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RESEARCH ARTICLE

Model-based optimized steering and focusing of local magnetic particle
concentrations for targeted drug delivery

Rikkert Van Durmea, Guillaume Crevecoeura,b, Luc Dupr�ea and Annelies Coenea,c

aDepartment of Electromechanical, Systems and Metal Engineering, Ghent University, Gent, Belgium; bEEDT Decision & Control, Core Lab
Flanders Make, Ghent, Belgium; cCancer Research Institute Ghent, Ghent, Belgium

ABSTRACT
Magnetic drug targeting (MDT) is an application in the field of targeted drug delivery in which mag-
netic (nano)particles act as drug carriers. The particles can be steered toward specific regions in the
human body by adapting the currents of external (electro)magnets. Accurate models of particle move-
ment and control algorithms for the electromagnet currents are two of the many requirements to
ensure effective drug targeting. In this work, a control approach for the currents is presented, based
on an underlying physical model that describes the dynamics of particles in a liquid in terms of their
concentration in each point in space. Using this model, the control algorithm determines the currents
generating the magnetic fields that maximize the particle concentration in spots of interest over a
period of time. Such an approach is computationally only feasible thanks to our innovative combin-
ation of model order reduction with the method of direct multiple shooting. Simulation results of an
in-vitro targeting setup demonstrated that a particle collection can be successfully guided toward the
targeted spot with limited dispersion through a surrounding liquid. As now present and future particle
behavior can be taken into account, and non-stationary surrounding liquids can be dealt with, a more
precise and flexible targeting is achieved compared to existing MDT methods. This proves that the
presented methodology can bring MDT closer to its clinical application. Moreover, the developed
model is compatible with state-of-the-art imaging methods, paving the way for theranostic platforms
that combine both therapy as well as diagnostics.
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1. Introduction

Targeted drug delivery is playing an increasingly important
role in the field of cancer and disease treatment. Its goal is
to specifically guide and release therapeutics toward a dis-
eased region in the human body. This leads to an improved
therapy efficacy while mitigating potential adverse effects
that occur when drugs are injected nonspecifically (Widder
et al., 1980; Bae & Park, 2011). Targeted drug delivery covers
a broad range of disciplines such as in-vivo biochemical and
physical drug release mechanisms, implantable systems,
nanocarrier applications, etc. In this field also the subject of
magnetic drug targeting (MDT) is researched, in which car-
riers in the nano- or micrometer size range are magnetically
responsive, allowing them to be non-invasively manipulated
or triggered by external magnets for all kinds of therapeutic
or diagnostic purposes (L€ubbe et al., 2001; Pankhurst et al.,
2003, 2009; Price et al., 2018; Liu et al., 2019; Mirza, 2020). By
coating these magnetic nano- (MNP) or microparticles with
chemotherapeutic agents, the treatment of tumorous tissue
is enabled. The particles’ small size makes it possible to reach
targets deep inside the body and get behind cellular and

tissue barriers. Furthermore, the particles’ magnetic response
is measurable by sensitive sensors so that they can be local-
ized with dedicated imaging methods such as magnetorelax-
ometry or magnetic particle imaging (Gleich & Weizenecker,
2005; Wiekhorst et al., 2012; Coene et al., 2017). Preclinical
MDT trials exploiting these advantageous properties have
been executed on small animals and humans to a limited
extent (L€ubbe et al., 1996; Chertok et al., 2011; Al-Jamal
et al., 2016), because a full clinical in-vivo application of MDT
is still subject to numerous open challenges, as stated by
Shapiro et al. (2015). One of those challenges is the deep tis-
sue targeting of single particles or particles distributed in a
fluid (ferrofluids), the latter being a more intricate task than
the former. Deep tissue targeting in this context means
bringing particles toward lesion sites through tissue and ana-
tomical barriers, and successively retaining or focusing them
locally to ensure effective therapy for a period of time. To
achieve this, there is a need for (1) suitable (biochemical)
preparation and selection of carriers to make them biologic-
ally compatible, (2) real-time imaging modalities to localize
carriers, (3) precise models apprehending in-vivo carrier
motion, and (4) dynamical control algorithms to activate
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external magnet systems (Shapiro et al., 2015). This work for-
mulates, implements and simulates a model-based control
algorithm to address the control-related challenge (4).

Models for MNP motion and retention in fluids and bio-
logical environments have been investigated extensively
(Grief & Richardson, 2005; Rotariu & Strachan, 2005; Furlani &
Ng, 2006; Cherry et al., 2010; Furlani, 2010; Nacev et al.,
2010; 2011; Tehrani et al., 2015; Kolitsi & Yiantsios, 2020). By
examining the forces and motion of a single particle in
liquids and Y-shaped channels under magnetic, fluidic, inter-
acting and other forces, insights are gained about the
parameters that affect it (Rotariu & Strachan, 2005; Furlani &
Ng, 2006; Cherry et al., 2010; Furlani, 2010; Tehrani et al.,
2015). Single particle force models however do not take into
account diffusion, blood convection, boundary layer forma-
tion, extravasation and other phenomena occurring when
multiple particles are distributed throughout vasculature net-
works and tissue (membranes). These different mechanisms
and stages of in-vivo particle transport have been addressed
in an integrated fashion in Refs. (Grief & Richardson, 2005;
Nacev et al., 2010, 2011; Kolitsi & Yiantsios, 2020). Rather
than single particles, concentrations or collections of particles
are located, via their spatial distribution. This procedure is
more involved and requires solving partial differential equa-
tions (PDE) such as the advection-diffusion equation with
appropriate boundary conditions for each environment. The
hereby significantly increased accuracy of the result comes at
the cost of extended simulation times. In our effort to
incorporate a model within a control algorithm, we need to
find a middle ground between model fidelity and computa-
tional execution time. Therefore an in-vitro two-dimensional
(2-D) experiment with uniform fluid characteristics and with-
out complex structures is simulated to serve as an in-silico
proof-of-concept of our control algorithm. We convert the
advection and diffusion dynamics of particles in a uniform
fluid to state-space equations in terms of square grid ele-
ments (called pixels, or voxels in 3-D, in agreement with MNP
imaging literature), each containing a certain particle concen-
tration. Not only does this allow for a fast evaluation of the
concentration distribution over a time interval, it also elabo-
rates on state-of-the-art MNP imaging modalities that resolve
the particle concentrations in pixels/voxels. To the authors’
knowledge this way of modeling the concentration dynamics
has not been reported before and we believe that together
with potential fast particle-imaging applications, it may fur-
ther enhance modeling and control of particle motion in-
vitro and in-vivo.

