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Many thanks to my colleagues from the UC3M physics department,
who can always colour grey working days with singular conversations
over a cup of coffee. I immensely enjoyed working alongside you. I
cannot wait to see what new heights you will reach.

I also wish to thank professors Vladimir Rozhansky and Ilya Senichenkov
from SPbPU for introducing me to the field of fusion plasmas.

It has been a true pleasure to meet and a great honour to work
with such extraordinary gifted people during my Ph.D.

5



6

This thesis is dedicated to my family, whose unconditional love,
belief and support motivated me to move on. I owe it all to you;
especially to my mom, Elena Mitina, who told me ’you are capable of
doing whatever you want, just be happy’ and I ended up writing this.

I wish to sincerely thank my closest friends for their support along
the way. Arina and Elena, you are there for me as far as I can remem-
ber myself. Maria, Marina, Julia, Aleksandra, Andrei, Viktor and
Egor, thanks for the years of friendship and the trips we share, espe-
cially for 800 km of Camino de Santiago and Azores. Dario, Liliana,
Nerea, Irena, Milos and Marco, it has been wonderful to share tips and
tricks of being an international Ph.D. student with you. Special credit
to Elena, who proofread the manuscript; not only you enriched my En-
glish with glorious expressions, but also became the best companion
in time of the pandemic.

I am thankful to my teachers for shaping me into a researcher, my
family for raising me capable of it, my friends for reminding me to do
something else.

Alena





8



Contents

Abstract i

Resumen v

Overzicht ix

Published & Submitted Content xiii

1 Introduction 1
1.1 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Energy demand . . . . . . . . . . . . . . . . . . 1
1.1.2 Fusion basic concept . . . . . . . . . . . . . . . 3
1.1.3 Fusion devices . . . . . . . . . . . . . . . . . . . 5
1.1.4 Quasi-symmetry . . . . . . . . . . . . . . . . . . 7

1.2 Transport basics . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Classical transport . . . . . . . . . . . . . . . . 10
1.2.2 Neoclassical transport . . . . . . . . . . . . . . 11
1.2.3 Turbulent transport . . . . . . . . . . . . . . . . 13
1.2.4 Transport equations . . . . . . . . . . . . . . . 14

1.3 α-particle transport . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Basic equations . . . . . . . . . . . . . . . . . . 19
1.3.2 Particle classification . . . . . . . . . . . . . . . 21
1.3.3 α-particles diffusion . . . . . . . . . . . . . . . . 24

1.4 Objectives and outline . . . . . . . . . . . . . . . . . . 26

2 Statistical description 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Configurations and Methods . . . . . . . . . . . . . . . 32

2.2.1 Equations of motion . . . . . . . . . . . . . . . 33
2.2.2 Configurations . . . . . . . . . . . . . . . . . . . 34

9



10 CONTENTS

2.2.3 Numerical Method . . . . . . . . . . . . . . . . 37
2.2.4 Impact of the magnetic configuration and the

initial conditions on the losses . . . . . . . . . . 39
2.2.5 Trapped Particle classification . . . . . . . . . . 41

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1 ITER bouncing times and banana widths . . . . 45
2.3.2 Probability density function of bouncing time,

orbit width and radial orbit displacement . . . . 48
2.3.3 Bouncing times and connection lengths . . . . . 50
2.3.4 Transport dynamics . . . . . . . . . . . . . . . . 55

2.4 Summary and Conclusions . . . . . . . . . . . . . . . . 59

3 Non-diffusive approach 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Approximations, Configurations, Methods . . . . . . . 64
3.3 Fractional transport diagnostics . . . . . . . . . . . . . 71

3.3.1 Fractional transport equation and transport ex-
ponents . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 The Eulerian method . . . . . . . . . . . . . . . 73
3.3.3 The Lagrangian method: R/S analysis . . . . . 77
3.3.4 On the sensitivity and validity of methods . . . 77

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.1 The Lagrangian method: R/S analysis . . . . . 80
3.4.2 The Eulerian method . . . . . . . . . . . . . . . 80

3.5 Discussion and Conclusions . . . . . . . . . . . . . . . 84

4 Conclusions 87

5 Conclusiones 91

6 Conclusies 95

References 108



Abstract

Nuclear fusion has the potential to provide humanity with a safe, clean,
abundant, efficient and reliable energy source for the generations to
come, but up to date finding a viable fusion reactor concept remains
an ongoing area of research. One of the main difficulties to attain eco-
nomically viable magnetically controlled thermonuclear fusion reactors
is the confinement of α-particles. These α-particles are responsible of
sustaining the extreme temperatures required for nuclear reactions,
and their loss poses a serious threat to the reactor operational control
and to its plasma-facing components.

In toroidally shaped fusion devices with a non-uniform magnetic
field, α-particles with small parallel velocity become trapped between
areas of the high field bouncing between reflection points, whose po-
sition is highly susceptible to field corrugations. With the exception
of symmetric magnetic fields, like those of ideal tokamaks, these so-
called trapped α-particles experience non-zero radial average drifts,
which might lead to their collisionless losses. There are two princi-
pal collisionless mechanisms connecting trapped particle losses with
the inhomogeneities of the confining magnetic field. The first is ripple
trapping, in which particles fall into local ripples and experience strong
radial drifts usually being convective (ballistic). The second mecha-
nism is ripple induced stochastic processes with milder drifts caused
by the radial motion of particle reflection points, which result either
in the banana tip stochastic diffusion or particle transitions, in which
the particles change the orbit type near the reflection points. While
the mitigation of these losses is widely considered in the literature on
fusion reactor designs, far too little attention was paid to the statisti-
cal characterization of the processes underlying collisionless transport
of trapped α-particles, whose nature is generally considered diffusive.

This thesis is intended to provide such statistical description and
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ii ABSTRACT

clarify the nature of collisionless trapped α-particle transport for re-
actor scale configurations in cases of broken symmetry of the underly-
ing magnetic field. To this end, detailed analyses were performed on
large ensembles of α-particle trajectories, calculated with the guiding
center orbit following Monte Carlo code MOCA for several magnetic
configurations: a purely toroidal model with ITER parameters and
four quasi-toroidal stellarators loosely based on NCSX project with
different levels of magnetic field symmetry.

The simulations suggest that while the perfect toroidal magnetic
field symmetry of the ITER configuration grants perfect confinement,
an increasing departure from quasi-toroidal symmetry leads to faster
and larger α-particle losses, most of which belong to particles born
with a small parallel velocity in areas of a weak magnetic field on the
outer midplane of the configurations. Based on the resulting numeri-
cal trajectories, novel techniques were developed capable to calculate
the fraction of trapped α-particles and identify the orbit types. Esti-
mates show that about a third of the particles are trapped for ITER,
and a fifth for the stellarators, independently on the level of symmetry.
These trapped particles mainly follow banana orbits and, to a lesser ex-
tent, potato, transition and ripple trapped orbits. Statistical analysis
was done for the basic parameters of banana orbits, and it was found
that the most probable banana width becomes wider, and that the
most probable bouncing time becomes longer as configuration departs
from toroidal symmetry. The results of the trapped particle fractions
and the most probable bouncing times are in agreement with those ob-
tained by an independent numerical procedure based on the depth of
the confining magnetic field and the assumption that α-particles move
along the filed lines. To that end, a new figure of merit measuring the
level of toroidal symmetry was introduced.

The convection velocity and the diffusion transport coefficients
were estimated by two methods: using the most probable banana
widths and bouncing times, and fitting the time dependence of the
moments of the radial probability density functions of banana centers,
which were calculated with a new algorithm based on the positions of
the reflection points. Their statistical analysis suggests that the colli-
sionless transport of trapped α-particles cannot be properly described
as being diffusive when the magnetic configuration departs from sym-
metry.

The assumption that ripple-enhanced radial transport of trapped
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α-particles is diffusive has been extensively used to model experimen-
tal data. But it is limited to describe only Gaussian and Markovian
transport processes and thus neglects correlations, memory, and spa-
tial effects, that have recently been proved relevant for fusion plasma,
especially in cases of turbulent driven transport.

In this thesis, the techniques used in characterizing the non-diffusive
dynamics of turbulent transport were adapted to study collisionless α-
particle neoclassical transport. To build an effective transport model,
α-particle trajectories were analyzed with a whole set of tools imported
from fractional transport theory. Using the Eulerian propagator and
Lagrangian rescale range [R/S] analysis techniques, the Hurst H, the
spatial α and the temporal β exponents appearing in fractional trans-
port theory were estimated to describe non-diffusive transport.

The results for the ideal toroidally symmetric ITER ripple-less
magnetic configuration analyzed by the Lagrangian [R/S] method
show an almost zero Hurst exponent pointing out, as expected, to
the absence of radial transport. While all perfectly confined trapped
α-particles were analyzed for ITER, for the four stellarators, only the
particles contributing the most to the losses were considered, i.e. α-
particles that get lost in the region with the steepest slope in the
loss fraction. The estimated spatial and temporal transport expo-
nents found indicate that the underlying nature of transport is non-
diffusive with non-Gaussian and non-Markovian statistics. As the level
of toroidal symmetry decreases, the presence of spatial correlations,
particularly strong anti-correlations, becomes more pronounced. For
all stellarators, there are signs of self-similarity and significant memory
effects. The agreement in the Hurst exponents, estimated by both the
Lagrangian and Eulerian techniques, shows that as the level of quasi-
toroidal symmetry increases transport becomes strongly subdiffusive.
Although, the validity of the fractional model itself becomes doubtful
in the limiting high and low symmetry cases.

The work presented in the thesis can be naturally extended to
study the validity of the fractional transport model onto other types
of confining magnetic fields and various α-particle-related effects, such
as collisions, α-particle birth profiles, etc.



iv ABSTRACT



Resumen

La fusión nuclear tiene el potencial de abastecer a la humanidad con
una enerǵıa segura, limpia, abundante, eficiente y fiable para las gen-
eraciones venideras, pero hasta la fecha, encontrar un concepto viable
de reactor de fusión es un área de investigación en curso. Una de las
mayores dificultades a la hora de conseguir reactores termonucleares
económicamente viables es el confinamiento de las part́ıculas α. Estas
part́ıculas son las encargadas de mantener las temperaturas extremas
que se requieren para las reacciones nucleares y su pérdida supone
una seria amenaza para la operación y control del reactor y el de sus
componentes en contracto con el plasma.

En dispositivos de fusión con forma toroidal y con un campo magné-
tico no uniforme, las part́ıculas α con una velocidad paralela pequeña,
quedan atrapadas entre las zonas del campo alto, rebotando entre pun-
tos, cuya posición es muy sensible a las ondulaciones del campo. Ex-
ceptuando los campos magnéticos simétricos, como los de los tokamaks
ideales, dichas part́ıculas α atrapadas experimentan derivas radiales
promedio distintas de cero, que pueden conducir a pérdidas no colision-
ales. Hay dos mecanismos principales no colisionales que conectan las
pérdidas de part́ıculas atrapadas con las heterogeneidades del campo
magnético confinante. El primero es el debido al ripple trapping, en
el que las part́ıculas caen en ripples locales y experimentan fuertes
desviaciones radiales que generalmente son convectivas (baĺısticas).
El segundo mecanismo consiste en procesos estocásticos inducidos por
los ripples donde las leves desviaciones causadas por el movimiento ra-
dial de los puntos de rebote de las part́ıculas dan como resultado una
difusión estocástica al cambiar la trayectoria las part́ıculas cerca de
los puntos de reflexión. Mientras que la mitigación de estas pérdidas
ha sido ampliamente estudiada en la literatura relativa a los diseños
de reactores de fusión, no se ha prestado mucha atención a la carac-
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terización estad́ıstica de los procesos de transporte de las part́ıculas α
atrapadas no colisionales, cuya naturaleza en general se ha considerado
difusiva.

El objetivo de esta tesis es aportar dicha descripción estad́ıstica y
aclarar la naturaleza del transporte de las part́ıculas α atrapadas no
colisionales en configuraciones de tipo reactor cuando hay una ruptura
de simetŕıa en su campo magnético. Con este propósito, realizaremos
análisis detallados en muestras amplias de trayectorias de part́ıculas
α calculadas con el código Monte Carlo MOCA de seguimiento de
órbitas del centro guia, para varias configuraciones magnéticas: un
modelo puramente toroidal con parámetros de ITER y cuatro stellara-
tors cuasi-toroidales, inspirados en el proyecto NCSX, con diferentes
niveles de simetŕıa magnética.

Las simulaciones sugieren que, si bien la perfecta simetŕıa toroidal
del campo magnético de la configuración ITER garantiza un con-
finamiento perfecto, una desviación creciente de la simetŕıa cuasi-
toroidal conduce a mayores y más rápidas pérdidas de part́ıculas α, la
mayoŕıa de las cuales pertenecen a part́ıculas nacidas con un ángulo de
ataque pequeño en regiones de campo magnético bajo en la zona ex-
terna del plano ecuatorial de las configuraciones. Sobre la base de las
trayectorias numéricas resultantes, se desarrollaron nuevas técnicas ca-
paces de calcular la fracción de part́ıculas α atrapadas e identificar los
tipos de órbitas. Las estimaciones muestran que alrededor de un ter-
cio de las part́ıculas están atrapadas para ITER, y un quinto para los
stellarator, independientemente del nivel de simetŕıa. Estas part́ıculas
atrapadas siguen principalmente órbitas de tipo banana y, en menor
medida, órbitas potatoes, en tránsito y ripple trapped. En el análisis es-
tad́ıstico de los parámetros básicos de las órbitas banana se encontró
que el ancho más probable de las bananas se hace mayor, y que el
tiempo de rebote más probable se hace más largo cuando la configu-
ración magnétical carece de simetŕıa toroidal. Los resultados de las
fracciones de part́ıculas atrapadas y los tiempos de rebote más proba-
bles están de acuerdo con los obtenidos por un procedimiento numérico
independiente basado en la profundidad del campo magnético confi-
nante y la suposición de que las part́ıculas α se mueven a lo largo de
las ĺıneas del campo. Con este propósito, se introdujo una nueva figura
de mérito que mide el nivel de simetŕıa toroidal.

Las velocidades convectivas y los coeficientes de difusión se esti-
maron con dos métodos: utilizando los valores más probables de los
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anchos de las banana y los tiempos de rebote y ajustando la depen-
dencia temporal de la función de distribución radial de probabilidad
de los centros de las órbitas de las bananas, que se calcularon con un
nuevo algoritmo basado en las posiciones de los puntos de reflexión.
Su análisis estad́ıstico sugiere que el transporte de las part́ıculas α

atrapadas no colisionales no puede ser descrito como difusivo cuando
la configuración magnétical pierde la simetŕıa.

La suposición de que el transporte radial de part́ıculas α atra-
padas inducido por ripple es difusivo se ha utilizado ampliamente para
modelar datos experimentales. No obstante, su aplicación se limita a
describir solo los procesos de transporte Gaussianos y Markovianos
y por lo tanto no tiene en cuenta las correlaciones, la memoria y los
efectos espaciales, que recientemente han demostrado ser relevantes en
plasmas de fusión, especialmente en casos de transporte turbulento.

En esta tesis, las técnicas utilizadas para caracterizar la dinámica
no difusiva del transporte turbulento se adaptaron para estudiar el
transporte neoclásico de part́ıculas α no colisionales. Para construir
un modelo de transporte efectivo, se han analizado las trayectorias
de las part́ıculas α con un conjunto de herramientas importadas de la
teoŕıa de transporte fraccionario. Usando las técnicas de propagadores
Eulerianos y el análisis [R/S] Lagrangiano, se estimaron el exponente
de Hurst H y los exponentes espacial α y temporal β que aparecen
en la teoŕıa del transporte fraccionario para describir el transporte no
difusivo.

Los resultados para la configuración magnética sin ripple de ITER
con simetŕıa toroidal ideal analizada por el método [R/S] Lagrangiano
muestran un exponente de Hurst casi igual a cero que señala, como se
esperaba, la ausencia de transporte radial. Mientras que para ITER se
analizaron las trayectorias de todas las part́ıculas α atrapadas perfec-
tamente confinadas, para los cuatro stellarators, solo se consideraron
las part́ıculas que más contribuyeron a las pérdidas, es decir, part́ıculas
α que se pierden en la región con la pendiente más pronunciada en la
fracción de pérdidas. Los exponentes espaciales y temporales estima-
dos que se encontraron indican que la naturaleza subyacente del trans-
porte es no difusiva y con estad́ısticas no Gaussianas y no Markovianas.
A medida que disminuye el nivel de simetŕıa toroidal, la presencia de
correlaciones espaciales, particularmente fuertes anti-correlaciones, se
vuelve más pronunciada. Para todos los stellarators, hay signos de
autosimilaridad y efectos significativos en la memoria. El acuerdo en-
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tre los exponentes de Hurst, estimados por las técnicas Lagrangiana y
Euleriana, muestra que a medida que el nivel de simetŕıa aumenta, el
transporte se vuelve fuertemente subdifusivo. Aunque, la validez del
modelo fraccionario en śı mismo se vuelve dudosa en los casos limı́tes
de alta y baja simetŕıa.

El trabajo presentado en esta tesis puede extenderse naturalmente
para estudiar la validez del modelo de transporte fraccionario en otros
tipos de campos magnéticos confinantes y estudiar varios efectos rela-
cionados con las part́ıculas α, como colisiones, perfiles de nacimiento
de las part́ıculas α, etc.



Overzicht

Kernfusie heeft het potentieel om de mensheid een energiebron te ver-
schaffen voor toekomstige generaties die niet alleen veilig en zuiver
is (en CO2-vrij), maar ook efficiënt en betrouwbaar, en waarvan de
grondstoffen overvloedig aanwezig zijn. Eén geschikte reactor is echter
nog steeds in een ontwikkelingsfase. Eén van de grote moeilijkhe-
den om een economisch rendabele magnetisch gestuurde thermonucle-
aire fusiereactor te realiseren, is de opsluiting van α-deeltjes. Deze
α-deeltjes zijn mede noodzakelijk voor het in stand houden van de
extreem hoge temperaturen, die nodig zijn voor de kernreacties. Het
verlies van α-deeltjes uit de reactor vormt een ernstige bedreiging voor
de operationele controle van de reactor en voor onderdelen die met het
plasma in contact komen.

Bij torus-vormige fusiemachines met niet-uniforme magneetvelden
raken α-deeltjes met een kleine parallelle snelheid, gevangen (’trapped’)
tussen gebieden van hoge veldsterkte, waardoor ze beginnen stuiteren
tussen reflectiepunten. De precieze locatie waarop dit gebeurt, hangt
af van de exacte niet-uniformiteit in de magneetveldsterkte. Met uit-
zondering van symmetrische magnetische velden, zoals die van ideale
tokamaks, ervaren deze α-deeltjes radiale gemiddelde drifts die niet
nul zijn en die kunnen leiden tot verliezen zonder botsingen (’colli-
sionless’). Er zijn twee mechanismes te onderscheiden bij dit soort
verliezen. Het eerste is een opsluiting in magnetische rimpels (’mag-
netic ripple’). Deeltjes belanden in locale magnetische rimpels en er-
varen een sterke radiale drift, die gewoonlijk van het convectie type
is (ballistisch). Het tweede mechanisme is een stochastisch proces,
dat eveneens door de magnetische rimpels wordt gëınduceerd. Hierbij
zijn de drifts milder. Deze soort drifts wordt veroorzaakt door radiale
bewegingen van de deeltjes tussen reflectiepunten en resulteert in een
stochastische diffusie van de tips van de banaan-vormige ingesloten
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bewegingsbaan (’trapped banana orbit’) van de deeltjes. Het is ook
mogelijk dat deeltjes hierbij overgaan naar een ander type bewegings-
baan in de torus.

Hoewel de beperking van deze verliezen in het algemeen wel wordt
overwogen in de literatuur over het ontwerpen van fusiereactoren, werd
tot hiertoe weinig aandacht besteed aan het statistisch karakteriseren
van de processen die ten grondslag liggen aan het transport zonder
botsingen van de ingesloten α-deeltjes, waarvan de aard algemeen als
diffuus wordt beschouwd. Dit proefschrift is bedoeld om een dergelijke
statistische beschrijving te geven en de aard van dit transport te ver-
duidelijken voor reactor-configuraties waarbij de symmetrie van het
onderliggende magnetische veld is verbroken. Daartoe worden gede-
tailleerde analyses uitgevoerd op grote ensembles van trajecten van
α-deeltjes. Deze worden berekend met de zogenaamde ’guiding-center
orbit’ methode volgens een Monte Carlo-code, en dit voor verschil-
lende magnetische configuraties: een puur toröıdaal model met ITER
relevante parameters en vier quasi-toröıdale stellarators, met param-
eters die zijn gëınspireerd op het NCSX project, en met verschillende
niveaus van symmetrie voor het magneetveld.

Simulaties suggereren dat een perfecte symmetrie van het toröıdaal
magneetveld in ITER een perfecte opsluiting garandeert. Echter, hoe
meer wordt afgeweken van de quasi-toröıdale symmetrie, hoe meer en
sneller de α-deeltjes uit de reactor verdwijnen. Het zijn voornamelijk
de α-deeltjes die zijn geboren met een kleine parallelle snelheid in
gebieden met een zwak magneetveld (i.e. aan de buitenzijde van de
torus).

Gebaseerd op de resulterende numerieke banen van de deeltjes,
werden nieuwe technieken ontwikkeld waardoor de fractie van inges-
loten (’trapped’) α-deeltjes kunnen worden bepaald en ook de eigen-
schappen van hun bewegingsbaan. Een derde van de α-deeltjes in
ITER doorlopen naar schatting een dergelijke ingesloten bewegings-
baan. Voor een stellarator is dat ongeveer een vijfde, ongeacht het
niveau van symmetrie. De baan van deze deeltjes is voornamelijk van
het banana-type (’banana orbits’). Er zijn ook deeltjes op zogenaamde
’potato-orbits’, alsook op transitie-banen en andere zitten gevangen in
de magnetische veld rimpels (’ripple trapped orbits’). Een statistische
analyse werd uitgevoerd voor basisparameters van de banana-orbits.
Er kon worden geconcludeerd dat als de configuratie meer afwijkt
van een symmetrie toestand, zal de baan verbreden en de tijd dat
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het deeltje stuitert tussen de uiteinden, zal toenemen. De resultaten
voor de fractie van ingesloten deeltjes en voor de meest waarschijn-
lijke stuiter-tijd zijn in overeenstemming met resultaten van een on-
afhankelijke numerieke procedure die is gebaseerd op de diepte van het
opsluitend magneetveld en de veronderstelling dat α-deeltjes zich be-
wegen langs de lijnen van het magneetveld. Hiervoor werd een nieuwe
karakteristieke eigenschap gedefinieerd die het niveau van de toröıdale
symmetrie beschrijft.

De convectie-snelheid en diffusiecoëfficiënten voor het transport
werden geschat door middel van twee verschillende methodes: (i) ge-
bruik makend van de meest waarschijnlijke breedte van de banaan-
vormige baan en de stuiter-tijden, en (ii) door het fitten van de ti-
jdsafhankelijkheid van de momenten van de radiale waarschijnlijkhei-
dsdistributie functie van de centra van de banana-orbit. Deze centra
werden berekend met een nieuw algoritme op basis van de reflectiepun-
ten van de baan. De statistische analyse suggereert dat het trans-
port zonder botsingen van ingesloten α-deeltjes niet goed kan worden
beschreven als louter diffuus wanneer de magnetische configuratie niet
symmetrisch is.

De veronderstelling dat een verhoogd radiaal transport van inges-
loten α-deeltjes door magnetische rimpels, diffuus van aard is, werd tot
hiertoe nochtans uitgebreid toegepast om experimentele data te mod-
elleren. Het is echter beperkt en kan enkel Gaussiaanse of Markovi-
aanse transport processes beschrijven. Het houdt geen rekening met
correlaties, geheugen-effecten of ruimtelijke invloeden. Aspecten die
niettemin recent relevant zijn gebleken voor fusieplasma’s, in het bij-
zonder bij de turbulente transportprocessen.

In de thesis werden precies deze technieken die de niet-diffuse dy-
namica van turbulent transport beschrijven, toegepast op de studie
van het neoklassiek transport van α-deeltjes zonder botsingen. Om
een effectief transportmodel te bouwen, werden de trajecten van α-
deeltjes geanalyseerd door middel van technieken gëımporteerd uit de
fractionele transporttheorie. Gebruik maken van een Euler propaga-
tor en een Lagrangiaanse herschalingsbereik [R/S] analyse, werden de
Hurst H, de ruimtelijke α en de tijdsafhankelijke β exponenten, die
verschijnen in de fractionele transporttheorie, geschat. Zo kon het
niet-diffuse aandeel van het transport worden beschreven.

De resultaten voor ITER met de Langrangiaanse [R/S] methode,
in een ideale configuratie, die toröıdale symmetrisch is en zonder rip-
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ple, geven een Hurst exponent die bijna nul is. Dit stemt overeen met
de verwachting dat er geen radiaal transport is. Voor de ITER con-
figuratie werden alle ingesloten α-deeltjes geanalyseerd. Voor de vier
stellarator configuraties, werden enkel de deeltjes in rekening gebracht
die het meest bijdragen tot de verliezen, i.e. α-deeltjes die verloren
raken in de regio met de meest steile helling van de verliesfractie.
De geschatte ruimtelijke en temporele transportexponenten geven aan
dat de onderliggende aard van het transport niet diffuus is met niet-
Gaussiaanse en niet-Markoviaanse statistieken. Wanneer de toröıdale
symmetrie afneemt, worden de aanwezigheid van ruimtelijke corre-
laties meer uitgesproken, in het bijzonder sterke anti-correlaties wor-
den waargenomen. Voor alle stellarators zijn er tekenen van zelfgeli-
jkvormigheid en aanzienlijke geheugeneffecten. De overeenkomst in
de Hurst exponent, geschat zowel met Lagrangiaanse als Euleriaanse
technieken, toont aan dat het transport sterk sub-diffuus wordt als het
niveau van quasi-toröıdale symmetrie toeneemt. In de limiet van hoge
en van lage symmetrie wordt de toepasbaarheid van het fractionele
model evenwel twijfelachtig.

