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Abstract 26 

Insecticide resistant pests become increasingly difficult to control in current day agriculture. Due to 27 

environmental and health concerns, the insecticide portfolio to combat agricultural pests is gradually 28 

decreasing. It is therefore crucial to make rational decisions on insecticide use to assure effective 29 

resistance management. However, resistance monitoring programs that inform on pest susceptibility and 30 

resistance are not yet common practice in agriculture. Molecular markers of resistance that are turned 31 

into convenient diagnostic tools  are urgently needed and will only increase in importance. This review 32 

investigates which factors determine the strength, diagnostic value and success of a diagnostic marker, 33 

and in which cases recent technical advances might provide new opportunities for decision making in an 34 

operational meaningful way. 35 
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Introduction 51 

The control of pests that attack our crops is one of the major challenges and costs in agriculture today, as 52 

production losses due to arthropod pests continue to grow and reach up to 20% of the total crop yield 53 

[1,2]. The development of insecticide resistance becomes an increasingly important problem: more than 54 

500 insect and mite species are now resistant to at least some of insecticides used for their control [3,4]. 55 

In addition, the availability of new crop protection chemistry becomes more and more challenging due to 56 

the increasing costs for discovery, development and registration, in part driven by public concerns on 57 

environmental safety and human health [5-9]. This probably results in company decisions not to develop 58 

new chemistry if projected revenues are minor, for example when compounds target only specific pests 59 

in minor crops. 60 

Giving the rising resistance problem and pressure on pesticide portfolio, it is very important to make 61 

rational decisions on insecticide use [10]. While a few key mosquito species are controlled by a limited 62 

number of insecticide classes, and exposure is mainly via residual contact of sprays and treated bed nets 63 

[11], the options in agriculture are more complex. Several classes of insecticides with different modes of 64 

action and different arthropod exposure routes (direct or residual contact, ingestion by chewing, sucking, 65 

rasping …) are applied in multitude in different cropping systems, giving more options for pesticide choice 66 

and insecticide resistance management (IRM).  67 

Diagnostic tools that monitor susceptibility in pest populations could play a crucial role in the choice of 68 

chemicals, as they allow to manage or avoid incidence and spread of resistance. Diagnostic bioassays have 69 

since long been developed for several agricultural pests and disease vectors. While extensive monitoring 70 

programs are an integral component of mosquito control programs [12], this is much less the case for the 71 

numerous agricultural pests on the diversity of crops. Crop pest monitoring programs seem limited to 72 

some of the key pests in major crops like corn, soybean, rice and cotton, yet primarily as a result of 73 

spontaneous research programs or industry driven activities for managing and launching their new 74 

products, but more rarely as systematic country level activities [13,14].  75 

Bioassays are often employed for resistance monitoring [10], however their feasibility in high throughput 76 

depends on whether insects can be easily collected, stored, and grown in the lab, and equally, whether 77 

the host plant is easily cultivated in the lab or artificial diets for pests are available. For example, resistance 78 

screens for Bt toxins in key lepidopteran pests have been largely profited from the ability to mix these 79 

toxins with artificial diets [15].   80 



As increasing number of molecular markers for resistance are being identified, high throughput fast and 81 

accurate molecular diagnostic platforms could be used to overcome the need for time-consuming 82 

bioassays. However, using this data in making decisions on insecticide use is the next challenge, because 83 

of the potential limited predictive value of the markers and/or lack of clearly established links with 84 

operational impact. 85 

This review investigates to what extent, and in which cases, molecular diagnostics can be reliably used to 86 

manage resistance and inform decisions on insecticide use in time and space in the field. As this subject 87 

has been recently reviewed for vectors of human disease [11,16], we focus here on agricultural pests. 88 

Resistance mechanisms and molecular markers 89 

The development of resistance is an evolutionary phenomenon of which the mechanisms are most often 90 

described in terms of toxicodynamic and toxicokinetic changes in the physiology and biochemistry of 91 

resistant strains. This includes changes in penetration, activation, metabolism, transport and excretion for 92 

toxicokinetic mechanisms (any changes that alters the amount of toxin that reaches the target-site), and 93 

changes to the pesticide target-site (structural changes, knock-out, amplification) for toxicodynamic 94 

mechanisms [17,18]. Although this physiological classification is useful in describing the resistance 95 

phenotype that results from genetic changes, and sometimes allows specific field interventions such as 96 

the use of synergists in metabolic resistance, the actual type of genetic change (mutation) is more relevant 97 