By Earnshaw’s theorem, it is impossible for static magnetic
fields to maintain magnetic dipoles in a stable stationary
equilibrium (Earnshaw, 1842), implying that small particles
cannot be focused in one spot merely by a constant mag-
netic field. This problem can be tackled in different ways, for
example by making the magnetic fields time-dependent. This
is where dynamical control algorithms come into play: by
monitoring the fields generated by (electro-)magnets based
on the location of particles in one time interval, decisions
can be made in order to manipulate the particles’ motion in
a next time interval by applying new electromagnet currents.

These decisions are based on the minimization of a so-called
cost function containing metrics of interest such as particle
movement time, energy consumption, particle spreading, etc.
Reported control strategies have treated the guiding or
steering of single particles or droplets (Probst et al., 2011;
Komaee & Shapiro, 2012; Khalil et al., 2016) and distributed
ferrofluids by means of electromagnets (Shapiro, 2009;
Komaee, 2017; Antil et al., 2018; Liu et al., 2020). An in-depth
review of many prior magnetic drug targeting solutions with
a focus on control systems for magnetic fluids was provided
by Nacev et al. in 2012 (Nacev et al., 2012). Regarding the
control of distributed ferrofluids, methods have been pro-
posed to concentrate particles at a certain point, either by
choosing or rotating magnetic fields until particles are
focused at the destination (Shapiro, 2009; Liu et al., 2020), or
by moving the ferrofluid from the initial to the final point
along a straight line (Nacev et al., 2012) or a chosen curve
(Komaee, 2017) while minimizing the spreading of the par-
ticles and dissipated energy. Most of these methods only
provide optimal results that are local in time, in the sense
that they optimize for the current distributions at that time
instant and do not account for future ferrofluid behavior,
making their control algorithms less accurate and efficient.
Komaee discussed a method to overcome this using optimal
control (Komaee, 2017). His cost function is formulated such
that the particle dispersion and the required movement time
be minimized, subject to the constraint that the center of
mass remains on a desired trajectory. Another optimization-
based approach was elaborated by Antil et al., who aimed at
moving a domain of particles from an initial to a desired
location by keeping the forces on particles in this domain
almost constant, thereby minimizing particle spreading (Antil
et al., 2018). We use the optimal control framework as well
to ensure optimality over a period of time, but do not
require a predefined trajectory between the beginning and
end point of the ferrofluid, which is not always available
beforehand or optimal. Not only can the spread of the par-
ticles be minimized as before, but now for the first time can
the concentration at the target location be maximized,
thanks to our voxel-based modeling and control. The result-
ing control method has a higher flexibility than existing
methods, since it allows the choice of targeted spots while
coping with space-dependent flow velocities of the sur-
rounding fluid, if present. This was accomplished with the
direct multiple shooting (DMS) formalism, one of the meth-
ods used in optimal control that lends itself excellently to
solving our problem (Diehl et al., 2006).

The computational time to execute the DMS algorithm
increases strongly with increasing numbers of grid points. To
maintain a certain level of accuracy in the concentration dis-
tribution and at the same time feasible computational costs,
the notion of model order reduction was introduced
(Schilders et al., 2008; Baumann, 2013). It transforms the
problem into a smaller sized one without significantly com-
promising the accuracy of a solution that would otherwise
require infeasibly large computation times. This reduced-
order method for boosting calculation speeds may further
pave the way toward real-time imaging/targeting platforms
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in which quick measurements help the targeting algorithm
to achieve its goal. This is to our knowledge the first time
DMS and model order reduction are introduced to the mag-
netic targeting problem.

The structure of this text is as follows. We first describe a
commonly employed 2-D targeting setup used in our simula-
tions. Then in Section 2.2, a dynamical model is developed
for the control strategy that takes into account the magnetic
and fluidic forces and the advection-diffusion equation. This
model is then discretized to obtain a state-space formulation
in terms of grid concentrations. Next, in Sections 2.3 and 2.4
the developed model is applied to set and solve the control
problem associated with guiding a collection of particles
toward a target location through the fluid medium. Finally, it
is shown in the Results section that the proposed method
provides efficient and accurate targeting performance while
being more flexible with target voxels, cost functions and
flow velocities than existing procedures.