Het werk dat in de thesis is voorgesteld, kan nog worden uitgebreid
om de toepasbaarheid van het fractionele transportmodel op andere
types van magnetische opsluiting te bestuderen, evenals verschillende
effecten die verband houden met α-deeltjes, zoals botsingen, profielen
waar de α-deeltjes worden geboren, etc.
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Chapter 1

Introduction

1.1 Nuclear Fusion

1.1.1 Energy demand

The energy demand of humanity has tremendously escalated for the
past centuries and keeps increasing in recent times. According to the
BP Statistical Review of World Energy (2019) [1], by earlier 2000 the
yearly global primary energy consumption - the total energy received
from all energy resources and consumed by mankind in all sectors of
the economy in each country - has increased tenfold over the past cen-
tury. The nuclear and hydropower made up for ∼ 5% of the energy
supply, biofuels ∼ 10%, natural gas 20%, coal 25% and crude oil 40%.
Just over the last 20 years the global energy consumption grew by al-
most 50%, which was provided by the same key sources in the energy
market (mainly fossil fuels) in similar percentage with a small contri-
bution ∼ 1.5% of the renewable sources as wind and solar. Looking
at the world regional statistics, the Asian Pacific market - known as
a region with by far the largest economic boost and digital revolution
- is mainly responsible for increased energy demand, as between 2000
and 2018 it more than doubled its primary energy consumption. The
regional energy infrastructure is closely tied to its economic situation.
Since the difference in energy consumption between developed and de-
veloping countries reduces globally, the International Energy Agency
(IEA) gave a projection in the World Energy Outlook 2019 [2] that
by 2040, the global energy demand will increase by at least 20%. The
energy market should be ready to meet the needs of energy services,

1
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both industrial and domestic, in the long run.

Currently, most of the energy is generated by non-renewable sources
like fossil fuels. The non-sustainable energy production has numerous
negative effects for humanity and the environment, which may be im-
mediate or deferred until next generations. Accidents at nuclear power
plants, such as the Chernobyl 1986 and the Fukushima Daiichi 2011
disasters, had an instant dramatic impact on both of them. The cu-
mulative effects of energy production are no less dangerous, like high
life-threatening risks related to fossil fuels production; negative impact
due to storage of radioactive waste; floodings; the rise of sea levels;
ozone depletion, greenhouse effect and deforestation that keep esca-
lating the global warming. Our society requires clean, inexhaustible,
sustainable and environmentally friendly sources of energy as soon as
possible. According to the IEA [2], in 20 years the renewable solar and
wind power plants might become key components of the world installed
power generation capacity. Currently, both are at the same level of the
installed power generation capacity. In the next 15 years solar energy
generation is expected to be the same as of gas and by 2040 outpace
all other sources. Nevertheless, the renewable energy sources have
numerous downsides, such as their short lifespan, cost-effectiveness,
manufacture pollutions, unoptimized disposal, and strong dependence
on weather conditions, since no sufficiently large energy store systems
are available yet.

An alternative sustainable concept is nuclear fusion. Nuclear fusion
rests on a brilliant and elegant idea of recreating a reaction similar to
the one that powers stars under controlled conditions here on Earth.
Nuclear fusion has a potential to provide stable, safe, environmen-
tally friendly and large-scale power supply, as the fuel sources, mainly
Deuterium and Lithium for the planed future reactors, are abundant
in nature, and greenhouse gas emissions are zero. Though, thermonu-
clear fusion reactors will be cataloged as radioactive installations, they
can be decommissioned and dismantled in just 100 years after their
shutdown. Moreover, the amount of radioactive fuels in the reactor
at any time will be minute, and runaway nuclear chain reactions are
inherently impossible.
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1.1.2 Fusion basic concept

Nuclear fusion is a reaction where two light nuclei are combined, fused,
into a heavier one. Future fusion reactors will harness the kinetic
energy of the reaction products due to the mass defect in accordance
with Einstein’s famous mass-energy equivalence equation E = mc2.

Fusion reaction requires temperatures in the range of 10-100 kilo-
electron Volts (keV) at which matter can exist only in the plasma
state. Plasma is a state of matter being a quasi-neutral mixture of
charged particles. Stars are an example of burning plasma in nature,
where the temperatures are high enough for nuclei to overcome the
Coulomb electrostatic repulsion and trigger fusion nuclear reactions,
that in turn further increase both the temperature and the pressure
needed to sustains the reactions. The Sun is powered by proton-proton
chain fusion reaction, converting ∆m = 4·109 kg of matter into energy
per second.

Since gravitational confinement cannot be used to replicate the
conditions inside stars, two alternative methods have been developed
to attain net energy gain by fusion reactions on Earth: Inertial and
Magnetic confinement. The former produce fusion conditions through
the implosion of hydrogen fuel pellets using powerfull laser pulses. The
latter creates, shapes and contains plasma in a chamber with magnetic
fields created by, usually superconducting, electromagnets.

To achieve and control thermonuclear reactions, the reactants must
retain their energy within a reacting region for sufficient time. A cri-
teria developed by Lawson [3] is used to estimate how far a plasma is
from achieving fusion conditions. This criteria states that the prod-
uct of density n, energy confinement time τE (that measures how fast
the plasma looses its energy) and temperature T must be ∼ 3 · 1021

m−3 s keV. While the inertial fusion reaction proceeds for short times,
picoseconds, at high densities, 1030 particles per cubic meter, the mag-
netic confinement takes place for moderate times, seconds, at low den-
sities, 1020 particles per cubic meter. This work is focused on magnetic
confinement fusion.

In fusion reaction, the energy released per nucleon peaks for the
lightest elements with low binding energy. Table 1.1 lists the fusion
reactions for hydrogen isotopes with the smallest threshold energies
together with the released energies [4].

The Deuterium-Trtium D-T reaction has the largest nuclear cross-
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Table 1.1: Optimal terrestrial fusion reactions together with threshold
energy required for their activation and released energies.

Reactants Byproducts and Energy released Threshold energy
D+T 4He (3.5 MeV) + n (14.1 MeV) 10 keV

D+3He 3He (3.7 MeV) + p (14.7 MeV) 30 keV
D+D T (1 MeV) + p (3 MeV) 35 keV
D+D 3He (0.8 MeV) + n (2.5 MeV) 35 keV

section at lower temperatures and is the easiest to achieve [5]. While
Deuterium is stable, available in abundance in sea water and could
be injected directly in a plasma, Tritium cannot be found in nature
because of its fast disintegration rate but could be bred from Lithium
in a reactor. A lithium blanket facing the plasma will be installed
for this purpose and to slow down the energetic neutrons from the fu-
sion reaction. The consumables are therefore Dueterium and Lithium,
where Tritium is just an intermediate fuel.

The byproducts of D-T reaction serve different purposes. Being
charged, α-particles stay inside the confining magnetic field and trans-
fer their high energy to the rest of the plasma species through colli-
sions. The combination of neutrons and Lithium plays a double role.
At high energy, the nuclear reaction with Lithium produces Tritium,
while at low energy, Lithium thermalises neutrons. The deposited en-
ergy is transferred to a heat exchange circuit to initiate a conventional
electricity production cycle.

In steady state conditions, the power balance is attained when
the power generated by α-particles and external power sources com-
pensates the plasma power losses. There are two main loss mecha-
nisms in the plasma: particle power losses and radiative losses (mainly
Bremsstrahlung). The fusion device performance is characterized by
the fusion gain factor Q, which is the ratio of the total produced fu-
sion power to the external input power: Q = Pfus/Pext. When the two
powers compensate each other, Q = 1, the fusion reactor can sustain
the plasma in steady state. This condition is usually called breakeven.
Ignition is attained when the plasma can be sustained without any
external power, Q → ∞, i.e. solely by α-particle heating. A com-
mercially viable fusion reactor should exceed breakeven and operate
a burning plasma with predominantly Pα heating, corresponding to
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Q ≥ 5− 10 for D-T reactions.
So far, the biggest laboratory fusion device, the Joint European

Torus JET, was very close to breakeven, reaching Q ∼ 0.67. The next
fusion experiment, ITER (International Thermonuclear Experimental
Reactor), which is under construction in the south of France should
operate between Q = 5 and 10. The international fusion community
has already begun designing the first demonstration nuclear power
station DEMO to put net fusion energy into the grid.

1.1.3 Fusion devices

The first fusion reactors will use D-T reactions; i.e. the least en-
ergy demanding nuclear reaction [5] has to fulfill the Lawson criteria
nτET ∼ 3 · 1021 m−3 s keV, where n and T are the plasma density
and temperature and τE is the energy confinement time. Whereas
the plasma density can be modified injecting more fuel (though with
some limitations due to plasma instabilities), the achieved tempera-
ture depends on both the power injected and the confinement time.
For example, for a 1 meter container at the temperature necessary for
D-T reactions, ions average thermal speed is around 106 m/s, and the
confinement time for a free expanding gas is around 1µs. Since the
plasma is composed of charged particles, one possible way to increase
the confinement time (or to reduce the speed at which ions leave the
reactor) is to use magnetic fields.

In the simplified case of a uniform magnetic field, charged particles
are forced to gyrate and move along the magnetic field lines. To guide
and contain particles, the magnetic field lines must be bend into a
toroid to avoid the losses at the ends. However, in a purely toroidal
field, the curvature and gradient of magnetic field cause charge sepa-
ration that leads to outward particle drifts and plasma loss. To coun-
terbalance this effect, additional poloidal Bθ and to a lesser extend
vertical magnetic field Bv components are required. In the resulting
helical field ~B = ~Bϕ + ~Bθ + ~Bv, the magnetic field lines wrap around
the plasma column and form a set of nested closed magnetic surfaces.
There are two main ways to generate the required poloidal component
of the magnetic field Bθ, depending on whether the needed electric cur-
rent flows in a set of coils, as it does in stellarators, or in the plasma
itself like in tokamaks.

Figure 1.1 illustrates the schematic of the key components and
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Figure 1.1: Classical tokamak (left): transformer (pink cylinder),
poloidal field coils (green), toroidal field coils (red), vacuum cham-
ber (blue) and plasma (yellow). Classical stellarator (right): toroidal
coils (red), helical coils (green), vacuum chamber (blue) and plasma
(yellow).

resulting plasma column of a classical tokamak (left) and a classical
stellarator (right) [6]. In tokamaks, the toroidal field coils (red) sur-
rounding the vacuum vessel (blue) generate a toroidal magnetic field
~Bϕ, and the plasma itself (yellow) creates the poloidal field ~Bθ using

the same principle as an electrical transformer, where a time increasing
current in a central solenoid acts as the primary circuit and the plasma
as the secondary circuit. The outer poloidal field coils (green) are used
for positioning, shaping and stabilizing the plasma column. Except for
the small wobbling effect due to the finite number of toroidal field coils,
tokamak plasmas may be considered two dimensional, something that
significantly simplifies any analytical or numerical analysis. However,
in tokamaks it is the plasma that creates the indispensable poloidal
magnetic field component, on which the plasma confinement relies.
This makes the problem of plasma confinement non-linear since the
plasma is responsible for its own confinement.

Stellarators do not rely on the plasma to create any of the required
magnetic fields, in fact, the magnetic surfaces exist there even in the
absence of plasma. A classical stellarator (Figure 1.1 right) besides
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toroidal field coils (red) has helically shaped coils (green) that are
wrap around the vacuum vessel (blue). The resulting plasma column
(yellow) is twisted and is fully tridimensional. Helical fields could be
either formed by torsatron-like coils, where each coil wraps around the
vessel (like ivy around a tree brunch) and can repeat itself N times
giving raise to a multiple period device, or by modular coils of dif-
ferent three-dimensional shapes surrounding the vessel at a certain
toroidal position just as toroidal coil does. The stellarator construc-
tion challenges both engineers to manufacture the coils and physicists
to analyze fields and plasmas, yet they grant a moderate non-linear
plasma description as most of the confining magnetic field is created
by coils. Moreover, its 3D geometry could be used as an advantage,
since it gives more freedom to optimize the magnetic field.

1.1.4 Quasi-symmetry

One of the strategies to optimize the magnetic field of stellarators
is to make them tokamak-like, that is, to create configurations with
confinement properties that resemble the properties of the symmetric
magnetic field of a tokamak but without their dependence on plasma
currents. Such configurations are referred to as quasi-toroidally sym-
metric stellarators.

Boozer coordinates

Prior to considering the question of stellarator optimization it is use-
ful to introduce a suitable coordinate system. The coordinates for
describing the magnetic field of fusion devices must be adapted to the
toroidal shape of the flux surfaces. The coordinate system, where the
toroidal magnetic field has a simplified expression, is usually referred
to as the flux coordinates, i.e. one of the coordinate is a flux surface
label.

One of the most commonly used flux coordinates is the Boozer co-
ordinates [7], whose distinctive feature is the fact that the magnetic
field lines are straight. In Boozer coordinates (ψ, θ, ϕ), the toroidal
magnetic field flux ψ is used as the radial coordinate, ϕ is the geo-
metrical toroidal angle, and θ is a curvilinear periodic poloidal angle
defined to make magnetic field lines straight. Thus, a magnetic field
line could be expressed as θ + ι(ψ)ϕ = a, where ι is the slope of θ vs
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ϕ and does not change from point to point on the flux surface, and
a is a constant. It is important to note that these coordinates are
non-orthogonal and only valid for closed flux surfaces.

The magnetic field in Boozer coordinates ~B = ~B(ψ, θ, ϕ) can be
written in covariant and contravariant representations as:

~B = g∇ϕ+ I∇θ covariant

~B = ∇ψ ×∇θ + ι∇ϕ×∇ψ contravariant

where g is the poloidal current outside a flux surface and I is the
toroidal current within a flux surface. The volume element is given
by d3r = J(ψ, θ, ϕ)dψdϕdθ with the Jacobian of the transformation
being J ∼ B2/(g + ιI).

Using Boozer coordinates, a Fourier-decomposition of the magnetic
field for each flux surface could be written as:

B(ψ, θ, ϕ) =
∑
m,n

[sBψ
mn sin (mθ − nϕ) + cBψ

mn cos (mθ − nϕ)] (1.1)

where s,cBψ
mn are the flux functions, m and n are a pair of integers.

Quasi-symmetry

In magnetically controlled fusion devices, the confinement in based on
reducing the radial particle drifts. To improve particle confinement
the magnetic field is optimized to reduce particle losses [8].

Magnetic fields ensuring zero time-averaged radial drifts are called
omnigenous [9]. There are two common ways to achieve omnigeneity:
to endow the magnetic field with isodynamicity or symmetry. In iso-
dynamicity, the contours of constant magnetic field strength are closed
poloidally, making particles to precess poloidally around the torus. An
example of a configuration approaching isodynamicity, for this reason
being called quasi-isodynamic, is Wendelstein 7-X stellarator [10] op-
erating in IPP Greifswald, Germany.

In Boozer coordinates, the magnetic field strength of symmetric
configurations is a function of the radial coordinate and just one of
the two angular coordinates or a fixed linear combination of them:
B = B(ψ,mθ − nϕ). There are three types of symmetries [11], whose
constant-B curves are closed:
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i) Toroidal Symmetry: n = 0;

ii) Poloidal Symmetry: m = 0;

iii) Helical Symmetry: m and n are non-zero.

In realistic toroidal fusion devices, perfect symmetry is unattain-
able and can only be approached approximately, what is usually re-
ferred to as quasi-symmetry. Magnetic fields with quasi-toroidal sym-
metry besides a dominant Bm0 harmonic have other Bmn 6= 0 com-
ponents in their Fourier decomposition with n 6= 0. Similarly, the
dominant mode in Boozer representation for quasi-poloidal symmetry
is B0n, and for quasi-helical symmetry it is Bmn.

Figure 1.2 shows the contours of the constant B of the stellarator
designs already implemented or proposed. An example of configu-
ration approaching toroidal symmetry is the NCSX device (National
Compact Stellarator eXperiment) from Princeton Plasma Physics Lab-
oratory [12], see Figure 1.2 left. At the same time, the Oak Ridge Na-
tional Laboratory proposed the quasi-poloidally symmetric configura-
tion named Quasi Poloidal Stellarator (QPS) [13, 14], see Figure 1.2.
Quasi-helical symmetry was explored in the Helically Symmetric eX-
periment (HSX) project, that was built at the University of Wisconsin-
Madison [15], which is a linear combination of angular variables given
by m = 1 and n = 4, see Figure 1.2 right.

Of particular interest is quasi-toroidal symmetry, as it allows to
create stellarator configurations with confinement properties close to
those of tokamaks but without some of their problems, as their depen-
dence on plasma current to create a magnetic field. In this work, we
will consider both tokamaks and quasi-toroidally symmetric stellara-
tors in order to characterize the difference in particle confinement as
the magnetic field configuration departs from toroidal symmetry. The
confinement of plasma particles is quantified by their level of transport,
the main mechanisms of which are discussed in the next chapter.

1.2 Transport basics

Controlled thermonuclear fusion comes down to the task of energy
and particle confinement that in turn is determined by charged par-
ticle motion. In this case, the strong magnetic field to a large extend
determines the microscopic particle dynamics; leaving aside for the
moment the transport self-generated by electric and magnetic fields
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Figure 1.2: Contours of constant magnetic field strength for one
field period at half radius for NCSX (left), QPS (centre) and HSX
(right) in Boozer coordinates. High/low magnetic field regions appear
in red/blue.

that is commonly referred to as turbulent transport.

1.2.1 Classical transport

Sir J. Larmor discovered that in a uniform magnetic fieldB, the motion
of a charged particle consists on a uniform motion along the magnetic
field direction at speed v‖ and a gyration of radius ρL = v⊥/ωc =
mv⊥/qB around the magnetic field, where m and q its charge and
mass, v⊥ is perpendicular component if its velocity ~v = ~v⊥ + ~v‖ (its
pitch p = v‖/v) and the cyclotron frequency ωc = qB/m. In this
simplified description, the only mechanism that can disturb particle
motion is the interaction with other particles, usually referred to as
collisions, that can randomly change particle position on a distance of
the order of the Larmor radius, see Figure 1.3. This process is known as
classical particle transport. Since collisions happen randomly, particle
trajectory resembles that of a drunkard’s walk, who changes the di-
rection with frequency ν over a distance L. This motion is modeled as
a random walk process with zero average displacement < r >= 0 and
linearly growing in time average squared displacement < r2 >∼ Dt,
where D is a transport coefficient referred to as the classical diffu-
sion coefficient. For example, the electron classical diffusion coeffi-
cient would be Dcl ∼ ρ2Le

νei, where νei is the fastest electron collision
frequency and ρLe its Larmor radius.
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Figure 1.3: Single particle motion in a uniform magnetic field.

1.2.2 Neoclassical transport

In fusion devices - tokamaks and stellarators - the magnetic field is non-
uniform and its strong variation and curvature cause other mechanisms
to move away particles from the field lines, which surpasses classical
transport, the so-called neoclassical transport. In a purely toroidal
field a charged particle streams along field line (its gyration could be
neglected), but it experiences drifts due to the magnetic field gradient

and curvature ∼ ~B × ~∇B. These drifts cause charge separation, as
particles with different signs drift to opposite directions, i.e. up or
down, which in turn induces a vertical electric field ~E and ~E× ~B drift
pushing particles away.

The non-uniform magnetic field not only causes drifts but also
divides particle trajectories into two types. Figure 1.4 illustrates the
schematic of a tokamak with major radiusR and a minor radius a, with
the two possible ion trajectories either passing or trapped/reflected.
On the left, the passing particle has sufficient parallel velocity v‖ to
overcome the magnetic field change and continue to stream along it.
On the right, the trapped or reflected particle due to its small parallel
velocity (or small pitch p) is unable to access the regions of high mag-
netic field and remains in the outer side bouncing back and forth. At
the reflection points (where the pitch is zero) particle changes the di-
rection of motion and, accordingly, reverses its pitch sing. The poloidal
cross-section of the resulting trajectory resembles a banana and is the
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reason for naming them banana orbits. It is customary to character-
ize these orbits based on the time between two consecutive reflection
points, or bouncing time τ , and the banana width ∆w, which is radial
distance between the two sides of the banana.

The contribution to the transport of passing particles is insignifi-
cant, since in the collisionless approximation their average radial drift
is zero, and after a collision, their radial displacement is of the order of
the Larmor radius. Despite trapped particles represent a minor frac-
tion of a total particle ensemble (the rough estimation of this fractions
is f ∼

√
a/R =

√
ε, where ε is the inverse aspect ratio), their radial ex-

cursions are of the order of the banana orbit width ∆w ∼ ρL/ι
√
ε [16].

The resulting neoclassical diffusion coefficient due to trapped parti-
cles is more that order of magnitude larger than the classical one:
Dneo ∼ ∆w2νeff

√
ε = Dcl/ι

2ε3/2.
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Figure 1.4: Single particle motion in a non-uniform magnetic field of
a torus. Left: passing particle orbit. Right: trapped particle orbit.

Neoclassical transport coefficient Dneo strongly depends on the col-
lisionality, ν∗, defined as a ratio of effective collision frequency to
bounce frequency (characteristic orbit time). Figure 1.5 sketches the
overall dependence on collisionality for both tokamaks and stellarators.
Three regimes are found for tokamaks [17]: one at high collisionality
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with ν∗ & ε−3/2 called the Pfirsh-Schlüter (PS), where D ∼ ν∗; an
intermediate one with 1 . ν∗ . ε−3/2, where D is approximately con-
stant, called Plateau; followed at low collisionalities ν∗ . 1 by the
so-called banana regime, where D ∼ ν∗. Two new regimes are found
at low collisionalities in stellarators, one with D ∼ 1/ν∗, partly due
to helically trapped particles, that are localized poloidally and rapidly
drift outwards. This deleterious dependence is reduced by the radial
electric field through the ~E × ~B rotation that limits helical particle
excursions resulting in a more favorable D ∼

√
ν∗ dependence.
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Figure 1.5: Neoclassical diffusion coefficient dependence on collision-
ality for tokamaks and stellarators.

1.2.3 Turbulent transport

In magnetically confined fusion devices, the unavoidable gradients,
arising from quite different temperatures needed for the nuclear reac-
tions and those of the container, represent a huge source of free energy
that drives the plasma out of the thermodynamic equilibrium. Nowa-
days, the consensus is that the main reason explaining the particle
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and energy transport across these gradients is self-generated, fluctu-
ating, electric and magnetic fields. This is commonly referred to as
turbulent transport. Since the diffusion coefficient could be estimated
as D ∼ (size of turbulent structure)2/(correlation time), eddies result
in significant level of transport unless they are distorted or broken.
Fortunately, turbulence can generate coherent shear flows, that are
radially non-uniform (for example, flow is stronger close to the plasma
edge than in its core) and are capable to radially decorrelate eddies,
thus making them smaller and less transport-relevant. Though, the
turbulent transport is beyond the scope of this thesis.

1.2.4 Transport equations

The connection between the microscopic particle dynamics described
above and the macroscopic transport behaviour is commonly expressed
via transport equations. These equations aim to connect the thermo-
dynamic forces (spatial gradients of particle density, pressure, temper-
ature, etc) with the induced thermodynamic fluxes (particle, momen-
tum, energy, etc). The simplest of these transport equations is the
diffusive model that assumes a linear relation between them.

Diffusive model

In the diffusive model the particle density n(x, t) evolution is directly
related to the particle flux Γ(x, t) and is given by the continuity equa-
tion arising from particle conservation:

∂n

∂t
= −∂Γ

∂x

Fick’s law [18] postulates that the induced flux Γ(x, t) develops
proportional to the density gradient direction and opposing to it:

Γ = −D∂n
∂x

where D is the diffusion coefficient. The two equations can be com-
bined giving the classical diffusion equation else known as a Fick’s
second law:

∂n

∂t
= D

∂2n

∂x2
(1.2)
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Fickian diffusion assumes that the underlying microscopic trans-
port processes are local (i.e. particle random movement can be statis-
tically described by a gaussian distribution) and Markovian (i.e. the
probability of future events is independent on the present or past state
of the system). Diffusive models can only be used when particle steps
are uncorrelated both in space and time, though they are frequently
used when these conditions are not met.

Non-diffusive model

When classical diffusive models fail, the non-diffusive models are ca-
pable to describe transport and have been shown to be valuable tools
for some systems. An example given by nature is the motion of sharks
hunting for fishes. Within an area full of fish, sharks move approx-
imately randomly, until they are forced to leave and cover long dis-
tances to find the next feeding location. The spatial jumps of sharks
are described not by Gaussian, but by Lévy distribution with non-
negligible probability of large steps (Lévy flights). Lévy distributions
are characterized by long tails, which means that they are able to
describe non-local effects without a single characteristic scale, the
so-called scale-free effects. As this jumps are not independent of
each other, the transport model must also include long-range non-
Markovian temporal correlations.

