, media streams are broken at the sender
into multiple packets and then transported independently over
the network to the receiver where they are re-assembled.
Unlike SDI, IP links are bidirectional and are capable of
carrying multiple media streams; therefore resulting in a lesser
amount of cabling. Since IP systems have been around for
many decades, inexpensive COTS switches that are capable
of switching several 4K uncompressed media streams [6] are
widely available in the market. To further scale the studio
infrastructure, a high-speed switching fabric using COTS
switches can be built along the lines of data center networks.
The Society of Motion Picture and Television Engineers
(SMPTE) has released a suite of standards that describe how
to transport uncompressed media streams over an IP network
[7], [8], [9], [10]. Unlike earlier standards (e.g. ST 2022-6)
[11], ST 2110 allows putting distinct media components, i.e.,
video, audio, and ancillary data signals to be transported and
processed as independent streams.
Owing to the high bitrates, transport and processing of uncom-
pressed high-resolution video streams in a broadcast studio can
be challenging. Decomposing a high-bandwidth stream into
multiple low-bandwidth streams can alleviate this issue. To
this end, SMPTE has described three stream decomposition
techniques, namely– (i) Phased, (ii) Square-Division (SD),
and (iii) Sample Interleave (SI), in its recommended practices
document [12]. As only SD decomposition is relevant to our
work, we describe only this decomposition technique next.
M -way SD decomposition of a video stream would mean

4-way
decomposition

3840

2160

4K

q=0

q=1

q=2

q=3

1920

10802K

2K
2K

2K

Fig. 1. An example M -way stream decomposition.

each frame of the video stream is divided into M sub-frames
which are carried by M separate sub-streams. For example,
consider an uncompressed 4K (3840x2160p30) video stream
with the bitrate 4.976 Gbps shown in Fig. 1. After 4-way
SD decomposition, corresponding to the four quadrants of the
4K frame, four 2K (1920x1080p30) sub-streams each with
the bitrate 1.244 Gbps are obtained. These low-bandwidth
sub-streams can be transported and processed much easily as
compared to one high-bandwidth stream.

B. MFV Overview

Due to the high amount of processing required and need
for real-time processing (low latency) broadcasters have
usually preferred specialized hardware appliances to process
media streams. But the performance of commodity hardware
has improved lately so that processing of media streams can
also be done on commodity hardware. For example, consider

an MF which mixes two video streams with a special effect
(e.g., wipe or dissolve transition). This MF is typically
realized using a piece of special hardware equipment called
vision-mixer. However, this function can also be realized
in software running on commodity hardware (x86 or ARM
CPU) [5].
Adoption of COTS IT platforms to build services is not
an isolated transition happening in the TV broadcast
industry. Telcos have been moving towards Network Function
Virtualization (NFV): a new architecture where packet-
processing functionality, traditionally based on bespoke
hardware (middleboxes), is now being implemented in
Virtual Network Functions (VNFs) running on commodity
hardware [4]. By leveraging virtualization technologies, e.g.
Virtual Machines and Docker Containers, further benefits like
management and deployment flexibility, and resource scaling
can be achieved [4]. Taking NFV as an analogy: we refer
to the architectural framework where media processing is
done using Virtualized Media Functions (VMFs) running in
a virtualized environment as Media Function Virtualization
(MFV). A few examples of VMFs are listed in Table I.

Media services
Layer

VMF
Layer

Infrastructure
Layer

Virtualization
Layer

Control &
Optimization

QoS VMF
profiles

VMF
placement
algorithms

Fig. 2. Overview of the MFV architecture.