2. Materials and methods

2.1. Targeting setup

A detailed review of magnet systems for targeted drug deliv-
ery was given by Liu et al. (2019). Many MDT setups consist
of multiple electromagnets (coils) surrounding the targeted
region. Electromagnets enable to readily increase or decrease
the magnetic field by altering the supply voltage. Since it is
the current that directly affects the magnetic field and gradi-
ent and hence the forces acting on the particle, the time
delay between voltage and current for a resistor-inductor
network and mutual inductance should be taken into
account. The voltage control is possible by means of digital-
to-analog converters connected to DC amplifiers that convert
a computer signal to the appropriate voltage level (Probst
et al., 2011). Furthermore, as will be discussed, the force on
magnetic particles is directed toward the point with the larg-
est magnetic field magnitude. Turning on a single magnet
thus makes the particles move toward the magnet since the
field is larger close to the magnetic source. Therefore it is
useful to put electromagnets on all sides of the sample.
Setups for the steering or guiding of magnetic particles in
two spatial dimensions (2-D) have been built and/or simu-
lated with 4 [26, 28] or 8 [29, 31] electromagnets in the tar-
geting plane. For particle movement in two spatial
dimensions, at least 4 electromagnets should be used, and
the more magnets, the more controllable the fields and gra-
dients and thus the movement get. Our presented approach
will be applied in simulation to a setup with realistic values
as a proof-of-concept of the methodology. Four coils mod-
eled as infinitely-thin circular wires with multiple turns are
placed symmetrically with their axes in the same plane
around a square sample of 8 cm � 8 cm with impermeable
boundaries (petri dish) containing a liquid and biocompatible
magnetite nanoparticles (Fe3O4 core, diameter of 400 nm,
saturation magnetization Ms ¼ 4:78 � 105 A/m). Such a setup
facilitates the validation of our model and control algorithm.
The impermeable walls allow to keep the liquid and particles
in one place. If flow rates are required, a tube and pump

system can be added, as reported in Radon et al. (2017). The
sample space is subdivided in identical square or cubic ele-
ments. These are called voxels throughout this work, as the
sample can be seen as one layer of 3-D cubes with each
cube containing a uniform concentration of particles. Since
this layer lies in the same plane as the coils, the resulting
force components directed out of this plane are negligible in
this setup and particle motion will only be in 2-D (i.e. the xy-
plane). Extension to 3-D is possible by adding more coils,
but is not treated in our current discussion. Each voxel car-
ries a certain amount of MNPs that is normalized and thus
indicated by a dimensionless number (instead of e.g. in mg/
ml), depicted schematically in Figure 1. As an illustration,
two coils are carrying a current and generate a magnetic
field by superposition.

In the next section, a model for the particle motion is
developed, based on which the dynamic control algo-
rithm operates.

2.2. Dynamical model

Based on a single magnetic particle’s equation of motion,
the dynamics of particle ensembles can be described. This is
done by combining the effect of diffusion and advection
with the forces acting on the particles.

Consider the forces on a single particle in a fluid (Gerber
et al., 1983; Cherry et al., 2010)

mp
dv
dt

¼ Fm þ FD þ FL þ Fg þ Fb þ Rþ d (1)

where mp is the particle’s mass, v the particle’s velocity, Fm
the magnetic force, FD the hydrodynamic drag force, FL the
hydrodynamic lift force, Fg the gravitational force, Fb the
buoyant force, R a random Brownian force, and d are particle
interaction forces.

For the magnetic force on a particle, the magnetic charge
model Fm ¼ ðm � rÞB is used (Boyer, 1988). Small magnetic
particles, in ranges from nanometers to hundreds of nano-
meters depending on the type of material, have a magnetic
behavior of a single domain and can as such be treated as
magnetic dipoles. This means that m ¼ VM, where M is the
magnetization and V is the particle core volume. The uniaxial
anisotropy of the particles generally causes their magnetiza-
tion to be along one preferred direction in the absence of
external magnetic fields, whereas it flips away toward the
external field direction when this external field is sufficiently
high (Kodama, 1999; Batlle & Labarta, 2002; Pankhurst et al.,
2003). Depending on the effective uniaxial anisotropy Keff ,
the behavior of the magnetization magnitude M ¼ jjMjj is
described by the commonly used Langevin function
LðxÞ ¼ cothðxÞ� 1

x ,

M Hð Þ ¼ MsL
l0MsVH
kBT

� �
(2)

or other functions such as M Hð Þ ¼ Mstanh
l0MsVH
kBT

� �
, where Ms

is the saturation magnetization of the particle material, kB is
the Boltzmann constant, T is the particle temperature, and H
is the magnitude of the externally applied magnetic field H
(Carrey et al., 2011). In this text, it is assumed that the single
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particle magnetic moment is aligned with the external field,
thus m ¼ gðHÞH, where the function g(x) is to be deter-
mined based on the magnetic behavior and physical proper-
ties and/or the function in Equation (2). Plugging this into
the magnetic charge model with r� H ¼ 0 (Amp�ere’s law)
and B ¼ l0H (Forbes et al., 2003; Grief & Richardson, 2005)

Fm ¼ m � rð ÞB ¼ l0 gðHÞH � rð ÞH ¼ l0g Hð Þ @H
@x

� �T
H

¼ l0
2
g Hð Þr H2ð Þ (3)

From this it is inferred that the force on the particle is
directed toward regions with a higher field magnitude. As
mentioned before, the sources of the magnetic field and gra-
dient are infinitely-thin current-carrying circular coils with
multiple turns. The field is calculated by transforming the
semi-analytical expressions from cylindrical coordinates to
cartesian coordinates (Smythe, 1967; Simpson et al., 2001;
Burke & Diamond, 2012). These expressions are in terms of
the complete elliptic integrals of the first and second kind
K(m) and E(m). In order to calculate the field gradient, we
used their derivatives dKðmÞ

dm ¼ � KðmÞ
2m � EðmÞ

2mðm�1Þ and dEðmÞ
dm ¼

EðmÞ�KðmÞ
2m and a coordinate transformation.
The hydrodynamic drag force is drawn from Stokes’ law

of viscous drag (Stokes, 1851; Pankhurst et al., 2003; Furlani
& Ng, 2006)

FD ¼ �6pgRpðv�vf Þ
where g is the dynamic viscosity of the surrounding fluid, Rp
is the hydrodynamic radius of the particle, vf is the velocity
of the surrounding fluid.

