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Abstract—Technological improvements are rapidly ad-
vancing holographic-type content distribution. Significant
research efforts have been made to meet the low-latency
and high-bandwidth requirements set forward by interac-
tive applications such as remote surgery and virtual reality.
Recent research made six degrees of freedom (6DoF) for
immersive media possible, where users may both move
their head and change their position within a scene. In
this article, we present the status and challenges of 6DoF
applications based on volumetric media, focusing on the
key aspects required to deliver such services. Furthermore,
we present results from a subjective study to highlight
relevant directions for future research.

I. INTRODUCTION

“Help me, Obi-Wan Kenobi. You’re my only hope,” said
the hologram of Princess Leia in Star Wars: Episode IV -
A New Hope (1977). This was the first time in cinematic
history that the concept of holographic-type communication
was illustrated. Almost five decades later, technological
advancements are quickly moving this type of communication
from science fiction to reality.

Due to the plethora of applications in the areas of healthcare
or Industry 4.0, the three-dimensional representation of objects
has received attention in the last years [1]. Research efforts
were made to realize six degrees of freedom (6DoF) for
immersive media, where the user may both move their
head and change their position within a scene. Compared
to traditional video, where the user has a passive role,
or 360° video, where the user can only turn their head,
6DoF introduces additional complexity in terms of content
representation and encoding. Most importantly, because of the
user’s shift from a rather passive to an active role, real-time
interaction with the content becomes crucial. This increases
requirements in terms of latency (in the order of tens of
milliseconds) and bandwidth (Gbps or even Tbps), making
it difficult to keep the user’s quality of experience (QoE) at
high levels [2].

In this article, we present the status and challenges of
6DoF media delivery from a QoE perspective. Starting from
a relevant use case, we propose an architecture for streaming
immersive media. This architecture is presented in Section II,
providing a high-level overview of the envisioned components.
Sections III through VI discuss these components, elaborating
on the status and challenges of each. In Section VII, the details

and analysis of a subjective evaluation study are provided.
Finally, the article is concluded in Section VIII.

II. ENVISIONED ARCHITECTURE

We envision an end-to-end system for 6DoF immersive
media streaming. To present and discuss the required
components, we will target the following use case. Four people
want to create a virtual scene in which they are featured, so
that the scene can be consumed by interested users. Example
scenarios include entertainment (e.g., a band releasing an
immersive music video) or educational purposes (e.g., a virtual
museum tour). To enable this, the four people need to be
captured on camera, so that a three-dimensional, virtual scene
can be created in which they reside. Any interested user,
whether they are a participant or an audience member, needs
to be able to stream the resulting content and, through the
use of a head-mounted display (HMD), move freely within
the scene. To enable the targeted use case, we propose an
architecture that consists of four components (see Figure 1):

• On the source side, objects are captured by multiple
cameras. Their output is merged together to create a
unified representation of the object, which is processed
further to enable delivery over the network;

• The network domain enables the client to stream the
content, comprising content delivery networks (CDN)
which bring the content closer to the end user and enable
scalable delivery. It also provides intelligent means to
perform demanding computation tasks.

• The client is responsible for tracking the user’s movement
and focus, and decides on the video quality at which to
download each of the considered objects. Once delivered,
the content is decoded and rendered, or used as input for
reasoning and control tasks.

• A fourth component enables quality and perception
evaluation of the service, i.e., derives the user’s QoE.
By doing so, different systems and approaches can be
compared, identifying those components that require
further improvements and research attention.

In the following sections, each of these components will be
discussed in detail.

III. THE SOURCE SIDE

A. Content Capture and Representation

To capture three-dimensional objects at different locations,
several types of technologies can be considered. Image-based
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Figure 1. Envisioned architecture for 6DoF immersive media delivery.