to precisely understand the evolution and spread of resistance genes in populations. In addition, it largely 98 

determines whether accurate and sensitive molecular diagnostic markers can be feasibly developed. For 99 

example, a simple point mutation in a target-site is much more easily turned into a DNA-based marker 100 

than increased expression of a metabolic resistance gene. In the latter case, it is much more likely to 101 

develop a diagnostic marker based on RNA or protein abundance, than a marker based on the actual 102 

mutation, as cis and especially trans acting mutations regulating gene expression have remained elusive 103 

for most cases of metabolic resistance in most pests. A few studies in mosquitoes are now providing DNA 104 

markers for metabolic resistance [19,20], while recently developed mapping tools, such as NGS-based 105 

bulked segregant analysis  [21], might facilitate the identification of QTL markers for major agricultural 106 

pests [22-24]. 107 

Factors affecting the strength and diagnostic value of a molecular marker 108 

One of the issues to consider when developing a diagnostic marker, is the breath of its geographical 109 

applicability. As outlined above, pests can develop resistance by multiple mechanisms, and whether 110 



different populations of a certain species develop resistance with similar mechanisms is not always clear. 111 

For some target-site resistance cases, it is known that similar, if not identical mutations evolve in different 112 

populations of the same species, and even among species. For example, resistance to pyrethroids has been 113 

associated with kdr and super kdr mutations at domain II of the voltage-gated sodium channel in at least 114 

50 different arthropod species [18]. More recent examples include the G4946E mutation in the ryanodine 115 

receptor, conferring resistance against diamides, which has been reported in four different lepidopteran 116 

species, including Plutella xylostella populations spread across 3 continents [25-28], while alterations in 117 

the ABCC2 or ABCC3 gene, strongly associated with Cry1-toxin resistance, have been identified in seven 118 

different lepidopteran species [29]. Furthermore, mutations at identical position in chitin synthase 1 119 

(chs1), conferring resistance against benzoylureas, buprofezin and etoxazole, have been reported in three 120 

different arthropod species, both insects and mites (F. occidentalis, P. xylostella and the spider mite 121 

Tetranychus urticae) [30-32]. T. urticae is one of the rare examples where the frequency of a whole panel 122 

of different target-site mutations has been investigated worldwide (Table 1 and e.g. [33]), revealing the 123 

presence of identical mutations often across continents. The global presence of these and other target-124 

site mutations might be related to functional constraints in pesticide targets, which have been suggested 125 

to be considerably high, probably promoting the success of a few amino acid substitution that are 126 

constraint-free [34]. Nevertheless, even if conserved target-site mutations are present in populations in 127 

broad geographical context, their relative importance in the resistant phenotype needs to be sufficiently 128 

high to reliably predict resistance and serve as diagnostic marker. For T. urticae, the phenotypic strength 129 

of the most common mutations has been determined by repeated back-crossing and marker assisted 130 

selection, which is feasible for this species with short generation time. This revealed that in most cases, 131 

the presence of the mutation explained the larger part, if not the complete phenotype, suggesting that 132 

target-site mutations are a very good predictor of resistance levels in this species [35-37]. In addition, the 133 

dominance and fitness cost of certain resistance mutations was determined [31,36,38,39], which further 134 

increases the value of a certain molecular marker for IRM [38,40-42]. As introgression of a marker is not 135 

feasible for most insect species (however, see [43,44] for exceptions), gene editing in Drosophila and/or 136 

pest species have also been a very useful tool for validating and measuring the role and effect of certain 137 

mutations in resistance against insecticides [30,45-53].  138 

The interpretation of metabolic resistance in the context of developing molecular markers is even more 139 

complex. This is especially true for many serious pests that are polyphagous.  It was previously shown that 140 

similar gene-expression responses evolved after both the development of pesticide resistance as 141 

adaptation to a new host [54,55]. The ‘pre-adaptation syndrome’, as discussed by Dermauw and 142 



colleagues [54], confounds the potential interpretation of some of the key players in metabolic resistance, 143 

as candidate metabolic resistance genes might be overexpressed both in relation to pesticide 144 

detoxification as well as upon host plant exposure. In addition, although recombinant expression flowed 145 

by metabolism assays, reverse genetics by RNAi, or ectopic overexpression have provided different levels 146 

of validation for the involvement of detoxification genes in the resistance phenotype, finding appropriate 147 

markers has been even more challenging.  The complexity of metabolic resistance is also determined by 148 

the target marker: while in some insects, such as the  pollen beetle Meligethes aeneus a single P450 149 