The dynamics of systems that exhibit non-local and non-Markovian
effects can be described by a fractional transport equation:

∂n

∂t
= D1−β

t

[
K
∂αn

∂|x|α

]
, 0 < β < 1, 0 < α < 2, (1.3)

where Dγ
t represents the fractional Riemann-Liouville operator of the

order γ, K is a constant and ∂αn/∂|x|α is the Riesz fractional deriva-
tive of the order α [19].

While the random walk models are used to describe diffusive pro-
cesses, their generalization - the continuous-time random walk (CTRW)
models [20] are capable to describe dynamics beyond diffusive, where
both the step-sizes ∆x and waiting times ∆t could be arbitrary dis-
tributed. Particularly, the probability density functions (pdf) of the
step-sizes p(∆x) and waiting times ψ(∆t) should be able to account
for scale-free effects with divergent moments. The generalized cen-
tral limit theorem states that such distributions belong to a subfamily
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of Lévy pdfs with following asymptotic behavior: p(∆x) ∼ ∆x−(1+α)

with 0 < α < 2 (∆x → ∞) and ψ(∆t) ∼ ∆t−(1+β) with 0 < β < 1
(∆t→∞) [21].
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Figure 1.6: Spatial and temporal transport exponents.

The exponents α and β are known as the fractional transport expo-
nents, describing the spatial and temporal dependences respectively.
From the two exponents it is common to introduce the third one, the
Hurst exponent H ≡ β/α with 0 < H < 1.

Figure 1.6 illustrates different transport regimes and correspond-
ing transport exponents. For arbitrary α < 2 and β < 1 the transport
is characterized as fractional Lévy motion, where usually cases with
H < 1/2 are referred to as subdiffusive (light blue area) and H > 1/2
as superdiffusive (light pink area). Ordinary diffusion is recovered only
when β = 1 and α = 2 (H = 1/2) (see the green box), where frac-
tional transport equation 1.3 reduces to classical diffusion equation
1.2. When H = 1/2 but α 6= 2 and β 6= 1 the transport is called
quasidiffusive (marked by the green line), which scales as classical dif-
fusion but having non-Gaussian and non-Markovian distributions of
spatial and temporal steps respectively. In the limiting case, when a
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Lévy distributions becomes Gaussian, transport is described as Frac-
tional Brownian motion with finite spatial moments and α = 2 (see
the blue box). The last limit is described with β = 1, the so-called
Lévy stable process, which is Markovian (loss of memory) and has
finite temporal moments (see the light orange box).

Non-diffusive transport in fusion

The usual procedure to quantify the particle transport involves ana-
lyzing particle losses (if present) and characterizing the correspond-
ing transport coefficients assuming that the underlying transport is
diffusive. It has been shown recently, that this traditional diffusion
approach fails to adequately describe transport, mainly because the
underlying processes lack characteristic temporal and/or spatial scales,
and that a fractional transport description is necessary to capture such
dynamics.

Examples of this are electrostatic plasma edge fluctuation measure-
ments across fusion devices as tokamaks, stellarators and reverse field
pinches, where self-similar behaviour in observed [22]. The fluctuation
dynamics is shown to have long-range time correlations revealing its
non-Gaussian nature and pointing out to a superdiffusive behaviour
with a Hurst parameter value well above 0.5 [23, 24]. The turbulence
induced transport also resembles avalanche dynamics, that is known to
be governed by self-organized criticality (SOC). The typical example
of avalanche-like behaviour is the way how particles could be either
trapped in eddies for long time or travelled across a number of eddies
in a single flight, the so-called stochastic jets, giving rise to anoma-
lus diffusion. To investigate the turbulent transport numerically, the
common approach is to follow tracer pseudo-particles. B.A. Car-
reras [25] demonstrated that transport in eddies induced by pressure-
gradient-driven turbulence has super-diffusive character. Similarly, D.
del Castillo-Negrete [26, 27] showed that tracer displacements due to
eddies have superdiffusive character. He also proposed a transport
model based on fractional derivatives, which reveals non-local effects
in space (due to anomalously large jumps of tracers through several
eddies resulting in fractional derivative operator β = 0.5 in time) and
memory effects (resulting in fractional derivative operator α = 0.75 in
space), thus giving H = 0.66. L. Garcia [28] has extended this work
to the case of toroidal geometries coming to the same conclusion and
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obtaining α = 1.1 and β = 0.7. It has been numerically established,
that the unstable growths of waves in the absence of subdominant dif-
fusive channel, such as dissipative trapped electron modes (DTEM),
also lead to superdiffusive radial transport [29, 30, 31] with strongly
non-Gaussian and non-Markovian character, whereas the subdominant
diffusive channel has a stabilizing effect on perturbed mode leading to-
wards Gaussianity and Markovianity.

Besides being driven by the excess of pressure, the turbulent trans-
port particularly due to ion-temperature gradient ITG, exhibits fea-
tures of Self-Organized Criticality [32]. Further simulations demon-
strated that the nature of ITG driven turbulent transport in the pres-
ence of sheared zonal flows in tokamaks is non-Gaussian and exhibits
subdiffusive features [33, 34, 35]. Recently, the effect of poloidal mag-
netic field quasi-symmetry on ITG turbulence was studied [36], re-
vealing that as the degree of quasi-symmetry increases, the turbulent
transport becomes subdiffusive. G. Sanchez Burillo and co-workers
came to the same conclusion [37], when analyzing shear Alfven, drift
tearing and ballooning modes for the Compass tokamak, showing non-
local, non-Markovian and subdiffusive turbulent transport.

A number of experimental and numerical studies address the supra-
thermal ion transport associated with turbulence in TORPEX device,
indicating that this transport has non-diffusive nature [38, 39, 40, 41,
42], which is varying from subdiffusion to superdiffusion depending on
the beam energy and turbulence fluctuation amplitude, where large
intermittent and persistent E × B drifts lead to superdiffusion, while
their suppression results in subdiffusion.

A detailed summary of fractional transport theory and applications
to fusion plasmas can be found in the review by R. Sánchez and D.
Newman [43].

1.3 α-particle transport

Self-sustained burning in a future fusion reactor relies on the satisfac-
tory confinement of α-particles, being a direct byproduct of D-T fusion
reaction. α-particles must deposit their 3.5 MeV energy to the rest
of the core plasma by collisions and whose unanticipated losses could
cause negative effects on the power balance and the plasma-facing
components. This makes a quantitative understanding of α-particle
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transport crucial for a future fusion reactor.
The magnetic field of a fusion device, independently of being a

tokamak or a stellarator, is not only non-uniform due to its toroidal
shape, but also has corrugations, for example, caused by a finite num-
ber of field coils. Up to date, the transport of α-particles due to field
corrugations in the collisionless limit was assumed to be diffusive. Re-
cently, non-diffusive models capable to address more general transport
problems were shown to be relevant for describing turbulent transport
in fusion plasmas. This fact prompted us to check whether what has
been done so far regarding α-particle transport is accurate or a more
general approach is needed. The remainder of the chapter is devoted
to the α-particle transport starting from the basic equations of mo-
tion, from which α-particle trajectories could be obtained and char-
acterized. At the end of the chapter, a short summary on α-particle
diffusion is given, and the objectives of our study are highlighted.

1.3.1 Basic equations

The collisionless motion of charged particles in magnetized plasmas
consists of a streaming along the magnetic field lines and a fast gy-
ration around it. The gyration frequency (the cyclotron frequency,
ω = qB/m) is so high and its radius (the Larmor radius ρL = mv⊥/qB)
is so small, compared to other plasma frequencies and spatial scale-
lengths, that it is customary to use its guiding center as a reference
frame for tracking particle trajectories. The new set of equations of
motion do not describe the position of the particles but rather that of
their guiding centers. This approximation is known as the small gy-
roradius ordering, or drift ordering and allows to split the fast/small
and slow/large time/space scales. Despite of α-particles high birth
energy (3.5 MeV), the guiding centre approximation can be safely ap-
plied to the study their dynamics. The typical Larmor radius value
in reactor relevant conditions is ρα ∼ 0.05 m, which is smaller than
any characteristic plasma parameter either relevant to profile scales or
magnetic field corrugations perhaps except at the pedestal. The statis-
tical kinetic description of the plasma is thus given for the distribution
function of the guiding centers f = f(t, ~r, v, p), which evolves in time
according to the drift kinetic equation (DKE) df/dt = C(f) intro-
duced by Hazeltine in 1973 [44], where C(f) is the collision operator.
This represents a six dimensional problem, where ~r is a guiding center
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position in 3D space, v and p are the speed and pitch (p = ~v · ~B/v)
in velocity space and t is time. In this coordinates, the DKE can be
written as:

∂f

∂t
+
d~r

dt

∂f

∂~r
+
dp

dt

∂f

∂p
+
dv

dt

∂f

∂v
= C(f) (1.4)

where the drift speed d~r/dt = ~vg contains three terms accounting for
the fast streaming along the field line, the slow curvature and ∇B
drifts across it and the slow ~E × ~B drift due to the electric field:

d~r

dt
= pv

~B

B
+

mv2

2qB3
(1 + p2) ~B × ~∇B +

~E × ~B

B2
(1.5)

The time derivative of the pitch p = v‖/v is given by:

dp

dt
= − v

2B2
(1− p2) ~B · ~∇B − p

2B2
(1− p2)

~E × ~B

B2
· ~∇B (1.6)

and the time derivative of the kinetic energy is:

dv

dt
= − v

2B
(1 + p2)

~E × ~B

B2
· ~∇B (1.7)

The total kinetic energy, E = mv2/2 + qΦ, and magnetic field
moment, µ = mv2⊥/2B, are conserved and are responsible for the
bouncing of some particles at regions with high magnetic fields.

It is common to consider the system to be at steady state and
neglect the first term of DKE ∂f/∂t = 0. Further approximations
relevant for the α-particle transport are neglecting the effect of the
electric field - as it would require unrealistic electric fields to make it
comparable to the α-particles thermal speed vα = 1.3× 107 m/s. The
second approximation is neglecting collisions.

Under these approximations, the motion of α-particles is described
by a reduced set of guiding-center equations, where the last terms in
equations 1.5 and 1.6 together with the entire equation 1.7, dv/dt = 0,
could be neglected; i.e. α-particles are considered as collisionless and
monoenergetic.

Although DKE solutions provide a complete picture of neoclassi-
cal transport processes, distribution functions are extremely difficult
to calculate. A different approach to estimate particle transport is
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to calculate transport relevant quantities by ensemble averaging over
guiding center particle orbits using the Monte Carlo method by solv-
ing numerically the equations of motion 1.5 and 1.6. For example, it is
possible to calculate the transport coefficients, the convection velocity
and the diffusion coefficient, from the time dependence of the moments
of the radial distribution according to the Einstein’s estimates [45].

When written in Boozer coordinates [7], the equations of motion
reduce to 4 ordinary differential equations [46], describing the variation
of the three spatial coordinates (ψ, θ, ϕ) and the pitch p:

dψ

dt
= −E(1 + p2)

qBγ

[
g
∂B

∂θ
− I ∂B

∂ϕ

]
dϕ

dt
=
pvB

γ
(ρ‖I

′ + 1)− I

γ

[
E(1 + p2)

qB

∂B

∂ψ

]
dθ

dt
= −pvB

γ
(ρ‖g

′ − ι) +
g

γ

[
E(1 + p2)B

q

∂B

∂ψ

]
dp

dt
=

(1− p2)v
2γ

[
(ρ‖g

′ − ι)∂B
∂θ
− (ρ‖I

′ + 1)
∂B

∂ϕ

]
where 2πψ is the toroidal magnetic flux, θ and ϕ are the periodic
poloidal and toroidal angles, g is the poloidal current outside a flux
surface, I is the toroidal current within a flux surface, ι is the rotational
transform, γ = g(ρ‖I

′ + 1) − I(ρ‖g
′ − ι), the prime denotes radial

derivative and ρ‖ = mvp/qB.
These equations depend only on the magnetic field strength B

and its derivatives with respect to the three spatial coordinates. The
solution of this set of equations, which is only possible to obtain nu-
merically, provides an accurate description of the α-particles guiding
center trajectories, that will be used through the rest of this work.

1.3.2 Particle classification

α-particle trajectories can be classified into two categories as trapped
or passing according to whether they change, or not, their direction of
motion, i.e. the sign of their pitch angle is manteined or not, see Fig-
ure 1.4. The toroidal movement of trapped particles is limited by the
fact that when streaming along the field lines, which are twisted be-
cause of the rotational transform, they cannot go to the inside part of



22 CHAPTER 1. INTRODUCTION

the torus in their poloidal movement, and are bouncing back toroidally.
The reason why they cannot enter regions with higher magnetic field
magnitude is the conservation of energy and magnetic moment. The
resulting orbits are called banana orbits and are due to the different
radial particle drifts, which they follow when moving along and against
the direction of the magnetic field. A particle trajectory following a
banana orbit is reflected twice and does not encircle the magnetic axis
of the device. A common approach to characterize banana orbits is
with their bouncing time τ and orbit width ∆w, respectively. The
bounce time is the time it takes a particle to bounce between two con-
secutive reflection points, being the orbit width its radial extension.
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Figure 1.7: Left: poloidal projection of a trapped α-particle trajectory
following banana orbits in Boozer coordinates from its initial position
at r/a = 0.5 till its lost at r/a =1. Right: time evolution of the radial
position r/a (top) and pitch (bottom) of the same trajectory.

In a non-uniform magnetic field, α-particles are affected by field
corrugations, which are typically caused by the discrete number of
coils, as in tokamaks, or by the discrete number of coils and other
helical ripples, as in stellarators. The field inhomogeneities are of
primary concern for trapped particles. Contrary to passing parti-
cles, that always circulate in the same direction, trapped particles
change the sign of their pitch at the bouncing points, whose position
is strongly affected by the inhomogeneities of the magnetic field. Fig-
ure 1.7 illustrates an example of a trapped α-particle trajectory in
a quasi-toroidally symmetric stellarator, which follows banana orbits
and experiences severe drifts leading to its loss due to the magnetic
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field corrugations.
In addition to banana-type orbits, the inhomogeneities of the mag-

netic field also give rise to a variety of trapped particle orbits [47].
Examples of such orbits are given in Figure 1.8 for a non-uniform
magnetic field of a quasi-toroidally symmetric stellarator. The orbit
of a trapped particle is called potato (magenta/solid line) if it encir-
cles the magnetic axis. Another type is the orbits that change from
being trapped to passing and vice versa and that are called transition
orbits (cyan/dashed line). The ripple trapped orbits (red/dotted line)
differ from the other two types in that they neither encircle the axis
nor necessarily cross the equatorial plane in between reflection points.
From these orbits, ripple trapped orbits are the most harmful for con-
finement, as they are ’doomed’ to be lost, unless collisions send them
to more favorable regions in phase space.
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Figure 1.8: Left: poloidal projection of α-particle trapped orbits,
where magenta/solid is a potato orbit, cyan/dashed is a transition
orbit and red/dotted is a ripple trapped orbit in Boozer coordinates.
Right: time evolution of the radial position r/a (top) and pitch (bot-
tom) of the same orbits.

Characteristics of banana orbits: τ and ∆w

The two usual quantities used to characterize banana orbits are its
bouncing τ time and normalized width ∆w. There is an extensive
literature devoted to their analytical estimation for tokamaks [16, 48,
49, 50], that vary across authors up to a numerical coefficient. The
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expressions for the bouncing time and normalized orbit width are
τ ≈ R/ι

√
εvα and ∆w ≈ ρα/ι

√
εa, where R and a are the major

and minor plasma radii, ε = a/R is the inverse aspect ratio, ι is the
rotational transform and ρα and vα are the α-particles Larmor radius
and thermal speed. Although several alternatives were obtained for
peculiar particle behavior or conditions [51, 52, 53].

Less is known about characteristic scales of motion for trapped par-
ticles in stellarators and it is not clear to what extent they differ from
tokamaks. For trapped α-particles, Nagornyj and Yavorskij [54] found
that the formula for the bouncing time in a stellarator resemble the
one for a typical tokamak up to a coefficient. A similar conclusion was
reached for common trapped particles in the collisionless 1/ν regime,
see Figure 1.5, when Wakatani [55] in 1998 calculated the bouncing
time according to a dominant field component (the helical component
and its modulation) for a heliotron with multiple helicity. Finite orbit
width effects in stellarator geometry has also been studied numeri-
cally by Rome in 1995 [56], who suggested that the banana width of a
helically trapped particle should be inversely proportional to the num-
ber of periods of a stellarator, which makes it smaller compared to a
tokamak with identical conditions.

Research on this subject has been mostly restricted to analytical
estimations, with the exception of a few numerical studies [47, 56, 57,
58]. The orbit parameters have been estimated solely relying on the
main magnetic field components, excluding the rest of the spectrum.
The dependence of the bouncing time and the orbit width on the
number of modes used in the description of the magnetic field is an
open question, which will be discussed in the next section.

1.3.3 α-particles diffusion

The only possible source of diffusion in the collisionless α-particle dy-
namics is the separation of particle trajectories from their birth flux
surfaces, i.e. the particle drifts. Pure magnetic field symmetries guar-
antee zero average radial particle drifts, while in a case of symmetry
breaking the drifts are unavoidable. This gives a motivation to study
the effect of breaking these symmetries on α-particle trajectories and
to test whether the transport dynamics can still be described using a
diffusive description.

A collisionless scenario in which particles drift straight out of the
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plasma cannot be described as being diffusive, but corresponds to con-
vection [59]. The precession of the banana tip due to presence of field
ripples is known as stochastic diffusion or GWB diffusion, named af-
ter Goldston, White and Boozer [60]. In this work, the stochasticity
threshold was considered in the approximation of zero banana orbit
width in a simplified geometry. The GWB stochastic diffusion mech-
anism was extended to consider non-circular cross-section [61, 62, 63]
and banana orbit widths effects [64], giving diffusion coefficients in
the range of 5 − 25 m2/s [61, 65, 63, 66]. The diffusion coefficient
was calculated as D ∼ d2/τb, where d is the shift of the banana tip
near the turning point in the radial direction and τb is the bouncing
time. These theoretical estimations were compared with fast parti-
cle experimental results for JET [66, 64, 67] and TFTR [68, 69, 70],
where the stochasticity threshold due to the precession of the banana
tip turned out to be 1− 3 times the threshold specified by the GWB
diffusion model, and the experimental losses are approximately twice
larger than those theoretically predicted.

Because of ripples, new types of trapped particles orbits arise - the
so-called ripple trapped or super-bananas, which are locally trapped
between coils. The transport and losses of such orbits were analytically
described [59, 71] and numerically evaluated [72] as being convective.

However, there is a possibility of transitions between different types
of trapped particle orbits that lead to either convective or diffusive
drifts. The conditions for this were described in [73] and [74]. In
1993, Yushmanov [75] analytically described both convective and diffu-
sive losses in up-down asymmetric tokamaks, while in 1997, Isobe [76]
demonstrated it experimentally on JT-60U for NBI injected fast par-
ticles, indicating that the up-down asymmetry causes radial diffusion
of banana orbits in addition to ripple diffusion, but without increasing
fast ion losses.

In addition to transitions between types of trapped particle trajec-
tories, the transitions can occur between trapped and passing particles
and vice versa, as was demonstrated in [77] and [78]. This stochas-
tic transition is more common for stellarators, where the spectrum of
magnetic field modes is broader and there are more types of trapped
particles [79, 80]. The theory behind this process along with numer-
ical simulations was summarized in a monograph by Beidler and co-
workers in 2001 [81]. Transition effects are claimed to be the main
cause for fast particle losses in Wendelstein 7-X line devices. The dif-
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fusion coefficient for the transition from trapped to passing particles
and vice versa, defined as D =< ∆r2 > /τ , could reach 100 m2/s,
where the numerator is the change in a radial coordinate caused by
orbit transformation, and the denominator is an average between the
trapping and passing times τ = (τtrapped+τpassing)/2. The possibility of
improving the transition particles confinement by radial electric field
was studied in [82, 83], while the curing effect of transition particles
on plasma stability is discussed in [84].

Moreover, in stellarator geometry, there is a wide variety of trapped
orbits, for example, helically trapped, which are typical for devices
such as LHD [85, 86, 87] and W7-X [88], which lead to even higher
possibilities of transitions between orbits. It is shown that the high
order Fourier harmonics strongly affect their motion, precluding any
analytical treatment. Recent studies evaluate the level of trapped α-
particle loss in reactor-scale devices as unacceptable [89, 90], thus the
study of their transport is paramount.

1.4 Objectives and outline

Future fusion reactors must confine α-particles to sustain burning
plasma conditions until they share their 3.5 MeV energy with the bulk
plasma particles (thermalized) and to prevent damage of plasma-facing
components. As being charged particles, α-particles are controlled by
the magnetic field, whose structure is intrinsically non-uniform be-
cause of its toroidal shape, i.e there are zones of high and low field
that divide α-particles into two types either passing or trapped. The
latter is highly susceptible to the magnetic field inhomogeneities (that
would unavoidably present in any realistic fusion device), which pri-
mary alter the positions of their reflection points [60] and might shuffle
the trapped orbits types [47]. The transport induced by non-zero ra-
dial average drifts of trapped α-particle is usually referred to as ripple-
enhanced transport [66]. One of the strategies to reduce this transport
is to optimize the magnetic field by imposing an approximate field
symmetry [12, 13, 14, 15]. While the mitigation of α-particles losses
caused by field corrugations for future fusion reactors was widely ad-
dressed in the literature [81, 91, 92, 93, 90], an understanding of the
underlying dynamics and methods for transport evaluation are still
scarce or controversial.
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The classical approach to the transport of fast particles includes
the calculation of particle losses and the estimation of transport coef-
ficients. As shown in this Chapter, the ripple-enhanced transport of
trapped α-particles has been modelled as being convective/diffusive [59,
60, 79, 80, 81]. The convection and diffusion transport coefficients are
commonly estimated based on the characteristic trapped orbit param-
eters, i.e. bouncing times and orbit widths, whose analytical expres-
sions are developed only based on the dominant magnetic field com-
ponent and are mainly relevant for tokamaks [49, 50, 54], and where
the numerical estimations are scarce. This casts doubt on their valid-
ity. In addition, the recent success of fractional transport models for
evaluating turbulent transport in fusion plasmas [43] has inspired us
to reconsider the classic Ficksian diffusive approach to transport [21].

This thesis aims at estimating the transport coefficients, classical
or fractional, of ripple-enhanced α-particle transport. Bearing this in
mind, we statistically characterize the collisionless behavior of a large
ensemble of α-particles typifying the transport in reactor-scale de-
vices. This was done numerically simulating their collisionless guiding
center motion with the Monte Carlo code MOCA [94] using the drift
ordering approximation and neglecting electric field effects, that allows
to consider α-particles as monoenergetic. Throughout this work five
magnetic configurations endowed with toroidal symmetry and scaled
to reactor size were considered: a perfectly symmetric ITER-like toka-
mak [95] and a quasi-toroidally symmetric stellarator [12] with differ-
ent levels of toroidal symmetry.

The main body of the thesis consists of two parts. Chapter 2 sta-
tistically describes α-particle transport, where the following questions
were addressed: how the magnetic configuration and the initial condi-
tions impact the particle losses? which types of particles and particle
orbits contribute to the losses and in what percentages? how does
symmetry breaking affect the characteristic parameters of these or-
bits? which type of transport dynamics is driving them? Since the
results of the latter cast doubt on the validity of the diffusion approach
to adequately describe α-particle transport, the study was expanded
to test non-diffusive models in the next chapter.

Chapter 3 examines the underlying nature of the ripple-enhanced
transport of the trapped α-particles by means of fractional transport
theory. The fractional transport coefficients, i.e. the Hurst H, the
spatial α and the temporal β exponents, were estimated by apply-
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ing Lagrangian and Eulerian techniques commonly used for modelling
turbulent transport [96, 26, 30]. The purpose of the Chapter 3 is to
try to answer the following questions: how does the departure from
quasi-toroidal symmetry affect the nature of the trapped α-particle
transport? how does a change in confinement in these configurations,
caused by a gradual decrease in quasi-toroidal symmetry level, affect
the fractional transport coefficients?



Chapter 2

Statistical description of
collisionless α-particle
transport

The content of this chapter was published in Nuclear Fusion by
A. Gogoleva, V. Tribaldos, J.M. Reynolds-Barredo and C.D. Bei-
dler under the name ”Statistical description of Collisionless α-particle
transport in cases of broken symmetry: from ITER to quasi-toroidally
symmetric stellarators”. It is reproduced here with the permission of
the copyright owner Institute of Physics (IOP). For the consistency
with the rest of the manuscript, the typography has been adapted and
only small changes in notation have been made. This is an author-
created, un-copyedited version of an article accepted for publication
in Nuclear Fusion. Neither the IAEA nor IOP Publishing Ltd is re-
sponsible for any errors or omissions in this version of the manuscript
and/or any version derived from it. The Version of Record is available
online at https://doi.org/10.1088/1741-4326/ab7936.

The goal of the study presented in this chapter is to develop a uni-
versal method, capable to address the collisionless α-particle confine-
ment for arbitrary fusion reactor magnetic fields. The present work fo-
cuses on the statistical characterization of trapped α-particles motion
throughout the toroidal symmetry breaking: from an ideal tokamak
to a quasi-toroidally symmetric stellarator. The characteristic param-
eters of trapped α-particles cast doubt on the validity of the classical
diffusion model for describing collisionless ripple-enhanced transport.
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Abstract

The confinement of α-particles is vital for any future fusion reactor.
Unfortunately, the inevitable appearance of inhomogeneities in the
magnetic field activates the non-collisional transport by virtue of ripple
trapping and ripple induced stochastization. While a large and grow-
ing body of literature is devoted to the mitigation of these channels of
losses for future reactor designs, far too little attention has been paid to
characterize the statistical nature of the underlying stochastic process,
which is generally assumed to be diffusive. Here the effect of breaking
the toroidal symmetry on collisionless α-particle transport is analyzed
numerically with a guiding center orbit following code MOCA for sev-
eral configurations: a perfectly toroidally symmetric ITER-like toka-
mak and four stellarators with different levels of quasi-toroidal sym-
metry. Statistical characterization of banana widths, bouncing times
and banana center evolution put into question the classical convec-
tion/diffusion approach to adequately describe collisionless α-particle
transport as the magnetic configuration departs from toroidal symme-
try.

