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Abstract: The current Dutch recycling value chain for plastic packaging waste (PPW) has not 

reached its full circularity potential, as is apparent from two Circular Performance Indicators (CPIs): 

net packaging recycling rate and average polymer purity of the recycled plastics. The performance 

of the recycling value chain can be optimised at four stages: packaging design, collection, sorting, 

and recycling. This study explores the maximally achievable performance of a circular PPW 

recycling value chain, in case all stakeholders would implement the required radical improvement 

measures in a concerted action. The effects of the measures were modelled with material flow 

analysis. For such a utopic scenario, a net plastic packaging recycling rate of 72% can be attained 

and the produced recycled plastics will have an average polymeric purity of 97%. This is 

substantially more than the net packaging recycling rate of 37% for 2017 and will exceed the EU 

target of 50% for 2025. In such an ideal circular value chain more recycled plastics are produced for 

more demanding applications, such as food packaging, compared to the current recycling value 

chain. However, all stakeholders would need to implement drastic and coordinated changes, 

signifying unprecedented investments, to achieve this optimal circular PPW recycling value chain.  

Keywords: plastic packaging waste; recycling; recycling targets; polymer purity; quality of recycled 

plastics; limits  

 

1. Introduction 

The European Union strives towards a circular economy for plastics to mitigate the 

environmental impacts of plastic waste. Plastic packaging waste (PPW) is a priority since roughly 

40% of the plastics are used in packages and plastic packages make up 60% of the plastic waste [1]. 

Since the 1990s, member states have established multiple collection and recycling systems for PPW 

that generate various qualities of recycled plastics. Several recycling systems have been thoroughly 

analysed and share common features [2–7]. The homogenous post-industrial plastic packaging waste 

(PI-PPW) flows are recycled into relatively pure recycled plastics that can be applied in related 

packaging and non-packaging applications. The more heterogeneous PI-PPW and post-consumer 

plastic packaging waste (PC-PPW) are connected to a network of sorting and recycling facilities and 

generate various types of recycled plastics that are often blends of polymers and are often only 

applicable in non-food packaging and non-packaging applications. Currently, only a small share of 

food packages are recycled into food-grade recycled plastics, which is to a large degree determined 

by legislative constraints [8]. Well-known are the post-consumer polyethene terephthalate (PET) 

beverage bottles which are recycled to food-grade PET bottles and trays [9,10]. Much smaller 

recycling activities are the British separately collected high-density polyethene (HDPE) milk jugs to 
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food-grade recycled polyethene (PE) [11] and roughly a dozen reusable polypropylene (PP) and PE 

food crates, which are recycled to food-grade PE and PP [12,13]. Only a fraction of the recycled PE, 

PP, and Film is used in packaging (rPE flasks, rPP boxes and crates and rLDPE film) and other high 

demand applications. The majority of these recycled plastics are still used in low demand non-

packaging applications. Moreover, one of the largest recycling products (mixed plastics) is used in 

fairly bulky applications, such as garden furniture, fence posts, pallets, etc., [3,14]. The current overall 

mismatch in the (both regulatory and technical) qualities of recycled plastics offered and the qualities 

the packaging industry want to procure [15], retards the transition towards a circular economy. 

Several technological improvement measures are known to improve the circular performance of the 

recycling system to some extent. Design-for-recycling measures by the packaging industries, in 

general, affect the polymeric purity of the recycled plastics and hence their applicability [16]. In 

contrast, more intensive collection and mechanical recovery of plastics from mixed municipal solid 

waste (MSW) can increase the net plastic packaging recycling rates [3,17]. On top of that, sorting and 

recycling facilities can also contribute to generating slightly more and more pure recycled plastics 

with investments in new improved separation technologies [18,19]. This raises the question of what 

the theoretical limit of a PPW recycling value chain is. In other words, in case all the stakeholders 

would co-operate, what level of circularity could maximally be achieved when all the improvement 

measures are implemented in a concerted action. Although this is a utopic scenario, this theoretical 

exercise does provide valuable perspectives on the limits of what could potentially be achieved.  

Circular indicators assess the level of circularity that a product, company or collection and 

recycling network has achieved. Hundreds of these indicators have previously been proposed and 

used [20–22]. Specific for PPW, simple recycling rates are insufficient since these do not account for 

the quality of the recycled plastic and whether or not the material is kept within material circles [23]. 

As possible solutions closed-loop recycling rates and open-loop recycling rates have been proposed 

[23], but also quality factors in which the type of material circulation is accounted for [24]. In this 

study, we will use two Circular Performance Indicators (CPIs) that result from the material flow 

analysis. These are the net packaging recycling rate and the (average) polymeric purity of the recycled 

plastics produced. The polymeric purity relates to the applicability of the recycled plastic and, hence, 

to the type of material cycles the recycled plastics are used in. 

This study aims to explore the theoretical limits of a circular recycling value chain for plastic 

packages in the Netherlands with the currently available technologies and those that are foreseen to 

be available within the coming five years. These limits are expressed with the two CPIs: net packaging 

recycling rate and (average) polymer purity of the recycled plastics. This study is based on the 

previously published material flow analysis of Dutch PC-PPW in 2017, which is extended to also 

describe the recycling of PI-PPW. In this theoretical study, only technical argumentation is used, 

whereas economic and social considerations and interrelations are ignored. Legislative aspects are 

only included in that we consider that recycled plastics need to be as good as contamination-free to 

be able to return to food contact applications. Furthermore, we propose a classification of recycled 

plastics to define their applicability. We use this classification as a tool to predict the level of 

circularity that can be attained. To grasp the full potential of the recycling chain, the combined impact 

of all improvement options by the stakeholders are studied including synergetic effects. 

2. Materials and Methods  

The Dutch PPW recycling value chain of 2017 was the basis for this study [3]. The model 

describes the recycling chain of post-consumer PPW (PC-PPW) from packages that are discarded at 

households to washed milled goods (WMG) as recycling product and generate two CPIs: the net 

recycling rate and average polymer purity (Appendix A.1). This model was elaborated to include 

post-industrial plastic packaging waste (PI-PPW) to allow for a comparison with national and 

European recycling targets (Appendix A.2). Firstly, the general prerequisites for an optimal circular 

PPW recycling value chain are defined in Section 2.1. Subsequently, these general prerequisites are 

translated in a description of this optimal circular recycling system as it could operate with the 

current recycling technologies and those that will be available to us within 5 years for PC-PPW and 
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PI-PPW in Sections 2.2 and 2.3, respectively. Finally, a classification of the produced recycled plastics 

is proposed in Section 2.4. 

2.1. General Prerequisites for an Optimal Circular PPW Recycling Value Chain 

We envision that in an optimal circular recycling value chain all stakeholders are completely 

committed to the performance of this overall system. This system will then have to produce 

maximum amounts of high-quality recycled plastics that are reused in new packages and related 

consumer articles, while low-quality side-products and material losses are minimised. Additionally, 

the overall environmental impacts of the recycling chain need to be minimised and additional 

environmental burdens, such as unnecessary transport movements, food losses, or emissions of 

wastewater, should therefore be avoided.  

Individual packages will have to be easy to handle in all different stages of the PPW recycling 

system, which relates to four design aspects. Firstly, all packages in the system should be made of a 

restricted amount of plastics (two or three polymer types) that can be efficiently separated and 

processed with simple technologies. This limitation is crucial, to generate sufficiently pure recycled 

plastics with effective sorting and recycling technologies. Secondly, the design should facilitate 

collection. Thirdly, the packages should be easily recognised by automatic sorting machines and its 

dimensions should enable sorting. Fourthly, the packaging components, which are often made from 

different polymers and materials, should be easy to separate in an efficient manner in the recycling 

process. Additionally, the packaging materials should be able to fulfil the packaging functions to 

prevent environmental burdens such as food losses [25]. For the fulfilment of packaging functions, 

typical essential material properties are strength, stiffness, mechanical buffering, gas and water 

vapour barriers and temperature resistance. On top of that, the obvious requirement that all packages 

need to comply with the essential requirements and procurement specifications, which is 

unfortunately not always the case [26,27]. 

The collection system should ideally retrieve all the targeted packaging objects and a minimum 

of non-targeted objects and product residues. The presence of contaminations in the collected 

material needs to be limited to maintain the quality of the recycled material and avoid losses. 

Furthermore, the environmental performance of the recycling chain will increase, as contamination 

causes additional transports, waste streams and emissions. 

In an optimal circular recycling value chain, the sorting process needs to maximise the 

production of mono-material sorted products and minimise mixed plastics. Purer recycled plastic 

products can be obtained by using multiple complementary separation techniques in the overall 

sorting and recycling process. However, this generally lowers the yield and often generates lower 

quality by-products. Hence, these additional separation techniques are only beneficial to the whole 

circular recycling system when the by-products are recycled as well and no additional material losses 

occur.  

2.2. Description of an Optimal Circular PC-PPW Recycling Value Chain 

To describe an optimal circular PPW recycling value chain for the Netherlands, the best available 

technologies were considered as well as those that are likely to be implemented within 5 years. The 

PPW recycling chain can be improved at the four main stages: packaging producers (packaging 

design), waste collection companies (collection rate), sorting facilities (technologies, settings, and 

operations), and the mechanical recycling facilities (technologies, settings, and operations). The 

proposed ideal circular PPW value chain for all four stages will be described separately. 

2.2.1. Design for Recycling 

To establish the most ideal set of plastic packaging designs to fit in a circular recycling value 

chain, two main design aspects have to be considered: performance parameters and recycling 

requirements. The applied polymers need to be defined to fulfil the packaging functions and 

therefore provide the needed water vapour and gas barrier properties, mechanical properties, optical 
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properties, etc. The recycling requirements imply that the polymers should separate easily with the 

two mainly used separation technologies: near-infrared (NIR) sorting and sink-float separation. 

Three polymers (PE, PP, PET) were chosen, which encompass different groups of various sub-types 

and grades, such as the density-based subcategories of architecturally different (level of branching) 

PEs. Besides, most packages also contain minor components, which in some cases have to be made 

from other polymers (inks, glues, barrier layers, etc.). For the sake of this idealised study, these 

components are considered to be negligible.  