TABLE I
EXAMPLES OF VMFS ALONG WITH A SHORT DESCRIPTION

VMF Interfaces Description
brg-adj 1 Adjusts brightness (luminance) val-

ues of the input video stream.
γ-corr 1 Non-linear transformation of lumi-

nance values of the input video
stream.

pip (≥) 2 inputs Embeds the given (small resolu-
tion) video streams into another
video stream at a given location.

splt-sc 2-3 inputs Lays middle portion of 2/3 video
streams next to each other.

chrm-
key

2 Replaces the background (green
screen) of a video stream with an-
other stream.

An overview of the MFV architecture is shown in Fig.
2. The lowest layer is the MFV infrastructure (MFVi) layer
consisting of COTS hardware for compute, network, and
storage. Also, re-configurable hardware, e.g. FPGA and
GPUs, are occasionally leveraged to implement MFs [13],

especially to ensure real-time processing and/or to reduce
energy consumption. Above the MFVi, sits the virtualization
layer which abstracts the underlying hardware for media
processing applications running on it. Depending on the
selected virtualization technology, the virtualization layer can
be a Hypervisor (Type 1 or 2) or a Docker engine. Next, the
VMF layer consists of Virtual Machines and/or containers
responsible for hosting one or more media processing
applications. Media services are implemented by linking
multiple VMFs together, as discussed in the next section.
Analogous to MANO in NFV architecture, Control and
Optimization layer in MFV is responsible for tasks like
management of resources (physical and virtual), placement
and chaining of VMFs, in addition to maintaining QoS
requirements of media services [4].

III. VMF-FG DECOMPOSITION AND DEPLOYMENT

A. Problem overview

Assume a media production environment where media
processing is accomplished via VMFs. In order to implement
the desired media service s, the traffic needs to be processed
through a network of VMFs. This network of VMFs
is represented using a directed graph referred as VMF
Forwarding Graph (VMF-FG) G akin to VNF-FG in NFV [4].
The set of nodes F in G are traffic sources, sinks, and VMFs
and the set of edges L between the nodes are virtual links
between sources, VMFs and sinks. Figure 3 (a) shows an

chrm-key

pip

scalersrc2

dst0src1

src0

Controller
ENABLE /
DISABLE

(c)

chrm-key dst0

src1

src0

PIP disabled(b)

PIP enabled

chrm-key

pip

scalersrc2

dst0src1

src0

(a)

Fig. 3. An example VMF-FG representation of a media service with static
(a and b) and dynamic (c) VMF-FG deployment.

example of how VMF-FGs can be used to represent a media
service which processes traffic from three sources src0, src1
and src2 and outputs the processed traffic to the destination
dst0. The sources in a media service can be a media stream
coming from a camera or storage whereas destinations can
be a screen, a local storage device or an OTT server. In

Figure 3 (a) , a chrm-key VMF is first used to implement
chroma-keying operation on video streams from two sources
src0 and src1. Also, the video stream from source src2 is
scaled by scaler VMF, which has been configured to output
the video frames of required dimensions. The output frames
of the scaler VMF are then embedded into the output frames
generated by chrm-key VMF using pip (picture-in-picture)
VMF. For this media service, VMF-FG can be expressed
as G = (F ,L), where F = {f0, f1, f2, f3, f4, f5, f6} and
L = {(f0, f3), (f1, f3), (f2, f4), (f4, f5), (f3, f5), (f5, f6)}.
Other complex media services can be similarly represented
using VMF-FGs.
The pip functionality of the VMF-FG shown Fig. 3 (a)
can be disabled by deploying a new VMF-FG without pip
VMF as depicted in Fig. 3. Alternatively, a controller can
be used to send commands (e.g. ENABLE or DISABLE)
to pip VMF such that its output either (i) contains scaler
output embedded in chrm-key output (ENABLE) or (ii) just
the chrm-key output. This paper aims to demonstrate efficient
resource usage due to decomposition, which is possible
through a simplified modeling approach. Therefore, we focus
on deployment of media services in the first scenario (Fig.
3 (a) and (b)) and the second scenario (Fig. 3 (c)) will be
considered in future work.
The deployment of media services in a MFV environment
entails two types of mappings. First is the assignment of
VMFs in the service’s VMF-FG to the MFVi server nodes
and second is the provisioning of physical-paths to virtual
links of the VMF-FG.
IP-based transport in broadcast studios allows decomposition
of high-resolution video streams into multiple low-resolution
streams, resulting in various opportunities that can be
exploited to optimize the VMF-FG mapping as discussed
next.