(CYP6BQ23) seems to be primarily responsible for pyrethroid resistance [56] indicating a single 150 

RNA/protein marker, in others, such as  Helicoverpa armigera several members of the lepidopteran-151 

specific CYP6AE subfamily can metabolize esfenvalerate [57], moving the target marker at the P450 152 

subfamily level. Nevertheless, successful diagnostic assays for P450 based resistance have been developed 153 

in some cases, such as the polyphagous white fly Bemisia tabaci ([58], Figure 1A), which clearly indicates 154 

that this needs to be evaluated case by case.  155 

A relevant question for the strength of a marker is also: in how many cases the resistance is caused by the 156 

mechanisms under investigation (alone). We need to recognize that the resistance is often polygenic and 157 

consists (in many instances) of “major” genes and “minor” genes, and potentially different evolutionary 158 

solutions have been selected in different populations. The predictive value of a marker can therefore only 159 

be validated in combinations with bioassays in a certain geographical region at a certain time. A validated 160 

molecular marker can be subsequently used alone for resistance monitoring but should be used in 161 

conjunction with bioassays at certain time intervals, in case new mechanisms evolve. 162 

Methods in molecular diagnostics 163 

The majority of molecular diagnostics used for monitoring insecticide resistance in agricultural pests 164 

(described in Table 2 [16,59-64]) are based on nucleic acid detection (DNA and/or RNA). Simple/low-tech 165 

versions of PCR- (AS-PCR, PCR-RFLP) and isothermal LAMP are used to detect the presence of known 166 

mutations or differentially expressed genes (targeted analysis). In these cases, mutant allelic frequency 167 

(MAF) is calculated through screening of several individuals. Sequencing based methods (Sanger, 168 

pyrosequencing, next generation sequencing) also allow for the unbiased analysis of the whole genes or 169 

transcriptomes revealing potential new SNPs. Improved/High-tech versions of PCR-based methods 170 

(rtPASA/SYBR Green qPCR, TaqMan qPCR, ddPCR, lyophilized pellets, LabDisk) and sequencing (Nanopore, 171 

NGS transcriptome analysis) allow quantification of MAF within the analyzed sample; thus, samples or 172 

populations can be pooled beforehand. More importantly, the exact same technologies can be used for 173 



assessing gene expression levels at the RNA level in the same samples used for target-site mutation 174 

quantification and thus yield important information regarding metabolic resistance [65,66].  175 

At the protein level, most technologies have been developed to monitor metabolic resistance, with the 176 

exception of few target enzyme assays. This is achieved either by assessing the enzymatic activity 177 

(cytochrome P450 monooxygenases, glutathione-S-transferases, carboxyl/choline esterases) via general 178 

or more specific substrates, or the quantification of protein expression levels via specific antibodies [67].  179 

Today, target-site mutations are usually assayed by Sanger sequencing for small sample sizes and TaqMan 180 

qPCR for higher throughput needs in which case the cost per sample drops significantly. Metabolic 181 

resistance is most frequently determined at the mRNA level by singleplex SYBR Green RT-qPCR at relatively 182 

low cost and high throughput. Finally, in situations where large sample screening is required for known 183 

resistance mutations, including searching for low frequency/rare mutations, Droplet Digital PCR (ddPCR) 184 

could be a valuable tool [66]. It can be used to assess MAF in bulk samples with a detection limit of at least 185 

1 mutated individual in a pool of 1000. The same pooled sample can also be used quantify the number of 186 

metabolic gene transcripts with very high accuracy, when working with RNA/cDNA templates. Current 187 

ddPCR cost may be too high, but prices are expected to drop for already available and new platforms. 188 

Conclusions and future perspectives 189 

Due to concerns on environmental safety and human health, the portfolio of synthetic insecticides is 190 

gradually diminishing. To prevail the efficacy of current and future insecticides, the development and 191 

application of molecular markers for evidence based IRM will become more crucial. Although resistance 192 

monitoring is not common practice yet, this will surely change when the efficacy of a particular insecticide 193 

becomes even more crucial in a context where alternative crop protection strategies will rely on a ‘last 194 

resort’ chemical intervention. Robust molecular markers are of great value for IRM. However, in many 195 

cases, such strong markers are not available/known and more correlation studies between resistance and 196 

molecular markers alone or in combination across geographical regions should be performed, to validate 197 

the strength and value of a marker in place and time. Furthermore, while in the past the development of 198 

molecular markers was focused on functional markers (e.g. target-site resistance mutation), hypothesis-199 

free approaches (e.g. QTL mapping) and third generation sequencing technologies might generate markers 200 

regardless of underlying mechanisms. This will become more and more feasible with the advent of high-201 

quality genome sequences for many if not most pests. Last, distribution of marker-based resistance 202 

information in an operationally meaningful way, is challenging but will remain crucial. The development 203 



of modern interactive databases and ICT platforms that support such decision making, need to be further 204 

developed and implemented.  205 
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 404 