Figure 2. The soldier object uncompressed (left) and compressed to 12Mb/s
with Mekuria et al. [4] (middle) and the V-PCC encoder [1] (right).
Reproduced from [1].

solutions require a representation of images at different angles
and tilt. Thus, objects are typically captured using a camera
array (i.e., a setup with multiple cameras positioned on a
grid). Volumetric media-based solutions represent the object
as a collection of points (a so-called point cloud), where
each of them holds information on the geometry (x, y, z
position) and texture (e.g., RGB values). Given the position
of each point, the object can be rendered from any viewing
angle. The content can be captured through specialized camera
setups or by using light detection and ranging (LiDAR)-based
cameras. Mesh-based solutions use triangles to represent three-
dimensional objects in space. The coordinates of the vertices,
along with texture components of the triangles, can be used
to render the object based on the user’s position and focus.

Meshes better exploit traditional graphics pipelines such
as mipmaps or anisotropic filtering, and have been shown to
offer higher quality at larget bitrates compared to volumetric
media [3]. However, point clouds outperform meshes at
lower bitrates, and support dynamic and topology-changing
captures in a more straightforward manner. Furthermore,
they have the advantage of straighforward tiling and culling
compared to meshes, which need to respect triangle and uv
parameterization continuity.

The chosen representation has a direct impact on the
perceived quality. The amount of memory required by image-
based solutions is so high that it is not possible to render
high-quality imagery on lightweight commodity hardware. The
resulting quality can thus be significantly lower than expected
by a consumer used to streaming traditional video. In the case

of volumetric media, stitching the input of many different
cameras can result in visible artefacts. This is illustrated in
the 8i dataset [5], which consists of four moving point cloud
objects, each captured during 10 seconds using a frame rate
of 30Hz. Even though the dataset was generated with 42
carefully placed RGB cameras, certain parts of the content
are missing as a consequence of inaccurate stitching.

B. Content Encoding

Although volumetric media requires less data than image-
based solutions, the amount of storage and transmission
resources is still significant. The 8i dataset, for example,
consists of four dynamic objects, each with a bitrate between
3.8 and 5.7Gb/s [5]. Consuming a scene in which all objects
are present would require approximately 19.2Gb/s. Even
when considering 5G, such transmission speeds are infeasible.
Therefore, compression techniques are necessary.

The codec by Mekuria et al. [4] uses the correlation between
subsequent point cloud frames to achieve better compression
performance. To this end, the bounding box of the point cloud
is recursively divided into eight subparts, corresponding to the
eight children of a tree-based structure (see Figure 1). Only
non-empty children are subdivided further, resulting in a so-
called octree of voxels, each of which is represented by the
coordinates of its center. Once this subdivision is made for
consecutive frames, a transformation is computed using the
iterative closest point algorithm, which is then compressed by
applying a quaternion quantization scheme [4].

This codec was used as a benchmark in a call for proposals,
launched by MPEG in 2017. Out of nine submissions, MPEG
selected the reference encoder for video-based point cloud
compression (V-PCC) [1]. This codec decomposes the point
cloud as a set of patches through an orthogonal projection to
a two-dimensional grid. Next, it merges the different patches
into two separate video sequences that capture the geometry
and texture information, respectively. It then applies traditional
video coding techniques to compress both. Overall, it results
in a higher visual quality for the same bitrate (see Figure 2),
and offers lossy compression ratios between 100 and 500 [1].

While the encoding time is less relevant for video on
demand, it strongly contributes to the end-to-end delay in live
video. Using V-PCC, non-parallelized encoding of 30 frames
of the soldier object takes approximately 4 hours on a hexacore
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Intel(R) Xeon(R) CPU E5645 @ 2.40GHz with 24GB of
RAM. To minimize this encoding time, the amount of data to
process should be reduced. In the case of sports applications,
for example, a health coach might only be interested in the
movement of the upper body. A so-called culling process could
then remove redundant data, enabling faster processing and
delivery. A first research effort in this direction was made in
terms of client-side rendering [6], but the concept has not yet
been investigated in the case of encoding.