Numerical simulations conducted by Cherry et al. (2010)
point out that the effects of the random Brownian diffusive
force R and particle interactions d are minor and can be
neglected in the equation of motion. With particles in the
sub-micron size range and low flow rates, the gravitational,
buoyant, and lift force in Equation (1) are also negligible
against the hydrodynamic drag and magnetic forces. The

effect of particle inertia is omitted because of the particle’s
low mass and the relatively large drag, making the acceler-
ation period negligible (Roux, 1992). Hence the average vel-
ocity changes almost instantaneously with the magnetic
force, thus v ¼ f�1Fm þ vf where f ¼ 6pgRp is called the vis-
cous drag and its inverse the mobility. It is noted that except
for the particle interactions d, these force components can
still be added effortlessly to the model without a significant
increase in computational cost.

As already mentioned, biomedical targeting applications
usually consist of large numbers of particles distributed
throughout fluids. The continuity equation describes the
mass transport of the particles (Pedlosky, 2013)

@c
@t

þr � j ¼ S

where c is the particle concentration or the amount of par-
ticles per unit volume, j is the total flux of particles and S is
a volumetric source for c. S¼ 0 when no particles are added
to the system during the considered time interval. The flux
consists of a diffusive component jD and an advective com-
ponent jA, j ¼ jD þ jA: The effect of Brownian diffusion is
given by Fick’s law jD ¼ �Drc with D the diffusion coeffi-
cient (Fick, 1855). Advection of particles in the fluid is taken
into account in jA ¼ vc (Bejan, 2013). The result is the well-
known advection-diffusion equation (Gerber et al., 1983;
Takayasu et al., 1983; Grief & Richardson, 2005; Shapiro,
2009)

@c
@t

¼ r � Drcð Þ�r � vcð Þ (4)

This equation applied to magnetic particles in the human
body was discussed in more detail by Nacev et al. (2011). It
mentions other mechanisms contributing to or inhibiting
MNP movement. Firstly the Stokes drag force does not
include variations from wall effects, tissue and membranes.
Moreover, particle chaining and agglomeration in blood ves-
sels may influence the MNP behavior. Finally, in reality
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Brownian diffusion is not the only form of diffusion: blood
cells scattered in the plasma interact with nanoparticles and
increase the particles’ diffusion rate. This is referred to as
shear-induced diffusion (Wang & Keller, 1985; Grief &
Richardson, 2005). Inaccuracies in these parameters are
important sources of error in in-vivo models. Some of these
effects can still readily be added, others would unnecessarily
complicate the model with regards to the proof-of-concept
of our control methodology, discussed in the next section.

In order to find the spatial concentration distribution of
particles in a time interval, it is required to solve the PDE in
Equation (4) with known boundary values and initial values.
For a petri dish with a ferrofluid, the no-flux boundary condi-
tion n � ðjD þ jAÞ ¼ 0, where n represents the normal out-
wards to the domain at the edge @X, means that no particle
can cross the boundary and the total particle mass in the
domain X is constant. This corresponds to n � ðDrc� vcÞ ¼
0 (Komaee, 2017). This problem can be solved numerically
using finite elements or finite differencing techniques. By
approximating the sample space as a 2-D grid of voxels with
length Dx, each with a certain concentration ci, j ¼ cðxi, yjÞ ¼
cðx0 þ iDx, y0 þ jDxÞ, and applying @ci, j

@x ¼ ciþ1, j�ci�1, j
2Dx and @2ci, j

@x2 ¼
ciþ1, j�2ci, jþci�1, j

Dx2 in (4), we eventually obtain

c_¼ Ac (5)

with c the vector of concentrations of each voxel and A a
matrix encompassing magnetic and fluid dynamics. This
equation can be solved numerically using explicit or implicit
time integration methods. Depending on the spatial discret-
ization scheme, the solution may contain oscillations when
particle concentrations are large at domain boundaries for
small diffusion coefficients compared to the advection effect.
Methods to overcome these oscillations have been discussed
in prior research and can be adopted in our approach
(Nacev et al., 2011; Antil et al., 2018). Such high particle con-
centrations at the boundaries are circumvented by our con-
trol algorithm as it allows setting lower and upper bounds to
concentrations in voxels of choice (as explained in Section
2.3 and 3). We use a 30� 30 grid of voxels with equal length
Dx ¼ 0:08=30 � 2:7 mm for the spatial discretization and
the fourth-order Runge-Kutta method for the time integra-
tion of (5).

The advantage of finite-difference or finite-volume meth-
ods in the field of magnetic targeting is that the domain is
subdivided in voxels, which is the starting point of many
MNP imaging modalities. As these imaging procedures use
measurement data to reconstruct actual voxel concentra-
tions, this information could be transferred immediately to a
magnetic targeting routine to improve its performance. This
direct link between targeting and imaging has to our know-
ledge not been approached in that manner. On top of that,
our transformation of the problem to a state-space equation
is particularly useful in the realm of dynamic optimization,
which serves the steering and focusing of collections of par-
ticles at single locations. This is the topic of next section.