B. VMF-FG Decomposition

There are numerous VMFs that require operation only
in a sub-region of the video frame and the rest of frame
contains sub-regions from VMF’s inputs (e.g. logo-insertion
and picture-in-picture). Therefore, when using decomposed
sub-streams, these VMFs only need to process a subset of
all input’s sub-streams. For example, consider pip VMF of
the media service shown in Fig. 4 (a) and assume both of its
input video streams (s0, s1) are decomposed into M (= 4)
sub-streams ({sq0, sq1 | ∀q ∈ [0,NM−1]}) corresponding to
the four quadrants (sub-regions) of the frame. With stream
decomposition, the original pip VMF can be replaced by four
smaller pip VMFs, which operate only on the sub-streams
corresponding to the four quadrants, see Fig. 4 (b). Except
for pip1 VMF, all other VMFs just pass input frames to its
output; thus, do not require any operation on its input. As a
result of this decomposition, removing pip0, pip2, pip3 from
the VMF-FG results in a functionally equivalent VMF-FG or
media service. Next, we discuss an algorithm to obtain the
VMF-FG after decomposing media streams in the original

VMF-FG by M smaller sub-streams.
The pseudo-code of the VMF-FG decomposition algorithm

(b)

(a)

pip

s

0
s

1

d

0

s

00

s
10

s
01

s
11

s
21

s
31

d

00

d

10

d

20

d

30

s

20

s
30

pip
0

pip
1

pip
2

pip
3

Fig. 4. 4-way Decomposition of the pip VMF.

for a given value of the decomposition parameter M is shown
in the procedure dcmpVMFFG (Alg. 1). Assume, the original
VMF-FG of the service is represented by G = (F ,L).
The endpoints (sources Fsrc and destinations Fdst) of the
VMF-FG are stored in Fendpts (ln. 27). Then, the nodes
(Fdcmp) and the links (Ldcmp) for the decomposed VMF-FG
are initialized with φ (ln. 28). We make M copies of all the
VMFs in F and add them to Fdcmp (ln. 29-31). Next, for each
virtual link (vmfi, vmfj) ∈ L of the original VMF-FG, a set
of corresponding virtual links in the decomposed VMF-FG is
obtained using procedure linksVMF (ln. 32-34). Depending
on the type of VMF fj , a specific set of links that corresponds
to the upstream VMFs required as an input for the decomposed
VMFs of fj , is obtained. For example, corresponding to
the link (f3, f5) in Fig. 3 (a) and M = 4, linksVMF
returns the set {(f03, f05), (f13, f15), (f23, f25), (f33, f35)}
and for (f4, f5) the returned set of links is
{(f04, f15), (f14, f15), (f24, f15), (f34, f15)} as shown in
Fig. 5.

The rest of the procedure is responsible for optimizing the
decomposed VMF-FG by pruning the non-operational VMFs
and links from Gdcmp using pruneVMFFG (ln. 35).
For each VMF f in F , all the downstream VMFs, i.e. VMFs
whose inputs are connected to f ’s output are stored in Fnxt

(ln. 17). If f ’s output is not connected to any other VMF, f
is removed from F using removeVMF that also prunes the
whole branch recursively (recursive = True) comprising of
VMFs and links only feeding f (ln. 3-9).
After returning from removeVMF in pruneVMFFG, it is

Fig. 5. VMF-FG decomposition.

checked, using the function isBypassable, whether a VMF
f can be bypassed or not (ln. 21). For a VMF like pip,
if its inputs are only connected to a single (type) upstream
VMF’s output, no processing is required in this VMF; as
input frames are just passed to the VMF’s output without
any modification. For such VMF instances, it is required to
re-arrange the corresponding links of G; doBypass calls
removeVMF non-recursively (recursive = False) to do so
(ln. 13).
The resulting VMF-FG Gdcmp is functionally similar to the
original G. For the media service example discussed in Fig. 3,
the decomposed VMF-FG Gdcmp obtained using dcmpVMFFG
is shown in Fig. 5.