Keywords : α-particle transport, ITER, quasi-toroidal stellarator

2.1 Introduction

The success of magnetically controlled thermonuclear fusion relies,
among other things, on the confinement of α-particles that are not
only essential for sustaining fusion conditions, but whose unanticipated
losses could compromise the efficiency and, more importantly, put at
risk the plasma-facing components. The confinement of α-particles is a
complex subject involving the equilibrium magnetic field, plasma and
α-particle birth profiles, accompanied by resonant and non-resonant
MHD instabilities, turbulence, etc. [66, 97, 98, 99].

Improved particle confinement of reasonably high energetic par-
ticles could be achieved by endowing the magnetic field either with
a certain type of symmetry, with isodynamicity, which imposes the
cross-field drift to vanish at every point, or with the less stringent
omnigeneity, that ensures zero time-averaged radial drifts [100, 9, 11].
While for particles that circulate in the plasma with the same direc-
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tion of motion the absence of net radial drifts is fulfilled per se, for
trapped or reflected particles that bounce between the reflection points
placed at zones of higher field strength rather than being automatic
becomes the optimization goal. In any realistic device, due to field
corrugations (caused by the discrete number of coils, as in tokamaks
and stellarators or by various ripples, as in stellarators) some of these
particles are lost. Two main collisionless mechanisms are described
relating reflected particle losses with the inhomogeneities of the con-
fining magnetic field: ripple trapping [59], in which particles falling
into local ripples result in super-bananas orbits, and ripple induced
stochastic processes that make particles change their orbit type close
to the bouncing points [60, 65, 81]. While a body of literature was
devoted to the mitigation of these losses for future reactor designs
[81, 91, 92, 93, 90], not so much attention has been paid to character-
ize the statistical nature of the stochastic process, which is generally
assumed to be diffusive [66, 97, 98, 99, 59, 60, 65, 81].

The goal of this work is to study the effect of breaking the toroidal
symmetry on the confinement of collisionless trapped α-particles. To
this end, several configurations are examined, starting with an ideal,
perfectly toroidally symmetric, ITER configuration that will serve as
a reference followed by four stellarator configurations with different
levels of quasi-toroidal symmetry. The statistical characterization of
trapped particle behavior is done numerically with the guiding center
orbit following code MOCA [94] supplemented with other techniques
to determine trapped particle parameters such as their bouncing times,
orbit widths and the radial movement of those orbits. Probability den-
sity functions of these basic parameters were obtained as a function of
the level of toroidal symmetry. These results are compared with ana-
lytical calculations as well as with some newly developed estimations
assuming that particles approximately move along the field lines. The
diffusive nature of the stochastic transport process is examined with
different statistical analyses for the five magnetic configurations.

The remainder of the paper is organized as follows. In Section 2.2
the basic approximations, the guiding center orbit following code and
the magnetic configurations are presented along with a new figure of
merit to quantify the degree of quasi-toroidal symmetry. Then the
impact of the magnetic configurations together with the initial condi-
tions on the orbit types and the fraction of confined and lost reflected
particles are discussed. A new technique is presented at the end of
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Section 2.2 allowing to obtain banana centers, widths and bouncing
times from particle trajectories the results of which are summarized
in Section 2.3. The fraction of reflected particles and the most prob-
able banana bouncing times obtained from particle trajectories are
compared with bounce averaging estimations along field lines, an ap-
proximation that is justified based on a new method for calculating
connection lengths for arbitrary magnetic configurations. The end
of Section 2.3 is devoted to examine if the statistical properties of
α-particle transport agree with the diffusive paradigm. Finally, Sec-
tion 2.4 summarizes the results and presents a brief discussion.

2.2 Configurations and Methods

In trying to establish the basic relation between the confinement of α-
particles and the symmetry of the underlying magnetic field three main
approximations were made through this work, namely: i) the small gy-
roradius ordering, or drift ordering, ii) neglecting the effect of the elec-
tric field and iii) ignoring the collisions with other particle species. The
small gyroradius approximation requires ρα/L ∼ ω/ωc ∼ VE/vα << 1,
where ρα is the α-particle Larmor radius, L a characteristic plasma
spatial scale length (either relevant to profile scales, magnetic field
corrugations or banana orbit widths), ω is a characteristic frequency
(circulating or bounce α-particles frequency), ωc is the cyclotron fre-

quency and VE and vα are the ~E × ~B drift and α-particle speeds
respectively. Anticipating some of the results of next sections, it is
possible to justify that these conditions are fulfilled for α-particles in
reactor relevant plasmas. The value of ρα ≈ 5 cm has to be compared
with the spatial scales of the orbit widths, L ∼ 0.1− 0.2 a ∼ 0.3− 0.6
m (see Figure 2.7 left), the magnetic field corrugations L ∼ 1 m (see
Figure 2.9) and is reasonably valid except perhaps in the pedestal re-
gion. The characteristic circulating τc ∼ 2πR/vα ∼ 3−10µs, bouncing
τ ∼ 10 − 25µs (Figure 2.7 right) and collisional slowing-down times
τslow ∼ 1 s are also much slower than the cyclotron time. The disparity
between vα and VE = ~E× ~B/B2 also justifies neglecting the effect of the
radial electric field. A rough estimation of the electric field required
for the VE ∼ Er/B to be comparable with the guiding center drift

speed Vd = mv2(1 + p2) ~B ×∇B/2qB3 ∼ Ek/qBL implies an unrealis-
tically large Er ∼ Ek/qL ∼ 3.5× 106/L ∼ 106 − 107 V/m. Neglecting
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collisions requires some explanation because despite their initial high
speed, α-particles eventually thermalize with the bulk plasma. In re-
actor conditions α-particle collisional slowing-down time, τslow ∼ 1
s, is faster than the collisional scattering time, τscatt ∼ 5 s [66, 101].
Therefore, depending on the time scales of α-particle confinement it
may or may not be justified to include or neglect collisions. Here,
to establish a clearer relationship between α-particle confinement and
the level of symmetry of the magnetic configuration collisions will be
neglected throughout this work.

2.2.1 Equations of motion

Under these approximations, the motion of α-particles is described by
a reduced set of guiding-center equations. One for the velocity of the
guiding center,

~vg = pv
~B

B
+

mv2

2qB3
(1 + p2) ~B × ~∇B (2.1)

where the two terms account for the fast streaming along the field line
and the slow curvature and ∇B drifts across it. The other equation
accounts for the variation of the pitch p = v‖/v

dp

dt
= − v

2B2
(1− p2) ~B · ~∇B (2.2)

that arises from the conservation of kinetic energy, E = mv2/2, and
magnetic field moment, µ = mv2⊥/2B, which is responsible for the
bouncing of some particles at regions with high magnetic fields. Note
that neglecting the radial electric field effect and the collisions elimi-
nates the need of an equation for the evolution of the α-particles speed,
which is conserved.

When written in Boozer coordinates [7], the equations of motion
reduce to 4 ordinary differential equations depending only on the mag-
netic field strength B and its derivatives with respect to the spatial
coordinates (ψ, θ, ϕ). Where ψ is a normalized toroidal magnetic flux
and θ and ϕ are the poloidal and toroidal angles respectively.
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2.2.2 Configurations

From the infinite number of possible three-dimensional magnetic con-
figurations, two strategies lead to improved particle confinement by
endowing the magnetic field either with a certain type of symmetry
or with isodynamicity. Here the study will be focused on the effect
of breaking the toroidal symmetry of the magnetic field (the most
common symmetry). Five configurations will be considered: a purely
toroidally symmetry ideal tokamak, that will be used as a reference
case, and four stellarators with different levels of quasi-toroidal sym-
metry (QTS).

For the toroidally symmetric configuration the natural decision was
to consider a ripple-less ITER [95] tokamak with the following param-
eters: B ∼ 5.3 T, a = 2.67 m , R = 6.2 m and V ∼ 900 m3. The
four quasi-toroidally symmetric configurations are loosely based on the
NCSX [12, 14] stellarator scaled up to have the same ITER nominal
magnetic field and volume, which results in a minor and major radius
of a = 2.15 m and R = 9.8 m respectively.

The detailed structure of the magnetic field has been obtained solv-
ing the three-dimensional ideal magnetohydrodynamic (MHD) equa-
tions with the VMEC code [102]. VMEC finds three-dimensional equi-
librium solutions through a variational procedure that minimizes an
energy functional with a spectral/finite differences method. VMEC
provides the shapes of a given set of nested flux surfaces and the cor-
responding magnetic field B as a Fourier series constructed in its own
internal flux coordinates with a double periodicity in the poloidal and
toroidal angles. The VMEC output is transformed to Boozer flux co-
ordinates (ψ, θ, ϕ), where the general expression for the magnetic field
is also given as a Fourier series for each flux surface:

Bψ(ϕ, θ)/B0 = 1 +
∞∑
n=1

(
cBψ

0n cos(nNpϕ)− sBψ
0n sin(nNpϕ)

)
+
∞∑
m=1

∞∑
n=−∞

(
cBψ

mn cos(mθ − nNpϕ) + sBψ
mn sin(mθ − nNpϕ)

)
(2.3)

where Np is the number of periods of the configuration, ψ = (r/a)2

the normalized toroidal flux, r being the flux surface radius and a the
minor radius.



2.2. CONFIGURATIONS AND METHODS 35

The description of the magnetic field for ITER requires both sine
and cosine terms because its D-shape cross-section is not up-and-down
symmetric. The expansion for the stellarator only contains cosine
terms due to the stellarator symmetry. Despite the full Fourier series
has more than 1000 harmonics for each magnetic surface, not all of
them are relevant to accurately describe α-particle transport. Here,
only modes above a threshold of |cBψ

mn| or |sBψ
mn| > 10−4 were consid-

ered for ITER, which results in including just 7 modes of the expansion
(all of them being of the form Bψ

m0). The four quasi-toroidal configu-
rations were generated from the same stellarator equilibrium keeping
fixed the few largest modes and adding on top different number of
smaller harmonics by setting four thresholds. This method is different
to what is done in [103], where configuration’s long mean free path
transport is modified through the main modes in the quasi-isodynamic
stellarator W7-X. The one with higher quasi-toroidal symmetry, called
QTS4 throughout this work, was obtained with a larger threshold of
|cBψ

mn| > 10−2 and comprises just four cBmn modes; three with n = 0
and the smallest one with n = Np, which is responsible for the small
toroidal-symmetry breaking. Setting the thresholds to |cBψ

mn| > 1/150
and 1/180 results in configurations QTS5 and QTS6, described with
five and six modes respectively. Finally, the configuration QTS72 is
obtained using the same threshold as for ITER (|cBψ

mn| > 10−4) which
results in a much broader magnetic field spectrum with seventy-two
modes. The ultimate reason for considering these four configurations
will become clear in next sections, for the moment it suffices to say
that they describe different degrees of departure from quasi-toroidal
symmetry. QTS72 configuration looks much more like the configura-
tion one can get with a set of real coils and is further away from the
toroidal symmetry. To quantify the degree of quasi-toroidal symmetry
of these configurations we followed Alcuson and coworkers and define
a figure of merit, σqt, in a similar way to the one they used for the
degree of quasi-poloidal symmetry [36], extending the sums just to the
Fourier modes larger than the threshold:

σqt(ψ) =

∑M
m=1 |B

ψ
m0|∑N

n=1 |B
ψ
0n|+

∑M
m=1

∑N
n=−N |B

ψ
mn|
≤ 1 (2.4)

where σqt=1 stands for perfect quasi-toroidal symmetry, as in a toka-
mak. Table 2.1 lists σqt for the five configurations and three radial
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positions.

Table 2.1: Values of the quasi-toroidal symmetry ratio σqt for ITER
and the four quasi-toroidal stellarators as a function of radial coordi-
nate.

r/a ITER QTS4 QTS5 QTS6 QTS72
0.1 1 0.97 0.96 0.86 0.70
0.5 1 0.94 0.93 0.85 0.62
0.9 1 0.89 0.86 0.83 0.56

According to the guiding center equations of motion in Boozer co-
ordinates, the radial speed is determined by the variation of the mag-
netic field with the poloidal and toroidal angles, which for toroidally
symmetric and quasi-symmetric configurations approximately reduces
to just the poloidal dependence ∂B/∂θ. The poloidal dependence
of the normalized magnetic field, B/B0, along the field line passing
through θ = ϕ = 0 over two poloidal turns around the torus is shown
in Figure 2.1 for three radial positions r/a = 0.1, 0.5 and 0.9 of some
of the configurations under study. All three configurations display the
basic variation due to toroidicity with lower/higher magnetic fields at
the outboard/inboard of the equatorial plane and with magnetic field
excursions increasing from the axis to the last closed flux surface. The
larger poloidal ripple of ITER, due to its tighter aspect ratio, results
in larger radial speeds than for the stellarators. However, faster ra-
dial drifts do not necessarily mean poorer confinement since particle
transport depends on radial speed averages. Here is where the ideal
symmetry, σqt = 1, comes into play guaranteeing that radial drifts are
averaged out. Unfortunately, when the symmetry is broken, σqt < 1,
there are no such conservation laws that assure the confinement nor
guidelines to establish a relation between the level of quasi-symmetry
and the average radial drifts. The actual transport of charged particles
is the result of ensemble averaging over all possible particle trajectories
subjected to all possible realistic physical processes. To show the re-
lation between the magnetic configuration and the confinement in the
clearest possible way collisions were not included in this work. Given
the number of modes needed to describe the magnetic field, this could
only be achieved numerically.
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Figure 2.1: Normalized magnetic field strength along the field line
passing through θ = ϕ =0 as a function of poloidal angle θ for three
radial positions r/a = 0.1, 0.5 and 0.9 at ITER (left) and the quasi-
toroidal stellarators QTS4 and QTS72.

2.2.3 Numerical Method

The transport properties of the five magnetic configurations are esti-
mated by ensemble averaging α-particle trajectories, that in turn fully
depend on the initial conditions in the absence of collisions. An ef-
ficient way to calculate guiding center trajectories consists in solving
the equations of motion in Boozer coordinates. This was done with
the Monte Carlo code MOCA [94]. This code has been thoroughly
and successfully benchmarked [104] for an extensive range of stellara-
tor configurations in the past. MOCA is a parallel Fortran code, in
which, to speed up the calculations, the magnetic field and its deriva-
tives are pre-stored in a 3D grid Nψ × Nθ × Nϕ. The high speed
of the α-particles, with vα = 1.3 × 107 m/s, and the characteristic
spatial magnetic field variation require a short integration time step,
∆t ≈ 10−8 s, and a fine grid containing ∼ 100 × 360 × 360 cells per
period for numerical accuracy. The computational domain is bounded
from one side by the magnetic axis and from the other by the last
closed flux surface (particles which cross it are considered lost). A
pseudo-Cartesian coordinate system [105] is used to overcome the nu-
merical singularity in the vicinity of the magnetic axis. To describe
the initial conditions for the monoenergetic α-particles, it is sufficient
to specify their spatial positions and pitch (ψ0, θ0, ϕ0, p0).

To obtain statistically significant ensamble averages, the initial
conditions have to be representative of the α-particle birth profiles
under reactor conditions. Assuming that deuterium and tritium den-
sity and temperature profiles are constant on flux surfaces (at least to
first order), all particles are initialized radially at half radius, around
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the mean α-particle birth radius [106], and uniformly distributed over
the flux surface. To account for the non homogeneous volume element
associated with curvilinear coordinates, particles are initialized uni-
formly in pitch and randomly in the toroidal and poloidal Boozer an-
gles with a distribution inversely proportional to the Jacobian of the
transformation 1/J(ψ, θ, ϕ) = (B(ψ, θ, ϕ)/B0)

2, thus starting more
particles in regions of higher magnetic field strength. Here, the Rejec-
tion Method[107] has been used to generate a random sequence in the
poloidal (ITER) and poloidal-toroidal (QTS) domains with the pre-
scribed 1/J distribution function. The results for ITER were obtained
using a set of 65536 particles distributed over 256 poloidal angles with
256 pitch values each, while for the stellarators 262144 particles were
used with 4096 initial poloidal-toroidal angles with, again, 64 pitch
values each. The simulation time is of the same order of the slowing-
down time, which for α-particles in reactor conditions ranges between
0.1-1 s.
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Figure 2.2: Loss fraction of α-particles over time for the four quasi-
toroidal stellarators.

Finally, it is worth noting that all the results in this work were
checked to be independent of the grid size, the grid interpolation
scheme, the integration time step and the number of particles used.
Furthermore, the relative energy conservation error has been checked
to be below ∼ 10−5% for all particles throughout their lifetimes.
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2.2.4 Impact of the magnetic configuration and
the initial conditions on the losses

As a first test of the numerical procedure a set of 65536 α-particles,
initially at r/a = 0.5 and distributed in poloidal angle and pitch,
is followed for 1 s in the idealized and perfectly toroidally symmet-
ric ITER configuration finding that, as expected, none of them get
lost. Within this set, there are particles circulating the full plasma
with fixed direction of motion, never changing the sign of their pitch
and which stayed perfectly confined, the so-called passing particles
(71%, see Table 2.2). The other 29% do change the sign of their pitch
and are bounded to stay in plasma regions with low magnetic fields,
that is why they are called trapped or reflected particles and which
follow trajectories whose poloidal projection resembles a banana, the
so-called banana orbits. The fractions of passing and reflected parti-
cles presented in Table 2.2 should not be confused with the effective
circulating and trapped particle fractions appearing in neoclassical
theory [108, 109, 110] in connection with the dynamics parallel to the
magnetic field. In ITER both types have zero average radial drifts,
passing particles have it per se and reflected particles have it because
perfect toroidal symmetry grants well behaved banana orbits. In more
realistic ripple tokamaks and quasi-toroidal stellarators trapped par-
ticles are expected to experience drifts and precession. This simple
picture can easily get blurred when one considers magnetic configura-
tions without symmetry in which new magnetic field ripples give rise
to new families of trapped particles with net radial drifts, and even
particles that can transit between being passing and being trapped,
the so-called transition particles. Needless to say, that, even for purely
symmetric fields, collisions with background bulk particles may trans-
form passing into trapped particles and vice versa and, moreover, con-
tribute to the net transport by interrupting zero radial average drift
orbits.

The next step was to repeat the same calculations for the other
quasi-symmetric configurations, but now distributing particles in the
poloidal and toroidal directions and in pitch (64× 64× 64). We found
that despite having a larger fraction of passing particles, ∼ 10% more
than ITER (notice the larger ripples in Figure 2.1), some of the re-
flected particles get lost. The detailed fractions are given in Table 2.2.
Despite all stellarator configurations have roughly the same fraction
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Table 2.2: Classification and percentage of α-particle types for par-
ticles starting at r/a = 0.5 for ITER and the four quasi-symmetric
stellarators. The simulation time is 1 s.

Passing Reflected
Confined Confined Lost

ITER 71% 29% 0%
QTS4 81% 15% 4%
QTS5 80% 9% 11%
QTS6 79% 2% 19%
QTS72 79% 1% 20%

of reflected particles, their losses vary from a 4% for QTS4 to a 20%
for QTS72. In the absence of collisions, the fate of α-particles only
depends on the underlying magnetic field and the initial conditions.
Moreover, all lost particles are trapped but not all trapped particles
are lost. Figure 2.2 shows the cumulative loss fraction of α-particles up
to 1s for the four stellarator configurations. As expected, the higher
the symmetry the longer it takes particles to start leaving, the lower
the loss rate, the longer it takes to saturate and the smaller the loss
fraction.
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Figure 2.3: Left: Contours of constant magnetic field strength for one
field period. Right: Contours of pitch averaged escaping times as a
function of the initial poloidal, θ, and toroidal, ϕ, positions. Both plots
correspond to r/a = 0.5 and one period of the QTS72 configuration.

To better understand the relation between α-particle confinement,
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the magnetic configuration and the initial conditions in the absence
of collisions, Figure 2.3 (left) shows the contour levels of the magnetic
field magnitude at half radius for the QTS72 configuration. The mild
toroidal dependence seen is a signature of the approximate toroidal
symmetry, where the magnetic field is higher in the inboard (θ ∼ π)
and lower in the outboard (θ ∼ 0) sides. The pitch averaged escap-
ing times, calculated with a set of 262144 particles distributed over
toroidal, poloidal angles and in pitch, see Figure 2.3 (right), confirm
the weak toroidal dependence and show higher confinement times for
particles born in regions of higher magnetic field. Vice versa, particles
born in regions with lower magnetic field strength have larger fractions
of reflected particles and shorter escaping times.

To further clarify this relation, the escaping times are presented in
Figure 2.4 versus the pitch, averaged over the initial toroidal (left) and
poloidal (right) angles. Once again, the results show the feeble toroidal
dependence due to the underlying quasi-toroidal symmetry and that
only reflected particles with initial pitch |p| . 0.35 are lost. This
range of pitch values is consistent with the ripple strength calculated
from

√
1−Bmin/Bmax (see Figure 2.3 left) for the flux surface under

consideration, r/a = 0.5. The small pitch asymmetry observed is also
compatible with the inward/outward excursion of trapped particles
traveling in the co/counter magnetic field direction. The level contours
of the toroidal average outline that more/less particles are lost from
the outer/inner sides because of the∼ 1/R dependence of the magnetic
field with the major radiusR. Furthermore, a comparison of both plots
shows that the region originating faster losses corresponds to particles
with near zero pitch located in the outer part of the stellarator where
|θ| . π/4. Particles born in the boundary between the trapped and
passing regions (barely-trapped or barely-passing particles) are the
ones surviving the longest.

2.2.5 Trapped Particle classification

The analysis presented for each configuration shows the relation be-
tween where particles were born and their final fate without describing
the details about their trajectories. In symmetric configurations, most
orbits can be classified into two types: those followed by passing par-
ticles, enclosing the magnetic axis and never changing the sign of their
pitch, and the ones of reflected particles, bouncing back-and-forth and
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Figure 2.4: Contours of escaping times as a function of the initial
pitch and poloidal angle, θ, averaged over the toroidal angle, ϕ, (left)
and pitch and toroidal angle, ϕ, averaged over the poloidal angle, θ,
(right). Both plots correspond to r/a = 0.5 and one period of the
QTS72 configuration. White color means no losses.

describing banana-shaped trajectories never enclosing the axis. Along-
side with these two basic types of orbits, the literature describes many
other orbits which are usually special cases of these two. One limit-
ing case is the potato shaped orbits that appears when the banana
radial position is comparable to its width. As with bananas, these or-
bits change the sign of their pitch, but contrary to bananas encircle the
axis. Another case is the stagnation orbits, which appears in the phase
space boundary between passing and trapped regions where the guid-
ing center speed vg (see equation 2.1) vanishes. In general, these orbits
do not encircle the axis nor change the pitch sign, though a general
classification, see [47], is out of the scope of this work. The classifi-
cation is not so simple when the symmetry is broken, even slightly.
Along with the passing particles, whose confinement is always guaran-
teed in the collisionless limit, the lack of symmetry brings new families
of orbits, whose radial drifts can lead to the loss of particles or trans-
form trapped into passing particles and vice versa. Therefore, the
key element in understanding the confinement of the quasi-symmetric
configurations requires characterizing also the new trapped orbits.

The characterization includes the determination of its radial exten-
sion, the speed of their radial drift and the frequency of their bounc-
ing. This is done by first selecting those parts of the trajectory of
each particle in which it is trapped (this implies that no passing nor
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stagnation orbits are considered). These sections are then analysed
with a newly developed numerical procedure that classifies the orbits
into four different types: bananas, ripple trapped, potatoes and oth-
ers, and estimates, for the bananas, its center, width and bouncing
time based on the pitch variation, particularly, the times at which the
pitch changes sign.
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Figure 2.5: Left: poloidal projection of a trapped α-particle trajec-
tory in Boozer coordinates for the QTS72 configuration from its initial
position at r/a = 0.5 till its lost at r/a =1. Right: time evolution of
the radial position r/a (top) and pitch (bottom) of the same trajec-
tory. The centers of all the banana orbits are indicated by the blue
circles (top), ∆r ∼ 0.06. The single banana orbit marked in red with
reflection points labeled from 1 to 3 has a bouncing time τ ∼30 µ s
and a normalized orbit width of ∆w ∼ 0.22.

The classification of trapped orbits uses the poloidal angles at
which particles cross the equatorial plane between three consecutive
reflection points. Banana orbits, that do not encircle the magnetic
axis, are indicated when they only cross the equatorial plane once
between reflection points at an angle θ = 0. Potato orbits, that do
encircle the magnetic axis, are recognised by the sequence θ = 0 on
one orbit side and θ = π on the other, or vice versa. Ripple trapped
orbits are distinguished because they do not cross the equatorial plane
between consecutive bounces. Obviously, there are orbits that cannot
be classified with this method like e.g. those that cross the equatorial
plane many times. This is not a severe restriction since reflected orbits
are classified for ITER as being ∼ 97.3% bananas, ∼ 0.2% potatoes
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and ∼ 2.5% unclassified, while for the QTS configurations approxi-
mately 90% are bananas, between 2% (QTS4) and 6% (QTS72) ripple
trapped, ∼ 1% potatoes and ∼ 5% unidentified. No effort was made in
further classifying this 5%, though methods for including more types
of orbits are advisable by using more than three consecutive reflection
points and more complex criteria.