2.3. Dynamic optimization in a targeting problem

As discussed in the introduction, in magnetic drug targeting
one of the main goals is to use the magnetic response of
particles to manipulate their movement toward a desired
location for continued localized therapy in the human body.
The idea behind this strategy is that the magnetic force and
thus the particle movement are controllable. Indeed, by
merely adapting the current in electromagnets, the magnetic
field and gradient and hence the magnetic force in a point
in space is altered accordingly. In a way that has been made
clear in the previous section, this affects the motion of the
particles through their environment. If the current levels are
changed dynamically based on modeled or measured loca-
tions of particles, a more accurate and satisfactory targeting
performance can be achieved, greatly improving therapy effi-
cacy. This brings us to the field of control theory and more
specifically optimal control. In optimal control one aims to
find a control for a dynamical system such that an objective
or cost function is minimized over a period of time
(Leunberger, 1979). This dynamic optimization can be exe-
cuted with a variety of numerical techniques. Applied to our
targeting problem, the dynamical system is described by
Equation (5), the control is the electromagnet currents (also
called inputs), and an example of an objective function is the
concentration of particles in target voxel(s). By maximizing
this concentration over a period of time, it is made sure that
enough particles are present at every time instant in these
voxel(s), enhancing therapeutic processes. The optimal con-
trol problem is formulated as (Diehl et al., 2006):

find

fu�, t�f g ¼ argmin
u, tf

J ¼ argmin
u, tf

ðtf
0
lðxðtÞ, uðtÞÞ dt þ eðxðtf ÞÞ

(6)

subject to

xð0Þ�x0 ¼ 0 fixed initial value
_xðtÞ�fðxðtÞ, uðtÞÞ ¼ 0 t 2 0, tf½ � ODE model

hðxðtÞ, uðtÞÞ � 0 t 2 0, tf½ � path constraints
rðxðtf ÞÞ ¼ 0 terminal constraints

where u are the inputs or controls, tf the time over which the
controls are exercised, x the states, l the running cost, e, f , h, r
are known functions based on the specific problem and x0 is
the initial condition at time t¼ 0. The state x 2 R

nx corre-
sponds to the voxel concentrations in a grid in the region of
interest. Thus the concentration distribution at the initial
time is x0: This region is surrounded by nu electromagnets
with their associated controllable currents uðtÞ 2 R

nu : The
dynamical model is included in f. Herein the behavior of the
particles developed in previous section is included _x ¼
fðx, uÞ ¼ AðuÞx, see (5). Path constraints are set to limit the
currents to a maximum value imposed by the coil conductor
properties: hðx,uÞ ¼ � absðuÞ þ umax � 0: Here absð�Þ is the
element-wise absolute value. Various expressions for the run-
ning cost lðx, uÞ are applicable, as shown with the following
examples. To target or avoid certain locations containing
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many or few particles, the particle concentration in the corre-
sponding voxels should be as large or as small as possible,
which translates to a maximization or a minimization of
these voxel concentrations. This yields the term xTQx where
Q 2 R

nx�nx “selects” the voxels of interest by taking the diag-
onal elements either a positive or a negative value with
magnitude depending on the weight or importance of the
chosen voxel. Additionally, the power dissipated by the elec-
tromagnets can be minimized by including uTRu in the cost
function, R 2 R

nu�nu a diagonal matrix. Lastly, if one aims to
minimize the time in which a certain condition is met, the
final time tf is an optimization variable. The total cost func-
tion J is then, summarized,

J ¼
ðtf
0
lðxðtÞ,uðtÞÞdt þ eðxðtf ÞÞ ¼

ðtf
0

xTQx þ uTRuð Þdt þ ctf

(7)

where c is a weight to be chosen in agreement with the rela-
tive importance of the final time. As discussed in Komaee &
Shapiro (2011), one could also add the spreading of a distrib-
uted ferrofluid as a cost function. The lower the spreading,
the more particles are at the target location.

Approaches to solve the optimal control problem are
dynamic programming, indirect methods and direct methods
(Diehl et al., 2006). In dynamic programming, the computa-
tionally expensive operation of solving the Hamilton-Jacobi-
Bellmann (HJB) equation is required and as such it is limited
to small state dimensions, e.g. when a smaller sample or a
coarser resolution need to be used. Indirect methods imply
the construction of adjoint equations and are generally diffi-
cult when it comes to dealing with constraints. Because dir-
ect methods are more readily set up and solved than
indirect methods, a direct method is used in this work, more
specifically the method of direct multiple shooting (DMS).
DMS is useful compared to other direct methods, as it allows
to work with state-of-the-art adaptable ODE solvers that are
at our disposal. The output of the DMS algorithm are the
electromagnet currents as a function of time, discretized in
piecewise constant levels. For example, when the number of
time steps or levels nt is 4 with a total coil excitation time of
10000 s, then each 2500 s a different constant current value
is imposed. The more time steps considered, the longer the
calculation and the more accurate the result. A detailed
explanation of the DMS algorithm is beyond our scope, but
we refer to (Bock & Plitt, 1984; Diehl et al., 2006; Nocedal &
Wright, 2006). In-house MATLAB code is used in our
simulations.

Since the number of states (here: the number of voxels)
nx and time steps nt greatly affect the computational burden
when solving the DMS problem, the simulation time to find
optimal trajectory inputs quickly becomes unacceptable
when they reach a certain level. This implies that too few
voxels could be considered. For example, DMS applied to a
20� 20 voxel grid and 5 time steps did not finish computing
after more than 5 h. To deal with this problem, the method
of model order reduction is introduced.