C. VMF Placement and Chaining

In this section, we discuss a first-fit based heuristic
FFPlaceChain that is used to map a media service
VMF-FG (or decomposed VMF-FG) to a given MFVi.

1) Heuristic: The pseudo-code for FFPlaceChain is
shown in Alg. 2. The parameters of the procedure are the
media service s, s’s VMF-FG (un-decomposed or decom-
posed) G = (F ,L), the set of media sources Fsrc, the set
of destinations Fdst, the graph representation of the MFVi
network GI = (N,E), resource demands (e.g., VMF CPU,
physical link bandwidth) Dem of s, and resource capacities
(e.g., node CPU, virtual link bandwidth) Cap of the MFVi.
First, we initialize variables α (VMF placement map), β (VMF
acceleration map), and γ (VMF chain map) each with φ (ln.
14). Another variable usedRes (vector), denoting resources
used so far in the current FFPlaceChain call, is initialized
with zero (ln. 15).
Then, the nodes in F that correspond to traffic sources (Fsrc)
and sinks (Fdst) are stored in Fendpts. These endpoints are
then attached to switches in a network; here they are attached
to the data center access-switches Naxs (ln. 17-20).
For the assignment of VMFs to the server nodes, the procedure

Algorithm 1: VMF-FG Decomposition Procedure.
1 Procedure removeVMF(f , G′ = (F ′,L′), recursive):
2 G = (F ,L) ← G′;
3 if recursive then
4 for (fi, f) in {(fk, f) | ∀(fk, f) ∈ L} do
5 if not ∃(fi, fj) ∈ L \ {(fi, f)} then
6 G ← removeVMF(fi, G, True);
7 end
8 end
9 end

10 return F \ {f},
L\ [{(fi, f) | ∀(fi, f) ∈ L}∪{(f, fj) | ∀(f, fj) ∈ L}];

11 end
12 Procedure doBypass(f , G = (F ,L)):
13 return removeVMF(f ,

(F ,L ∪ {(fi, fj) | ∀(fi, f), (f, fj) ∈ L}), False);
14 end
15 Procedure pruneVMFFG(G = (F ,L)):

/* VMF-FG optimization */
16 for f in F do
17 Fnxt ← {fj | ∀(f, fj) ∈ L} ;

/* remove dangling branches from
VMF-FG */

18 if | Fnxt |== 0 and f 6∈ Fdst then
19 G ← removeVMF(f , (F ,L), True);
20 end
21 if isBypassable(f , G) then

/* bypass VMFs in VMF-FG */
22 G ← doBypass(f , G);
23 end
24 end
25 end
26 Procedure dcmpVMFFG((G = F ,L), Fsrc, Fdst):
27 Fendpts ← Fsrc ∪ Fdst;
28 Gdcmp = (Fdcmp,Ldcmp) ← φ,φ;
29 for f in F do
30 Fdcmp ← Fdcmp ∪ {fq | ∀q ∈ [0,NM−1]};
31 end
32 for (fi, fj) in L do

/* set returned by linksVMF depends
on fj. */

33 Ldcmp ← Ldcmp ∪ linksVMF(G, fi, fj , M);
34 end
35 return pruneVMFFG((Fdcmp, Ldcmp));
36 end

FirstFit is used. First, the server node assignment of f
along with the accelerator allocation is attempted by passing
the arguments– current resource capacities (Cap−usedRes),
VMF demands (Dem(f)), N = Nacc (server nodes with
hardware accelerators) and checkAcc = True in addition
to the other arguments (ln. 23). If there is no accelerator for
VMF f in A (set of all available accelerator implementations),
FirstFit terminates and returns None,False,None (ln. 3).
Otherwise, FirstFit iterates through the set Nacc until it
finds a node that has enough resources to accommodate f ;
using chainVMFs, it is also checked if VMFs connected
to f ’s inputs can be chained to it. If enough bandwidth is
available for chaining, the virtual link (linksf) to physical path
mapping is returned to pathsmap (ln. 7). In case no suitable
node is found by FirstFit, None,False,None is returned.