As an example of this method, the trajectory of one trapped α-
particle for the QTS72 stellarator is shown in Figure 2.5 in poloidal
cross-section (left) together with the time evolution of its radial posi-
tion (right top) and corresponding pitch (right bottom). The key in
the analysis is to notice that every banana orbit is defined by three
reflection points, see Figure 2.5. In the figure one individual banana
orbit is drawn in red and labeled with points from 1 to 3. The ob-
vious definition of the bouncing time, τ , is the time that a particle
spends between two reflection points. From the mid radial position
between two consecutive orbit sides, e.g. r12 between r1 and r2 or r23
between r2 and r3 (see Figure 2.5), it is possible to define the normal-
ized banana orbit center as the midpoint, rb = (r12 + r23)/2a, and the
banana width as the difference, ∆w = |r12 − r23|/a. Three different
procedures were tried to estimate the mid radial positions between two
consecutive reflection points using: i) the average radial position, ii)
the radial position corresponding to the mid-time and iii) the radial
position corresponding to the fastest parallel motion (the maximum
absolute pitch). Finally, the second method was used because it is less
computationally intensive, though all three procedures give almost the
same results.

Every reflected particle trajectory is split into a series of banana
orbits and the above method is applied to obtain a reduced banana
trajectory consisting in the time evolution of its width, ∆w, bouncing
time, τ , and center, rb(t), shown as blue dots in the right upper plot
of Figure 2.5. For the orbit of the figure, the bouncing time between
points 1-2 and 2-3 is of the order of τ ∼ 30 µ s and the normalized orbit
width, indicated on the right top plot with a bracket, is ∆w = 0.22.
This test particle executes twelve banana orbits in approximately 600
µs and slowly drifts radially from rb/a = 0.53 to rb/a = 0.6 before
entering in what looks like a toroidal ripple to quickly drift out of the
plasma.

In next section this analysis tool is used to statistically estimate the
evolution of the banana centers, banana bouncing times and banana
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widths for the five magnetic configurations with the idea of evaluating
convective velocities and diffusion coefficients.

2.3 Results

In the collisionless limit, there is a deterministic relation between the
initial conditions and the destination of every charged particle for a
given magnetic configuration. For the monoenergetic α-particles, the
initial conditions comprise a four dimensional phase-space with the
three spatial dimensions and the pitch (ψ, θ, ϕ, p). Probability density
functions of the bounce times and banana widths or the time depen-
dence of the radial distribution of particles are the result of ensemble
averaging over the myriad of possible trajectories. Instead of starting
directly with the complete problem, we will first examine a simpler
case for ITER configuration (where the toroidal angle ϕ is irrelevant)
fixing the initial radial position at ψ0, thus reducing the dimensionality
of the problem from four to two dimensions (θ, p).

2.3.1 ITER bouncing times and banana widths

With the idea of scanning regions with different well depths, see Fig-
ure 2.1, the methodology described in Section 2.2.5 was applied to the
trajectories of four sets of 4096 α-particles born with initial poloidal
angles θ = {0, π/4, π/2, 3π/4}, r/a = 0.5 (ψ0 = 0.25) and uniformly
distributed in pitch between −0.6 < p < 0.6 (i.e. in the approximate
region where there are trapped particles). The uniform distribution in
pitch guarantees that all trapped populations are considered equally.
The fraction of reflected particles monotonically decreases with the
initial poloidal angle from ∼ 50% at θ = 0, where the magnetic field
is the weakest, to ∼ 18% at θ = 3π/4, where the magnetic field is
stronger. The 1 ms time averaged bounce time 〈τ〉 and banana width
〈∆w〉 of each particle are shown in Figure 2.6 as a function of the
initial pitch and poloidal angle. The absence of collisions along with
the perfect toroidal symmetry explains why in ITER the curves align
nicely depending on its initial poloidal angle. Note that within the
guiding center approach no relevant information can be drawn below
the Larmor radius ρα.

In accordance with [47], the observed dependence of the banana
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Figure 2.6: Orbit widths (upper left) and bouncing times (upper right)
of reflected α-particles as a function of the initial pitch for ITER con-
figuration. Toroidal projection of banana trajectories for p = 0 (lower
left) and for initial conditions close to the passing-trapped boundary
(lower right). Particles are started from r/a = 0.5 and distributed at
four poloidal angles θ = 0 (red), π/4 (green), π/2 (magenta) and 3π/4
(blue). Each point corresponds to a 1 ms time average of a particle.
The α-particle Larmor radius is shown for comparison with a dashed
line in the upper left plot.

width on the initial poloidal angle and pitch shows that: i) ∆w in-
creases with the absolute pitch |p|, ii) there is a small pitch asym-
metry due to the different inward(co) and outward (counter) banana
orbits and to a lesser extent, to the a rotational transform profile, iii)
there is a minimum width ∆w for reflected particles depending on
their initial poloidal position see the lower left plot of Figure 2.6 (the
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higher the field the narrower the pitch range), iv) there is maximum
width that does not depend on the initial poloidal position and v) at
half radius, the widest bananas extend radially over 10% of the mi-
nor radius (∼ 30 cm). Regarding the bouncing time it is found that
except for the barely trapped particles (the ones initially started at
magnetic field Bi and with pitch |p| .

√
1−Bi/Bmax) the bouncing

time of most particles is relatively constant, between 6 and 10 µs for
our conditions. These values are between 2 to 5 times larger than those
traditionally used [16] for the bouncing time, τ ≈ R/ι

√
εvα ≈ 1.5 µs

and the banana orbit width, ∆w ≈ ρα/ιa
√
ε ≈ 0.06, where R is the

major radius, ε = a/R the inverse aspect ratio, ι the rotational trans-
form, ρα the Larmor radius and vα the speed. This is not very severe
since these expressions are only valid for ideal tokamaks, vary across
different authors up to a numerical coefficient [48, 49, 50], or describe
specific particle behaviors or conditions [51, 52, 53].

The fact that bouncing times remain almost constant for a wide
range of pitch values (parallel speeds) and initial poloidal positions is
especially surprising for particles started at the outboard side because
of the disparity of banana widths, compared with the curves corre-
sponding to θ = 0 in both upper plots of Figure 2.6. This occurs be-
cause larger widths are compensated by faster parallel motion (larger
absolute pitch) in the same way as the product of the particle parallel
speed with the distance along the particle trajectory leads to the con-
servation of the longitudinal adiabatic invariant J =

∮
v‖ dl. Figure

2.6 also shows that the compensation breaks down for barely trapped
particles that spend much longer times close to the bounce points, for-
mally the bouncing time becomes infinite τ →∞ [11] since the parallel
speed v‖ → 0. See the two lower plots of Figure 2.6. The lack of gyro-
phase correlation between consecutive bounces along with the inhomo-
geneity of the magnetic field is the ultimate reason for the stochastic
transport processes described in the literature [59, 60, 65, 81].

We leave for the next section showing the probability density func-
tion of orbit widths and bouncing times when particles are distributed
over the flux surface for all five configurations.
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2.3.2 Probability density function of bouncing time,
orbit width and radial orbit displacement

Using the algorithm presented in Section 2.2.5, which only applies to
reflected particles, the ensemble average orbit widths and bouncing
times are calculated for a set of 3.5 MeV α-particles started at r/a =
0.5 using the same initial distribution of Section 2.2.3 (i.e. uniformly
distributed in pitch and randomly in the toroidal and poloidal Boozer
angles with a distribution inversely proportional to the Jacobian of
the transformation). In the case of the toroidally symmetric version
of ITER, with a reflected fraction of 30%, this means that from a
set of 65536 α-particle trajectories approximately 20,000 are used for
the calculation. Since none of these particles get lost, the ensemble
average is quite accurate. As for the stellarator configurations, with
roughly the same reflected fraction of 20%, from the 262144 α-particle
trajectories around 52,000 trajectories are used, though the ensemble
average is not as accurate because trajectories are shorter due to the
losses (see Figure 2.1 and Table 1).

To speedup the calculation particles that have not changed their
pitch sign during the first 500µs of integration are stopped and elimi-
nated. The precise cutoff was estimated from the escaping time con-
tours of Figures 2.3 and 2.4 and the PDF of bouncing times of Fig-
ure 2.7 as a compromise between reducing computer time and taking
into account transition particles in the calculation. The probability
density functions (PDF) of the normalized banana widths and bounc-
ing times obtained during the lifetime of the simulated particles are
presented in Figure 2.7 for all five configurations. The PDFs were
constructed using the constant bin content method [111] where in all
cases each distribution contains more than 108 data inputs.

The probability density function of the normalized orbit widths ∆w
of reflected α-particles for ITER shows an approximately linear growth
that ends abruptly at ∆w = 0.11, in accordance with the negligible
number of very small bananas and the maximum orbit width of the left
plot in Figure 2.6. The PDFs of the normalized banana orbit widths
for the QTS stellarators are much broader than for ITER, extending
up to ∆w ∼ 0.3. This clearly indicates the appearance of new wide
banana populations and severely puts into question any local approach
to transport. There are two main differences compared to ITER: the
most probable orbit width is almost twice as large ∆w = 0.18 and that
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Figure 2.7: Left: Probability density functions of orbit widths, ∆w, of
trapped α-particles for ITER and the four quasi-toroidal stellarators.
Right: Probability density function of bouncing times, τ , in linear and
logarithmic scales.

there are other side peaks in the PDF. The extra peaks are probably
due to the high order small modular ripples and wider helically trapped
bananas.

The right plot of Figure 2.7 shows the probability density function
of the bouncing times τ of trapped α-particles in linear and logarithmic
scales. The PDF for ITER has a sharp rise, peaking around τ = 8
µs, followed by a very fast decay (see the log-log scale) ending a bit
earlier than τ = 16 µs, which is in perfect agreement with the right
plot in Figure 2.6. The results for the four stellarators are also much
broader with the most probable values between τ = 20 and 25 µs.
Unfortunately, there is no simple way to compare these results with
any analytical expression since little is known about the characteristic
scales of motion of trapped particles in stellarators [54, 86, 55] (or even
non-ideal tokamaks) and it is unclear to what extent they differ from
ideal tokamaks. This is because of the high order field modes, which
are virtually impossible to consider analytically and whose effect might
be insignificant for trapped particles in general but may be substantial
for α-particles. The only available results were carried out numerically
for specific configurations considering only the main components of the
magnetic field neglecting the rest of the spectrum [47, 56, 57, 58].

The logarithmic scale reveals another difference between the con-
figurations. Whereas an exponential decay in the PDF of ITER starts
around τ = 10 µs and lasts till τ = 50 µs, the decay for the stellarators
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not only starts much later τ = 50 µs but also continues much longer
τ = 200 µs. These long tails imply that there are much longer char-
acteristic bouncing times, though their impact into PDFs is of minor
relevance - five to nine orders of magnitudes smaller compared to the
peak values.

The last piece of information collected from reflected particle tra-
jectories is the evolution of the center of the orbits, rb(t), and more
specifically, the displacements of orbit centers ∆r(ti) = rb(ti+1)−rb(ti).
In the stochastic view [59, 60, 65, 81] of collisionless transport, it is
precisely the random-walk displacement of the orbits which gives rise
to diffusion. In Figure 2.8 the probability density function of the or-
bit center displacements is presented for the five configurations under
study. The displacement of ITER trapped orbits is negligible because
of its pure toroidal symmetry. On the other hand, the broken sym-
metry configurations display large and inward/outward asymmetric
displacements, which become narrower with higher toroidal symme-
try. Note that the most probable orbit widths for these configura-
tions is around ∆w ≈ 0.2, and there is a significant probability of
having quite large displacements ∆r, e.g. the cumulative probabili-
ties P (|∆r| ≥ 0.05) ∼ 0.25 and P (|∆r| ≥ 0.1) = 0.05. Moreover,
the PDFs clearly show a complex structure with several slopes cor-
responding to different spatial scales, possibly due to different orbit
types, that put into question the local and diffusive nature of the un-
derlying process.

The behavior of reflected particles, rebounding at regions of high
magnetic field, together with the structure of the magnetic field along
the field lines, shown in Figure 2.1, suggest other procedures to char-
acterize the configurations and estimate the bouncing times, which
offers the possibility to confirm the results of this Section 2.3.2.

2.3.3 Bouncing times and connection lengths

So far, the bouncing time was calculated integrating the guiding center
trajectories and explicitly measuring how long does it take particles
to reverse their parallel motion. A possible way to validate the results
of Section 2.3.2 is to assume that particles where simply streaming
along the field lines. In this approach the time of going along the
field line from l1 to the next consecutive bounce point l2 would just
be τ(B) =

∫ l2
l1
dl/v‖ where v‖(l) = vα

√
1−B(l)/B and vα = 1.3× 107
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Figure 2.8: Probability density functions of orbit center displacements
∆r (see right upper plot of Figure 2.5) of trapped α-particles for ITER
and the four stellarator configurations.

m/s. However, to use this approximation it is necessary to justify that
the distance travelled along the field line between bounces is approx-
imately the same as the guiding center trajectory. The fact that the
most probable banana widths are 0.1 a (∼ 30 cm) for ITER and 0.2 a
(∼ 60 cm) for the stellarators (see Figure 2.7) is an encouraging first
step, but is not enough until the average distance between bounce
points along the field line 〈|l2 − l1|〉 is known. Estimating this dis-
tance for an ideal circular tokamak is not very difficult but the same
calculation for a D-shape tokamak or a general stellarator has to be
done numerically integrating the actual distance along the field line
and using the 3D geometric properties of the equilibrium field. For-
tunately, this can be done using the toroidal coordinates, (R,Z, ϕ),
of a flux surface ψ, which are given by a series expansion in Boozer
coordinates, (θ, ϕ), similar to equation 2.1:

Rψ(ϕ, θ) =
∑
m,n 6=0

cRψ
mn cos(mθ − nNϕ) + sRψ

mn sin(mθ − nNϕ) (2.5)

Zψ(ϕ, θ) =
∑
m,n 6=0

sZψ
mn sin(mθ − nNϕ) + cZψ

mn cos(mθ − nNϕ) (2.6)

Exploiting that in Boozer coordinates the magnetic field lines are
described simply by θ = ιϕ, the arc length along the field line and
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the magnetic field magnitude can be both parametrized as a function
the toroidal angle using dl(ϕ) =

√
(dR/dϕ)2 +R2 + (dZ/dϕ)2dϕ and

the expansions of equations 2.5 and 2.6. Note that l(ϕ) contains
the dependence of the flux surface geometry and the local rotational
transform (which is constant in Boozer coordinates) and makes B(l),
see Figure 2.9, different from B(θ) shown in Figure 2.1, though they
look similar.
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Figure 2.9: Normalized magnetic field strength along the field line
passing through θ = ϕ =0 as a function of the distance along the field
line for three radial positions r/a = 0.1, 0.5 and 0.9 at ITER (left)
and the quasi-toroidal stellarators QTS4 (center) and QTS72 (right).

If particles were just streaming along field lines, without drifting
radially, reflected particles would be bouncing between consecutive
points with the same magnetic field. There is a neat way to obtain
the characteristic lengths, i.e. the connection lengths, of a configura-
tion for a given flux surface by applying the discrete Fourier transform
to B(l), see Figure 2.10. The main spatial periodicities of the mag-
netic field, giving rise to the banana orbits, appear as peaks in the
Fourier transform, from which the main connection lengths can be
calculated for every magnetic configuration and magnetic surface. To
accurately capture all the details of the configurations is necessary to
follow the field line over a sufficient number of turns around the de-
vice. While there is only one significant connection length for ITER of
the order of 40 m ≈ 2πR (R = 6.2 m), the stellarator configurations
clearly show two of them. The longer connection lengths found for
the stellarator configurations, ≈ 140 m, are due to their larger aspect
ratio and helical magnetic field components. The largest modes for
these stellarators are basically equal because they correspond to the
same underlying configuration described by different number of Boozer
modes. Moving away from quasi-symmetry, as in QTS72, lead to the



2.3. RESULTS 53

appearance of shorter connection lengths with amplitudes larger than
10% of the largest mode. The leading connection lengths obtained us-
ing the Fourier transform for ITER, QTS4 and QTS72 are summarized
in Table 2.3 at three radial positions, r/a = 0.1, 0.5 and 0.9. The small
radial dependence found for ITER is due to the compensation between
the field line pitch and the radius, which changes from almost circular
close to the axis to a D-shape at outer radii. For the stellarators, the
observed smaller connection lengths at outer radius are probably due
to the increased importance of the toroidal components, which corre-
sponds to the second most important harmonic (R = 9.8 m; 2πR ≈
60 m).
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Figure 2.10: Fourier mode magnitude of the magnetic field along a
field line versus 2π/k at r/a = 0.5 for ITER, QTS4 and QTS72.

Table 2.3: Connection lengths, bouncing times and fraction of reflected
particles, fr, for ITER and the quasi-toroidal stellarators QTS4 and
QTS72 at three radial positions. Only connection lengths with Fourier
mode amplitudes larger than 10% of the largest mode are shown in
decreasing order of magnitude.

ITER QTS4 QTS72

r/a l [m] τ [µs] fr l [m] τ [µs] fr l [m] τ [µs] fr
0.1 41 14 15% 142 56 13% 146 - 71 - 17 17 16%
0.5 41 - 20 6 31% 137 - 69 28 18% 139 - 69 - 16 13 22%
0.9 39 - 20 4 38% 76 - 38 10 25% 76 - 40 8 29%
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The smooth radial dependence of the connection lengths together
with their magnitude, much larger than that of the most probable ra-
dial extension of the orbits (see Figure 2.7), justifies the assumption
that the particles approximately stream along the field lines. There-
fore, using the dependence of the magnetic field on the distance along
the field line for several turns around the device, it is possible to
estimate the average bouncing times for the trapped α-particles us-
ing the conservation of energy, E = mv2/2, and magnetic moment,
µ = mv2⊥/2B. For a connected region along the field line with mag-
netic field smaller than a given value B(li < l < li+1) < Bj for
i = 1, ..., Nj, the time taken between bounces in that well is obtained

as the integral τi(Bj) =
∫ li+1

li
dl/v‖. The procedure is repeated for all

connected regions Nj along the field line to get a mean bouncing time
for a given magnetic field value 〈τ(Bj)〉 =

∑
i τi(B)/Nj. Finally, the

method is replicated in a regular pitch grid which corresponds to the
magnetic field values Bmin < Bj < Bmax for j = 1, ..., N to get the
mean bouncing time τ =

∑
j〈τ(Bj)〉/N . A sketch of the procedure

is outlined in Figure 2.11. Likewise, the fraction of reflected particles
can be calculated averaging the pitch range over which particles are
trapped depending on the depth of the magnetic wells along the field
line 〈fr〉 =

∫ √
1−B(l)/Bmaxdl/

∫
dl.

!
! "⁄

l	[m]

li+2 li+3li li+1

Bj

Figure 2.11: Magnetic field strength versus the length along a field line
passing through θ = ϕ =0 for r/a =0.5 of the QTS72 configuration.

The results of this analysis show a decrease of the bouncing time
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for increasing radius, independently of the configuration. In case of
ITER, τ ranges from 14 µs in the center to 4 µs at the edge. The
explanation for the longer bouncing times (56 - 10 µs) for the QTS4
stellarator is their longer connection lengths. This effect is compen-
sated by the appearance of shorter connection lengths related to the
new ripples in the QTS72 stellarator (17 - 8 µs). It is important
to notice, that whereas the connection length l is a property of the
equilibrium magnetic field, the bouncing time τ is an approximation
of the real α-particle motion assuming that particles move along the
field lines. The remarkable agreement found in all cases between the
bouncing times obtained for r/a = 0.5, see Table 2.3, and the most
probable values obtained from the banana orbits of the α-particles,
shown in Figure 2.7, support both the Monte Carlo calculations and
the procedure just described along with its approximations. Moreover,
the fraction of reflected particles 〈fr〉 at r/a = 0.5 of Table 2.3 is also
in accordance with the values of Table 2.2.

The connection lengths found are between 40 and 150 m, the av-
erage banana radial scale length ranges from 0.1a ∼ 0.3 m at ITER
to 0.3a ∼ 0.6 m for the four stellarators, which barely supports the
local approximation when the minor radii are a = 2.62 m and a = 2.90
m respectively. On the positive side, both results support the small
gyroradius approximation ρα ∼ 5 cm and the gyroaveraged guiding
center equations of motion used in this work. The average bouncing
times found range from 10 to 30 µs, which are far from α-particle
collisional slowing-down τslow ∼ 1 s and scattering τscatt ∼ 5 s times
and the expected confinement timescales τE ∼ 5 s [101], thus partly
justifying neglecting collisions in the simulations.

2.3.4 Transport dynamics

The traditional approach to estimate radial transport consists in as-
suming that it can be described by a continuous-time stochastic Wiener [112]
process, usually referred to as Brownian motion [113] or random walk.
A convective velocity V and a diffusion coefficient D are tradition-
ally defined from the time evolution of the radial distribution of a
set of particles initialized at the same radial position and randomly
distributed in the poloidal and toroidal angles and in pitch by us-
ing the running moments method [114]. This method, based on [45]
estimates both V and D from the slopes of the first and second mo-
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ments of the radial distribution dependence on time: 〈r̃b〉 ∼ V t and
〈(r̃b− 〈r̃b〉)2〉 ∼ 2Dt at very long times, and where r̃b is the radial dis-
tance travelled by the center of the banana. Thus, in principle one can
evaluate the collisionless convection and diffusion due to a magnetic
field inhomogeneity from the time dependence of ensemble averages,
〈 〉, of the radial particle distribution.

What is often forgotten is that this method and the underlying
assumptions can only be applied when the number of particles is con-
served, i.e. when the zero-order moment of the distribution does not
depend on time, and for unbound systems (or systems where parti-
cles never approach the limits of the system). A condition that only
applies when the process is sufficiently slow or when particles do not
depart significantly (local ansatz) from their initial locations r0. Un-
fortunately, the probability density functions of orbit displacements,
∆r, and banana width, ∆w, shows that this condition is not fulfilled
and moreover a considerable fraction of reflected particles can leave
the plasma in the quasi-symmetric configurations.

So, the question is to what extent α-particle transport can be
described by a Wiener process in toroidally symmetric and quasi-
symmetric configurations. The easiest way is to calculate the time
dependence of the radial probability density function of α-particle ba-
nana orbit centers and check if it has a gaussian shape and/or if it radi-
ally drifts. This was done from the simulations of Section 2.3.2 where
the escaping times and radial position of the banana orbit centers were
stored at fixed times using the method described in Section 2.2.5. The
escaping time is needed to discard lost reflected particles from the
calculation to preserve the conservation of probability.
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r̃b/a, for confined reflected α-particles for ITER (left), QTS4 (center)
and QTS72 (right) at t = 0.01, 0.1 and 1 s.
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The radial probability density function of orbit centers of con-
fined reflected α-particles is presented in Figure 2.12 for ITER (left),
QTS4 (center) and QTS72 (right) configurations at three instants:
t = 0.01, 0.1 and 1 s. The centers of the banana orbits at ITER, as
expected, do not broaden nor drift radially neither inwards nor out-
wards. The observed width of the distribution, ∆r = 0.02a ∼ 5 cm
≈ ρα serves as an indication of the accuracy of the algorithm deter-
mining the banana orbit centers (see Section 2.2.5). The results for the
QTS72 configuration (Figure 2.12 right) are a bit surprising at first
since they resemble those of ITER, although with a much broader ra-
dial distribution, which suggests a similarity between the orbit types
that survive until 1 s. The difference being that they are a 31% of the
particles in ITER and a minuscule 1% in QTS72 (see Table 2.2). The
only confined reflected particles in QTS72 are radially frozen because
otherwise they would have been lost. The central plot of Figure 2.12
shows a substantial and asymmetric broadening together with a slow
outward radial drift for QTS4 configuration. Some particles will be
inevitably lost soon after 1s; something that can be anticipated seeing
the positive slope of the loss fraction for QTS4 in Figure 2.2.
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Figure 2.13: Time dependence of the first (left) and second (right)
moments of the probability density function of confined reflected α-
particles for ITER and the four QTS configurations.

Applying the running moments method to these radial distribu-
tions confirms numerically the visual result of Figure 2.12. There
are almost no convection nor diffusion for ITER, QTS6 and QTS72,
D ∼ V ∼ 0, see Figure 2.13. This is consistent with the collision-
less approximation for all ITER reflected particles and the very few
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QTS6 and QTS72 reflected particles that are not lost in 1 s and also
demonstrates that numerical diffusion was kept under control in the
simulations. For the QTS4 and QTS5 configurations, the values ob-
tained for the convective velocity and the diffusion coefficient from the
slope of the first and second moments of the radial distribution are
V = 0.04 m/s and D = 0.012 m2/s and V = 0.01 m/s and D = 0.01
m2/s respectively.