2.4. Model order reduction

The aim of model order reduction is to reduce the computa-
tional burden of the numerical simulation of a system. By
constructing a so-called reduced-order model with a lower
dimension than the original model’s (full-order model) dimen-
sion, the evaluation time can be drastically decreased (Lassila
et al., 2014). In order to transform a state-space model _x ¼
fðx, uÞ, x 2 R

nx , to a reduced model _~x ¼ ~f ð~x ,uÞ, ~x 2 R
‘, ‘ 	

nx , one may use the method of proper orthogonal decompos-
ition (POD) (Volkwein, 2013). In this method, the so-called
snapshot matrix X of the original dynamical system is intro-
duced. This is a matrix containing the solution of _x ¼ fðx, uÞ
at different time instances in a certain time interval [0,tf]

X ¼ xðt1Þ, :::, xðtnsÞ
� 	 2 R

nx�ns

ns is the number of snapshots and rank ðXÞ ¼ d 

minfnx , nsg: The aim is to find a reduced number of basis
vectors by which the snapshots can be expressed (Schilders
et al., 2008). This is accomplished by means of the singular
value decomposition of X

X ¼ URVT :

The i-th column of U is written as gi so U ¼ ½g1, :::, gnx �: It
can be proven that for every ‘ 
 d the approximation of the
columns of X by the first ‘ singular eigenvectors fgig‘i¼1 is
optimal in the mean among all rank ‘ approximations to the
columns of X. These vectors fgig‘i¼1 are called POD basis of
rank ‘: Hence U‘ ¼ span g1, :::, g‘f g is an optimal projection
space of dimension ‘ that captures most of the dynamical
behavior of the original system. The reduced-order model is
created by approximating x in U‘ as

xðtÞ�U‘~xðtÞ, ~xðtÞ 2 R
‘

with U‘ ¼ ½g1, :::, g‘�: The reduced system is then _~x ¼
UT
‘ fðU‘~x ,uÞ, or, if fðx,uÞ ¼ AðuÞx,

d~xðtÞ
dt

¼ UT
‘AðuðtÞÞU‘~xðtÞ ¼ ~AðuðtÞÞ~xðtÞ

with arguments. Two steps are identified for obtaining the
reduced-order system:

1. Select appropriate snapshots in the time grid to obtain
X. A rigorous optimal selection of snapshots is not
straightforward. The reader is referred to Kunisch &
Volkwein (2010) for more information. The snapshot
matrix is acquired from a numerical solver which is used
for solving Equation (5).

2. Choose ‘: It is clear that, if ‘ is chosen small, the dimen-
sion of the problem is decreased significantly, but the
ability to capture the full dynamics is also diminished. A
measure for the approximation error is e

eð‘Þ ¼
P‘

i¼1r
2
iPd

i¼1r
2
i

(8)

where ri ¼ Rii are the singular values of X. One determines a
suitable ‘ heuristically based on eð‘Þ, which should be close
to 1. For small ‘, less POD modes are considered and the
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reduced system is less accurate. The more POD modes that
are considered, the closer the solution is to the original solu-
tion. There is no theoretical lower bound for e
(Volkwein, 2013).

The goal is to alleviate the computational burden of the
dynamic optimization by reducing the number of target vari-
ables (Alla & Falcone, 2013; Schmidt, 2014). The optimal con-
trol problem (Equation (6)) is rewritten in terms of the
reduced-order variable ~x ¼ UT

‘ x: The cost functional reads

~Jð~x ,uÞ ¼
ðtf
0

~lð~xðtÞ, uðtÞÞ dt þ ~eð~xðtf ÞÞ (9)

with ~lð~x , uÞ ¼ ~xT ~Q~x þ uTRu ¼ xTQx þ uTRu with ~Q ¼ UT
‘QU‘

and equivalently the constraint functions are transformed
with respect to the reduced-order states. It is important to
note that the result of this optimization will be different with
respect to the result of the optimization for another POD
basis, thus another U‘: Therefore, it is useful to run multiple
optimization sequences with a judicious choice of U‘:

Afterwards, the optimal candidate for the full-order system
may be chosen. The initial current guess to the dynamic
optimization can be the result of a fast local optimization
routine for focusing ferrofluids developed in prior research
(Nacev et al., 2012). With this current sequence applied to
the setup, a snapshot matrix X of the full-order states can be
computed, which then allows to find a suitable ‘ and U‘:

Repeating this sequence multiple times may further enhance
the end result of the optimization, as outlined in the follow-
ing algorithm similar to what can be found in Baumann
(2013). The dynamic optimization is run for a limited number
of iterations to find reduced-system controls. The controls
corresponding to the optimal state trajectory are applied to
the original full-order system to obtain snapshots. These new
snapshots are then used to find a new POD basis. Starting
from the previous optimal inputs and resulting discretized
initial states, a new gradient-based nonlinear programming
sequence is executed to find an optimal control.
Schematically:

2.5. Algorithm for 2-D dynamic optimization in
pseudo-code

1. Set initial guess zero-order hold current sequence ug,
i¼ 0, and number of dynamic optimization sequen-
ces nopt

2. Solve the discretized advection-diffusion PDE _c ¼AðugÞc
to obtain cð0Þ

3. while i 
 nopt or ‘current target voxel concentration(s) <
desired target voxel concentration(s)’

Compute the POD modes from the snapshots cðiÞ to obtain UðiÞ
‘

Run the dynamic optimization (DMS) of the reduced system with
cost function (9) and ~c ¼ UðiÞT

‘ c

Exit the optimization sequence and obtain the controls uðiÞ

Solve the full-order advection-diffusion PDE _c ¼AðuðiÞÞc and
assign the resulting snapshots to cðiþ1Þ

i ¼ iþ 1

end

3. Results and discussion

To validate the presented algorithm, it is applied to the
setup discussed in Section 2.1. We consider two scenarios:
one in which a concentrated particle distribution is guided
toward voxels of interest, and a second in which a concen-
trated ferrofluid, in a uniform blood flow, is either kept at its
initial position or moved.