Algorithm 2: First-fit VMF-PC procedure.
1 Procedure FirstFit(s, f , α, G = (F ,L), GI , Cap,

Dem(f), N , checkAcc):
2 if checkAcc and not (atype(f) in A) then
3 return None, False, None;
4 end
5 for n in N do
6 linksf ← {(fi, f) | ∀(fi, f) ∈ L} ;
7 pathsmap ← chainVMFs(s, f , linksf , GI ,

nodesel, Cap, Dem(f), α);
8 if enoughResources(Dem(f), Cap(n)

checkAcc) and pathsmap 6= None then
9 return n, checkAcc, pathsmap;

10 end
11 end
12 return None,False, None;
13 Procedure FFPlaceChain(s, G = (F ,L), Fsrc, Fdst,

GI = (N,E), Dem, Cap):
14 α, β, γ ← φ, φ, φ;
15 usedRes ← 0;
16 Fendpts ← {f | ∀f ∈ (Fsrc ∪ Fdst)};

/* Naxs is a set of access-switches */
17 for f in Fendpts do
18 n← a node in Naxs ⊂ N with lowest no. of

endpoints placed;
19 α[s, f]← n;
20 end
21 for f in (F \ Fendpts) do
22 nodesel, accelf ← None, False;

/* Nacc ⊂ Nc is set of all
computation nodes with
accelerators */

23 nodesel, accelf , pathmap ← FirstFit(s, f , α,
G = (F ,L), GI , Cap− usedRes, Dem(f),
Nacc, True);

24 if nodesel == None then
25 nodesel, accelf , pathmap ← FirstFit(s, f ,

α, G = (F ,L), GI , Cap− usedRes,
Dem(f), Nc, False);

26 end
27 if nodesel 6= None then
28 α[s, f], β[s, f] ← nodesel, accelf ;
29 γ[s, {(fi, f) | ∀(fi, f) ∈ L}] ← pathmap;
30 usedRes ← usedRes+Dem(f) ;
31 end
32 else
33 return φ, φ, φ;
34 end
35 end
36 UpdateRes(Cap, usedRes);
37 return α, β, γ;
38 end

If no suitable server node is found in the previous step,
another call to FirstFit is made to get a suitable node
without hardware accelerator allocation by passing N = Nc

(all server nodes) and checkAcc = False (ln. 24-26).
If f has still not been assigned to a server node,
FFPlaceChain returns φ, φ, φ (ln. 33); otherwise,
the mapping variables (α, β and γ) are updated (ln. 28-29).
Also, usedRes is incremented by VMF demands Dem(f)

(ln. 30).
After the completion of VMF placement and chaining, the
resource capacities are updated using UpdateRes before
FFPlaceChain returns the mapping variables (ln. 36-37).

IV. EVALUATION

In this section, we first describe the simulation environment
and then present the evaluation results. The physical network
used for evaluations is fat-tree data center topology composed
of k, where pod each pod contains (k/2)2 server nodes, k/2
access layer switches, and k/2 aggregate layer switches and
the core layer contain (k/2)2 core switches. Therefore, there
are k3/4 total number of server nodes in the data center. The
simulation parameters for media service requests, MFVi and
VMFs are listed in Table II.

TABLE II
DEFAULT VALUES/RANGE OF VARIOUS PARAMETERS INVOLVED IN

SIMULATION EXPERIMENTS.

Parameter Value or range
Request arrival rate (Poisson) 3/(100 units)
Request lifetime (Exponential) 1000 units
VMF CPU per Mbps of input 6.2 cores/(100 Mbps)
VMF CPU reduction per Mbps
of input

4 cores/(100 Mbps)

Video resolution 1920x1080p30 (4:2:2
sampling, 10bits/sample)

Physical node CPU 24 cores
Physical Link BW 10Gbps

The simulation is carried on Intel Xeon machine @2.40GHz
and 12GB RAM. We repeated each experiment ten times and
average over all iteration is reported along with corresponding
standard deviation. Each media service request has an asso-
ciated VMF-FG. For each request, we choose one VMF-FG
randomly from the set of VMF-FGs ({G1,G2,G3}) shown in
Fig. 6.