IV. THE NETWORK DOMAIN

Once the content has been captured and compressed, it
needs to be packaged as streamable units and delivered to the
client. Most methods today use HTTP Adaptive Streaming
(HAS). In HAS, several representations of different quality
and bitrate are provided by a video encoder. The content is
divided into segments of one to ten seconds, which are stored
on an HTTP-enabled server. The client decides on the quality
at which to retrieve each segment, based on the perceived
bandwidth, the buffer status and the user’s preferences.

A. Application and Transport Layer Optimizations

In traditional video streaming solutions, the lowest stream-
able unit is a temporal video segment, which can be retrieved
by issuing a single GET request using HTTP/1.1 over TCP.
When several point cloud objects are considered, however,
multiple streamable objects need to be retrieved by the client.
Multi-rate encoding can be combined with application layer
optimizations such as HTTP/2, which allows the server to
push data to the client, thus eliminating the need to send
multiple requests. This may reduce the startup delay and help
with the latency in interactive delivery. However, the resulting
interaction latency due to the built-in congestion and flow
control, and the in-order delivery requirement of TCP make it
unsuitable for near real-time communication. For this reason,
recent solutions revert to UDP-based protocols.

One such example is WebRTC, a suite of real-time
communication protocols which has shown promising results
for traditional video [7]. WebRTC is, however, peer-to-peer
in nature, and thus requires multiple encoders for each
peering connection, hampering scalability. A second example
is the yet to be standardized HTTP/3 protocol, which is
based on QUIC [8]. This protocol establishes a number
of multiplexed UDP connections, resulting in independent
delivery of multiple streams of data. While HTTP/2 uses a
single TCP connection and may experience delays due to head-
of-line blocking, HTTP/3 does not have this problem. Google
reported a rebuffering rate reduction of 18.0% for desktop
users when using QUIC for YouTube, although more recent
research showed lower levels of improvement [8].

Although these protocols offer advantages in terms of
latency, the absence of adequate control mechanisms can be
dramatic for the high bandwidth transmission of 6DoF content.
Palmer et al. address this issue for traditional video streaming
by jointly optimizing the application and transport layer, using
an adapted version of the QUIC protocol to reliably deliver key
frames, while retrieving others without guarantees [9]. In this
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Figure 3. HAS applied to point clouds objects, each encoded using three
quality representations (higher is better).

way, videos can be streamed at a higher visual quality and with
less rebuffering events. The same principle could be applied to
volumetric media, with prioritization not only given to certain
key frames, but also to the most important spatial regions and
objects that make up a scene. The combination of reliable
and unreliable delivery could then be used to retrieve different
objects and quality representations in a timely manner. Further
research is required to determine the applicability of this
approach to immersive media use cases.

B. Intelligent Network Components

Apart from delivering the content to the client, the
network also offers intelligent means to perform demanding
computation tasks. This can be achieved through multi-access
edge computing (MEC), which enables the devices to access
cloud/fog resources on demand. MEC also allows for strategic
content caching at the edge, which will play an important
role in 6DoF content streaming; upon a new task request, the
server/network needs to swiftly decide if it should store the
content for future requests or not. Proactive caching strategies
need to evolve as well, as they depend on spatiotemporal traffic
predictions, the users’ location, mobility, etc. Other network
level approaches such as network coding and network slicing
can be exploited to meet the requirements of 6DoF video
streaming. The importance of these paradigms is reflected in
extensions to the Dynamic Adaptive Streaming over HTTP
(DASH) standard, in the form of Server and Network-Assisted
DASH (SAND)1. SAND allows to share real-time information
concerning networks, servers, proxies, cashes and clients with
the end user’s device, helping the client make better decisions
regarding rate adaptation and request the content from the
most promising locations first (e.g., from a nearby cache). This
principle can be applied to 6DoF media delivery, in that SAND
allows to significantly reduce latency when nearby proxies and
caches can be used, while the video quality can be improved
and QoE-related metrics (see Section VI) can be shared in
real time. Further optimizations will become increasingly more
important with the advent of 5G and softwarized networking,
and should thus gain more research attention in the future.