The source of diffusion for the configurations with broken symme-
try is the so-called stochastic diffusion, which is due to the magnetic
field inhomogeneity [60, 65, 81, 75]. Even for conditions of mildly
breaking the toroidal symmetry like in the QTS4 configuration with
σqt ≈ 0.9 at r/a = 0.9 and where the fraction of losses is small < 4%,
one may be tempted to conclude that these are the transport coeffi-
cients of α-particles. However, these values should be put into ques-
tion when one considers the clear asymmetry of the distribution, its
non-gaussian shape and that part of the left side of the distribution
remains the same for almost one second, see Figure 2.12. A remainder
that within the 15% of confined reflected particles a certain fraction
has no radial drifts, like in ITER and QTS72, though its identification
and separation does not seem possible at the moment. Farther away
from symmetry, like in the QTS72 configuration with σqt ≈ 0.6 at
r/a = 0.9, there is a ∼ 20% of losses and the only confined reflected
particles are the ones that do not suffer stochastic diffusion, thus giv-
ing the same result as for ITER. An analysis based on ignoring the
warnings and using all trapped particles will result in a time varying
PDF normalization (because of the loss of particles) from which no
relevant statistical conclusions can be drawn.

Throughout this work, collisions have been intentionally neglected
to highlight the link between the magnetic field and the dynamics of α-
particles. Collisions mix different types of orbits causing passing parti-
cles to become trapped and vice versa, producing diffusion both in real
and momentum spaces. For reactor conditions, the characteristic spa-
tial and temporal scales are the banana width and the collisional time.
In the case of ITER, where collisionless banana orbits are not drifting
radially, see Figure 2.13, the convective velocity will remain negligible,
but the expected diffusion coefficient instead of being zero will depend
on the most probable banana width, ∆w ∼ 0.1, and the inverse col-
lision time [115], 1/νcoll ∼ 0.1 s, thus giving D ∼ a2∆w2 νcoll ∼ 10−2

m2/s. The situation is different for the stellarator configurations since
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the effect of collisions is barely noticeable below ∼ 10−2 s [93], i.e. well
before losses in QTS4 have started and after most of the QTS72 losses
took place, see Figure 2.2. This time scale is too slow compared to
the bouncing times of QTS4, τ ∼ 20 µs, and results in a diffusion co-
efficient, D ∼ a2∆w2/τ ∼ 2× 104 m2/s, inconsistent with the running
moments method. As for QTS72, one can expect that some confined
orbits are scattered by collisions into regions that further increase the
losses, thus supporting the conclusion that the process is not diffusive.

2.4 Summary and Conclusions

The original goal of this work was to study the effect of breaking
the toroidal symmetry of the magnetic field on the transport of col-
lisionless α-particles. To that end, five magnetic configurations were
considered with different quasi-toroidal symmetry ratios σqt: a purely
toroidal case with σqt = 1 and the parameters of ITER, that serves as
a reference, and four stellarator examples, with σqt(r/a = 0.5) ranging
from 0.94 (QTS4) to 0.62 (QTS72) derived from a configuration in-
spired in the NCSX project. The behavior of α-particles was studied
with the guiding center orbit following code MOCA.

The analysis of averaging escaping times of an ensemble of particles
allowed to estimate the losses of every configuration and its depen-
dence on the birth position. In the symmetric configuration only two
types of confined particles, passing and reflected, were found. When
toroidal symmetry is broken, apart from passing particles only trapped
and transition particles born close to the magnetic field maximum re-
main confined. Two different methods were used to obtain the fraction
of reflected particles fr, one based on particle trajectories and the other
on the magnetic well depth.

A novel algorithm was introduced to define the trapped orbit cen-
ter, width, and bouncing times based on particle trajectories. It was
confirmed that banana width and bouncing times increase as the con-
figuration departs from symmetry. New bouncing times appear as a
result of the new field ripples of the quasi-toroidally symmetric config-
urations. These results were corroborated by independent numerical
procedures for calculating the average bouncing times and connection
lengths along the field lines. The statistical analysis of the orbit cen-
ter displacements, responsible of the stochastic collisionless transport,
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points to the existence of several entangled spatial scales.
Transport coefficients were estimated by using the calculated most

probable banana width and bouncing times (∆w ∼ 0.2 and τ ∼ 30
µs) and by fitting the time dependence the moments of the radial
probability density functions. For the QTS4 configuration, for which
both methods can be compared, the first procedure, returns results for
the diffusion coefficient D ∼ 2 × 104 m2/s which is inconsistent with
those obtained by the second method, D ∼ 10−2 m2/s.

The results obtained here put into question the classical convec-
tion/diffusion approach to adequately describe collisionless trapped α-
particles transport as the magnetic configuration departs from toroidal
symmetry, a result that can probably be applied to other symmetries.
A description based on the use of fractional transport equations [43]
for collisionless α-particle transport is underway.
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Chapter 3

Non-diffusive transport of
α-particles

The content of this chapter was accepted for publication in Physics
of Plasmas by A. Gogoleva, V. Tribaldos, J.M. Reynolds-Barredo,
R. Sánchez, J. Alcusón and A. Bustos under the name ”Non-diffusive
nature of collisionless α-particle transport: dependence on toroidal
symmetry in stellarator geometries”. It is reproduced here with the
permission of the copyright owner AIP publishing. For the consistency
with the rest of the manuscript, the typography has been adapted and
only small changes in notation have been made.

In this chapter we addressed the nature of the collisionless α-particle
transport resulting from the inhomogeneities of the magnetic field in
cases of quasi-toroidal stellarators with different levels of symmetry
using the fractional transport theory. Our results indicate that the
α-particle ripple-enhanced transport is non-Gaussian, non-Markovian
and become strongly subdiffusive as the level of quasi-toroidal sym-
metry increases. These findings not only question the validity of the
diffusive model, which is frequently used per se for the theoretical and
experimental interpretations of fast particle transport, but also deter-
mine the fractional transport coefficients for describing it. A better
understanding of the α-particle dynamics is essential for the develop-
ment of the future fusion-based reactors, in particular of the stellarator
kind.
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Abstract

An adequate confinement of α-particles is fundamental for the oper-
ation of future fusion powered reactors. An even more critical situa-
tion arises for stellarator devices, whose complex magnetic geometry
can substantially increase α-particle losses. A traditional approach to
transport evaluation is based on a diffusive paradigm, however, a grow-
ing body of literature presents a considerable amount of examples and
arguments towards the validity of non-diffusive transport models for
fusion plasmas, particularly in cases of turbulent driven transport [ R.
Sánchez and D.E. Newman, Plasma Phys. Control. Fusion 57 123002
(2015)]. Likewise, a recent study of collisionless α-particle transport
in quasi-toroidally symmetric stellarators [A. Gogoleva et al., Nucl.
Fusion 60 056009 (2020)] puts the diffusive framework into question.
In search of a better transport model, we numerically characterized
and quantified the underlying nature of transport of the resulting α-
particle trajectories by employing a whole set of tools, imported from
fractional transport theory. The study was carried out for a set of
five configurations to establish the relation between the level of mag-
netic field toroidal symmetry and the fractional transport coefficients,
i.e. the Hurst H, the spatial α and the temporal β exponents, each
being a merit of non-diffusive transport. The results indicate that
the α-particle ripple-enhanced transport is non-Gaussian and non-
Markovian. Moreover, as the degree of quasi-toroidal symmetry in-
creases, it becomes strongly subdiffusive. Although, the validity of
the fractional model itself becomes doubtful in the limiting high and
low symmetry cases.

3.1 Introduction

There is still no fully satisfactory explanation of the experimental par-
ticle and energy transport across the magnetic field in fusion devices.
The cost of an economically viable thermonuclear fusion powered re-
actor is largely determined by this radial transport that has, so far,
been estimated and extrapolated using semi-empirical methods based
on traditional diffusive-like models. However, it is still unclear whether
these models are sufficiently complete and adequate to describe radial
transport in all reactor-relevant regimes. These are pressing issues
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for the radial transport of α-particles, whose confinement is essential
for the overall plasma performance. This transport has been assumed
diffusive in the literature [66, 97, 98, 99, 59, 60, 81], which allowed to
create transport models able to fit the relevant experimental data [65].
However, the diffusion paradigm rests on the assumption that trans-
port dynamics is Gaussian and Markovian thus it fails to adequately
describe systems with correlations, memory and spatial effects [43].
In fact, turbulent transport has been shown to be superdiffusive when
it is close to marginal state and for weak mean/zonal flows; this ef-
fect was considered on the example of the gradient-induced instabili-
ties [25, 26, 27, 28] and dissipative trapped-electron modes (DTEM)
instabilities [29, 30, 31]. On the contrary, turbulence induced trans-
port across flows with sufficient shear tends to be subdiffusive; as it
was demonstrated on some instances of the ion temperature-gradient
modes (ITG) [32, 33, 34, 35, 36] or shear Alfvén, drift tearing and
ballooning modes [37, 116]. In the particular case of quasi-poloidally
symmetric stellarator geometries, turbulent transport associated with
supercritical ITG turbulence becomes subdiffusive [36] as the degree
of quasi-poloidal symmetry increases triggering the effect of sheared
flows. Also, a number of experimental and numerical studies at TOR-
PEX [38, 39, 40, 41, 42] has demonstrated that suprathermal ion trans-
port changes from being subdiffusive to superdiffusive depending on
the ion energy and turbulent fluctuation amplitudes. Furthermore,
while large intermittent and persistent E×B drifts lead to superdif-
fusion their suppression results in subdiffusion.

On the other hand, it was found [117] that the α-particle transport
for realistic ITG and TEM turbulent regimes is diffusive and becomes
significant only at energies ∼ 100 keV. A recent work [118] shows clear
indications of the non-diffusive nature of 3.5 MeV α-particle neoclassi-
cal transport; i.e. when transport originates from the averaged radial
drifts due to the non-uniform three-dimensional magnetic field and
not from the collisions dynamics, which is low enough to be neglected.
This transport is of special relevance for stellarator geometries, whose
non-axisymmetric character strongly impacts particle dynamics. In
fact, the confinement of α-particles is one of the most critical points
in the design of a viable stellarator fusion reactor [81, 91, 92, 93, 90].

The aim of this work is to examine the collisionless α-particles
neoclassical transport [118] by means of fractional transport theory
adapting the techniques used in characterizing the non-diffusive dy-
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namics of turbulent transport [43]. Of particular interest is the effect
of the level of quasi-toroidal symmetry on the fractional transport coef-
ficients. To this end, five configurations stepwise breaking the symme-
try were considered: from a perfectly symmetric ITER tokamak model
to four stellarator configurations with different levels of quasi-toroidal
symmetry. Fractional transport coefficients were estimated applying
Lagrangian and Eulerian techniques to a set of trapped α-particle tra-
jectories corresponding to the largest fraction of losses obtained with
the Monte Carlo orbit following code MOCA [94, 119, 104, 118]. The
set comprises only the confined part of these particle trajectories, i.e.
before the particles are lost, to avoid contaminating the statistics with
the effect of ripple at the outer radial positions, which leads to con-
vective (ballistic) behavior.

The remainder of the paper is organized as follows. Section 3.2
presents the basic approximations used, the magnetic configurations
considered and the numerical tools applied. The techniques of frac-
tional transport theory and their application are described in Sec-
tion 3.3. A summary of the results is given in Section 3.4. The final
Section 3.5 briefly discusses the validity of a non-diffusive approach in
building an effective model of ripple-enhanced α-particle transport.

3.2 Approximations, Magnetic Configu-

rations and Numerical Methods

This section summarizes the main approximations used, introduces the
magnetic configurations under study and the equations of motion of α-
particles together with some details about the numerical neoclassical
code MOCA.

The three approximations applied here are the small gyroradius
ordering, neglecting the electric field and neglecting the α-particle
collisions. Along with these approximations, throughout all simu-
lations particles are considered monoenergetic and all perturbations
(e.g. Alfvén, drift tearing, ballooning, ..., modes) are neglected. The
spatial and temporal drift orderings are justified (except perhaps in
the pedestal region) because of the ratio between, on the one hand,
the large spatial scale lengths of field corrugations L ∼ 1 m and orbit
widths L ∼ 0.5 m in reactor conditions with the α-particle Larmor ra-
dius ρα ∼ 0.05 m, and, on the other hand, the slow circulating τ ∼ 5µs,
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bouncing τ ∼ 20µs, collisional slowing-down τslow ∼ 1s and scatter-
ing τscatt ∼ 5s times compared with the cyclotron times. The orbit
widths, circulating and bouncing times were obtained in Ref. [118],
while the slowing-down and scattering times correspond to typical re-
actor conditions, i.e. n ∼ 1 and 5 ×1020 m−3 as T ∼ 25 and 15 keV
for tokamaks and stellarators respectively. The reason for ignoring
electric field effects is the huge difference between the α-particle speed
vα ≈ 1.3 × 107 m/s and the E × B drift speed, or either the unre-
alistic electric fields required to make them comparable. Finally, to
focus only on the relation between the symmetry level of the magnetic
configuration and α-particle dynamics, collisions will be neglected.

In this work, the magnetic configurations considered are based on
an ideal ripple-less tokamak with ITER [95] parameters, B ∼ 5.3 T,
a = 2.67 m, R = 6.2 m and V ∼ 900 m3 (approximately corresponding
to a Q ≈ 10 and Ip = 15 MA scenario) and a quasi-toroidally symmet-
ric (QTS) stellarator loosely based on a vacuum NCSX [12, 14] project
configuration and having the same nominal field and volume as ITER
but a different size a = 2.15 m, R = 9.8 m. The structure of the mag-
netic field for these two configurations was obtained using the 3D ideal
Variational Magnetohydrodynamic Equation solver Code VMEC [102]
and thus excludes the existence of both islands and stochastic regions.
Since the orbit following code MOCA works in Boozer coordinates,
the two VMEC equilibria are decomposed in Boozer [7] magnetic flux
coordinates using 1050 modes to guarantee a precise description of the
equilibria. Notice, however, that the accurate calculation of particle
trajectories, just depending on the magnetic field magnitude, requires
much less modes than those needed to capture its three dimensional
shape. Moreover, particle orbits depend on spatial scales larger than
those needed for stability calculations (ballooning, peeling-ballooning,
...) where a precise representation of small scales is necessary to lo-
calize unfavorable regions on the flux surfaces.

Based on the neoclassical community experience [104], to accu-
rately describe the long mean free path collisionality regime, similar
in requirements to our analysis of collisionless α-particles, it is suffi-
cient to consider only the Boozer normalized harmonics larger than
a threshold δ = 10−3 − 10−4, even for stellarators as complex as TJ-
II [94]. To be on the safe side, the smallest threshold δ = 10−4 was
used to obtain the ITER and QTS72 magnetic field configurations
which have seven and 72 modes respectively. Though this number
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of modes is insufficient to capture the smallest spatial scales of the
original equilibrium, and cannot be used to perform any stability cal-
culations, it is adequate to describe the original VMEC equilibrium
magnetic field and provides the two references for our work: an ideal
axisymmetric tokamak and a realistic quasi-toroidally symmetric stel-
larator. Nevertheless, to be sure that the configuration QTS72 was
sufficiently close to the original QTS equilibrium, all the procedures
described in this work were applied to a magnetic field configuration
obtained with δ = 10−5 and having 197 modes, giving results almost
identical, within the error bars, to that of QTS72. Since both, the full
QTS and QTS72 magnetic field configurations are relatively far from
being axisymmetric, see Figure 3.1, the strategy followed to study the
effect of approaching quasi-toroidal symmetry was to use the origi-
nal Boozer decomposition of the QTS equilibrium and increase step-
wise the threshold put on the normalized harmonics from δ = 10−4 of
QTS72 to 1/180, 1/150 and 10−2 to obtain magnetic configurations
with 6, 5 and 4 modes respectively, see Figure 3.1. This process guar-
antees that the ripples introduced by these modes are included based
on their importance to the original QTS equilibrium. QTS4 contains
the following four Bm,n modes: B0,0, B1,0, B2,0 and B2,1, ordered in
decreasing absolute value. QTS5 adds to those harmonics the mode
B1,−1 and QTS6 includes also B3,2. The modes Bmn with n 6= 0 are
the responsible of breaking the toroidal-symmetry. The five magnetic
configurations considered in this work, namely ITER, QTS4, QTS5,
QTS6 and QTS72 are the same used in Ref [118] and though none
of them are exact solutions of the original QTS VMEC equilibrium,
they share the same dominant modes (by construction), have the same
basic field structure and results in magnetic configurations with de-
creasing degree of quasi-toroidal symmetry σqt, shown in Figure 3.1
and defined as:

σqt(ψ) =

∑M
m=1 |Bm0(ψ)|∑N

n=1 |B0n(ψ)|+
∑M

m=1

∑N
n=−N |Bmn(ψ)|

(3.1)

In the small gyroradius approximation, the motion of collisionless
α-particles in the aforementioned magnetic configurations is described
by the next two equations. One for the guiding center position rg

ṙg = pv
B

B
+

mv2

2qB3
(1 + p2) B×∇B (3.2)
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Figure 3.1: Quasi-toroidal symmetry ratio σqt for the four quasi-
toroidal stellarators as a function of radial coordinate r/a.

and another for the pitch p = v‖/v (it should not be confused with
the usual definition for the canonical momentum P )

ṗ = − v

2B2
(1− p2)B · ∇B (3.3)

where the dot implies derivative with respect to time, v and q are
the speed and charge of the particle and B and B are the magnetic field
and its magnitude. Notice that no equation is required for the evolu-
tion of the particle speed since electric field and collisional effects are
neglected. These two equations reduce to a set of four coupled ordinary
differential equations depending on the field strength B(ψ, θ, ϕ) and it
derivatives with respect to the radial ψ, poloidal θ and toroidal ϕ spa-
tial Boozer coordinates. For every magnetic configuration, the trans-
port was modeled by an ensemble of α-particles, whose trajectories are
simulated integrating this system of ODEs with the Monte Carlo code
MOCA. A parallel FORTRAN code working in Boozer coordinates
that uses a three-dimensional grid Nψ × Nθ × Nϕ ≡ 100 × 360 × 360
per machine period to pre-store and interpolate the magnetic field
magnitude and its derivatives using the Bulirsh-Stoer algorithm [107]
to integrate particle trajectories.

In all simulations presented, α-particles are initialized at the half-
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radius r/a = 0.5 with a fixed energy of 3.5 MeV. They are distributed
uniformly in pitch and randomly in poloidal angle for ITER (65536
particles) and in poloidal and toroidal angles for the stellarator cases
(262144 particles each). The random distribution used for the poloidal
and toroidal angles has been chosen to be inversely proportional to the
Jacobian, 1/J(ψ, θ, ϕ) = (B(ψ, θ, ϕ)/B0)

2, of the coordinate transfor-
mation to keep a uniform density on the flux surface in real space, thus
initializing more particles in regions of higher magnetic field. The time
step used, ∆t ≈ 10−8 s, was the result of a trade-off between the or-
bit following code integration accuracy (measured with the relative
change in particle energy during their lifetimes, which was kept below
∼ 10−5%) and the total simulation time, which was chosen to ensure
that no new regimes appear in the cumulative loss fraction of particles
for any configuration, see Figure 3.2. The actual value used, t = 10
s was the result of a rather long simulation performed for QTS4 (the
one with the expected longer saturation time) and suffices to guar-
antee that the plateau was fully achieved for QTS72 and QTS6 and
fairly indicated for QTS5 and QTS4. All results were checked to be
independent of the number of particles considered and the grid size
and grid interpolation scheme applied to define the 3D magnetic field.

In all five configurations, particle trajectories can be broadly clas-
sified into two groups as those that keep or change their initial pitch
sign, called passing and trapped respectively. Notice that the latter
naming convention differs from the one commonly associated with the
parallel dynamics in neoclassical theory [108, 109, 110]. In the quarter
million particles used for the simulations, these two types of trajecto-
ries can be further subdivided into finer kinds of executed orbits [66]:
passing, stagnation, potato, ripple trapped, bananas, ... and combi-
nations between them since particles can change their orbits from one
type to another during their lifetimes, even without considering colli-
sions. Before trying to characterize α-particle transport, it is necessary
to classify the fractions of the different types of particle trajectories
and followed orbits since their confinement varies. For example, the
average radial drift of collisionless passing and stagnation orbits is
negligible compared to that of banana or ripple trapped orbits, mix-
ing them in a unique analysis could contaminate the statistics and
mask the transport dynamics of interest.

Firstly, we have calculated the cumulative fraction of loss particles,
see Figure 3.2. For ripple-less ITER not even a single particle is lost
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Figure 3.2: Loss fraction of α-particles over time for the four quasi-
toroidal stellarators. Vertical lines indicate the exit-time range of the
particles considered for the fractional transport analysis, whose num-
ber and percentage among trapped particles are given for each config-
uration, the first (left) vertical lines correspond to the simulation time
of the selected α-particles.

during the simulation, which is also an efficient test to demonstrate
the fairly low numerical diffusion of MOCA. For the four QTS config-
urations, the trend shows that the decrease in symmetry level leads to
larger losses. This can be explained by the fact that confinement relies
on ensemble average radial drifts. For a toroidally symmetric configu-
ration, like ripple-less ITER, the radial average automatically cancels,
but as soon as symmetry is broken, as for the other four configurations
considered, the radial average rapidly increases. The different slopes in
Figure 3.2 indicate that the particle escaping rates vary, contributing
in different ways to the transport.

Secondly, particle orbits are classified in two basic types: trapped
and passing, depending on whether they change, or not, the sign of
their pitch respectively. We found that not a single passing particle
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was lost for any configuration. While the fraction of trapped particles
in ITER is ∼ 30% and all are perfectly confined, in the QTS con-
figurations it is ∼ 20% and the lost fraction increases as the level of
quasi-symmetry decreases. A study was done for the five configura-
tions with a newly developed numerical procedure that classifies and
characterizes particle orbits, based on the analysis of reflection points
and the poloidal angle at which they cross (or not) the equatorial plane
between consecutive reflection points. The analysis of all trapped par-
ticle trajectories in the five configurations shows that more than a 90%
of their orbits are either bananas or ripple trapped. As an example,
Figure 3.3 presents two trapped α-particle trajectories with adjacent
initial conditions, where one escapes following solely banana orbits
and the other eventually transitions its orbit to the ripple trapped.
No further attempt was made to distinguish the other 10% of orbit
types. More in detail, two limiting cases are found, on the one hand,
ITER with 97% of bananas and zero ripple trapped orbits, and, on the
other hand, QTS72 with 54% bananas and 35% ripple trapped orbits.
The procedure also allows to estimate the width and center of banana
orbits, see Ref. [118] for details and other orbit examples.

Lastly, with the aim to evaluate particle transport, it is necessary
to select the kind of particles and time scales of interest for a given con-
figuration. With this in mind, neither passing particles nor particles
belonging to the saturation region in Figure 3.2 contribute to trans-
port and, therefore, will be ignored together with the prompt losses,
whose established convective behavior would only mask the results.
To characterize the relevant transport parameters, the region with the
steepest slope in the loss fraction is chosen; i.e. the range belonging
to the largest fraction of particle losses. The analysis of Section 3.3
will be performed on the trajectories of all trapped particles which are
lost in the interval marked with vertical black lines in Figure 3.2. The
number of particles considered in each QTS configuration and their
percentage among trapped particles are also indicated in the figure.
Despite the fact that collisionless α-particles in ITER lack any kind
of transport, a set consisting of ∼ 20, 000 trapped particles will be
analyzed for testing purposes.
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3.3 Fractional transport diagnostics

In this section we will provide a brief introduction to the basics of
the fractional transport equation and to some methods to estimate its
exponents by means of tracked particles. These are the methods that
will be used in the reminder of the paper to analyze the characteristics
of the transport of α-particles.

3.3.1 Fractional transport equation and transport
exponents

A well-known example of the mathematical relation between some
macroscopic transport equations and certain features of its microscopic
transport dynamics is the classical diffusion equation,

∂n

∂t
= D

∂2n

∂x2
(3.4)

where D is the classical diffusion coefficient. Although the validity of
this equation could be assumed ad-hoc, it can also be easily derived
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from stochastic or probabilistic descriptions of the underlying micro-
scopic transport process. For example, it can be obtained from the
classical continuous-time random walk (CTRW) [20], that describes
the motion of a population of walkers that execute jumps of length
∆x after having waited at their current location for an amount of
time ∆t. The probability density distributions (pdfs) of steps, p(∆x)
and waiting times, ψ(∆t) define the CTRW. Not every CTRW results
in a macroscopic diffusion equation. But in the case of a symmetric
CTRW (i.e., the jump pdf has zero mean), if both jumps and waiting-
times are uncorrelated and have a well-defined associated scale, given
by the (square-root of the) variance of step pdf, σ, and the mean of
the waiting-time pdf τ . It is readily found that the motion of the mi-
croscopic walkers is well-described by equation 3.4 for long times and
distances. In fact, D ∝ σ/τ . Mathematically speaking, these condi-
tions translate into the need for the step-size pdf of being within the
basin of attraction of the Gaussian distribution of the same variance,
as dictated by the central limit theorem, and the waiting-time pdf to
be in the basin of the exponential pdf with the same mean [120].

If the macroscopic transport exhibits features such as the pres-
ence of long temporal correlations or an apparent lack of character-
istic scales, it should then be expected that equation 3.4 provides a
poor description of the transport dynamics. It has been suggested by
many authors that, in these cases, a more general transport equation
is needed. One possibility is the fractional transport equation,

∂n

∂t
= D1−β

t

[
K
∂αn

∂|x|α

]
, 0 < β < 1, 0 < α < 2, (3.5)

where Dγ
t represents the fractional Riemann-Liouville operator of the

order γ, K is a constant and ∂αn/∂|x|α is the Riesz fractional deriva-
tive of the order α [19]. Fractional operators are integro-differential
equations so that the temporal fractional derivative integrates over the
full history of the system, thus being able of including memory effects.
Similarly, spatial fractional derivatives integrate over the whole system
domain and can capture non-local effects.