To model with an ideal set of packaging designs, existing packaging types that were not made 

of the selected polymers (PET, PE, and PP) were eliminated and replaced with packages made of 

those selected polymers in three steps.  

Firstly, the eliminated packaging types were replaced by alternative packaging types that would 

qualify the design-for-recycling guidelines and would also fulfil the performance parameters needed 

for the packaged products (Table A1). Secondly, black plastic packages were replaced by packages in 

NIR recognisable colours. Thirdly, packaging types that had a clear environmental benefit and could 

not all be replaced by suitable alternatives, such as laminated flexibles, were partly replaced by 

realistic alternatives and partly retained. The designs of the remaining packaging types were 

improved in the model by adjusting the minor components, such as caps and labels. These 

components were modelled to be made of PET, PE, and PP only, according to their technical 

requirements (Table A2). The material composition per packaging type was adjusted accordingly, 

using the known weights of caps, labels and other packaging components [3,28]. All the design 

changes are explained in Appendix A.3. 

2.2.2. Net Collection Rate 

The net collection rate of PC-PPW was maximised in the model. Optimal performing Dutch 

municipalities with full participation rates achieve net collection rates of around 70%, which relates 

to the maximum apparent selection rate of 70% for participating civilians [16]. The increased 

collection rate was modelled proportionately per packaging type. The co-collection of other targeted 

materials (beverage cartons and metals) was proportionately increased with the amount of PPW.  

The collection system should ideally retrieve all the targeted packaging objects and a minimum 

of non-targeted objects and product residues. In reality, however, almost all collection systems yield 

only a share of the targeted packages present at the households and various contaminants (other 

materials, attached dirt and contained product residues). The attached moisture and dirt was 

therefore proportionately increased with the amount of PPW collected. It is expected that the amount 

of non-packaging plastics and residual waste will not increase proportionally with the amount of 

collected PPW. In an optimal recycling system, collection services will reduce these non-targeted 

contributions by performing more quality controls. Therefore, the co-collected amounts of non-

packaging plastics and residual waste have only increased to half the amount of the increase in 

collected PPW. The used equations are provided in Appendix A.4. 

Next to separate collection of PPW, part of the Dutch PPW was retrieved via mechanical 

recovery from MSW. For urban municipalities with a high share of high rise buildings, separate 

collection systems typically yield low collection rates and high impurity rates. For these 

municipalities, mechanical recovery from MSW rendered more PPW with fewer contaminations. In 

the model, the amount of PPW in the MSW that enters recovery operations was not decreased, as it 

was expected that this MSW will be collected from municipalities without a separate collection 

system. The amount of MSW that will enter recovery operations was kept the same as the amount in 

2017. The amount of PPW in the overall MSW decreased due to the increased separate collection of 

the PPW. 

2.2.3. Improved Sorting Process 

The sorting process was improved in the model by increasing the sorting fates of the individual 

packaging types to the correct sorted product and by adding a sorting process to the flexible 

packaging flow. The sorting fates of all packaging types were raised to the maximal technical feasible 



Sustainability 2020, 12, 10021 5 of 32 

level for mono-material sorted products. The residual amounts were redistributed over the remaining 

sorted products in the same ratio as modelled for 2017 for each packaging type. The applied sorting 

fates per packaging type are further substantiated in Appendix A.5.1 (Tables A3 and A4). 

In the model of the optimal value chain, the flexible packages were further sorted with additional 

sorting machines to a PE flexible packaging product. This extra sorting step was modelled as an 

additional sorting step after the conventional sorting process, with the use of specific sorting fates 

(Table A5). The sorting fates are described and explained in Appendix A.5.2. Moreover, a by-product 

was formed that consists of the other films and materials that were present in the Film sorted product. 

This by-product could be added to the Mix sorted product, or the PP flexibles could be even further 

sorted into a separate sorted product. Both options are modelled. The option with the best results in 

terms of quality and quantity of the washed milled goods was used to calculate the results of this 

study. The result of the other option is provided in Appendix B.3.  

2.2.4. Improved Recycling Processes 

The recycling of PET trays was not incorporated in the 2017 model, as these packages were not 

recycled at that time. The recycling of PET trays is challenging since it is a heterogeneous group of 

packages that are not designed for recycling, and of which a large sub-group contains multiple 

polymers (PE, PA, EVOH) that cannot be separated by conventional recycling technologies [29,30]. 

In a circular PPW recycling value chain, the PET trays should be recyclable, as they are made of mono-

PET and designed for recycling (Appendix A.3). The recycling of PET trays was modelled by using 

the same approach and transfer coefficients for the basic mechanical recycling process as was used 

for the other sorted products in the model.  

2.3. Description of an Optimal Circular PI-PPW Recycling Value Chain 

Three types of PI-PPW are present in the Netherlands: PET bottles in the deposit-refund system, 

business to business (B2B) PPW, and plastic packages discarded at companies, offices, institutions, 

and other out-of-home locations.  

The current deposit-refund system (DRS) for large PET bottles (>0.5 L) already performs 

optimally. Its collection rate is estimated to be 95% and the polymeric purity of the WMG is above 

99% [26]. Therefore no realistic improvements are foreseen for this sub-system. Nevertheless, a policy 

change has been announced to add the small PET bottles (≤0.5 L) to the DRS. This will result in a shift 

of these small PET bottles from the separate collection and mechanical recovery systems to the DRS. 

This shift was modelled separately, see Appendix A.6.  

The B2B PPW relates to large homogeneous flows of PE film, PP crates, etc. Its sorting and 

recycling are considered a profitable business activity (Appendix A.2). Therefore, it is assumed that 

this part of the PI-PPW recycling is already performing near-optimally, and no additional 

improvements are proposed to this sub-system to create an ideal circular PPW recycling value chain. 

Due to insufficient data, the average polymer purity cannot be calculated in detail for this sub-system. 

However, the nature of this material suggests that this material is very pure, and the polymer purity 

is therefore estimated to be 99%.  

The ‘other PI-PPW’ is a heterogeneous, mixed PPW similar to PC-PPW. It is currently not 

recycled. In the ideal circular PPW recycling value chain, these packages are collected and recycled 

as well and treated similarly to PC-PPW. A detailed description of the modelling method is provided 

in Appendix A.7. Due to insufficient data, the average polymer purity cannot be calculated in detail 

for this sub-system. However, the nature of this material is expected to be similar to PC-PPW. Hence, 

we estimated that the average polymer purity of these materials is the same as the average polymer 

purity of the PC-PPW sub-system. 

2.4. Application Areas of Recycled Plastics and Corresponding Material Requirements 
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A classification of the potential application for the different recycled plastics streams is proposed 

in Table 1. This classification works with the boundaries of the idealised system elaborated in this 

manuscript, as well as some current-day realities.  

The classification differentiates between food and non-food end applications and is based on 

expected degradation and contamination of the recycled plastics. Under degradation, we mainly 

consider the shortening of the polymer chain due to thermomechanical loading, which will result in 

lower molecular weights and either reduced intrinsic viscosity (IV) for PET or increasing melt flow 

index (MFI) for sorted PE or sorted PP, which are jointly referred to as polyolefins (PO) in the Table 

when subject to similar constraints. The nomen mixed polyolefins (MPO) is used for a blend of both 

PE and PP. Under contamination, we differentiate between polymers, other than the target polymer 

and non-polymeric contaminants like paper, minerals, and metals. As a further aspect of purity, we 

include the maximum filter size for the melt filtration step of regranulation.  

Furthermore, as we are discussing potential, the classification is a technical one which does not 

take legislative aspects such as Food Contact Material (FCM) legislation into account. Likewise, the 

presence of non-intentionally added substances and odours are considered outside the scope of this 

classification.  

More elaboration on the rationale behind the classification, the relation to different conversion 

processes, and the meaning of concepts like IV and MFI can be found in Appendix A.8.  
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Table 1. Classification of recycled plastics in relation to their applicability. 

Application 

Type 
EoL Fate Product Types 

Typical Acceptable 

Degradation 
Typical Acceptable Contamination 

Food 

no 

contamination  

(F-NC) 

Circular 

Closed-loop 

Bottle-to-bottle (PET, HDPE) 

Bottle-to-tray (PET) 

Clear Film-to-film (LDPE) 

Very limited 

PET bottle: IV > 0.76 

HDPE bottle: MFI < 3 

PET tray: IV > 0.70 

LDPE film: 1 < MFI < 6 

HDPE film: MFI < 0.4 

Very limited 

Other polymers: 

In PET < 50 ppm 

In PO: 

Other PO < 1% 

Non-PO < 50 ppm 

Non polymers < 50 ppm 

Specific for film: only clear 

Melt filtration < 50 µm 

Non-food 

Low 

contamination 

(NF-LC) 

Circular 

Semi-

closed-loop  

 

Bottle-to-bottle (HDPE, PP) 

Bottle-to-fibre (PET) 

Non-clear Film-to-film (LDPE, HDPE) – 

e.g., garbage bags, agricultural film 

Thin-walled injection moulding products 

(PP, PE) 

Pipe (PP) 

Limited for 

PET fibre: IV > 0.62 

LDPE, PP film: MFI < 0.4  

HDPE, PP bottle: MFI < 3 

PP pipe: MFI ≈ 2 

 

Significant for 

PE, PP injection moulding 

(MFI can be > 3, up to 30) 

Limited  

PET fibre and LDPE,PP film as F-NC 

Injection moulding and bottle (PO):   

Other polymers: 

Other PO < 5% 

Non-PO < 1% 

Non-polymers < 50 ppm 

Specific for film: all colours  

Melt filtration < 200 µm 

Non-food 

Significant 

contamination 

(NF-SC) 

Circular 

Open-loop 

Extrusion of bulky products like decking, 

panels and street furniture (MPO) 

Significant 

MPO: 2 < MFI < 7 

Significant 

Other polymers (PET, others) < 10–20% 

(depending on processing conditions) 

Non polymers < 5% (depending on size) 

Melt filtration < 800 µm 

Non-recycling 

High 

contamination 

(NR-HC) 

Linear  

High-caloric combustibles (cement 

industry) 

Incineration with energy recovery 

Unlimited  

Quasi-unlimited 

Non-polymer contaminations will affect 

efficiency of incineration 
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2.5. Boundaries of the Current Study 

The following aspects define the boundaries of the current study: 

• The presence of non-intentionally added substances (NIAS) and odour is not considered, the 

focus is on technical qualities; 

• The presence of unavoidable adhesives or barriers, as well as printing inks, are not considered; 

• Current (or imminent) state of recycling technology is assumed. For example, the fact that black 

plastics are not NIR-sortable will not necessarily remain the case; 

• Economical aspects are not considered; legal aspects only up to the point that we set ‘no 

contamination’ as a condition; 

While all of these represent relevant aspects to the reality of plastics recycling, including them 

would have gone too far for this study, which intends to model the achievable recycling rates and 

qualities in an optimal circular PPW recycling value chain. Likewise, the authors are fully aware that 

a similar exercise might be made for a limitation to four polymers types instead of three, for example 

including polystyrene. However, this is not considered to be the essence of the study.  