The cost function for these scenarios is formulated, in
agreement with (9), as

~Jð~x , uÞ ¼
ðtf
0
~xTUT

‘QU‘~x dt

where the diagonal element of Q corresponding with the tar-
get voxel is �1 and zero elsewhere, R¼ 0 and c¼ 0 in (7).
Only the voxel concentration and not the final time nor the
dissipated energy are optimized for in this analysis, because
the weights of final time and energy depend heavily on the
specific experimental circumstances. In all cases, the max-
imum coil current is 13 A. If required, upper and lower
bounds can be set for concentrations in voxel(s) of choice,
for example to avoid high particle concentrations at the
domain boundaries. This corresponds to the path constraint
function h in (6), in the reduced system ~hð~x , uÞ ¼ hðUl~x ,uÞ:
The total excitation time tf is here chosen to be 10000 s. This
rather large value is only an indication and a direct conse-
quence of the size of the setup, the used particles, and phe-
nomena such as particle agglomeration. The total excitation
time can be reduced under different circumstances. An
experimental study of the wide range of magnetic particle
speeds under magnetic gradients was conducted in Benhal
et al. (2019). Targeting times of 1 h of applying magnetic
sources have been reported in in-vivo studies (Muthana
et al., 2015; Al-Jamal et al., 2016).

The initial distribution of nanoparticles is comprised in a
single region, e.g. by activating a single magnet and captur-
ing the particles as close as possible to the magnet and a
wall or membrane that is impenetrable for the particles. This
distribution is known to us (by imaging) and is the initial
condition x0 for the optimal control algorithm. Next, the
number of time steps nt and the number of reduced-order
states ‘ have to be determined. ‘ is obtained from setting
e.g. e ¼ 0:98 in (8). The larger ‘, the more likely the captur-
ing of the full system dynamics is accurate. A representation
of the effect of nt and ‘ on the computational time on a lap-
top pc (Intel Core i7, 12 GB RAM) of one optimization
sequence is given in Table 1. In all the following simulations,
nt ¼ 4 and the sample grid size is 31 by 31 voxels, which
amounts to 961 full-order states (the voxel concentrations).
From (8) we obtained ‘ ¼ 6:

Table 1. computational time for different nt and ‘ for one optimiza-
tion sequence.

nt ‘ comp. time [min.]

4 6 5
4 60 37
4 961 (full) �
20 6 153
20 60 �
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The increase in computational time when more time steps
(nt) are considered is, apart from there being more optimiza-
tion variables, also a consequence of the increased number
of times that the magnetic fields and forces need to
be calculated.

The DMS algorithm requires an initial guess of input cur-
rents with respect to time. This initial guess is set based on
setup parameters and a priori knowledge of the setup. The
direction of the motion allows to determine which coils are
preferred to be activated. Once this initial guess is deter-
mined, the DMS algorithm can be run.

3.1. Steering concentrated particle ensembles toward a
single spot in a stationary fluid

In this scenario an ensemble of particles is steered toward a
predefined voxel. At 4 time instances, a snapshot of the sam-
ple with the concentration distribution of particles in the sta-
tionary liquid with the viscosity of blood is taken, which are
given in Figure 2. The single target voxel is indicated by the
blue arrow. Figure 3 shows another example in which a dif-
ferent voxel is set as the target. The particle concentration in
the target voxel with respect to time and the accompanying
currents for both cases are shown in Figure 4. The particle
concentration numbers end up being significantly improved
compared to the initial guess.

In reality, the current signal takes a finite time to change
current levels, but this is negligible compared to the particle
velocities. The currents are constrained to a maximum abso-
lute value imposed by the coil specifications and available
cooling capacity.

These results show clearly that no optimal predefined tra-
jectory of the particles is required to focus particles around a
voxel, while taking into account the evolution of the particles
in the whole time interval. This is useful when liquid flow
rates different from zero are present, because in this case it
is not known beforehand which optimal trajectory the par-
ticles should follow to be brought toward the target.

3.2. Moving or holding concentrated particle ensembles
in a moving fluid

In the following results, it is shown that the algorithm can
deal with fluid velocity profiles. When flow velocity comes
into play, the feasibility to focus particles at certain points
may decrease significantly, depending on the attainable
magnitude of the magnetic forces. Too strong fluid drag
against too low magnetic forces will make the dynamical sys-
tem lose controllability. Moreover, the presence of fluid
velocities makes the targeting accuracy more susceptible to
errors in the controls.

A uniform vertical fluid velocity, vfy ¼ 3 mm/s, is present in
Figure 5. The fluid drag force significantly impacts the move-
ment of the particles. To maintain the ferrofluid at the initial
location, against the fluid stream, the target voxel is the cen-
ter of the initial distribution. If no fields were applied, the
particle would move along with the flow. This procedure can
be used to keep particles focused e.g. at a diseased location

for a necessary period of time against body flow drag, which
would not be possible with prior methods that require a pre-
defined trajectory in a stationary liquid. This hypothetical
movement is depicted by contours. In Figure 6, the particles
are manipulated toward the center in a uniform diagonal
flow velocity, i.e. vfx ¼ �3 mm/s, vfy ¼ 3 mm/s. These values
are chosen with respect to what is feasible with our parame-
ters (the particles traveled approximately 3 cm in 10000 s in
the previous simulations).

Lastly in Figure 7, the concentration of MNPs in the target
voxel indicated in Figures 5, 6 and current signals are plotted
with respect to time in the same manner as in previ-
ous section.

3.3. Remarks

The results above demonstrate that particle collections can
be successfully guided toward a voxel of choice by dynamic-
ally updating the electromagnet currents and thus the mag-
netic forces using the proposed methodology, both with and
without fluid flow velocity. The duration of the control calcu-
lation was about 23min. This computation time can be
reduced when a smaller number of voxels is considered, or
when the number of time steps and ‘ is smaller, or by simply
utilizing better hardware. Also, it is possible to target a voxel
between the initial distribution and the target over a shorter
time period, and then repeat this until the target voxel is
reached, reducing the overall computation time.