The convenience of using fractional transport equations can be jus-
tified similarly to how we previously did for the classical diffusion equa-
tion. Starting with the usual CTRW, equation 3.5 can be obtained as
its long-time, long-distance limit whenever one introduces the observed
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lack of characteristic scales by choosing step-size pdfs with diverging
variance, (i.e., p(∆x) ∼ ∆x−(1+α), 0 < α < 2) and waiting-time pdfs
with divergent means (i.e., ψ(∆t) ∼ ∆t−(1+β), 0 < β < 1) [21]. Math-
ematically, this is again tantamount to choosing them from within the
basin of attraction of the proper subfamily of Lévy pdfs [120] as dic-
tated by the generalized central limit theorem.

The exponents α and β in equation 3.5 are known as fractional
transport exponents. In the limit α → 2 and β → 1, the usual clas-
sical diffusion equation is recovered. However, if α < 2, non-local
spatial effects are relevant. Similarly, if β < 1, memory effects are
essential in determining future transport. It is also common to define
a third exponent, H ≡ β/α, known as the Hurst exponent [121]. For
the diffusive case, H = 1/2. Therefore, any equation with H > 1/2
is usually referred to as superdiffusive, and subdiffusive if H < 1/2.
These transport dynamics has very interesting features. For instance,
perturbations can spread in them very quickly (superdiffusion) or ex-
tremely slowly (subdiffusion). In the former case, they can resemble
avalanche-like transport while in the latter, they may exhibit extreme
stickiness. For that reason, they are used to model transport in situ-
ations in which these features are known to exist [21, 111].

The best manner to test whether equation 3.5 provides a good
model for transport in any system is to estimate the values of the
fractional transport exponents that best reproduced its observed trans-
port features. There are a few methods to do this, most of them based
on specific features of equation 3.5 and its propagator, P (x, t). The
propagator of any differential equation is the temporal evolution of
its initial conditions. Or, in other words, the probability of finding at
time t a particle at position x if it was initially at x0. Values of the
fractional exponents that best model transport in any system can then
be obtained with relative ease by comparing the propagator of equa-
tion 3.5 with some numerical reconstruction of the propagator in the
system of interest, usually by employing tracked or tracer particles. A
review of many of these techniques can be found elsewhere [43], but
we will focus on two of them in what follows.

3.3.2 The Eulerian method

The Eulerian method relies on exploiting some scaling properties of
the propagator of equation 3.5. In particular, it can be shown that,



74 CHAPTER 3. NON-DIFFUSIVE APPROACH

100

101

102

103

104

 ITER
 QTS4
 QTS5
 QTS6
 QTS72

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10-6 10-4 10-2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10-6 10-4 10-2 1 
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R/
S

! "
#$
%

! = 0.004 ± 0.014

2-

time [s]

! "
#$
%

! = 0.05 ± 0.07

2-

! "
#$
%

! = 0.14 ± 0.06

2-

! "
#$
%

! = 0.16 ± 0.05

2-

time [s]

! "
#$
%

! = 0.17 ± 0.02

2-
QTS4

ITER

QTS72

QTS6

QTS5
a)

b)

c)

d)

e)

f)
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for fixed time ti the propagator scales as [96, 26]:

P (x, ti) ∼ |x− x0|−(1+α), |x− x0| � K1/βt
β/α
i (3.6)

from where α could be found by fitting the tail of the propagator
P (x, ti) to a power law in log-log scale. The derivative of the propa-
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gator at fixed time gives the local spatial exponent:

α(x) = −

[
1 +

x

P (x)

dP

dx

]
(3.7)

that should come out to be rather independent of x (or at least over
a sufficiently long range) to be meaningful.

To apply this method to our system of interest, one could follow
a population of N tracked particles in time, record their trajectories
xj(t), j = 1, · · · , N , and then build an approximation of the propaga-
tor simply by building the probability density function of xj(t)−xj(0).
The tail of the resulting pdf, at sufficiently long times, should behave
as equation 3.6 if the fractional transport equation does provide a
reasonable model for transport in the system.

The temporal exponent, β, can be estimated in a similar way using
another scaling property of the propagator of equation 3.5. For any
fixed location, xi, that is sufficiently far from x0 the propagator scales
as [96, 26]

P (xi, t) ∼ tβ, t� K1/βx
α/β
i , (3.8)

and,

P (xi, t) ∼ t−β, t� K1/βx
α/β
i . (3.9)

Thus, one could in principle estimate β by following in time the value
of the numerical propagator, constructed as we discussed earlier, at
any fixed location.

The Hurst exponent can be estimated as the ratio H = β/α
once their values are available from the determinations previously de-
scribed. But it can also be estimated directly from the numerical
propagator. Indeed, yet another property of equation 3.5 is that all
finite moments of its propagator satisfy,∫

|x− x0|µP (x, ti)dx ∝ tµH , 0 < µ < α. (3.10)

Since the determination of β is usually the most challenging one from
a practical point of view, it is sometimes preferable to determine H
using equation 3.10, and then infer it via the relation β = αH.
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3.3.3 The Lagrangian method: R/S analysis

There is another way to estimate H that does not require the calcu-
lation of the numerical propagator, but that can be directly inferred
from the analysis of the trajectories of individual tracked particles or,
more precisely, their instantaneous velocities [30]. In particular, H
can be obtained by performing the so-called rescaled range analysis
[121] on the velocity of each particle, and then averaging over as many
particles as are available. The procedure for a single particle is to
consider the velocity series {Vk = xk+1 − xk , k = 1, 2, . . . , N} of each
tracked particle, and calculate its rescaled range at iteration k = τ
using:

[R/S](τ) =
max
1≤k≤τ

W (k, τ)− min
1≤k≤τ

W (k, τ)

(〈V s〉τ − 〈V 〉sτ )1/s
(3.11)

where,

W (k, τ) =
k∑
i=1

Vi − k〈V 〉τ (3.12)

and 〈·〉τ represents the average up to iteration τ . The denomina-
tor is the fractional standard deviation of order 0 < s < α [31]. If
transport is indeed scale-free and governed by an equation similar to
equation 3.5, one should find that [R/S] ∼ τH (with H = β/α) over
a meaningful range of times [30], from which the fractional exponent
H can be inferred. It is also possible to determine the instantaneous
Hurst exponent via:

H(τ) =
τ

[R/S](τ)
· d[R/S]

dτ
(τ), (3.13)

that should be rather independent of τ , at least over a sufficiently large
range, to be meaningful.

3.3.4 On the sensitivity and validity of methods

To what extent can one trust the results of the previous analysis to
estimate transport exponents? First of all, any scaling exponent will
only be meaningful if it remains valid over a sufficiently large range
of the relevant scale, usually referred to as mesoscale. It is difficult to
define what ”sufficiently large” is in most cases, but we would require
at least half, if not a full decade.



78 CHAPTER 3. NON-DIFFUSIVE APPROACH

Secondly, the methods previously described can be proved to yield
the same results only for equation 3.5, that exhibits scale-invariance
for all scales. This is not the case in any real system, that will exhibit
scale-invariance at best for a finite range of scales. In that situation,
the values obtained with the different methods may vary. In fact, the
Eulerian and Lagrangian methods have different sensitivities. Any
method based on propagators usually is quite sensitive to finite-size
effects, particularly if the system size is not too large. Rescaled-range
analysis is usually much more robust, being rather insensitive to the
presence of boundaries as well as other noise sources, but feels the
presence of any periodic contamination rather strongly. It also tends
to work best at values of H ∼ 0.5, but somewhat overestimates the
exponent for H < 0.3 and underestimates it for H > 0.8 [43]. It
is important to be aware of these limitations when interpreting the
obtained values of transport exponents while using the aforementioned
methods.
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3.4. RESULTS 79

3.4 Results

We analyzed a set of trapped α-particles for QTS configurations,
whose exit-times are marked by the vertical lines in Figure 3.2, where
the first (left) vertical lines correspond to the simulation time of the
selected α-particles being 0.004 s, 0.01 s, 0.07 s and 0.3 s for QTS72,
QTS6, QTS5 and QTS4, respectively, before losses occurs to avoid
any biasing (particularly to avoid contaminating the statistics by rip-
ple trapped orbits, which have convective behaviour at the end of
particle lifetimes). For ITER we characterized all trapped particles
∼ 20, 000 for half a second since they are perfectly confined. The La-
grangian Rescale range [R/S] diagnostic described in Section 3.3 was
performed using rk+1

g −rkg as Vk in equation 3.11, which is proportional
to the radial guiding center speed ṙg. On the other hand, the Eulerian
technique was performed by constructing the propagator of the banana
centers , P (r̃b/a, t), as x−x0 = r̃b/a. Here P (r̃b/a, t) is the probability
density function of the normalized radial displacements of the banana
orbit centers with respect to their initial positions at time t. This is
done because the dynamics of the guiding center radial transport and
the banana-centre motion are different for times shorter than the av-
erage banana orbit time, but become identical at longer times scales.
The reason is that a banana-centre barely moves during the banana
orbiting, while the guiding centre is moving back and forth in radius,
as it follows the banana. The relevant transport dynamics happen
in the mesoscale range, which is well beyond the banana orbit time.
In the calculation of the Hurst exponent, the coexistence of these two
process at different timescales does not really alter the procedure, since
they appear separated at different scaling ranges. For the calculation
of the propagator, however, the two processes become more mixed,
since the propagator calculated with guiding centres will be signifi-
cantly deformed at the earlier timescales due to the back and forth
motion, making more complicated the analysis at longer timescales.
This distortion can be easily removed by considering only the banana
center motion. Moreover, the displacement is computed with respect
to its initial position instead from the position at the beginning of the
mesoscale range since the calculation is approximately invariant under
time-translations and it is difficult to specify the start of the mesoscale.
The Eulerian method was applied solely for the QTS configurations
due to the lack of any radial propagation of these orbits and the ab-
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sence of stochastic tip diffusion [60] in perfectly axisymmetric ITER.
The resulting transport exponents were estimated over the mesoscale
range (indicated in all following figures).

3.4.1 The Lagrangian method: R/S analysis

The [R/S] functions for the five configurations under consideration (all
calculated with a fixed parameter s = 0.3 in equation 3.11 for consis-
tency with the Eulerian method as 0 < s < α) are shown in the top left
plot of Figure 3.4. The fact that the [R/S] function changes its slope
in ITER five times faster compared to the results for the four stel-
larators is pointing out to their quite different transport time scales.
This can be more clearly seen in the instantaneous Hurst exponents
obtained according to equation 3.13 and also shown in Figure 3.4. The
sharp drop from the ballistic phase with H = 1 should be related to
the underlying banana orbits. Indeed, the steep plunge in H occurring
at ∼ 10 µs for ITER and between 40 and 60 µs for the stellarators
corresponds to the time necessary to complete one full banana orbit,
2τb (i.e. two bouncing times), estimated according to the connection
lengths of the magnetic field lines Ref. [118]. Moreover, the difference
between these values and the oscillations seen after the decay around
&100 µs can be attributed to helically trapped orbits with longer con-
nection lengths and slower bouncing times.

The Hurst exponent was estimated as the average of the instanta-
neousH over the region where it stabilizes, i.e. the mesoscale, bounded
by the vertical lines in Figure 3.4. The result for ITER, where H ∼ 0,
suggests pure intermittency, being a typical characteristic of harmonic
functions and confirming that the frozen bananas in ITER lack radial
displacements. The modest values of H for the stellarators point to
subdiffusion with the clear trend of increasing Hurst exponent for de-
creasing level of toroidal symmetry, but always staying way below the
diffusive threshold of H = 0.5.

3.4.2 The Eulerian method

In the absence of the radial propagation of trapped particles in ITER,
the Eulerian method was applied only to the four QTS stellarators.
To estimate all three fractional exponents for each configuration, we
choose the same fitting range, i.e. the mesoscale, as the one used
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in the [R/S] calculations of the previous subsection, see Figure 3.4.
The fractional spatial exponent α was obtained by fitting the tail of
the propagator at fixed times P (r̃b/a, ti) to a power law according to
equation 3.6. The propagator at the beginning and the end of the
mesoscale is presented in the left plots of Figure 3.5 both in linear and
logarithmic scales (in log-log scale the resulting power law fit is given
by a tilted black line in between the vertical bars). The slight radial
asymmetry of the spatial propagators is due to the inhomogeneity
of the magnetic field, that makes radial displacements towards the
inside and the outside not completely symmetric. The results show
an increasing variation of P (r̃b/a, ti) with decreasing level of quasi-
toroidal symmetry. The instantaneous spatial transport exponents
αinst(t) are presented in the right plots of Figure 3.5 and obtained by
fitting to a power law the propagator, P (r̃b/a, ti) ∼ r̃b/a

−(1+α), from
the beginning until the end of the mesoscale in the spatial regions
marked by vertical lines on the left plots. The very small difference
in P (r̃b/a, ti) for QTS4 during such long period corresponds to the
the very narrow saturation range in the [R/S], see Figure 3.4 (c), and
translates in a large dispersion of αinst(t) for this configuration. The
large variation of αinst for QTS72, varying from around 0.9 to 0.3,
makes the results rather unreliable. Besides these difficulties, there is
a clear trend in reducing α from around 2.7 to 0.6 as the quasi-toroidal
symmetry decreases.

The Eulerian technique can also be used to obtain the fractional
transport exponent associated with the temporal dependence, β, by
fitting the time decay of the propagator P (r̃bi/a, t) according to equa-
tion 3.8. We choose three radial positions, r̃bi/a = 0.20, 0.25 and
0.30, corresponding to the center of the regions used in estimating α
enclosed by vertical lines on the left plots in Figure 3.5. The tempo-
ral exponent β was calculated by averaging the three values obtained
from fitting P (r̃bi/a, t) ∼ tβ over the mesoscale, likewise, being de-
limited with vertical bars in Figure 3.6 together with the resulting
power law fit given by a tilted black line in between the bars. The
values estimated for QTS5 and QTS6 are β ∼ 0.2, while the results
for QTS4 and QTS72 are significantly larger β ∼ 0.5 − 0.7, however,
the standard deviations for them are larger as well.

Finally, it is possible to estimate the Hurst exponent from the time
dependence of the fractional standard deviation σ using equation 3.10,
i.e. the finite moment of the propagator of order less than α, according
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larators.

to the results depicted in Figure 3.6. The resulting fractional standard
deviation is presented in Figure 3.7 in log-log scale along with the
power law fit of H over the mesoscale and is calculated with µQTS4 =
1.5, µQTS5 = µQTS6 = 0.5 and µQTS72 = 0.2 each satisfying µ < α.
As it was found previously by an alternative [R/S] method, Hurst
exponents increase as the stellarator configuration departs from quasi-
toroidal symmetry but without exceeding the diffusive limit in H = 0.5
even for QTS72.

As a final part of our study, we also performed a rescaling of the
propagator using the obtained fractional coefficients to confirm its
good self-similar properties. A function f(x) is called self-similar if
f(λx) = λ−γf(x), where γ is called self-similarity exponent. In seek-
ing for the self-similarity signatures of the propagator, we constructed
the renormalized distribution tγP (r̃b/a, t), where as gamma we used
either γ = β/α or γ = H and plotted it as a function of the scaling
variable (r̃b/a)/tγ for the two time instances corresponding to the be-
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similarity variable with γ = β/α for QTS4 (a), QTS5 (b), QTS6
(c) and QTS72 (d) in a log-linear scale. Right: The renormalized
distribution as a function of the similarity variable with γ = H for
QTS4 (e), QTS5 (f), QTS6 (g) and QTS72 (h) in a log-linear scale.
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ginning and end of the mesoscale, see Figure 3.8 in a log-linear scale.
In both cases, the distributions are far from having a Gaussian shape.
However, the pdfs begin to resemble the parabolic profile with an
increasing level of quasi-symmetry, which is also reflected by the in-
crease of the estimated spatial exponent α that gradually approaches
the value of two. In the limiting case of low symmetry for QTS72,
the results with γ = β/α > 1 are not reliable, while the results with
γ = H seem to be more trustworthy.

3.5 Discussion and Conclusions

The trajectories of collisionless trapped α-particles dictated by neo-
classical theory for five magnetic configurations with different lev-
els of toroidal symmetry have been analyzed with fractional trans-
port tools to determine the effective nature of radial transport. The
[R/S] analysis applied to the perfectly confined trapped particles of
the purely axisymmetric ITER tokamak results in a Hurst exponent
H = 0.004 ± 0.014 indicating ideal intermittency and the absence of
radial transport. For this case, the Eulerian analysis becomes not fea-
sible. The resulting Hurst exponents for the quasi-toroidal stellarators
estimated by both the Lagrangian and the Eulerian techniques agree
within the error bars except for QTS72, see Table 3.1. This is possibly
a consequence of its fast losses and the importance of finite size effects
since propagator based estimations are quite sensitive to them, partic-
ularly if the system size is not too large. The values clearly suggest a
subdiffusive transport behavior that becomes more pronounced as the
level of quasi-toroidal symmetry increases.

The values of the spatial exponent α strongly decrease with de-
creasing symmetry and point to the presence of spatial correlations
and the non-local nature of transport for these configurations. One
might infer that the spatial exponent α = 2.7± 0.9 for QTS4 implies
Gaussian statistics, but it is rather an artifact due to small broaden-
ing caused by the reduced average drifts for its highly quasi-toroidal
symmetry. Additionally, in all cases the value of H stays well below
1/α, thus revealing the presence of strong anti-correlations [120].

The temporal exponent β deduced from the propagator analysis,
see Table 3.1, shows a large disparity between QTS5/QTS6 configura-
tions where β ∼ 0.2−0.3, and the limiting cases of high/low symmetry
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Lagrangian Eulerian
H H α β β = H ∗ α

ITER 0.004± 0.014
QTS4 0.05± 0.07 0.07 2.7± 0.9 0.5± 0.3 0.18± 0.06
QTS5 0.14± 0.06 0.10 1.2± 0.2 0.16± 0.07 0.12± 0.02
QTS6 0.16± 0.05 0.21 0.76± 0.04 0.30± 0.04 0.16± 0.01
QTS72 0.17± 0.02 0.38 0.6± 0.2 0.7± 0.2 0.24± 0.06

Table 3.1: Transport exponents obtained by the Lagrangian and Eu-
lerian techniques for the five configurations.

in QTS4/QTS72 with β ∼ 0.5− 0.7. As it was mentioned at the end
of Section 3.3.2, the more reliable technique to obtain β is by using
H and α values via β = Hα. As shown in the last column of the
Table 3.1, this technique offers values of β ∼ 0.2 for the four QTS
configurations. A reason for the large disparity between the QTS con-
figurations estimated by the first technique (the propagator) could be
related to the radial particle drifts. In particular, the β estimation
may not be suitable for relatively slow particle drifts in QTS4 and,
conversely, for fairly fast particle drifts in QTS72. On the other hand,
both techniques are in good agreement for the QTS5 and QTS6 stel-
larators. In any case, the values of β for all configurations stay below
1 indicating a significant non-Markovian transport.

The difficulties encountered for QTS72 are a consequence of the
fast losses due to its broken symmetry, which leads to short trajecto-
ries and a short range for the power law fits of P (r̃b/a, t) that can not
capture the dynamics of α-particles in configuration accurately. On
the other extreme is QTS4, whose high toroidal symmetry results in a
minute variation of P (r̃b/a, t) leading to a large dispersion in the trans-
port exponents. In between for QTS5 and QTS6, the resulting values
of the transport coefficients appear to be quite robust and consistent,
considering both the Hurst exponents obtained by the Lagrangian and
Eulerian methods and the β values estimated by the two techniques.

The results of our collisionless α-particle simulations, within the
approximations used and the quasi-toroidally symmetric configura-
tions examined, suggest that an increasing departure from quasi-toroidal
symmetry results in faster and larger neoclassical losses. The analysis
with fractional transport theory tools indicates that the transport of
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trapped but not prompt lost particles is non-Gaussian, non-Markovian
and strongly subdiffusive. Moreover, fractional transport coefficients
describe transport as becoming more subdiffusive as the level of the
quasi-toroidal symmetry increases, which is similar to the results of
Ref. [36] for supercritical turbulent transport in the presence of quasi-
poloidal symmetry. Although, the validity of the fractional model itself
becomes doubtful in the limiting cases of high and low symmetry.
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Chapter 4

Conclusions

This thesis considered the relation between the collisionless α-particles
transport and the toroidal symmetry level of the magnetic field and
addressed the nature of the underlying processes.

The statistical analysis of the α-particles transport was performed
based on ensemble average of a large set of guiding center trajecto-
ries obtained numerically with the Monte Carlo code MOCA. Three
approximations conforming to fusion relevant α-particles were made:
the small gyroradius ordering, neglecting the electric field and ignoring
the collisions with other particles.

The study considered five reactor-scale configurations: a ripple-less
ITER tokamak and four quasi-toroidally symmetric (QTS) stellarators
loosely based on the NCSX project. These configurations are charac-
terized by a newly developed quasi-toroidal symmetry figure of merit
σqt, which is σqt = 1 for the purely toroidally symmetric ITER con-
figuration and ranges from σqt = 0.94 to 0.62 for the QTS stellarator
configurations.

For each configuration, we analyzed the α-particles losses and their
dependence on the particle birth positions. The α-particle trajectories
were classified as being either passing or trapped, and their fractions
were estimated by two methods: one based on particle trajectories
and the other on the magnetic well depth. A newly developed numer-
ical procedure classified trapped orbits as mostly being bananas and
to a lesser extent potato, ripple trapped and transition. For ITER,
the ratio of passing to trapped particles is ∼ 70/30, all of them are
perfectly confined and where 97% of the trapped fraction are banana
orbits. For the QTS configurations, the ratio is ∼ 80/20 but some
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trapped particles got lost. A departure from QTS results in faster and
larger losses, being the limiting case QTS72 where almost all trapped
particles escape and whose orbits are 54% bananas and 35% ripple
trapped. As expected, most of those losses belong to particles being
born with small pitch at regions of low magnetic field at the outer
midplane.

These are precisely the trapped α-particles that are mainly respon-
sible for transport, for this reason, a novel algorithm was developed to
define the trapped orbit center and its other characteristic orbit pa-
rameters, i.e. bouncing times τ and widths ∆w, from their trajectories.
It was shown that the decrease in the toroidal symmetry level results
in particle trajectories with wider banana orbits and longer bouncing
times (the most probable values are in the range of ∆w ∼ 0.15− 0.25
and τ ∼ 20− 30 µs). These results were corroborated by an indepen-
dent numerical procedure based on connection lengths along the field
lines.

Convective velocities and diffusion coefficients were estimated using
the characteristic bouncing times τ and widths ∆w and by fitting the
time dependence of the moments of the radial probability distribution
function with the running moments method. Large discrepancies were
found between both methods, e.g. D ∼ 2 × 104 m2/s using the first
and D ∼ 10−2 m2/s using the second for the QTS4 configuration.

These results question the validity of the classical convection/diffusion
model to adequately describe the collisionless trapped α-particle trans-
port for the magnetic configurations considered.

Inspired by the success of the fractional transport theory to build
an effective transport model for turbulent driven transport in fusion
plasmas, we implemented its tools to determine the effective nature of
the ripple-enhanced α-particle radial transport. The fractional trans-
port coefficients, i.e. the Hurst H, the spatial α and the temporal
β exponents, were estimated with the Eulerian and Lagrangian tech-
niques (the propagator and the [R/S] analysis respectively) using the
trajectories of trapped α-particles for the same five configurations.

Both the Eulerian and the Lagrangian analyses reveal that the
transport of collisionless trapped α-particles has non-diffusive features
being non-Gaussian, non-Markovian and strongly subdiffusive.

As expected, the perfectly confined trapped particles of the ripple-
less ITER configuration are characterized by the absence of radial
transport with almost zero Hurst exponent, H = 0.004 ± 0.014. For
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the quasi-toroidal stellarators, the values of the Hurst exponents esti-
mated by both the Eulerian and Lagrangian methods were found to
be in agreement, clearly suggesting a strong subdiffusive character of
transport, which becomes more pronounce as the level of quasi-toroidal
symmetry increases. Only for the QTS72 configuration, the resulting
Hurst exponents did not agree within the error bars, a consequence of
its fast losses and finite size effects.

For the four stellarators, the resulting spatial exponents α point
out to the non-Gaussian statistics and non-local nature of transport.
The values of α strongly decrease with decreasing symmetry, moreover,
the inverse of it, 1/α, never exceeds the estimated Hurst exponents,
revealing the presence of strong spatial anti-correlations. The atypical
value of αQTS4 = 2.7± 0.9 rather than being an indicator of Gaussian
statistics, might be an artefact due to the reduced spatial drifts, to
which the Eulerian technique is more sensitive.

The temporal exponents, β, obtained by the Eulerian method in-
dicate a significant non-Markovian transport behaviour and the cor-
responding relevance of memory effects. Despite a large disparity be-
tween βQTS5/QTS6 ∼ 0.2− 0.3 and βQTS4/QTS72 ∼ 0.5− 0.7 was found,
all values of β stay below 1. These results were compared with a more
reliable technique that estimates β based on H and α as β = Hα,
which offered β ∼ 0.2 for the four QTS configurations.

The main results of this thesis show that the collisionless trapped
α-particle transport cannot be adequately described by the classi-
cal convection/diffusion approach for the quasi-toroidally symmet-
ric configurations considered, whereas the fractional transport theory
can provide an effective transport model. The fractional transport
coefficients indicate that the transport is non-diffusive being non-
Gaussian, non-Markovian and strongly subdiffusive. As the level of
the quasi-toroidal symmetry increases, the ripple-enhanced transport
of α-particles becomes strongly subdiffusive. Although, the validity
of the fractional model itself becomes doubtful in the limiting cases of
high and low symmetry.