3. Results 

3.1. Circular Performance Indicators  

The 2017 model of the PPW recycling value chain was elaborated with the recycling of post-

industrial plastic packaging waste, and the by-products of PET recycling were included in the 

calculation of the CPIs. The net packaging recycling rate of this updated PPW recycling chain was 

38% and the average polymer purity of the washed milled goods was 91%. These overall CPIs and 

the contributions are listed in Table 2. The corresponding data is provided in Appendix B.1 (Tables 

A6 and A7). 

Table 2. Circular performance indicators of Dutch plastic packaging waste (PPW) recycling value 

chain in 2017 compared to an optimal circular recycling value chain, [%]. 

Circular Performance Indicators 2017 Circularity Potential 

PC-PPW net packaging recycling rate 26 69 

PI-PPW net packaging recycling rate 63 78 

Total PPW net packaging recycling rate  38 72 

PC-PPW average polymer purity 91 96 

PI-PPW average polymer purity 97 97 

Average polymer purity of all washed milled goods from PPW 93 96 

In the idealised circular recycling chain, a maximum net packaging recycling rate of 72% can be 

reached, but it should be stressed that this will require drastic measures to be taken by incumbents 

in a well-concerted action. The produced washed milled goods will have an average polymer purity 

of 97% (Table 2). These CPIs are the theoretical limits for a circular economy of plastic packages that 

rely on the full commitment and co-operation of all stakeholders and is based on the currently 

available technologies (circularity potential).  

A limited sensitivity analysis of the model was performed, see Appendix B.4, which revealed 

that the net collection rate is the parameter that influences the net recycling rate the most (Tables A13 

and A14). In case the net collection rate would increase due to improved separation behaviour of the 

civilians from 70% to 80%, then the total net packaging recycling rate would increase from 72% to 

78%. 

3.2. Amount and Applicability of Recycled Plastics 
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The amount, polymeric purity, and applicability of the recycled plastics generated by the 

optimal recycling value chain are listed in Table 3 and can be compared with the same data for the 

PPW recycling value chain in 2017 (Table A6). Much more recycled plastics are produced in an 

optimal circular PPW recycling system as compared to the system in 2017. Furthermore, the average 

polymer purity is also substantially higher in an optimal recycling system as compared to the system 

in 2017; 96% compared to 93%, respectively (Table 2). 

Table 3. The amounts of recycled plastics produced, their polymeric purity and classification of their 

applicability in an optimal circular PPW recycling value chain (* = estimated). 

Type of PPW 

Amount of 

WMG  

[Gg] 

Polymeric 

Purity of 

WMG 

[%] 

Applicability 

Classification  

[F-NC, NF-LC, 

NF-SC, NF-HC] 

PC PET bottles 23 99.7 F-NC 

PC PE rigid 26 98.1 NF-LC 

PC PP rigid 49 97.7 NF-LC 

PC PE film 50 98.7 NF-LC 

PC Mix (PO mix) 32 93.4 NF-SC 

PC PET trays 51 99.8 F-NC 

PC PET bottles by-product (PO mix) 3 92.3 NF-SC 

PC film by-product (scenario 2) (PO mix) 16 90.9 NF-SC 

PI PET bottles deposit-refund (DR) 19 99.9 F-NC 

PI PET bottles DR by-product (PO mix) 2 90.7 NF-SC 

PI-PPW B2B 80 99* NF-LC 

Other PI (B2B, offices, public space, etc.) 25 97* NF-SC 

The rise in polymeric purity can be observed for almost all types of recycled plastics, and this 

causes sharp increases in the amounts of the highest qualities of recycled plastics, see Figure 1. The 

category F-NC increases from 32 in 2017 to 93 kton for the optimal recycling chain and the category 

NF-LC increases from 80 in 2017 to 205 kton for the optimal recycling chain. Conversely, the amount 

of mediocre quality recycled plastics from the category NF-SC remains almost constant: 81 kton in 

2017 and 78 kton in the optimal recycling chain. Hence, within such an optimal recycling system, 

there will be substantially higher amounts of rPET available for food packaging applications and 

large amounts of rPE, rPP, and rLDPE available for non-food packaging and related consumer 

articles. 
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Figure 1. The amounts of recycled plastics produced, classified with respect to their applicability in 

2017 and in the optimal recycling value chain. 

4. Discussion 

4.1. Towards a More Circular Dutch PPW Recycling Value Chain 

This study shows that although the Dutch recycling system for PPW is currently one of the best 

performing systems globally, it can still be improved substantially with existing technologies. Both 

CPIs can be improved: the net packaging recycling rate can be improved from 37 to 72% and the 

average polymer purity can be improved from 91 to 97%. The recycling targets for plastic packages 

have been set to 50% by the end of 2025 and 55% by the end of 2030 [31]. Hence, it would appear that 

the European recycling targets can easily be achieved. However, in order to achieve the optimal 

circular economy for plastic packages, drastic improvement measures have to be implemented by all 

stakeholders. Not only would this signify major investments in new packaging machines at the 

producers, new sorting equipment at sorting facilities, and new recycling equipment at recycling 

facilities, these investments also need to be well-orchestrated. Since the benefits of these investments 

are limited for the individual stakeholders, these investments will not be made, without clear 

regulations and control mechanisms. 

The net packaging recycling rate is strongly influenced by the net collection rate. Autonomous 

improvements in the collection systems by municipalities can improve the net packaging recycling 

rate to only 45% for PC-PPW (Appendix B.2), whereas the net packaging recycling rate can be raised 

further to 69% for PC-PPW if the other stakeholders also take the appropriate concerted actions. Thus, 

well-aligned improvement measures taken by all the stakeholders result in a synergistically better 

recycling rate compared to the recycling rate that can be achieved when only municipalities optimise 

the collection. The average polymer purity is mainly affected by the design of the packages, and to a 

lesser extent by the sorting and recycling processes. Autonomous design-for-recycling measures 

taken by the producers can increase the average polymer purity of the PC-PPW recycling chain from 

91% to 94% (Appendix B.2, Table A9), whereas with combined and well-aligned measures of all the 

stakeholders, an average polymer purity of 97% can be achieved. Hence, for both CPIs synergy can 

be obtained when the stakeholders take coordinated improvement measures. Concerted action of all 

stakeholders simultaneously is important to achieve the recycling targets set by the EU and to 

progress towards a quantitively and qualitatively high performing circular PPW recycling value 

chain. Nonetheless, this implies that close coordination and strict governance is required to achieve 

this ideal plastic packaging recycling value chain. 
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4.2. Recycled Plastic Markets  

Traditionally, plastic markets are divided by sector (packaging, building and construction 

(B&C), automotive, consumer goods, etc.), wherein the packaging sector represents around 40% of 

the annual turnover of (virgin) plastics. Due to the short shelf-life of most packaging plastics, they 

represent around 60% of plastic waste. It would, therefore, make sense to want to return PPW as 

secondary resources to the packaging sector. This sector is, however, dominated by food packaging, 

where food safety concerns lead to stringent regulations for FCM. Achieving FCM approval is often 

more a regulatory concern than an actual technical one [8]. In many cases, FCM grade can be achieved 

from a technical perspective (contamination levels, migration limits), but formal approvals are 

extremely challenging to obtain. For our idealised system to work, legislation and technical practice 

would be assumed to be much better aligned. Even so, there exists an important difference between 

PET and PO when considering the long-term: it is inherent to the PET recycling process that the 

polymer chains are ‘repaired’ during recycling, while this is not possible for PP and PE. Therefore, 

the PO will typically continue to lose chain length over multiple recycling cycles (we disregard here 

the possibility for HDPE to crosslink due to degradation, which will have its own consequences) and 

will have more need of a remaining influx of virgin materials to compensate this. 

For those plastics unable to be returned to the packaging industry, other markets must be 

considered. In general, these markets are not unwilling to take up the recycled plastics, but they are 

bound to the technical specifications for their materials, as outlined in Table 1. Many materials 

originally used for film, for example, is extremely challenging to re-use injection moulding. Similarly, 

PET is an excellent barrier material, but typically quite brittle, which gives it little applications outside 

of packaging, except for fibre. The most promising alternative markets would be building and 

construction (B&C: pipes, bulky parts, panels, large injection moulding parts), in which products 

typically use large volumes and food contact is rarely an issue. It might even be argued that using 

these materials in B&C is a more sustainable destination, as the product lifetimes are typically much 

longer (up to 30 years). 

Since this is a technical study, economic and political aspects are not considered. But these will 

influence the development of the value chain for PPW in the future. For instance, the growth of the 

recycling rates can be frustrated by the saturation of markets for lower quality recycled plastics 

(especially PC-MIX). Additionally, the current low prices for virgin plastics will hamper the further 

expansion of the recycling industry. 