V. THE CLIENT SIDE

A. Rate Adaptation

Similar to traditional HAS, the client is responsible for
deciding on the quality at which to retrieve the content. When

1https://www.iso.org/standard/69079.html, accessed 23 July 2020
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volumetric media scenes are considered, however, there is also
a need for spatial segmentation. Indeed, recent works consider
segmentation at the object level (i.e., each object is requested
as a whole) [2] and at the level of voxels (i.e., each object
consists of multiple streamable units) [10]. Figure 3 shows an
example of the former approach, in which the quality of the
considered objects goes up with the available bandwidth (the
dotted line). It is the responsibility of the client to decide upon
the quality of each of the objects, by using an appropriate
rate adaptation heuristic. While traditional video streaming
solutions take into account properties such as the available
bandwidth, video bitrate and buffer status to decide upon the
quality of the next video segment, solutions for immersive
media also need to take into account the bitrates and locations
of the objects within the scene, the position and focus of
the user, and the impact of spatial quality differentiation. A
preliminary study on rate adaptation heuristics for volumetric
media has recently been conducted [2], but more research is
needed to unlock their full potential.

B. Viewport Prediction

To avoid video playout freezes, a buffer is generally used
at the client side. In order to change the video quality as soon
as a user changes their focus, this buffer is kept as small as
possible. Still, the rate adaptation heuristic requires accurate
information on the user’s position and focus in order to allocate
the available bandwidth to the most important regions within
the scene. For this reason, the so-called viewport prediction
is of the utmost importance to 6DoF video streaming: if the
user’s position and focus can be accurately predicted, the client
can compensate for the user’s future movement when buffering
new content.

Several approaches have been proposed for 360° video,
using either content-aware or content-agnostic viewport
prediction. In the former case, information on the user’s
position and focus is used along with information on the video
content, by extracting relevant objects and regions through
saliency mapping. However, these approaches are time- and
resource-demanding, and cannot be applied to videos that
have not been processed yet (e.g., in live video scenarios).
Therefore, in the latter case, predictions are made based on
movement alone, using techniques such as linear regression
and neural networks to predict future actions. Compared to
360° video, volumetric media increases the complexity by
introducing three additional degrees of freedom. Not only are
more advanced approaches needed to predict movement in
all directions, saliency mapping also becomes significantly
more complex. First steps to predict the user’s movement
in 6DoF video streaming have recently been made, applying
a simple regression model on each of the six degrees of
freedom [11]. This approach assumes independence between
the different dimensions, a simplified view that results in
significant prediction errors, even when predicting movement
in the next 100ms. Thus, further research is required to
advance the state of the art forward.

Figure 4. A static scene rendered through the Unity framework3.

C. Content Decoding

The choice of encoder not only has an impact on the
visual quality, but on the decoding step as well. Although
the V-PCC encoder outperforms the benchmark encoder of
Mekuria et al. [4] in terms of visual quality, this technique
cannot be used in real time on commodity hardware [2]. The
benchmark encoder, however, has recently been applied in
a near-real-time volumetric media streaming setup, through
numerous optimizations combined with parallel execution on
sophisticated hardware [12]. If we plan to use these types
of encoders on commodity hardware, such as HMDs or
lightweight smartphones, further optimizations are required
(e.g., leveraging existing hardware codecs in the experimental
V-PCC implementation by Nokia2). Alternatively, decoding
tasks could be partially offloaded to the network. In the context
of 360° video, some works propose to use MEC resources
to decode the video content faster [13]. These early works,
however, do not consider the placement and timely execution
of the required network components. Deciding on where to
run each processing task is of great importance to meet the
stringent low-latency requirements put forward by immersive
media applications, and should be further investigated.