The work presented here could naturally be expanded to: i) ex-
amine the validity of the fractional transport model onto other types
of quasi-symmetric or isodynamic configurations, ii) clarify if the non-
diffusive description is still necessary when collisions are considered,
iii) study the effects of density, temperature and α-particle birth pro-
files, iv) consider resonant and non-resonant MHD instabilities, etc.
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Chapter 5

Conclusiones

Esta tesis ha considerado la relación entre el transporte de las part́ıculas
α no colisionales y el nivel de simetŕıa toroidal del campo magnético,
abordando la naturaleza subyacente de estos procesos.

El análisis estad́ıstico del transporte de las pat́ıculas no colisionales
se llevó a cabo empleando un amplio conjunto de trayectorias de su
centro guia, calculadas con el código Monte Carlo MOCA. Para ello
se han realizado tres aproximaciones, que se ajustan a las condiciones
de las partculas α en reactores de fusion, se supone que tanto el radio
de Larmor como el efecto del campo eléctrico y de las colisiones con
otras part́ıculas son despreciables.

El estudio ha considerado cinco configuraciones con tamaño de
reactor: un tokamak sin ripple similar a ITER y cuatro stellarators
simétricos cuasi-toroidales basados vagamente en el proyecto NCSX.
Estas configuraciones se caracterizan por σqt, una nueva figura de
mérito para cuantificar el nivel de simetŕıa cuasi-toroidal que hemos
desarrollado, que es σqt = 1 para configuraciónes con simetŕıa toroidal
pura como la ITER y vaŕıa entre σqt = 0.94 y 0.62 para las configura-
ciones los stellarators QTS.

Para cada configuraćıon, hemos analizado las pérdidas de las part́ı-
culas α y su dependencia con la posición de nacimiento. Las trayec-
torias de las part́ıculas α fueron clasificadas como pasantes o atra-
padas y sus fracciones se estimaron mediante dos métodos: uno basado
en la trayectoria de las part́ıculas y otro en la profundidad del pozo
magnético. Un procedimiento mumérico desarrollado por primera vez
clasificó estas órbitas atrapadas como principalmente bananas, y en
menor como órbitas potatoes, ripple trapped y en tránsito. Para ITER,
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la proporción entre part́ıculas pasantes y atrapadas es de ∼ 70/30,
y todas ellas están perfectamente confinadas, y donde el 97% de las
part́ıculas atrapada son órbitas banana. Para las configuraciones QTS,
la proporción es ∼ 80/20 pero algunas part́ıculas atrapadas se fugan.
La ruptura de la simetŕıa quasi-toroidal QTS resulta en pérdidas may-
ores y más rápidas, siendo QTS72 el caso limı́te, donde casi todas
las part́ıculas atrapadas escapan, y cuyas órbitas son 54% bananas y
35% ripple trapped. Como se esperaba, la mayoŕıa de estas pérdidas
pertenecen a part́ıculas nacidas con un ángulo de ataque pequeño en
regiones de campo magnético bajo en la zona externa del plan ecua-
torial.

Las part́ıculas α atrapadas son precisamente las principales respon-
sables del transporte, por esta razón desarrollamos un nuevo algoŕıtmo
para definir el centro de la órbita atrapada y otros parámetros carac-
teŕısticos de su órbita, como sus tiempos de rebote τ y sus anchuras
∆w, a partir de sus trayectorias. Se demostró que la disminución en
el nivel toroidal de simetŕıa resulta en trayectorias de part́ıculas con
órbitas bananas más anchas y tiempos de rebote más largos (cuyos val-
ores más probables fluctúan entre ∆w ∼ 0.15−0.25 y τ ∼ 20−30 µs).
Estos resultados fueron corroborados por un procedimiento numérico
independiente basado en las longitudes de conexión a lo largo de las
ĺıneas del campo.

Las velocidades convectivas y los coeficientes de difusión se esti-
maron usando los tiempos de rebote caracteŕısticos τ y las anchuras
∆w y ajustando la dependencia tiemporal de la función de distribución
radial de probabilidad con el método de los momentos. Encontrando
grandes discrepancias entre ambos métodos, obteniendo D ∼ 2 × 104

m2/s usando el primero y D ∼ 10−2 m2/s usando el segundo para la
configuración QTS4.

Estos resultados cuestionan la validez del modelo clásico de di-
fusión y convección para describir adecuadamente el transporte de las
part́ıculas α atrapadas no colisionales en los campos magnéticos con-
siderados.

Inspirados por el éxito de la teoŕıa de transporte fraccionario para
construir un modelo efectivo para el transporte generado por turbu-
lencias en plasmas de fusión, implementamos sus herramientas para
determinar la naturaleza efectiva del transporte radial de las part́ıculas
α atrapadas. Los coeficientes de transporte fraccionario: el exponente
de Hurst H y los exponentes espacial α y temporal β se calcularon con
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las técnicas Eularianas y Lagrangianas (con la metodoloǵıa del prop-
agator y el análisis [R/S] respectivamente) usando las trayectorias de
las part́ıculas α atrapadas para las cinco mismas configuraciones.

Tanto los análisis Eulerianos como los Lagrangianos revelan que el
transporte de las part́ıculas α atrapadas no colisionales es no difusivos,
no Gaussianas, no Markovianas y fuertemente subdifusivas.

Como se esperaba, las part́ıculas atrapadas, perfectamente con-
finadas, de la configuración ITER sin ripple se caracterizan por la
ausencia de transporte radial con un exponente Hurst casi igual a cero,
H = 0.004 ± 0.014. Para los stellarators cuasi-toroidales los valores
de los exponentes de Hurst estimados tanto por el método Euleri-
ano como por el Lagrangiano resultaron ser los mismos, sugiriendo de
forma clara un carácter fuertemente subdifusivo del transporte, que es
cada vez más pronunciado a medida que los niveles de simetŕıa cuasi-
toroidal aumentan. Sólo para la configuración QTS72, los exponentes
de Hurst resultantes no coincid́ıan dentro de las barras de error, como
consecuencia de sus rápidas pérdidas y efectos de tamaño finito.

Para los cuatro stellarators, los exponentes espaciales α resultantes
señalan a una estad́ısticas no Gaussianas y la naturaleza no local del
transporte. Los valores de α descienden fuertemente con valores de
simetŕıa decreciente y además 1/α nunca excede los valores del ex-
ponente de Hurst estimados, revelando la presencia de fuertes anti-
correlaciones espaciales. El valor at́ıpico de αQTS4 = 2.7 ± 0.9, más
que ser un indicador de una estad́ıstica Gaussiana, puede ser un arte-
facto debido a las pequeñas derivas radiales, para las que la técnica
Euleriana es más sensible.

Los exponentes temporales, β, obtenidos por el método Euleri-
ano indican un comportamiento del transporte significativamente no
Markoviano y la relevancia de efectos de memoria. A pesar de que se
encontró una gran disparidad entre βQTS5/QTS6 ∼ 0.2−0.3 y βQTS4/QTS72
∼ 0.5−0.7, todos los valores de β se encontraban por bajo de 1. Estos
resultados se compararon con una técnica más fiable que estima a β
basado en H y α como β = Hα, que ofreció β ∼ 0.2 para las cuatro
configuraciones QTS.

Los resultados principales de esta tesis demuestran que el trans-
porte de las part́ıculas α atrapadas no colisionales no se puede describir
adecuadamente mediante el enfoque clásico de convección/difusión
para las configuraciones cuasi-toroidales que consideramos. Los co-
eficientes de transporte fraccionario indican que el transporte no di-
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fusivo, no Gaussiano, no Markoviano y fuertemente subdifusivo. A
medida que el nivel de simetŕıa cuasi-toroidal aumenta, el transporte
de las part́ıculas α atrapadas se vuelve fuertemente subdifusivo. Sin
embargo, la validez del modelo fraccionario en si mismo es mas dudosa
en casos de simetŕıa extremadamente altos o bajos.

El trabajo aqúı presentado podŕıa ser ampliado naturalmente en
cuanto a: i) examinar la validez del modelo fraccionario de trans-
porte en relación a otros tipos de configuraciones cuasi-simétricas o
isodinámicas, ii) aclarar si la descripción no difusiva es todav́ıa nece-
saria cuando se consideran las colisiones, iii) estudiar los efectos de la
densidad, la temperatura y los perfiles de nacimiento de las part́ıculas
alfa, iv) considerar las inestabilidades MHD resonantes y no reso-
nantes, etc.
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Conclusies

Dit proefschrift onderzocht de relatie tussen het botsingsloze α-deeltjes-
transport en het toröıdale symmetrieniveau van het magnetische veld
en ging in op de aard van de onderliggende processen.

De statistische analyse van het transport van α-deeltjes werd uit-
gevoerd op basis van het ensemblegemiddelde van een groot aantal
’guiding-center orbit’ trajecten die numeriek werden verkregen met
de Monte Carlo-code MOCA. Er zijn drie benaderingen gemaakt die
overeenstemmen met fusierelevante α-deeltjes: de kleine gyroradiu-
sorde, het verwaarlozen van het elektrische veld, en het negeren van
de botsingen met andere deeltjes.

De studie onderzocht vijf configuraties op reactorschaal: een rimpel-
loze ITER-tokamak en vier quasi-toröıdaal symmetrische (QTS) stel-
larators losjes gebaseerd op het NCSX-project. Deze configuraties
worden gekenmerkt door een nieuw ontwikkelde quasi-toröıdale sym-
metriecijfer van orde σqt, waar σqt = 1 is voor de puur toröıdaal sym-
metrische ITER-configuratie en waar het varieert van σqt = 0.94 tot
0.62 voor de QTS stellarator-configuraties.

Voor elke configuratie analyseerden we de verliezen van α-deeltjes
en hun afhankelijkheid van de geboorteposities van de deeltjes. De
trajecten van α-deeltjes werden geclassificeerd als passerend of inges-
loten, en hun fracties werden geschat op twee manieren: één gebaseerd
op deeltjestrajecten en de andere op de magnetische putdiepte. Een
nieuw ontwikkelde numerieke procedure classificeerde gevangen banen
als voornamelijk bananen en in mindere mate gevangen aardappelen,
rimpel en overgang. Voor ITER is de verhouding tussen passerende
en gevangen deeltjes ∼ 70/30, zijn ze allemaal perfect opgesloten

95



96 CHAPTER 6. CONCLUSIES

en is 97% van de gevangen fractie een bananebaan. Voor de QTS-
configuraties is de verhouding ∼ 80/20, maar zijn sommige gevangen
deeltjes zijn verloren gegaan. Een afwijking van QTS resulteert in
snellere en grotere verliezen, waarbij het beperkende geval QTS72 is.
Hier onsnappen bijna alle gevangen deeltjes en van de banen zijn 54%
gevangen als bananen en 35% als rimpel. Zoals verwacht, behoren de
meeste van die verliezen tot deeltjes die worden geboren met een kleine
pitch in gebieden met een laag magnetisch veld aan het buitenste mid-
denvlak.

Dit zijn precies de opgesloten α-deeltjes die voornamelijk verant-
woordelijk zijn voor transport. Omwille van deze reden werd een
nieuw algoritme ontwikkeld om het opgesloten baancentrum en zijn
andere karakteristieke baanparameters te definiren, namelijk stuiter-
tijden τ en breedtes ∆w, vanuit hun traject. Er werd aangetoond dat
de afname van het torusvormige symmetrieniveau resulteert in deeltra-
jecten met bredere bananenbanen en langere stuitertijden (de meest
voorkomende waarden liggen in het bereik van ∆w ∼ 0.15 − 0.25
en τ ∼ 20 − 30 µ s). Deze resultaten werden bevestigd door een
onafhankelijke numerieke procedure op basis van verbindingslengtes
langs de veldlijnen.

Convectiesnelheden en diffusiecofficinten werden geschat met be-
hulp van de karakteristieke stuitertijden τ en breedtes ∆w en door
de tijdsafhankelijkheid van de momenten van de radiale kansverdel-
ingsfunctie aan te passen aan de loopmomentenmethode. Er werden
grote verschillen gevonden tussen beide methoden, b.v. D ∼ 2 × 104

m2/s met de eerste en D ∼ 10−2 m2/s met de tweede voor de QTS4-
configuratie.

Deze resultaten stellen de validiteit van het klassieke convectie/
diffusie model ter discussie om het botsingloze opgesloten α-deeltjes
transport voor de beschouwde magnetische configuraties adequaat te
beschrijven.

Gëınspireerd door het succes van de fractionele transporttheorie
om een effectief transportmodel te bouwen voor turbulent aangedreven
transport in fusieplasma’s, hebben we de tools gëımplementeerd om de
effectieve aard van het radiale transport van door rimpels versterkte α-
deeltjes te bepalen. De fractionele transportcofficinten, dwz de Hurst
H, de ruimtelijke α en de tijdelijke β exponenten, werden geschat
met de Euleriaanse en Lagrangiaanse technieken (respectievelijk de
propagator en de [R/S] analyse) gebruik makend van de trajecten van
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ingesloten α-deeltjes voor dezelfde vijf configuraties.

Zowel de Euleriaanse als de Lagrangiaanse analyse laten zien dat
het transport van botsingsvrij opgesloten α-deeltjes niet-diffusieve ken-
merken heeft die niet-Gaussiaans, niet-Markoviaans en sterk subdif-
fusief zijn.

Zoals verwacht, worden de perfect opgesloten deeltjes van de rimpel-
loze ITER-configuratie gekenmerkt door de afwezigheid van radiaal
transport met bijna nul Hurst-exponent, H = 0.004± 0.014. Voor de
quasi-toroidale stellarators bleken de waarden van de Hurst-exponenten,
geschat door zowel de Euleriaanse als de Lagrangiaanse methode, in
overeenstemming te zijn, wat duidelijk wijst op een sterk subdiffusief
karakter van transport, dat meer uitgesproken wordt naarmate het
niveau van quasi-toröıdale symmetrie toeneemt. Alleen voor de QTS72-
configuratie waren de resulterende Hurst-exponenten het niet eens
binnen de foutmarges, een gevolg van de snelle verliezen en eindige
grootte-effecten.

Voor de vier stellaratoren wijzen de resulterende ruimtelijke expo-
nenten α op de niet-Gaussiaanse statistieken en het niet-lokale karak-
ter van transport. De waarden van α nemen sterk af met afnemende
symmetrie, bovendien overschrijdt de inverse waarde daarvan, 1/α,
nooit de geschatte Hurst-exponenten, wat de aanwezigheid van sterke
ruimtelijke anticorrelaties onthult. De atypische waarde van αQTS4 =
2.7±0.9 zou, in plaats van een indicator te zijn voor Gauss-statistieken,
een artefact kunnen zijn vanwege de verminderde ruimtelijke drift,
waarvoor de Euleriaanse techniek gevoeliger is.

De temporele exponenten, β, verkregen volgens de Euleriaanse
methode, wijzen op een significant niet-Markoviaans transportgedrag
en de overeenkomstige relevantie van geheugeneffecten. Ondanks een
grote ongelijkheid tussen βQTS5/QTS6 ∼ 0.2 − 0.3 en βQTS4/QTS72 ∼
0.5 − 0.7 werd gevonden dat alle waarden van beta onder 1 blijven.
Deze resultaten werden vergeleken met een betrouwbaardere techniek
die β schat op basis van H en α als β = Hα, waarmee β ∼ 0.2 verkreeg
voor de vier QTS-configuraties.

De belangrijkste resultaten van dit proefschrift laten zien dat het
botsingsloze opgesloten α-deeltjes transport niet adequaat kan wor-
den beschreven door de klassieke convectie / diffusie benadering voor
de quasi-toröıdaal symmetrische configuraties die worden beschouwd,
maar dat de fractionele transporttheorie wel een effectief transport-
model kan bieden. De fractionele transportcofficinten geven aan dat
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het transport niet diffuus is omdat het niet Gaussiaans, niet Markovi-
aans en sterk subdiffusief is. Naarmate het niveau van de quasi-
toröıdale symmetrie toeneemt, wordt het door rimpel versterkte trans-
port van α-deeltjes sterk subdiffusief. Hoewel de validiteit van het
fractionele model zelf twijfelachtig wordt in de beperkende gevallen
van hoge en lage symmetrie.

Het hier gepresenteerde werk zou op natuurlijke wijze kunnen wor-
den uitgebreid door: i) de geldigheid van het fractionele transport-
model te onderzoeken op andere soorten quasi-symmetrische of iso-
dynamische configuraties, ii) te verduidelijken of de niet-diffusieve
beschrijving nog steeds nodig is wanneer botsingen worden overwogen,
iii) de effecten van dichtheid, temperatuur en α-deeltjes geboorteprofie-
len te bestuderen, iv) te overwegen om resonante en niet-resonante
MHD instabiliteiten er bij te betrekken, etc.
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Carreras. Phys. Plasmas, 15:112301, 2008.

[32] X. Garbet and R. E. Waltz. Phys. Plasmas, 5:2836, 1998.

[33] R. Sánchez, D. E. Newman, J. N. Leboeuf, V. K. Decyk, and
B. A. Carreras. Phys. Rev. Lett., 101:205002, 2008.

[34] R. Sánchez, D. E. Newman, J. N. Leboeuf, B. A. Carreras, and
V. K. Decyk. Phys. Plasmas, 16:055905, 2009.

[35] R. Sanchez, D. E. Newman, J. N. Leboeuf, and V. K. Decyk.
Plasma Phys. Control. Fusion, 53:074018, 2011.

[36] J. A. Alcuson, J. M. Reynolds-Barredo, A. Bustos, R. Sanchez,
V. Tribaldos, P. Xanthopoulos, T. Goerler, and D. E. Newman.
Physics of Plasmas, 23(10):102308, 2016.

[37] G. Sánchez Burillo, B. Ph Van Milligen, and A. Thyagaraja.
Phys. Plasmas, 16:042319, 2009.



102 BIBLIOGRAPHY

[38] K. Gustafson, P. Ricci, I. Furno, and A. Fasoli. Phys. Rev. Lett.,
108:035006, 2012.

[39] A. Bovet, I. Furno, A. Fasoli, K. Gustafson, and P. Ricci. Nuc.
Fusion, 52:094017, 2012.

[40] A. Bovet, I. Furno, A. Fasoli, K. Gustafson, and P. Ricci. Plasma
Phys. Control. Fusion, 55:124021, 2013.

[41] A. Bovet, M. Gamarino, I. Furno, P. Ricci, A. Fasoli,
K. Gustafson, D. E. Newman, and R. Sánchez. Nuc. Fusion,
54:104009, 2014.

[42] I. Furno, A. Bovet, A. Fasoli, C. Gauthey, K. Gustafson,
P. Ricci, and B. Ph Van Milligen. Plasma Phys. Control. Fusion,
58:014023, 2015.

[43] R. Sánchez and D. E. Newman. Plasma Phys. Control. Fusion,
57(123002):1–56, 2015.

[44] R. D. Hazeltine. Recursive derivation of drift-kinetic equation.
Plasma Physics, 15(1):77–80, jan 1973.

[45] A. Einstein. Ann. Phys. Lpz., 332:549–60, 1905.

[46] R.H. Fowler, J.A. Rome, and J.F. Lyon. Phys. Fluids, 28(1),
1985.

[47] J. Egedal. Nuclear Fusion, 40:1597–1610, 2000.

[48] B. B. Kadomtsev, O. P. Pogutse, and I. V. Kurchatov. Nuclear
Fusion, 11:67–92, 1971.

[49] T. E. Stringer. Plasma Physics, 16(7):651–659, 1974.

[50] A. H. Boozer. Phys. Fluids, 23:2283, 1980.

[51] F. Porcelli, L. G. Eriksson, and I. Furno. Physics Letters A,
216(6):289–295, 1996.

[52] A.J. Brizard. Physics of Plasmas, 18:022508, 2011.

[53] K. C. Shaing, M. Schlutt, and A. L. Lai. Physics of Plasmas,
23(2):022508, 2016.



BIBLIOGRAPHY 103

[54] V. P. Nagornyj and V. A. Yavorskij. Sov. J. Plasma Phys.,
15(5):534–545, 1989.

[55] M. Wakatani. Stellarator and Heliotron Devices. Oxford Uni-
versity Press, 1998.

[56] J. A. Rome. Nuclear Fusion, 35(2):195–206, 1995.

[57] R. Farengo, H. E. Ferrari, M. C. Firpo, P. L. Garcia-Martinez,
and A. F. Lifschitz. Plasma Physics and Controlled Fusion,
54:025007, 2012.

[58] M. Khan, A. Zafar, and M. Kamran. Journal of Fusion Energy,
34(2):298–304, 2015.

[59] R. J. Goldston and H. H. Towner. J. Plasma Phys., 26:283,
1981.

[60] R. J. Goldston, R. B. White, and A. H. Boozer. Physical Review
Letters, 47:647–649, 1981.

[61] K. Tani, T. Takizuka, M. Azumi, and H. Kishimoto. Nuclear
Fusion, 23:657–665, 1983.

[62] R. B. White, R. J. Goldston, M. H. Redi, and A. R.V. Budny.
Physics of Plasmas, 3:3043–3054, 1996.

[63] Ya I. Kolesnichenko and V. A. Yavorskij. Nuclear Fusion,
29:1319–1323, 1989.

[64] I. G. Eriksson and P. Helander. Nuclear Fusion, 33:767–775,
1993.

[65] R. B. White and H. E. Mynick. Phys. Fluids B, 1:980–982, 1989.

[66] W..W. Heidbrink and G. J. Sadler. Nuc. Fusion, 34:535–615,
1994.

[67] S. V. Putvinskij, B. J.D. Tubbing, L. G. Eriksson, and S. V.
Konovalov. Nuclear Fusion, 34:495–506, 1994.

[68] R. L. Boivin, S. J. Zweben, and R. B. White. Nuclear Fusion,
33:449–465, 1993.



104 BIBLIOGRAPHY

[69] M. H. Redi, M. C. Zarnstorff, R. B. White, R. V. Budny, A. C.
Janos, D. K. Owens, J. F. Schivell, S. D. Scott, and S. J. Zweben.
Nuclear Fusion, 35:1191–1211, 1995.

[70] M. H. Redi, R. V. Budny, D. S. Darrow, H. H. Duong, R. K.
Fisher, A. C. Janos, J. M. McChesney, D. C. McCune, S. S.
Medley, M. P. Petrov, J. F. Schivell, S. D. Scott, R. B. White,
M. C. Zarnstorff, and S. J. Zweben. Modelling TF ripple loss
of alpha particles in TFTR DT experiments. Nuclear Fusion,
35(12):1509–1516, dec 1995.

[71] P. N. Yushmanov. Nuclear Fusion, 23:1599–1612, 1983.

[72] K. Tani, T. Takizuka, and M. Azumi. Nuclear Fusion, 33:903–
914, 1993.

[73] V. Ya Goloborod’ko and V. A. Yavorskij. Nuclear Fusion,
24:627–631, 1984.

[74] L. M. Kovrizhnykh and S. G. Shasharina. Nuclear Fusion,
30:453–469, 1990.

[75] P. N. Yushmanov, J. R. Cary, and S. G. Shasharina. Nuclear
Fusion, 33:1293–1303, 1993.

[76] M. Isobe, K. Tobita, T. Nishitani, Y. Kusama, and M. Sasao.
Nuclear Fusion, 37:437–444, 1997.

[77] V. A. Yavorskij, D. Darrow, V. Ya Goloborod’Ko, S. N. Reznik,
U. Holzmueller-Steinacker, N. Gorelenkov, and K. Schoepf. Nu-
clear Fusion, 42:1210–1215, 2002.

[78] K. G. McClements. Physics of Plasmas, 12:1–8, 2005.

[79] K. C. Shaing, J. A. Rome, and R. H. Fowler. Physics of Fluids,
27:1–4, 1984.

[80] W. Lotz, P. Merkel, J. Nührenberg, and E. Strumberger. Plasma
Physics and Controlled Fusion, 34:1037–1052, 1992.

[81] C. D. Beidler, Ya. I. Kolesnichenko, V. S. Marchenko, I. N.
Sidorenko, and H. Wobig. Physics of Plasmas, 8(6):2731–2738,
2001.



BIBLIOGRAPHY 105

[82] Ya I. Kolesnichenko, V. V. Lutsenko, A. V. Tykhyy, A. Weller,
A. Werner, H. Wobig, and J. Geiger. Physics of Plasmas,
13:072504, 2006.

[83] A. V. Tykhyy, Ya I. Kolesnichenko, Yu V. Yakovenko, A. Weller,
and A. Werner. Plasma Physics and Controlled Fusion, 49:703–
711, 2007.

[84] V. S. Marchenko and S. N. Reznik. Plasma Physics and Con-
trolled Fusion, 58:055004, 2016.

[85] K. C. Shaing and S. A. Hokin. Physics of Fluids, 26:2136–2139,
1983.

[86] M. S. Smirnova. Nuclear Fusion, 36(11):1455–1476, 1996.

[87] M. S. Smirnova. Effect of high order magnetic field harmonics
on trapped particle confinement in torsatrons and heliotrons.
Nuclear Fusion, 36(11):1455–1476, nov 1996.

[88] J. M. Faustin, W. A. Cooper, J. P. Graves, D. Pfefferlé, and
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[106] S. Äkäslompolo, T. Kurki-Suonio, O. Asunta, M. Cavinato,
M. Gagliardi, E. Hirvijoki, G. Saibene, S. Sipilä, A. Snicker,
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