4.3. Variations in the Structure of an Ideal Circular Recycling Value Chain  

Although most of the choices made in the design of the optimal circular recycling value chain 

are self-evident, a few of them are more debatable. Four of these variations in the structure of the 

optimal value chain will be discussed below. 

4.3.1. Creating a Separate Sorted Product for PP Flexible Film  

Two scenarios for the additional sorting of flexible packages are explored (See Appendix B.3). 

In the first scenario, a separate sorted PP flexible film product is created. The model predicts that this 

renders a PP flexible product with a low polymeric purity (84%) as a consequence of a large amount 

of PE flexible film products in the feedstock. Additionally, a mixed polyolefin by-product is produced 

with a relatively low polymer purity of 84% (NF-LC, Table A10), which can be added to the PC-PPW 

Mix. In the second scenario, the PP flexibles and the laminated flexibles are jointly sorted from the 

sorted film product to form a mixed polyolefin by-product. This by-product has a polymeric purity 

of 91% (NF-LC, Table A10) and can also be added to the PC-PPW Mix (Table A11). Therefore, with 

the current sorting technology and type of packages on the market, it is best to keep the PP flexibles 

in the mixed plastics.  

4.3.2. The Continued Need for Mixed Plastics  
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There is still a need for a mixed plastic sorted product (PC-PPW Mix, NF-LC) in the optimal 

circular recycling value chain. However, its relative importance is reduced. Only 12% of the mass of 

the separately collected PC-PPW is sorted to the Mix in the ideal circular recycling system compared 

to 26% in 2017 (Table A12). The mixed plastics that originate from sorting PC-PPW is mostly 

composed of flexibles, non-packaging plastics, PET trays and residual waste. The relative large 

contribution of flexibles to the mixed plastics stems from the mediocre sorting efficiencies for flexibles 

in wind sifters and ballistic separators. 

4.3.3. Adding Small PET Bottles to the Deposit Refund System 

The addition of the small PET bottles (≤0.5 L) to the DRS results in a shift in the amounts of 

recycled PET being produced. The amount of recycled PET from PC-PPW reduces from 23 to 16 Gg 

and the recycled PET from DRS increases from 19 to 29 Gg. This shift doesn’t affect the net packaging 

recycling rate of the overall PPW recycling value chain, but the amount of recycled PET that is 

suitable for food high demanding applications increases with 10 Gg. 

4.4. Limits to Circularity 

Although the current recycling chain for PPW in the Netherlands is one of the more advanced 

systems globally, it is still far from an optimal circular economy for PPW. To attain the latter, 

unprecedented efforts of all stakeholders in a tight orchestration are required, which will signify 

massive investments of all stakeholders. Nevertheless, even after these unparalleled efforts have been 

delivered, this maximal achievable recycling system is still highly dependent on fossil feedstock for 

the production of food-grade packages and on non-food aftermarkets for the application of recycled 

plastics. Moreover, the maximum achievable recycling rate for plastic packages is just 72%. Only the 

PET food packages are potentially circularly recyclable into new food-packages. Although, even for 

this material, precautionary measures have to be taken to avoid the accumulation of contaminants 

[32–35]. The most widely used food-packaging polymers (PE and PP) can still only be used once in 

the circular economy based on mechanical recycling technologies, in large part due to legislative 

restrictions and the current inability to sort food-grade from non-food-grade materials. Most of these 

PE and PP food packages can also not be re-designed into PET food packages for packaging 

technological reasons such as temperature resistance, light transmission etc. Furthermore, also the 

reduction of plastic food packages in our modern society has its limitation and, when uncarefully 

executed, results in more food waste [36]. 

Although previous studies have reasoned that such an open-loop recycling system, which relies 

on fossil oil input and non-food after markets, might be the environmentally favoured option [37,38], 

both legislators and retail organisations strive towards more closed-loop recycling systems. 

Demanding and implementing recycled content in plastic packages is regarded by them as the most 

tangible and convincing measure to reduce the environmental impact of plastic packages. This quest 

for more circularity, however, entails unprecedented efforts and investments that need to be 

considered as well. 

To progress beyond this ‘optimal circular economy value chain’, disruptive innovations in 

design, sorting and recycling are required. Hitherto multiple measures and innovations have been 

proposed; to use marking technologies to assist sorting [39–41], to use magnetic density separation 

to replace sorting and recycling for rigid packaging plastics [42], to use new sorting logarithmic 

sorting technologies for rigid plastic flakes [43], to use fluorescent imaging to sort plastics [44], to 

chemically recycle flexibles and mixed plastics [45,46], to make black plastics NIR-sortable [44,47], 

etc. Undoubtedly, more innovations and measures will be proposed in the future. The challenge will 

be to select and align those innovations to achieve societal targets and balance the interests of the 

stakeholders. 

5. Conclusions 
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We have considered an idealised circular economy for plastics packaging, wherein all plastic 

packaging is made of PE, PP, or PET and the four main stages of the PPW recycling value chain 

(design, collection, sorting, and mechanical recycling) cooperate without reservation. The technical 

limit for the recycling rate of plastic packages is 72% within such an idealised circular economy, using 

the currently available recycling technologies and those that are foreseen within the coming five 

years. To achieve this circularity potential, unprecedented offers have to be made by all stakeholders. 

Nonetheless, this optimal circular economy for plastic packages still relies, to a large extent, on fossil 

oil as an input for food-grade packaging materials and non-food packaging and non-packaging 

aftermarkets. 

Future research would be welcomed on the acceptability of the required efforts by the 

stakeholders in relation to the circularity that can be achieved. Additionally, the impact of new 

disruptive technologies and policies (reusable packages) on the whole value chain could be explored. 
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Appendix A. Additional Information Research Method 

Appendix A.1. Equations of Circular Performance Indicators (CPIs) 

Two equations were used to calculate both CPIs, see Equations (A1) and (A2). The net recycling 

rate for plastic packages (Rnet Plast.Pack.) was calculated by dividing the net mass of recycled packaging 

materials (for plastics this is the intermediate product of washed milled goods) (MRec. Plast. Pack.) by the 

mass of plastic packages placed on the market) (M Plast. Pack on market.). 

Rnet Plast.Pack. = MRec. Plast. Pack./M Plast. Pack on market (A1) 

The average polymer purity (APP) is calculated from the sum of the polymeric purities of the 

recycled plastics (PPRPi)made divided by the number of recycled plastic products (n) made by the 

complete recycling network. 

APP = (PPRP1 + PPRP2 + ....PPRPn)/n (A2) 

Appendix A.2. Model Updates Dutch 2017 PPW Recycling Value Chain 

The Dutch 2017 PPW recycling value chain was extended to allow for a comparison of the 

calculated net packaging recycling rate with the recycling targets set by the European Commission 

and Dutch government. These model extensions affected the net packaging recycling rate (Equation 

(A1)), as the amount of plastic packaging material on the market and the mass of the recycled plastic 

packaging material both changed. The average polymer purity (Equation (A2)) was also affected, as 

recycled products were added to the calculation. 

In this new version of the model, all plastic packages on the Dutch market are included. Hence, 

the officially registered amount of plastic packaging material on the market could be used in contrast 

with previous versions of the model [3]. The total mass of the plastic packaging material on the 

market is registered by Nedvang and was 512 kton in 2017 [48]. 

The recycling targets set by the European Commission and the Dutch government include all 

recycled packaging plastics. The polyolefin by-products from the recycling of PET bottles are 

recyclable and therefore included in the mass of recycled plastic packaging material. The updated 

model also included the masses of the recycled plastic packaging material originating from three 

types of post-industrial plastic packaging waste (PI-PPW): PET bottles in the deposit-refund system, 
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business to business (B2B) PPW and plastic packages discarded at companies, offices, institutions and 

other out-of-home locations.  

PET bottles from the deposit-refund system are collected, counted, and mechanically recycled. 

The amount of collected and counted PET bottles from the deposit-refund system is 23 gross Gg, with 

a moisture and dirt content of 8 ± 2% and thus a net amount of 21 Gg of PET bottles [49]. The 

mechanical recycling process is modelled with the same calculations and transfer coefficients for 

mechanical recycling as in the model of the PC-PPW recycling value chain of 2017, and only the 

material composition of these specific PET bottles was included to the model as additional data [3]. 

The used composition of PET bottles in the deposit-refund system was 92 ± 2% PET, 2 ± 2% PP, 6 ± 

2% PE and a small amount of paper (0 ± 1%) [28].  

The recycling of B2B PPW is not yet studied in detail, and thus only general data was available. 

In 2017, the collected amount of other PI-PPW, besides the PET bottles from the deposit-refund 

system, was 91 Gg [49]. The collection and sorting of homogeneous PI-PPW is typically a profitable 

business activity and doesn’t require subsidies or funds of an extended producer responsibility 

scheme (EPR), whereas the heterogeneous PI-PPW do need additional funding, but the Dutch EPR 

scheme operator doesn’t provide these. Since, the Dutch EPR scheme operator reports that in the 

Netherlands, in 2017, 91 kton PI-PPW was collected it is assumed that this was homogeneous B2B 

PPW material, such as PE pallet wrap film, jerry cans, crates and intermediate bulk containers (IBCs). 

The precise amounts and material compositions of these packages are unknown, but in order for their 

recycling to be profitable, they need to be fairly pure. This lack of data resulted in a more general 

modelling approach, with the estimation that 10 to 15% of the collected material was lost during 

mechanical recycling. These losses include moisture and dirt and the removal of non-targeted 

materials. Due to the lack of data, the average polymer purity cannot be calculated in detail for this 

sub-system. However, the nature of this material suggests that this material is very pure, and the 

polymer purity is therefore estimated to be 99%. The plastic packages that are discarded at 

companies, institutions, railway stations, offices, etc., (named ‘other PI-PPW’) were too 

heterogeneous for profitable recycling and therefore not collected and recycled in 2017. 

Appendix A.3. Design for Recycling  

The design for recycling measures was rationalised per packaging type. Several packaging types 

were eliminated altogether and replaced by alternative packaging types, these are listed in Table A1. 