D. Content Rendering

Volumetric media is often rendered through Unity and
Unreal Engine (see Figure 4). Once the required data is
loaded, users can benefit from the tracking capabilities of
HMDs, allowing free movement within the scene. However,
non-parallelized loading of 30 frames of the V-PCC decoded
soldier object requires on average 60.0 seconds on a hexacore
Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz with 16GB
of RAM, effectively rendering frames at 0.5FPS. Thus, a
minimum of five CPUs would be required to load and render
this single object at a target rate of 30FPS, assuming full
parallelization. For this reason, some works again propose to
use MEC resources in order to facilitate computational efforts,
rendering the user’s field of view in the network rather than at
the client side. This approach comes with faster execution, but
requires real-time communication with the client: information

2https://github.com/nokiatech/vpcc, accessed 23 July 2020
3https://blog.codecentric.de/en/2020/03/converting-massive-point-clouds-

into-vr-scenes-under-unity-virtual-interaction-room-part-10/, accessed 23 July
2020
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on the user’s position and focus, monitored by the HMD,
needs to be transmitted and processed in a timely manner.
Some related work already exists for 360° video [13], but
fundamental research is required to fully reap the benefits of
remote rendering for 6DoF applications.

VI. OBJECTIVE AND SUBJECTIVE EVALUATION

Each of the aforementioned components has an impact on
how the system performs. In this regard, a distinction must be
made between the quality of service (QoS) and the QoE: the
former is objectively measurable and can be retrieved based
on the video stream’s information and the movement of the
user, while the latter is based on subjective sensations and thus
requires significant and time-demanding user testing.

Coping with the dynamics of 6DoF video streaming will,
however, require near-real-time measurements of how the
user perceives the experience. Thus, current research aims
to devise models to estimate the QoE of the end user. To
assess the visual quality of the rendered field of view, well-
known metrics for traditional video streaming have recently
been applied [2]. Other examples include the point-to-point
and the point-to-plane geometry distortion metrics proposed
in MPEG’s call for proposals [1]. Measuring the quality
alone, however, is not enough: important factors such as the
system’s latency to react to changes in the user’s position, the
occurrence of rebuffering events and the startup time need to
be taken into account as well. While a significant amount of
research on QoE models exists for traditional video, this is not
yet the case for immersive media.

Recently, some works attempted to subjectively rate
volumetric media, using a passive evaluation protocol to assess
the quality degradation of static models due to encoding
(e.g., [14]). However, these protocols do not consider the
impact of network transport on the perceived quality, nor
do they take into account the effects of user interaction.
Furthermore, subjective evaluations are mainly performed
through double-stimulus tests, in which subjects are asked to
rate the degradation of the video compared to the unimpaired
source. Although relevant, these approaches do not allow to
assess the service’s overall quality as perceived by the user.
More research is needed to fully understand the user’s QoE
for 6DoF video streaming solutions.

VII. ANALYSIS

To evaluate the impact of the aforementioned components
on the user’s QoE, we conducted several subjective experi-
ments in a recent study [15]. Subjects were passively shown
a number of source videos between 18 and 24 seconds of
length, containing the generated viewport of a scene consisting
of four point cloud objects from the 8i dataset [5]. Different
movement paths, defined by samples of the user’s position and
focus, were programmatically defined, e.g., by moving on a
straight line or in a circle, zooming in on objects, etc.

The considered objects were encoded using the V-PCC
encoder with five reference quality representations, each
between 2.4Mb/s and 53.5Mb/s [2]. The objects were made
available on a server in an emulated network, so that they could

Figure 5. Evaluation setup. The user can rate quality (ACR) or quality
differences (DCR) on a continuous scale.

be requested by a headless Python-based client. A buffer size
of four seconds was considered, with segments of one second
or 30 frames for each object. Traffic control (tc) was used
to control the available bandwidth between client and server,
which was fixed to 60 Mb/s. Latency was fixed to 37ms as a
reference value for 4G networks, while no additional packet
loss was introduced.