Annotated references 405 

*Vontas and Mavridis 2019 (ref 16) 406 

A critical review on the true value of molecular diagnostic tools for tracking insecticide resistance 407 

in mosquito vectors. 408 

**Riga et al. 2017 (ref 35) 409 

Using marker-assisted inbreeding, a large number of target-site resistance mutations was 410 

introgressed in a susceptible genetic background of T. urticae. This allowed to assess the 411 

phenotypic strength of a single resistance mutation, not confounded by additional resistance 412 

mechanisms, and partly determines its diagnostic value. It also allowed to determine associated 413 

fitness costs in a follow-up study, see Bajda et al. (ref 38) 414 

Zuo et al. 2017 (ref 45) 415 

The use of CRISPR-Cas9 gene editing to validate (the strength of) a SNP marker, G4946E conferring 416 

diamide resistance, in a lepidopteran pest species. The mutation was previously validated in the 417 

genetic model organism Drosophila by Douris et al. (ref 50) 418 

*Dermauw et al. 2013 (ref 54) 419 



Adaptation to host plants and pesticides select for similar responses in the polyphagous mite 420 

Tetranychus urticae, potentially confounding the predictive value of a metabolic marker such as 421 

overexpression of a detoxification gene. 422 

**Nauen et al. 2015 (ref 58) 423 

Reports a test kit based on an lateral flow test for the detection of CYP6CM1-based neonicotinoid 424 

resistance in while flies. The kit is as easy to use as a pregnancy test and is validated to provide a 425 

reliable estimate of resistance in populations across the globe. 426 

*Bronzato et al. 2018 (ref 61) 427 

The application of nanopore sequencing with the portable MinION variant as a tool for monitoring 428 

pathogens in plants and agricultural pests 429 

*Zink et al. 2017 (ref 64) 430 

One of the first studies documenting the application of ddPCR for monitoring molecular markers 431 

in pooled samples of agricultural pests. 432 

Figure Legends 433 

Figure 1 - Current and future diagnostic assays  434 

(A) Test kit box based on lateral flow assay for the detection of CYP6CM-based neonicotinoid resistance in 435 

B. tabaci. Test line intensity provides reliable estimation of the presence and approximate levels of 436 

resistance. The major advantage of such a test is its user-friendly format allowing its application under 437 

field conditions without specialized equipment or training, and the quick availability of the test result 438 

within minutes. The test has been successfully validated against a number of neonicotinoid resistant B. 439 

tabaci strains and field populations around the globe [58]. (B) Droplet Digital PCR (ddPCR) and (C) Oxford 440 

Nanopore: two of the most promising technologies for future use in monitoring insecticide resistance in 441 

agricultural pests. Both can be used for pooled samples. Major additional advantages for ddPCR is that it 442 

can be used to accurately assay known mechanisms in large bulks of samples with high sensitivity and 443 

specificity. Additional advantages for Oxford Nanopore are the deep sequencing capabilities, the 444 

identification of potential novel mutations and the practicality of portable, “field-friendly” variants 445 

(MinION Nanopore). 446 
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Table 1 - Geographical distribution of major target-site resistance mutations across 
T. urticae populations.  Additional references can be found in Table S1. 
target-site resistance 

mutation 
phenotypic 

strength1 

fitness 
cost?2 

geographical distribution 

      
 