Packaging types were eliminated in case they hinder the sorting and recycling of targeted plastic 

packages or in case their main polymer was a non-targeted polymer. The eliminated packaging types 

were replaced with alternative packaging types that could fulfil all the performance criteria (water 

vapour & gas permeability, mechanical properties, optical properties, food safety, thermal stability, 

etc.) and simultaneously fulfil all the requirements for sorting and recycling facilities. The packaging 

design of the continued packaging types was improved as is explained in Table A2. 

Table A1. The design changes that relate to eliminated packaging types and the packaging types for 

which they are replaced, including explanations. 

Eliminated 

Packaging Type 
Replacement Explanation 

PET bottle 

coloured ≤ 0.5 

litre 

PET bottle clear ≤ 0.5 litre 
Coloured PET bottles could be replaced by 

transparent PET bottles. 

PET bottle 

coloured > 0.5 

litre 

PET bottle clear > 0.5 litre  

PS beverage 

bottles 
PET bottle clear ≤ 0.5 litre 

Mainly small bottles, these could be 

replaced by transparent PET bottles. 
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PS thermoforms 

& rigids 
PP thermoforms & rigids  

Mainly yoghurt pots, creme fraiche pots, 

whipping cream pots, cookie trays. Based 

on the form of these packages it would 

make sense to replace these with PP.  

PVC 

thermoforms & 

rigids 

PET thermoforms & rigids 
Mainly transparent blister packages. These 

can best be replaced with PET.   

PET flexible 

packages > A4 
PE flexible packages > A4 

PET film packages are fairly uncommon, 

these packaging types can be replaced by 

PE film.   

PET flexible 

packages < A4 
PE flexible packages < A4  

PS flexible 

packages < A4 
PP flexible packages < A4 

PS film packages are fairly uncommon, 

these packaging types can be replaced by 

PP film for transparency and gloss.   

PVC flexible 

packages > A4 
PE flexible packages > A4 

PVC film packages are used for their 

puncture resistance and transparency. They 

can be replaced by PE film, but the 

puncture resistance and transparency will 

be less. PVC stretch wrap is used for 

packaging sprouts, perforated PE film can 

be used for these packages as well. 

Moreover, these packages might be 

replaced by alternative packaging concepts. 

PVC flexible 

packages < A4 
PE flexible packages < A4  

Rigid packages 

made from non-

NIR identifiable 

plastics  

PET, PE, PP thermoforms & 

rigids in ratio of original 

market share 

The packages are made of the same 

material, but are either coloured in a 

different colour or coloured black with a 

detectable black colourant. 

Flexible packages 

made from non-

NIR identifiable 

plastics > A4 

PE flexible packages > A4  

Flexible packages 

made from non-

NIR identifiable 

plastics < A4 

PE flexible packages < A4  

Misc. plastics 

(PC, PLA, etc.) 

50% PE flexible packages < A4 

50% PET, PE, PP thermoforms 

& rigids in ratio of original 

market share 

These materials could be used in rigid and 

in flexible packaging. The ratio in which 

they are present is unknown, hence they 

are equally divided over both categories.  

Laminated 

flexible packages 

and blisters 

Partly replaced: 

10% PE flexible packages < A4 

10% PE thermoforms & rigids 

10% other packages concepts, 

which will be collected via 

other collection schemes 

(paper, metal, etc.) and are 

therefore deleted from the 

model.  

Some laminated films (such as pouches) can 

be replaced by simple PE film.  

 

Chewing gum blisters etc. could be 

replaced by PE thermoforms & rigids. 

 

Some laminated can be replaced by 

alternative packaging concepts, e.g., 

beverage carton, cans, etc. such as soup 

pouches. 
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70% of the laminated flexible 

packages and blisters are 

considered to be 

environmentally beneficial or 

could not be replaced due to 

legislation. These are kept in 

the model as laminates.  

 

Some laminates have a clear added 

environmental benefits: good product 

protection (less food waste) and lightweight 

packages. This should be considered in the 

choice to replace these packages. Therefore, 

not all laminates can and should be 

replaced, unless alternative packaging 

solutions are developed. Moreover, PVC 

drug blisters are registered as packaging 

material for specific drugs and changing 

them would require a new registration 

procedure.   

 

In the future even more laminated films 

might be replaced by mono-material films 

due to other packaging strategies, such as 

the use of anti-oxidants and shortening the 

shelf life of products.  

EPS trays  PET thermoforms & rigids 

Mainly meat trays. These packages are 

already banned in the Netherlands so are 

no longer common and could be replaced 

by PET trays.  

EPS blocks Deleted from the PPW stream   

Likely to be replaced by pressed carton 

board, folding board or other new 

materials, and collected via dedicated 

systems. In case the EPS blocks cannot be 

replaced by other materials with the same 

mechanical buffering characteristics, they 

should be collected via a separate collection 

system. So deleted from the PPW stream   

Silicone sealant 

cartridges (Rigid 

plastic tubes 

with silicone 

paste) 

These packages are not 

replaced, but 100% collected 

via the municipal solid waste.  

These packages are considered 

contaminants due to their product content. 

Therefore, sorting facilities will make sure 

that these packages are not present in the 

sorted products by taking them out 

manually. For modelling purposes, these 

packages are therefore collected via the 

municipal solid waste and not recovered.  

Table A2. Packaging composition of the continued packaging types, including an explanation of the 

chosen composition 1,2. 

Continued 

Packaging Type 

Material 

Composition 
Explanation 

PET bottle clear ≤ 

0.5 litre 

85% PET 

2% PP   

13% PE 

PET body with a PE cap and a PP label.  

This material choice will result in mono-material by-

products: the wind-sifted fraction will consist of PP and 

the sink-float separated fraction will consist of PE. 

Material ratios are based on average packaging designs.  

PET bottle clear > 

0.5 litre 

91% PET 

2% PP   
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7% PE 

PE beverage 

bottles 

2% PP   

98% PE 
PE body, with a PP label and a PE cap. 

PP beverage 

bottles 

85% PP   

15% PE 
PP body with a PP label and a PE cap. 3 

PET non-beverage 

bottles 

83% PET 

2% PP   

15% PE 

Same as PET bottle clear > 0.5 litre, with a little heavier 

cap based on average packaging designs.  

PE non-beverage 

bottles 

2% PP   

98% PE 
Same as PE beverage bottles. 

PP non-beverage 

bottles 

85% PP   

15% PE 
Same as PP beverage bottles. 

PET thermoforms 

& rigids 
100% PET 

Mono-PET tray with PET based top-lid. If a sealing agent 

is needed, this should be water soluble in the mechanical 

recycling process.4 

PE thermoforms & 

rigids 

2% PP  

98% PE 

PE body with only a PP label.  

 

PP thermoforms & 

rigids 
100% PP PP body with PP in mould label 

Carriage bags (PE) 

> A4 
100% PE film 

No adhesive labels, glued on labels, etc. Only film 

material, with prints directly on the film.  

Carriage bags (PE) 

< A4 
100% PE film  

PE flexible 

packages > A4 
100% PE film  

PE flexible 

packages < A4 
100% PE film  

PP flexible 

packages > A4 
100% PP film  

PP flexible 

packages < A4 
100% PP film  

Laminated flexible 

packages and 

blisters 

Not changed.  Same as in original model [3]. 

1 This table is focused on the material composition of the packaging components. There are more 

design for recycling guidelines that can be followed. An example is the use of sleeves and large labels 

that should be avoided as they could hamper the material recognition in (near-infrared) NIR sorting. 
2 The use of inks, glues and other minor packaging components are outside the scope of the model, 

and therefore not defined in the table. However, in design for recycling these should be considered 

as well. It is advised to use inks that do not bleed, and that are not toxic or hazardous. 3 The PP bottles 

were modelled with PP labels and PE caps. It would also be possible to use PP caps. In that case, the 

whole bottle would be made of one polymer type. However, these PP materials would have to be 

made of different grades with different tacticity and MFI values. Mixing grades will result in a more 

average PP recycled product [50]. We choose to model the caps to be made of PE. 4 There are several 

types of mono-PET trays on the market. The clamshells and top-sealed trays for fruits, vegetables and 

nuts are true mono-A-PET systems. However the current so-called “mono-PET meat trays” have a PE 

sealing layer on the flange [30]. This layer is needed to seal the top-lid in a reliable and fast manner 

on the tray. Hence, the current mono-PET meat trays introduce a small amount of PE to the PET 

materials, which results in hazy light grey rPET. Furthermore, the applied top-films are either 

composed of PET-PE, PET-PA-PE or PET-EVOH-PE and a hence also a source of polymeric 

contaminants [30]. In an optimal circular PPW recycling value chain, all PET trays are first 
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mechanically recycled and subsequently de-polymerised, purified and re-polymerised to obtain food-

grade PET resins. 

Appendix A.4. Equations to Calculate the Separately Collected Amount of Materials 

The amount of collected packages per packaging type (Mcoll.pack.type) is calculated by multiplying 

the discarded amount of these packages by the households (Mdisc.pack.type) with the collection fate of 

these individual packaging types in a circular PPW recycling value chain (CFpack.type.circular), see 

Equation (A3). The collection fate of individual packaging types in a circular PPW recycling value 

chain is calculated using Equation (A4), with a net collection rate in a circular PPW recycling value 

chain (CRnet circular) of 70% multiplied with the collection fate of that individual packaging type in 2017 

(CFpack type 2017) and divided by the average collection fate in 2017 (CFaverage 2017). 

Mcoll.pack.type = Mdisc.pack.type x CFpack.type.circular (A3) 

CFpack.type.circular = CRnet circular x CF pack.type.2017/CFaverage 2017 (A4) 

The amount of co-collected materials was modelled proportionally to the amount of plastic 

packaging waste, as explained in the paper. As an example, the calculation method of the co-collected 

amount of beverage cartons (MBC.circular) is shown in Equation (A5). It is calculated by multiplying the 

amount of co-collected beverage cartons in 2017 (MBC 2017) with the amount of collected plastic 

packaging waste in a fully circular value chain (MPPW circular) divided by the amount of plastic 

packaging waste in 2017 (MPPW 2017). The co-collected amounts of non-packaging plastics and residual 

waste have only been increased halve compared to the increase in collected PPW as explained in 

Section 2.2.2. 