A. VMF-FG Decomposition

Before discussing the results pertaining to the VMF-PC
heuristic, we first report the impact of decomposition on CPU
and bandwidth requirements of each of the three VMF-FGs.

brg-adj 𝛾-corr dst0src0
G1

chrm-
key pip

sclsrc2

dst0src1

src0

G2

logo-in
src2

dst0src1

src0

G3

ns-red

ns-red

clr-corr
splt-sc

brg-adj : Brightness adjustment
𝛾-corr : Gamma correction

chrm-key : Chroma-keying

pip : Picture-in-picture
scl : Video scaler
ns-red : Noise reduction
clr-corr : Color correction
split-sc : Split-screen
logo-in : Logo-insertion

Fig. 6. Set of VMF-FGs used for evaluations.

Normalized CPU (cpunrm) and total bandwidth (bwnrm)
requirements of the three VMF-FGs are shown in Fig. 7 (a)
and (b), respectively; where, cpunrm and bwnrm are defined
as follows:

cpusnrm(M) =

∑
vmf∈Fs

dcmp(M)

cpuvmf∑
∀vmf∈Fs

dcmp(M=1)

cpuvmf

bws
nrm(M) =

∑
(∀(vmf1,vmf2)∈Ls

dcmp(M)

bwvmf1,vmf2∑
∀(vmf1,vmf2)∈Ls

dcmp(M=1)

bwvmf1,vmf2

(1)

It can be observed that with the increasing M , cpunrm and
bwnrm decreases, except for G1 where there is no improve-
ment. No improvement for G1 is because the same number
of operations are required whatever the value of M is, as no
decomposed VMF is bypassed or any VMF branch is pruned.
For G2 major improvement are due to the decomposition of
pip VMF. Similarly, initial improvement (M = 4, 16) for G3
corresponds to the reduction number in the total number of
VMF operations (pixels processed by all VMFs) required to
implement split-screen functionality after the decomposition.

40 41 42 43 44

M

0.4

0.6

0.8

1.0

no
rm

. C
PU

 (c

pu
nr

m
)

1
2
3

40 41 42 43 44

M

0.4

0.6

0.8

1.0

no
rm

. B
W

 (b
w n

rm
)

(a)

(b)

1
2
3

Fig. 7. Variation of normalized required CPU cores and bandwidth for the
three VMF-chains in the function of the decomposition parameter M .

B. Deployment

Here, we first report the average acceptance ratio of media
service requests over time with data center topology having
k = 4. The arrival of requests is modeled as the Poisson
process with an average arrival rate of 3 requests per 100
time units (tu) and the lifetime of requests is exponentially
distributed with an average of 1000 tu. A media service
request is accepted if VMF-PC completes successfully, i.e. all
VMFs are assigned a server node and all virtual links have
been mapped to physical paths. Acceptance ratio is defined
as the total number of requests successfully deployed to the
total number of requests received. Fig. 8 shows the variation

of average acceptance ratio with time for different value
of M . First, the acceptance ratio on an average decreases
over time as fewer and fewer resources are available for new
requests. Also, these results clearly indicate that acceptance
ratio improves with M ; starts dropping at t=700tu for
M = 1, t=1200tu for M = 4, t=4800tu for M = 256,
etc. This improvement is a result of the reduction in the
resource demands of media service’s VMFs with increasing
M (section IV-A).
We also report total server nodes (Nusd) used in a given data
center topology (k = 8) over time. We considered a bigger
data center topology as compared to our last evaluation
(k = 4) as we wanted to reduce deviations at small values
of Nusd. Fig. 9 depicts total used server nodes with time for
different values of M . The reduction of Nusd with M can be
similarly explained by reasons discussed in section IV-A.