As already mentioned, the real-time duration of the ferro-
fluid movement (10000 s � 3 h) is governed by behaviors
and setup parameters such as particle size, magnetic fields,
fluid viscosity and diffusion rate. Upon choosing a fixed finite
time interval and target voxel(s), it is very well possible that
the combination of e.g. particle size and available magnetic
fields does not allow the particles to move as far as the pre-
defined target. In that case, any optimization over a fixed
time will not converge toward a satisfactory distribution as it
is physically unachievable.

The controls and state trajectory are calculated in a feed-
forward way, meaning that they are purely based on mod-
eled behaviors without feedback from real-time
measurements during the motion. This makes the strategy
susceptible to modeling errors. Future research may focus on
estimates of model errors and the inclusion of particle loca-
tion information from a camera or other imaging technique
to better correct for them.

The targeting strategies reviewed by Nacev et al. (Shapiro,
2009; Nacev et al., 2012) perform an optimization of the
instantaneous distribution on single time instances without
taking into account future behavior or maximizing target
concentrations, whereas our optimization is over a full time
period and targets a voxel of interest. Komaee discussed the
use of optimal control for minimizing the particle spread
while moving along a piecewise differentiable trajectory that
is defined beforehand (Komaee, 2017). Our algorithm does
not require the prior definition of such a trajectory, because
the optimization inherently searches the best curve along
which the target voxel concentration is increased. This is an
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Figure 2. Ferrofluid guided toward target voxel (blue arrow) at [0 cm; 1 cm] by maximizing its particle concentration.
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Figure 3. Ferrofluid guided toward other target voxel (blue arrow) at [-1 cm; 1.5 cm] by maximizing its particle concentration.
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advantage, as the user most of the time has no knowledge
of the optimal path of the particles, especially against a mov-
ing fluid.

As is clear from the results, our control algorithm can
steer particles in biological environments while preventing
them from being scattered or washed away by fluidic forces
and diffusion mechanisms. Moreover, the voxel-based model-
ing approach can be integrated easily with imaging modal-
ities. Target voxels can be selected to maximize their
concentration of particles, which is important when certain
locations require high levels of (nano)particles for improved
therapy. We furthermore believe that the introduction of
model order reduction techniques was highly necessary to
achieve the minimum levels of accuracy in such applications.
This can be exploited further in future control algorithms.

Lastly, guiding/targeting performance and energy cost
can be enhanced by alterations to the (physical) setup. For
example, adding more coils around the sample increases the
accuracy of the magnetic fields. This can lead to improved
focusing and reduced energy consumption, or opens the
possibility of 3-D targeting, at the cost of a more com-
plex setup.

4. Conclusion

One of the challenges of effective magnetic drug targeting is
the guiding and deep tissue focusing of magnetic nanopar-
ticle collections in the human body with external magnetic
fields from electromagnets. No such experiments have been
conducted on human patients, but in-vitro tests and simula-
tions have shown the potential of dynamic control to
achieve this goal (Nacev et al., 2012; Shapiro et al., 2015).
That targeting challenge was addressed in this paper by
developing a dynamical model and a model-based con-
trol algorithm.

The dynamical model is developed by combining mag-
netic and fluid forces acting on the particles in fluid environ-
ments and advection-diffusion mechanisms. By writing the
dynamical equations with respect to the voxel concentra-
tions, an evaluation of the concentration in every voxel with
respect to time becomes possible. This is very useful if put
next to imaging modalities which often aim to reconstruct
the voxel concentrations from measurements, applicable in
theranostic platforms. The resulting ODE is immediately
applicable to optimal control algorithms.
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Figure 4. The voxel particle concentration for (a) the first and (b) the second target. The optimization may be terminated as soon as a feasible concentration level
is reached within the predefined time interval.
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In optimal control, a certain control or input is searched
for a dynamical system over a period of time that minimizes
an objective function. We have linked the different parts of a
general optimal control problem with the ones of the mag-
netic targeting problem. The feedforward controls are the
currents in electromagnets – they directly determine the
magnetic forces – and the objective function is the concen-
tration in the targeted voxel. Constraints on the currents and
concentrations can be added. To solve this problem numeric-
ally, the method of direct multiple shooting was the best
option. Such a dynamic optimization may take unacceptable
computation times because of the large number of variables.
This is addressed by reducing the number of states using
techniques drawn from the field of model order reduction. A
reduced model is used in the optimizer, and once the con-
trols are calculated, they can be applied to the full-
order model.

The control strategy was tested for a 2-D MDT setup con-
sisting of 4 coils, in which two scenarios were considered:
stationary and non-stationary fluids. The simulation results
showed that particle ensembles in the fluid medium were
effectively guided toward and focused around a predefined
voxel of interest by varying magnetic fields, which is one of
the ultimate goals of MDT. Moreover, the objective function

can easily be changed to include more voxels or time and
energy requirements weighted according to the needs of the
user, who benefits from this increased flexibility.

Experiments in a lab setup need to be done to verify and
improve the algorithm with real-time measurements. Future
research may elaborate on this with a more sophisticated
model taking into account in-vivo vasculature systems and
intervening blood flow forces in the body, more versatile tar-
geting setups (extension to 3-D), communication between
targeting and imaging sequences, etc. With the presented
methodology we have taken steps to progress MDT perform-
ance for future (pre)clinical research of particle-based target-
ing applications.
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Figure 7. The voxel particle concentration for (a) the first and (b) the second target. The optimization may be terminated as soon as a feasible concentration level
is reached within the predefined time interval.
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