MBC.circular = MBC 2017 x MPPW.circular/MPPW 2017 (A5) 

Appendix A.5. Sorting Process 

Appendix A.5.1. Maximal Technical Feasible Sorting Fates 

The sorting fates of all plastic packaging types were adjusted to the maximal technical feasible 

amounts in the mono-material sorted products (PET bottles, PE, PP), see Table A3. It was estimated 

that the near-infrared (NIR) sorting technology has a maximum efficiency of 90%. Furthermore, the 

highest previous recorded sorting fate for a rigid plastic package was 91% for small PET bottles [51] 

(Table L). Hence, the maximum feasible sorting fate for PET, PE and PP rigid packages were 

estimated to be 90%. The sorting fates of the flexible packaging are based on the efficiency of the wind 

sifters and ballistic sorters. We estimated the maximum feasible sorting fate to be 80% for flexible 

packages larger than A4 and to be 50% for flexible packages smaller than A4. Hitherto the highest 

recorded sorting fate for flexible packages was 58% for PE carriage bags [3,51] (Table L) and improved 

technologies should be able to increase this sorting fate to 80%. The sorting fate of laminated film 

packages was also estimated to be 50%, as these packages are mainly smaller than A4. 

Table A3. Sorting fates of the packaging types to the targeted sorted products in an optimal PPW 

recycling value chain (only relates to the sorting of separately collected PPW). 

Packaging Type 
Targeted Sorted 

Product 

Sorting Fate to Targeted 

Sorted Product [%] 

PET bottle clear ≤ 0.5 litre PET bottles 90 

PET bottle clear > 0.5 litre PET bottles 90 

PE beverage bottles PE rigids 90 

PP beverage bottles PP rigids 90 

PET non-beverage bottles PET bottles 90 

PE non-beverage bottles PE rigids 90 
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PP non-beverage bottles PP rigids 90 

PET thermoforms & rigids PET trays 90 

PE thermoforms & rigids PE rigids 90 

PP thermoforms & rigids PP rigids 90 

Carriage bags (PE) > A4 Film 80 

Carriage bags (PE) < A4 Film 50 

PE flexible packages > A4 Film 80 

PE flexible packages < A4 Film 50 

PP flexible packages > A4 Film 80 

PP flexible packages < A4 Film 50 

Laminated flexible packages and blisters Film 50 

The recovery and sorting process of PPW in MSW was also improved by increasing the sorting 

fates of the individual packages (Table A4). The recovery and sorting of PPW from MSW is a two-

step process that is modelled with one sorting fate. The sorting fate is, therefore, lower than the 

sorting fate for the sorting of separately collected packages. The sorting fate of PET, PE and PP rigid 

packages estimated to be 70%. The sorting fate of PE and PP film packages estimated to be 45% for 

both packages >A4 and <A4. The sorting fate of laminated film packages was also estimated to be 

45%. Again the previous maximum recorded sorting fates [51] (Table M) were used substantiate the 

selected values. 

Table A4. Sorting fates of the packaging types to the targeted sorted products in an optimal PPW 

recycling value chain (these fates relate to both the mechanical recovery from MSW and the 

subsequent sorting). 

Packaging Type 
Targeted Sorted 

Product 

Sorting Fate to Targeted Sorted 

Product [%] 

PET bottle clear ≤ 0.5 litre PET bottles 70 

PET bottle clear > 0.5 litre PET bottles 70 

PE beverage bottles PE rigids 70 

PP beverage bottles PP rigids 70 

PET non-beverage bottles PET bottles 70 

PE non-beverage bottles PE rigids 70 

PP non-beverage bottles PP rigids 70 

PET thermoforms & rigids PET trays 70 

PE thermoforms & rigids PE rigids 70 

PP thermoforms & rigids PP rigids 70 

Carriage bags (PE) > A4 Film 45 

Carriage bags (PE) < A4 Film 45 

PE flexible packages > A4 Film 45 

PE flexible packages < A4 Film 45 

PP flexible packages > A4 Film 45 

PP flexible packages < A4 Film 45 

Laminated flexible packages and blisters Film 45 

Appendix A.5.2. Sorting Fates of the Additional Film Sorting Process 

The additional sorting process for flexible packages is performed with NIR-sorting technology. 

Hence, the sorting fates were estimated based on the maximal technical feasible efficiencies of this 

technology (Table A5). The maximal efficiency of this technology is estimated to be 90% for the 

targeted materials. Therefore, the sorting fate of PE flexible objects to the PE sorted product and of 

the PP flexible objects to the PP sorted products was estimated to be 90%. The sorting fates of non-
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targeted materials towards the PE-film and PP-film sorted products were estimated to be 2%. The 

remaining material was added to the Mix sorted product.  

Two scenarios were calculated, as described in the paper: 

• Scenario 1. Three sorted products are produced: PE film, PP film and Mix.  

• Scenario 2. Two sorted products are produced: PE film and Mix (which included the PP flexible 

packages).  

Table A5. Sorting fates of the additional sorting process for flexible packages in an optimal PPW 

recycling value chain. 

Packaging Type 
Sorting Fate to 

PE Film [%] 

Sorting Fate to 

PP Film [%] 

Sorting Fate 

to Mix [%] 

PET bottle clear ≤ 0.5 litre 2 2 96 

PET bottle clear > 0.5 litre 2 2 96 

PE beverage bottles 90 2 8 

PP beverage bottles 2 90 8 

PET non-beverage bottles 2 2 96 

PE non-beverage bottles 90 2 8 

PP non-beverage bottles 2 90 8 

PET thermoforms & rigids 2 2 96 

PE thermoforms & rigids 90 2 8 

PP thermoforms & rigids 2 90 8 

Carriage bags (PE) > A4 90 2 8 

Carriage bags (PE) < A4 90 2 8 

PE flexible packages > A4 90 2 8 

PE flexible packages < A4 90 2 8 

PP flexible packages > A4 2 90 8 

PP flexible packages < A4 2 90 8 

Laminated flexible packages and blisters 25 25 75 

PET non-packages 2 2 96 

PE rigid non-packages 90 2 8 

PE film non-packages 90 2 8 

PP non-packages 2 90 8 

PVC non-packages 2 2 96 

PS non-packages 2 2 96 

non-NIR identifiable non-packages 2 2 96 

Beverage cartons 2 2 96 

Metals 2 2 96 

Organics & undefined 2 2 96 

Textiles 2 2 96 

Paper & cardboard 2 2 96 

Glass 2 2 96 

Appendix A.6. Deposit Refund on Small PET Bottles  

In this study, the inclusion of small (≤0.5 L) PET bottles in the deposit-refund system was 

modelled as a separate scenario. Not all PET bottles are included in the deposit-refund system, for 

instance, juice bottles are excluded from this system. We assumed that the same percentage of PET 

bottles ≤0.5 L were added to the deposit-refund system as the PET bottles >0.5 L in 2017. This 

percentage was estimated to be 80%, which was based on the division in 2017 of about 80% PET 

bottles >0.5 L in the deposit-refund system and 20% in the PC-PWW recycling system.  

Appendix A.7. Other PI-PPW  
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The amount of ‘other PI-PPW’ was estimated to be 60 net kton, which equals the difference 

between the total amount of plastic packaging material on the market, and the amounts of plastic 

packaging materials that are collected via the other collection routes (PC-PPW, deposit-refund system 

and B2B PI-PPW). The collection yield of the ‘other PI-PPW’ was estimated to be 50%. The sorting 

process was estimated to have the same efficiency as the sorting process of PC-PPW, which was 97% 

for the plastic packaging types to the plastic sorted products (PET bottles, PE, PP, PET trays, Film 

and Mix). The mechanical recycling yield was also estimated to be same as for PC-PPW (88%). The 

mechanical recycling yield was calculated by dividing the amount of produced washed milled goods 

by the net amount of plastic packaging in the sorted products. 

Appendix A.8. Rationale of the Classification 

Making a neat classification for recycled plastics is extremely challenging, as requirements for 

the polymers are often very specific to a given product or even a company-specific execution of it. 

Nonetheless, we have attempted a more general classification. Terminology implying an assessment 

of value is purposefully avoided; the open-loop application does not automatically imply 

‘downcycling’ and even the bulky applications like street furniture have their sustainable merits, as 

these are very long-lasting products, often having a product life of several decades, whereas the 

packaging they originate from has a shelf life of months.  

The classification made is based on technical requirements and quality of the recycled goods and 

does not take legislative aspects into account, as these are subject to rapid evolution. Currently, food-

grade recycling is almost exclusively authorized in the EU for bottle PET, but it is expected that 

similar authorizations will follow for PP, HDPE and LDPE [8]. 

As input streams to the classification, we have not considered PET trays, as they are currently 

not recycled. Likewise, we have not considered multilayer products, as all current sorting systems 

send these to the residue (for incineration or landfill) [52]. All of this may change in future scenario’s.  

Appendix A.8.1. The Different Polymer Processing Options 

Different types of polymer products are manufactured through different processes, which in 

turn have different requirements in terms of polymer flow.  

For PO this is industrially summarized by MFI (g/10 min), a simply measured property that is 

inverse to the viscosity (= the resistance to flow): low MFI values typically mean high viscosity, high 

melt strength and low flow; High MFI values mean low viscosity, low melt strength and high flow 

[53,54]. Injection moulding requires high flows, to quickly fill all cavities in the mould. Extrusion 

blow moulding (of HDPE or PP bottles) requires an average MFI, as the polymer must flow well 

enough to be blown up against the mould interior, but must also have sufficient melt strength to keep 

structural integrity during the melt-based forming step. The latter is also valid for sheet or pipe 

extrusion, which requires low MFI values as the extruded melt must support its own weight for a 

brief while. Materials for film blowing are in between extrusion and extrusion blow moulding: they 

must be stretched thinner than in bottle production, but they still need to support the integrity of the 

blown bubble. The bulky products listed for NF-SC are manufactured either through extrusion or the 

related technique of intrusion. These are slow processes, which make them somewhat forgiving 

towards the upper limit for MFI values [24]. 