In the original study, only single-stimulus experiments were
conducted. Users were asked to rate the visual quality of the
presented stimulus using the absolute category rating (ACR).
In this paper, double-stimulus experiments were added, in
which the uncompressed point cloud objects were shown on
one screen and the streamed content was shown on the other
(see Figure 5). Subjects were asked to evaluate the difference
in quality between the two screens using the degradation
category rating (DCR). A continuous 7-point scale4 was used
in both experiments.

A total of 60 subjects participated in our subjective
experiments; half of the subjects participated in the double-
stimulus study, while the others participated in the single-
stimulus study. We eliminated four subjects from the first and
two subjects from the second study, as they did not pass an
outlier screening procedure. This results in subject counts of
N1 = 26 and N2 = 28 for the remaining analysis. Here, we
consider three types of videos for each source clip:

• Compressed point clouds are used to render the field
of view, respecting a total file size of 60Mb for every
second of content. The most recent (MR) information on
the user’s position and focus is used to buffer new point
cloud segments that will be consumed in the near future;

• Similar to the above, but content is buffered using perfect
knowledge of what the user will focus on in the near
future, i.e., assuming clairvoyant prediction (CV).

• Uncompressed content is used (hidden reference, ∞);
Figure 6 shows the cumulative distributions of the opinion

scores obtained in our experiments. The double-stimulus
results (red) show that some users did not pick up on
the hidden reference, assigning scores between 27 and 100.
Overall, however, results are significantly better than those for
scenarios in which a limited bandwidth (60Mb/s) is available.
Thus, compression has a negative impact on the QoE and
better compression schemes for volumetric video are desirable.

4https://www.itu.int/rec/T-REC-P.851-200311-I/en, accessed 23 July 2020
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Figure 6. Distribution of the opinion scores for three different scenarios,
using single stimulus (blue) and double stimulus testing (red).

Comparing results with and without prediction of the user’s
movement and focus, the former results in the highest rating.
This was expected, since accurate prediction allows the client
to buffer a higher quality representation for those objects that
are within the field of view at the time of consuming the
content. Furthermore, it allows to avoid visual quality switches
when the user’s attention is shifted from one object to another.
This confirms the need for accurate prediction of the user’s
position and focus in 6DoF applications.

Results also show the major difference between the two
tasks the subjects were set to do. Indeed, scores for the single-
stimulus experiment (blue) are significantly lower than those
for the double-stimulus experiment. Although the general
trends between the two approaches are similar, care must be
taken to interpret results from any of the two tests. Further
research is required to evaluate the impact of the type of study
on results for 6DoF immersive media.

Even when the uncompressed point cloud objects were
presented to the subjects, the video was rated on the lower
end of the spectrum. This aspect was brought up several times
during a debriefing interview, with subjects indicating that they
had expected a higher visual quality based on their experience
with traditional video streaming solutions. This shows that the
considered content did not meet the subjects’ expectations.
Technology to capture three-dimensional scenes thus needs to
be improved, providing 6DoF video at a higher visual quality.

We also evaluated the decoding and rendering time using the
V-PCC decoder and MPEG’s point cloud player on a hexacore
Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz with 16GB of
RAM, considering the source video that focuses on the soldier
and the longdress objects. Two approaches are considered: one
in which all objects are decoded and loaded, and one in which
only objects that are visible are processed. Using the latter
approach, the decoding and rendering time can be reduced
by 69.2% and 70.3%, respectively. Even so, the total time
required to generate the content is still far from real time,
again indicating a need for further research.

VIII. CONCLUSIONS

In this article, we presented an overview and challenges
of immersive media streaming with six degrees of freedom.
Our envisioned architecture has been outlined, consisting
of four components located in the source, network and

client. Furthermore, we performed a subjective analysis
of rendered immersive video, asking participants to rate
streaming sessions both by using a double-stimulus and
a single-stimulus approach. The results identify several
directions and opportunities for further research in this area.
In future work, we plan to address these items, focusing both
on video streaming as well as on real-time communications.
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