0 1000 2000 3000 4000 5000
time (t)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
ce

pt
an

ce
 ra

tio

M= 1
M= 4
M= 16
M= 64
M= 256

Fig. 8. Acceptance ratio over time for deployment of 150 media services
values of M . Data center topology with 16 server-nodes (k = 4).

0 2000 4000 6000 8000 10000
time (t)

0

5

10

15

20

25

30

35

Us
ed

 se
rv

er
 n

od
es

 (N
us

d)

M= 1
M= 4
M= 16
M= 64
M= 256

Fig. 9. Used server nodes to deploy 200 media services over time. Data
center topology with 128 server-nodes (k = 8).

V. CONCLUSION AND FUTURE WORK

Lately, broadcasters are adopting IP networking to trans-
port media streams in production studios. Furthermore, using
COTS hardware, as an alternative to specialized hardware,
to process media streams has also been gaining increasing
attention. IP-based transport and virtualized processing of
media streams open up many opportunities for cost-efficient
deployment of services. To this end, we proposed an algorithm

that optimizes the VMF-FG for static deployment of media
services. Also, we presented a first-fit based heuristic for
VMF-PC. The evaluation results show a significant improve-
ment in request acceptance ratio and server node utilization
can be achieved using VMF-FG decomposition.
Future work includes modeling of VMF-PC using ILP with
which optimal media service deployments can be accom-
plished. Furthermore, the VMF-FG decomposition process can
be generalized to obtain the optimized VMF-FG for dynamic
media service deployments.

VI. ACKNOWLEDGMENT

This research was (partially) funded by the Flemish FWO
SBO S003921N VERI-END.com (Verifiable and elastic end-
to-end communication infrastructures for private professional
environments) project.

REFERENCES

[1] M. Fremeije, “The Rising Need for Media Function Virtualization,”
RedHat, Tech. Rep., 02 2018.

[2] “The Road to COTS and the Cloud for real-time broadcast production,”
Nevion, Tech. Rep., 01 2018.

[3] K. Paulsen, “Prepping for the IP Transition,” Dell EMC, Tech. Rep., 01
2017.

[4] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[5] T. Koyama, J. Kawamoto, M. Kawaragi, T. Kurakake, and K. Saito,
“Implementing 8k vision mixer for cloud-based production system,”
SMPTE Motion Imaging Journal, vol. 128, no. 6, pp. 30–37, 2019.

[6] T. Kojima, J. J. Stone, J. Chen, and P. N. Gardiner, “A Practical
Approach to IP Live Production,” in SMPTE 2014 Annual Technical
Conference Exhibition, 2014, pp. 1–16.

[7] “ST 2110-10:2017 - SMPTE Standard - Professional Media Over Man-
aged IP Networks: System Timing and Definitions,” ST 2110-10:2017,
pp. 1–17, 2017.

[8] “ST 2110-20:2017 - SMPTE Standard - Professional Media Over
Managed IP Networks: Uncompressed Active Video,” ST 2110-20:2017,
pp. 1–22, 2017.

[9] “ST 2110-30:2017 - SMPTE Standard - Professional Media Over
Managed IP Networks: PCM Digital Audio,” ST 2110-30:2017, pp. 1–9,
2017.

[10] “ST 2110-40:2018 - SMPTE Standard - Professional Media Over
Managed IP Networks: SMPTE ST 291-1 Ancillary Data,” ST 2110-
40:2018, pp. 1–8, 2018.

[11] “ST 2022-6:2012 - SMPTE Standard - Transport of High Bit Rate Media
Signals over IP Networks (HBRMT),” ST 2022-6:2012, pp. 1–16, 2012.

[12] “RP 2110-23:2019 - SMPTE Recommended Practice - Single Video
Essence Transport over Multiple ST 2110-20 Streams,” RP 2110-
23:2019, pp. 1–27, 2020.

[13] “Broadcast Video Infrastructure Implementation Using FPGAs,” Altera,
Tech. Rep., 03 2007.