PET bottles are first injection-moulded as a pre-form and then stretch blow moulded into the 

final form. PET trays are first extruded as sheets and then thermoformed. In PET qualities, a 

classification based on intrinsic viscosity (IV) is generally used, rather than MFI. IV is a measure for 

how long it takes the dissolved polymer to dilute through a capillary, compared to the pure solvent. 

As such, IV is a dimensionless value and equivalent to the molecular weight of the polymer. High IV 

values represent a longer polymer chain and as such a higher quality PET, which is more expensive 

to manufacture, as it takes more time in the post-condensation stage.  

Typical values for MFI and IV limits are given in Table 1; they are based on literature and 

professional exchanges with industry. MFI is characterized by a temperature and weight of testing. 
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The values used in Table 1 are the ones at 190 °C, 5 kg for PE and MPO and at 230 °C, 5kg for the 

higher-melting PP. The recorded MFI ranges will appear higher for LDPE than HDPE. This is because 

the measurement temperature is further above the melt temperature for LDPE, causing it to flow 

better at the same temperature. The 190 °C is the universal test temperature, this does not impose 

such temperatures on the process itself, even if LDPE’s inherent strain hardening would allow it. 

Indeed, LDPE film can be manufactured at lower temperatures. 

Do be aware that these are target values which are used as rules of thumb. With adapting 

processing conditions such as temperatures and pressures, it is definitely possible to also process 

materials outside of these specifications.  

Appendix A.8.2. Polymer Degradation and Mitigating Measures 

Mechanical recycling of plastics implies an extrusion step, for the regranulation of the material. 

During this thermomechanical loading, the polymers will degrade to a certain degree (dependent on 

processing conditions, remaining stabilizers and sensitivity of the polymer to chain scission) [45]. 

This results in a lower viscosity. In practice, this translates to a higher MFI for PO or a lower IV for 

PET, which may change the polymer’s suitability to a certain processing technique. We have elected 

to express the acceptable degradation per class in terms of these practical processing-related values. 

Under certain circumstances, it is also possible for the viscosity of HDPE to increase rather than 

decrease, due to crosslinking [55]. However, under typical recycling circumstances, this is not a 

prevalent occurrence and we have chosen to disregard it for the elegance of the classification.  

Do note that it is possible to mitigate or prevent this degradation during the recycling process. 

In fact, solid-state polycondensation of PET is common in most PET recycling processes [9,10], as is 

the addition of stabilizers to PO.  

Appendix A.8.3. Contamination Levels 

The effect of contaminations on recycled plastics is manifold. On a practical level, we 

differentiate between non-polymer contaminants (like wood, paper, dust, etc.) and contamination by 

polymers other than the target polymer [56].  

Non-polymer contaminants will not melt during processing; the severity of their effect is 

dependent on the process used. Film blowing, for example, is extremely sensitive to non-melting 

contaminants, which will cause a tear in the fine film bubble [57]. Extrusion of bulky products on the 

other hand is fairly forgiving to any type of contamination, due to the large gates and bulky products 

themselves.  

Also during the use phase of the product, non-polymer contaminants will reduce quality, as they 

are typically stress concentrators and will lower the functional mechanical properties [58].  

To reduce the non-polymer contaminants as much as possible, a melt filtration step is typically 

used during the regranulation of the recycled plastics [59]. Table 1 includes threshold values for the 

mesh size of such melt filters. These are process dependent rather than polymer dependent. 

Polymeric contaminants are further subdivided in contamination by ‘similar’ polymers 

(polyolefins in one another) and others. The latter has a more detrimental effect than the former. 

Contamination by other polymers can affect both the processability and the properties of the final 

product. Polymers do not mix in the melt phase, which will always lead to phase separation upon 

solidification [60], causing a complex phase morphology that is typically less ductile and less strong. 

This effect is typically more pronounced for chemically dissimilar polymers. Polymers with a 

significantly higher melt temperature than the target polymer will act similar to non-polymer 

contaminants, seeing as how they will not melt.  

Appendix B. Additional Results 

Appendix B.1. Amount and Polymer Purity of Recycled Plastic from an Optimal PPW Recycling Value 

Chain 
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The net packaging recycling rate is calculated based on the mass of the plastic packaging 

materials on the market and the amount of recycled plastic packaging (Equation (A1)). The number 

of recycled plastics from the PPW recycling value chain can be expressed in two ways. Firstly, the 

total amount of recycled plastics resulted from the PPW recycling value chain that also includes non-

packaging plastic contributions. Secondly, the number of packaging plastics that end up in the 

recycled plastics from the PPW recycling value chain. The latter is used to calculate the net packaging 

recycling rate. This is in line with the calculation rules for the recycling targets set by the European 

and Dutch government [61,62].  

The total amount of plastic packages that were put on the market in 2017 was 512 kton [48]. Some 

plastic packaging types were replaced by non-plastic packages in the model of the circular PPW 

recycling value chain (Appendix A.3, Table A1). The total amount of plastic packaging put on the 

market in a circular PPW recycling value chain was therefore estimated to be 512 kton minus the 

amount of replaced packaging types (3 kton). The total amount of plastic packaging waste for the PI-

PWW recycling value chain was calculated by the difference between the total amount of plastic 

packaging put on the market and the amount of plastic packaging waste collected via the PC-PWW 

recycling scheme. Changes in the PC-PPW recycling value chain can thus affect the net packaging 

recycling rate of the PI-PPW recycling value chain. 

The resulting recycled plastics (washed milled goods, WMG) and their polymeric purity of 2017 

are listed in Table A6 and for the optimal PPW recycling value chain in Table A7. The amount of 

WMG is expressed as the total amount of product, including non-packaging plastics and other 

materials in the WMG. Additionally, the amount of packaging material in the WMG is calculated, to 

enable the calculation of the net packaging recycling rate, as described above. The polymeric purity 

is the percentage of targeted material in the WMG. The target material of the recycled plastic named 

“PO-mix” is PE and PP. Next to the polymeric purity, also the amount of black & other plastics and 

laminates are provided in Table A7, as this category could also include targeted materials. The 

extended composition of the recycled plastics in an optimal value chain is given in Table A8. 

Table A6. The amounts of washed milled goods and their polymeric purity in 2017. 

Type of PPW 
Amount of 

WMG [Gg] 

Amount of 

Packaging 

Material in 

WMG 

[Gg] 

Polymeric 

Purity of 

WMG -Target 

Material(s) 

[%] 

Black & 

Other 

Plastics and 

Laminates 

Included. 

[%] 

Quality 

Classification 

PC PET bottles 12.5 12.4 98.8 0.1 F-NC 

PC PE rigid 13.1 12.8 92.6 0.3 NF-SC 

PC PP rigid 14.9 12.9 92.0 2.0 NF-SC 

PC PE film 23.9 18.3 82.0 5.6 NF-SC 

PC Mix (PO 

mix) 
38.9 33.9 87.7 9.6 NF-SC 

PC PET trays NA NA NA   

PC PET bottles 

by-product 

(PO mix) 

1.6 1.6 91.7 0.7 NF-SC 

PC film by-

product 

(scenario 2) 

(PO mix) 

NA NA NA   

PI PET bottles 

deposit-refund 

(DR) 

19.2 19.2 99.9  F-NC 
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PI PET bottles 

DR by-product 

(PO mix) 

1.9 1.9 90.7  NF-SC 

PI B2B 79.9 79.9 99  NF-LC 

Other PI NA NA NA   

Table A7. The amounts of washed milled goods, amount of packaging materials in the washed milled 

goods, their polymeric purity in an optimal circular PPW recycling value chain and quality 

classification. 

Type of PPW 
Amount of 

WMG [Gg] 

Amount of 

Packaging 

Material in 

WMG 

[Gg] 

Polymeric 

Purity of 

WMG -Target 

Material(s) 

[%] 

Black & 

Other 

Plastics and 

Laminates 

Included. 

[%] 

Quality 

Classification 

PC PET bottles 23.3 23.3 99.7 0.03 F-NC 

PC PE rigid 26.4 26.1 98.1 0.2 NF-LC 

PC PP rigid 49.3 47.5 97.7 0.3 NF-LC 

PC PE film 49.9 45.7 98.7 1.0 NF-LC 

PC Mix (PO 

mix) 
32.1 27.8 93.4 5.5 NF-SC 

PC PET trays 51.4 51.3 99.8 0.1 F-NC 

PC PET bottles 

by-product 

(PO mix) 

2.8 2.8 92.3 0.3 NF-SC 

PC film by-

product 

(scenario 2) 

(PO mix) 

16.0 15.4 90.9 9.1 NF-SC 

PI PET bottles 

deposit-refund 

(DR) 

19.2 19.2 99.9  F-NC 

PI PET bottles 

DR by-product 

(PO mix) 

1.9 1.9 90.7  NF-SC 

PI B2B 79.9 79.9 99 *  NF-LC 

Other PI 25.5 25.5 97 *  NF-LC 

*: estimation. 
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Table A8. The composition of the washed milled goods and their applicability in an optimal circular PPW recycling value chain. 

Type of PPW 
PET  

[%] 

PP 

[%] 

PE 

[%] 

PS 

[%] 

PVC 

[%] 

Paper 

[%] 

Metal 

[%] 

Glass 

[%] 

Other 

Polymers, 

incl. Black 

[%] 

Undefined, 

Residue, 

Textiles, etc. 