Europe Asia 
North-

America Oceania Africa 

AChE  G119S n.i. n.i. ✓ ✓ - ✓3 - 

 F331W/Y n.i. n.i. ✓ ✓ ✓ ✓3 ✓ 

VGSC M918L+F1534S n.i. n.i. - - ✓ - - 

 F1534S+F1538I n.i. n.i. - - ✓ - - 

 L1024V strong no ✓ ✓ - ✓3 ✓ 

  F1538I strong n.i. ✓ ✓ ✓ - ✓ 

CHS1 I1017F strong yes ✓ ✓ ✓ ✓ ✓ 

cytB G132A strong yes ✓ - - - - 

 G126S+A133T strong n.i. ✓ - - - - 

 G126S+I136T n.i. n.i. ✓ - - - - 

 G126S+S141F strong n.i. ✓ - - - - 

 I260V+N326S n.i. n.i. - ✓ - - - 

  P262T moderate no ✓ ✓ - - - 

GluCl1 G314D weak yes ✓ ✓ - - - 

GluCl3 G326E weak yes ✓ ✓ - - ✓ 

PSST H92R moderate n.i. ✓ - - - - 
1 based on [35-37]: n.i., not investigated 

2 based on [36,38]: n.i., not investigated; “no” should be interpreted as not detected under the conditions of [38] 

3 mutation was detected in a lab strain 
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Table 2 - Current and future molecular diagnostic methods for assessing agricultural pest resistance 

 

T, D: Target-site, Detection of mutations; T, Q: Target-site, Quantification of mutation frequency (pooled samples); M: Metabolic resistance; AS: Allele Specific; HRM: High Resolution 
Melting; LAMP: Loop mediated isothermal amplification; RFLP: Restriction Fragment Length Polymorphism 

Methods Category Application Pro (+) / Contra (-) Examples 

Currently used molecular diagnostics 

AS-PCR 
PCR-RFLP 

‘Low-tech’ PCR-
based 

T, D + Applicable to basic laboratory settings 

+ Low-cost, simple 

- Low specificity (AS-PCR) 

- Low throughput 

- High protocol run time  

[59] 

TaqMan 
HRM analysis 

’Hi-tech’ PCR-
based 

T, Q 
M 

+ High-throughput 

+ Easy protocol and result interpretation 

- High capital cost (machine, equipment) 

[59,63] 

Direct sequencing/ 
Pyrosequencing  

PCR-Sequencing T, D + Detection of unknown resistance mutations 

- No quantitative information 

- High capital and per reaction cost 

- Multi-step complicated protocol, not suitable for large sample size 

[62] 

LAMP Isothermal 
amplification 

T, D + No requirement for thermal cycler; Low cost  

+ Easy, rapid one-step protocol; “Naked-eye” result determination  

+ Rugged, field-friendly variants can be developed 

- Complex and restrictive assay design 

- No quantitative information/ low specificity for SNPs 

[60] 
 

Promising molecular diagnostics for future use 

Direct-in-lysate analysis 
coupled with lyophilized 
pellets  

Multiplex direct 
Taqman (RT) 
qPCR 

T, Q 

M 

+ Compatibility with most qPCR platforms 

+ Fast, with minimum handling: all reagents in a single pellet 

+ Multiplexing capability  

- High capital cost for qPCR machine 

- Needs calibration for quantification 

[16] 

Droplet Digital PCR 
(ddPCR) 

Third generation 
PCR 

T, Q 

M 

+ Extremely accurate and sensitive 

+ Simplified analysis and experimental procedure 

+ No calibration or controls needed for quantification 

-  High capital and per-assay cost 

[64] 

Nanopore sequencing Third generation 
sequencing 

T, Q 

M 

+ Deep sequencing (RNA-, DNA-seq) capabilities 

+ High-throughput 

+ Identification of potential novel mutations 

+ Portable, “field-friendly” variants (MinION Nanopore) 

- Requires complicated bioinformatic analysis 

- High capital cost 

[61] 
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Box 1 - Factors affecting the diagnostic value of a molecular marker for IRM 

 Intensity of underlying resistance phenotype associated with the marker (how much is the 

phenotype determined by a single marker) 

 Geographic distribution of the marker (on what scale do resistance mechanisms vary) 

 Cross spectrum resistance predictive value of the marker  

 Epistasis and how many resistance markers are required for diagnosis in each case. 

 Untangle gene expression patterns associated with resistance and host plant (detoxification 

enzymes can be overexpressed after adaptation to pesticides and plant allelochemicals) 

 Dominance and fitness cost of the resistance marker 

 Robustness, accuracy and cost effectiveness of diagnostic assay to capture the marker 

 

BOX



Resistance monitoring is not common practice in agriculture 

Molecular markers can be a crucial tool in resistance management of agricultural pests 

Strength and predictive value of a diagnostic marker depends on many factors 

New technologies (MinION, ddPCR) will allow to determine mutation frequency at low levels 

highlights
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