[%] 

Applicability 

Classification  

[F-NC, NF-LC, 

NF-SC, NF-HC] 

 

PC PET bottles 99.7 0.05 0.1 0.05 0.0 0.0 0.0 0.0 0.0 0.1 F-NC 

PC PE rigid 0.0 1.7 98.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 NF-LC 

PC PP rigid 0.0 97.7 2.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 NF-LC 

PC PE film 0.0 0.3 98.7 0.0 0.0 0.0 0.0 0.0 1.0 0.0 NF-LC 

PC Mix (PO mix) 0.2 27.3 66.1 0.5 0.3 0.0 0.0 0.0 5.6 0.0 NF-SC 

PC PET trays 99.8 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 F-NC 

PC PET bottles by-product (PO mix) 7.4 13.5 78.7 0.1 0.0 0.0 0.0 0.0 0.3 0.0 NF-SC 

PC film by-product (scenario 2) (PO mix) 0.0 56.7 34.2 0.0 0.0 0.0 0.0 0.0 9.1 0.0 NF-SC 

PI PET bottles deposit-refund (DR) 99.9 0.0 0.1   0.0     F-NC 

PI PET bottles DR by-product (PO mix) 9.3 23.3 67.4   0.0     NF-SC 
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Appendix B.2. Autonomous Improvements in the Recycling Value Chain  

Two types of autonomous improvement options that can be implemented by individual groups 

of stakeholders are known to have the largest impact on the performance of the PC-PPW recycling 

value chain; design-for-recycling measures by the producers and improvements in the collection 

systems by municipalities [17]. These calculations have been repeated with the current model for PC-

PPW and the current set of two improvement measures (see Sections 2.2.1 and 2.2.2). Obviously, no 

changes were made in the PI-PPW recycling value chain, since we cannot model these changes, yet. 

The result of these calculations is given in Table A9. Maximising the collection rate of the PC-PPW 

by the municipalities would increase the net packaging plastic recycling from 26% to 45%, without 

affecting the polymeric purity of the recycled plastic. Full implementation of the design-for-recycling 

guidelines (as described in Appendix A.3) would increase the average polymeric purity of the post-

consumer recycled plastics from 91% to 95% and simultaneously improve the net packaging recycling 

rate from 26% to 33%. 

Table A9. Circular performance indicators of Dutch PPW recycling value chain after two independent 

sets of improvement measures have been executed by two different groups of stakeholders. 

CPIs 2017 

Maximised 

Packaging 

Collection Rate 

All Packages 

Designed for 

Recycling 

PC-PPW net packaging recycling rate 26% 45% 33% 

PI-PPW net packaging recycling rate 63% 63% 63% 

Total PPW net packaging recycling rate  38% 51% 42% 

PC-PPW average polymer purity 91% 91% 95% 

PI-PPW average polymer purity 97% 97% 97% 

Average polymer purity of all WMG from PPW 93% 93% 95% 

Appendix B.3. Value Chain Variations  

In Section 4.3, three different variations in the structure of the optimal circular value chain are 

discussed. The underlying modelling results of two of these structural variations are presented here, 

as the results of adding the small PET bottles to the DRS are discussed in the main text. 

The first structural variation deals with sorting the flexible packages. Two scenarios are 

discerned. In the first scenario, the flexible packages are NIR sorted into PE flexibles, PP flexibles and 

a by-product of mostly laminated flexibles and missorted PE and PP flexibles. In the second scenario, 

the flexible packages are NIR sorted into a PE flexible and a PO-mix by-product. The results of both 

scenarios are given in Table A10. The consequences of adding this PO-mix by-product to the existing 

PC-PPW Mix is given in Table A11. 

Table A10. Two scenarios for sorting flexible packages. 

 
Amount of 

WMG [Gg] 

Amount of Packaging 

Material in WMG 

[Gg] 

Polymeric Purity of 

WMG -Target 

Material(s) 

[%] 

Black & 

Other 

Plastics 

and 

Laminates 

Included. 

[%] 

Scenario 1 

PE film 49.9 45.7 98.7 1 

PP film 9.9 9.7 84.1 5 

Mix (PO mix) 6.1 5.7 84.0 16 
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Scenario 2 

PE film 49.9 45.7 98.7 1 

Mix (PO mix) 16.0 15.4 90.9 9 

Table A11. Polymeric purity of the PC-PPW Mix when the film sorting by-products from scenario 1 

and scenario 2 are added. 

Type of PPW 

Polymeric 

Purity of 

WMG - Target 

Material(s) 

[%] 

Black & Other 

Plastics and 

Laminates 

Included. 

[%] 

PC-PPW Mix (PO mix) 93.4 5.5 

PC-PPW Mix + By-product from film sorting (PO mix) 

(scenario 1) 
91.9 7.2 

PC-PPW Mix + By-product from film sorting (PO mix) 

(scenario 2) 
92.6 6.7 

The second structural aspect of the optimal circular value chain that is discussed in Section 4.3.2 

of the main text is the necessity of the sorted product mixed plastics. The concomitant sorting division 

is listed in Table A12. 

Table A12. Sorting division of the first sorting process of separately collected PC-PPW. 

Sorted Product (1st Sorting Process) 

Sorting Division, 

2017  

[%] 

Sorting Division, Optimal PPW 

Recycling Value Chain [%] 

PET bottles  5 7 

PET trays 7 12 

PE rigid 5 6 

PP rigid 7 12 

Film 10 17 

Mix  26 12 

Beverage Cartons 8 9 

Ferro metals 6 7 

Non-ferro metals 1 1 

Sorting residue 22 14 

Lost moisture and dirt 3 3 

Appendix B.4. Sensitivity Analysis 

The model was subjected to limited sensitivity analysis to understand the variation in results for 

one of the CPIs: the net packaging recycling rate. A sensitivity analysis with respect to the other CPI 

(polymeric purity) is less meaningful and more difficult to calculate since it relates strongly to the 

assumptions made of what the optimally designed packages are in terms of average material 

compositions. 

The net packaging recycling rate is influenced by multiple parameters, but the net packaging 

collection rate proved to be the most sensitive, other parameters such as the maximal sorting fates of 

flexible packages during sorting and mechanical recovery proved to influence the CPI to a lesser 

extent. The influence of the net packaging collection rate on the net packaging recycling rate is given 

in Table A13. The limit was set to 70% in the model and varied for the sensitivity analysis to 60%, 

80% and 90%. A 10% increase in the net collection rate of PC-PPW causes the total Dutch net 

packaging recycling rate to rise with 6%. The 70% limit for the net collection rate was based on empiric 

data of collection between 2012 and 2017 [17]. In case civilians are more encouraged to separate their 
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packaging wastes better and restrictions are dropped, then it is imaginable that the net collection rate 

can increase and as a consequence the total Dutch net packaging recycling rate. 

Table A13. Net packaging recycling rate for an optimal circular recycling value chain, with net 

packaging collection rate of 60, 70%, 80%, and 90%. 

CPIs 

Net 

Collection 

Rate = 60% 

Net 

Collection 

Rate = 70% 

(limit) 

 

Net 

Collection 

Rate = 80% 

Net 

Collection 

Rate = 90% 

PC-PPW net packaging recycling 

rate 

61% 69% 77% 86% 

PI-PPW net packaging recycling 

rate 

79% * 78% 78% 78% 

Total PPW net packaging recycling 

rate  

66% 72% 78% 83% 

* The total amount of plastic packaging waste for the PI-PWW recycling value chain was calculated 

by the difference between the total amount of plastic packaging put on the market and the amount of 

plastic packaging waste collected via the PC-PWW recycling scheme. Changes in the PC-PPW 

recycling value chain can thus slightly affect the net packaging recycling rate of the PI-PPW recycling 

value chain. 

The influence of two other factors on the net packaging recycling rate was studied in the 

sensitivity analysis: the maximal sorting fates of the flexible packages and of mechanical recovery 

and sorting of plastic packages from municipal solid waste. Both sorting fates were independently 

and simultaneously raised to assess their impact on the net packaging recycling rate (Table A14).  

Flexible packaging plastics are sorted the least efficient of all packaging types. This inefficiency 

relates to the relative inefficient separation processes of ballistic separation and wind sifting. 

Therefore, the maximal sorting fates of flexible packages in the optimal circular PPW recycling chain 

were estimated to be lower than the maximal sorting fates of the rigid packages in the model of the 

optimal circular PPW recycling value chain. The sorting fates for flexible packages are present in two 

parts of the model: in the part of the model that describes the sorting of separately collected packaging 

waste and in the part of the model that describes the mechanical recovery and sorting of plastic 

packages from municipal solid waste. The original limit for the sorting fate of flexible packages that 

were separately collected was 80% for large flexible packages and 50% for small flexible packages. In 

this sensitivity analysis, both were raised to 81%. The flexible packages will undergo NIR sorting 

twice in the optimal recycling chain. Since the maximum sorting fate is 90% for each sorting step, the 

maximum overall sorting fate for both steps will be 81%. The original limit for the combined sorting 

fate for flexible packages that are first mechanically recovered from MSW and subsequently sorted 

was 45%, which was raised to 70% for the sensitivity analysis. Obviously, this raised combined 

sorting fate is merely an approximation of what might be possible in optimised recovery and sorting 

facilities. Overall, the effect of these increased sorting fates causes a rise in the net packaging recycling 

rate of only 1%. This proves that optimising collection is the most important method to increase the 

net plastic packaging recycling rate and hence also reaching compliance with the recycling targets. 
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Table A14. Net packaging recycling rate of the optimal PPW recycling chain, with improved sorting 

fates for separately collected flexible packages and improved combined fates for mechanical recovery 

of MSW and sorting of flexible packages. 

CPIs Limit 

Improved 

Wind 

Sifting 

Higher Sorting 

Fates for 

Recovery from 

MSW 

Improved Wind Sifting + 

Higher Sorting Fates for 

Recovery from MSW 

PC-PPW net 

packaging recycling 

rate 

69% 71% 70% 72% 

PI-PPW net packaging 

recycling rate 
78% 79% * 79% * 79% * 

Total PPW net 

packaging recycling 

rate 

72% 73% 73% 74% 

* The total amount of plastic packaging waste for the PI-PWW recycling value chain was calculated 

by the difference between the total amount of plastic packaging put on the market and the amount of 

plastic packaging waste collected via the PC-PWW recycling scheme. Changes in the PC-PPW 

recycling value chain can thus slightly affect the net packaging recycling rate of the PI-PPW recycling 

value chain. 
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