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Abstract: Expanding the automation level of the freshly introduced fleet of self-propelled
Watertruck+ barges, which house fully-rotatable embedded thrusters, might increase their ability to
compete with their less sustainable but dominating road-based alternatives. Hydrodynamic motion
models, which reveal the manoeuvring capabilities of these barges, can serve as inputs for many
pieces of this automation puzzle. No identified motion models or hydrodynamic data seem to be
publicly available for the hull design and the novel actuation system configuration of these barges.
Therefore, this study offers: (i) decoupled motion model structures for these barges for surge, sway,
and yaw, with a focus on the thruster and damping models; (ii) two identification procedures to
determine these motion models; (iii) all the experimental data, generated outdoors with a scale model
barge to identify (i) based on (ii). In addition, the identified surge models were compared with both
computational and empirical data. These comparisons offer more physical insights into the identified
model structures and can aid in the model selection for which the desired complexity and accuracy
evidently depend on their envisaged application. Finally, this methodology need not be limited to
the vessel and actuation types utilised by us.

Keywords: manoeuvring; hydrodynamic; model; identification; vessel; rotatable; thrusters; surge;
sway; yaw

1. Introduction

The European Watertruck+ project [1] aims to revivify the inland waterway transport sector by
introducing a novel modular fleet of push vessels and active or passive barges of CEMT hull types I
and II [2], which enables the decoupling between sailing and transshipment time. With the purpose of
studying the automation potential of this new fleet, Peeters et al. [3] constructed a scale model of a
self-propelled Watertruck+ barge in conjunction with a complementary inland shore control centre [4]
to monitor or control this barge. Several links in this envisaged automation chain can benefit from
a hydrodynamic model which describes the motion of this vessel. For example, these models can
serve as plant models to verify or tune control algorithms, or as control models to construct model
predictive controllers [5], which can also be used for collision avoidance algorithms [6,7]. Furthermore,
Kotzé et al. [8] and Peeters et al. [4] suggested that these motion models could be applied to construct
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dynamic proximity zones surrounding the vessel hull, which could be shared with other ambient
vessels or could trigger internal control or monitoring events.

The literature handling these hydrodynamic models appears to hold four main approaches:
(i) Transfer functions can produce response models, e.g., relating yaw-rates with rudder changes [9,10];
(ii) Abkowitz [11] introduced a third-order Taylor expansion model to mathematically describe the
forces acting on a vessel around its equilibrium state [12]; (iii) artificial neural networks can model the
ship manoeuvring motion [13]; and (iv) physically oriented modular models—such as the modular
mathematical model [14] and the robot-like vectorial model [15,16]—can offer more physical insights
in the vessel dynamics. This study uses the robot-like vectorial model given that it leverages system
properties such as symmetry, skew-symmetry, and positiveness of matrices [17], which align with the
envisaged future utilisation of the models in this work.

No public hydrodynamic data appear to be available for the CEMT type I-II hulls, and little for
inland vessels in general [18]. In addition, the novel self-propelled barges have a non-conventional
propulsion system consisting of two fully nested and 360-degree-steerable actuators: a steering grid
thruster in the bow and a four-channel thruster in the stern, for which little or no models or data seem
to be available too. This propulsion configuration enables a high level of manoeuvrability, crucial for
inland vessels which need to navigate independently [19]. Therefore, this study investigates decoupled
hydrodynamic motion models for surge, sway, and yaw. This decoupling offers insights in the vessel
manoeuvrability on the one hand, and enables a focused investigation of the thruster models on the
other hand. More precisely, this study aimed to use the scale model vessel to:

(i) Compare different model structures for the damping forces and non-conventional thrusters,
with an emphasis on the potential speed-dependent propulsive forces of these thrusters.

(ii) Provide two identification methods to determine the coefficients of these or other manoeuvring
models: one method uses the instantaneous force balance, and the other one uses the integrated
system dynamics by solving the differential equations of motion.

(iii) Benchmark the results of the surge models with data from both a computational fluid dynamics
(CFD) study [20] and an empirical approach [21].

(iv) Provide all the experimental data of this study in S1 Experimental Data (see Supplementary
Materials), together with the details of the utilised data logging and processing approaches.

The achievement of these aims provides more understanding of the manoeuvrability of these
vessels and the potential hydrodynamic models to predict such movements in surge, sway, and yaw.
In addition, these decoupled models present a stepping stone for subsequent coupled models in
the future, and the supplemental experimental data unlock the possibility for other researchers to
investigate this novel Watertruck+ fleet. This paper continues as follows: Section 2 details the design
of the scale model vessel, named the Cogge. Thereupon, Section 3 lists the methods used to achieve the
results of Section 4. Finally, Section 5 provides an overarching discussion of these results, and Section 6
concludes this work.

2. Materials

Section 2.1 handles the geometrical similarities between the Cogge and the real-size Watertruck+

barges, and Section 2.2 details their unconventional actuation configurations. Afterwards, Section 2.3
lists the most relevant onboard components used during the outdoor experiments with the Cogge.

2.1. Geometry of the Cogge

Figure 1a depicts a push boat pushing four coupled Watertruck+ barges and Figure 1b shows
the scale model of a Self-Propelled CEMT type-I (SP-CEMT-I) Watertruck+ barge, for which the full
design details can be found in [3]. Table 1 presents the geometrical similarity—by using a scale factor
of λ = 8—between the Cogge and the SP-CEMT-I vessels. The resultant size of the Cogge makes it
physically impossible to board this vessel, turning it into an unmanned surface vessel.
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(a) (b)
Figure 1. The Watertruck+ concept: (a) four full-sized barges pushed by a push boat [1], reproduced
from [4] with permission from MDPI, 2020; (b) the KU Leuven scale model of a self-propelled barge
named Cogge [3].

Table 1. Designed geometry of the Cogge and the self-propelled Watertruck+ barges.

Parameter Symbol CEMT-I Cogge Units

Scale λ 1 8−1 [-]
Length L 38.50 4.81 [m]
Beam B 5.05 0.63 [m]
Draft f ull Tf ull 2.80 0.35 [m]
Block coefficient CB 0.95 0.95 [-]

2.2. 360-Degree-Rotatable Thrusters

Figure 2a outlines a bottom view of the hull geometry of the Cogge, demonstrating the water
inlets for both thruster systems: on the left hand side for the four-channel stern thruster, and on the
right hand side for the steering-grid bow thruster. Both thrusters draw in water via these inlets
and exhaust a water stream according to the orientation of their steering mechanism. To illustrate
the working principles of these steering mechanisms, Figure 2b,c shows longitudinal cross-sections
through the centres of the four-channel and steering-grid thrusters, respectively. Figure 2d,e similarly
presents the internal angle-conventions—αi

c and αi
g—of these thrusters and the working principle of

their steering mechanisms, by means of an abstract functional drawing. The steering mechanism of
the four channel thruster consists of half a sphere with an opening of approximately 85° which can be
rotated 360° . However, the water flow can only exit the vessel through one or two of its four channels,
introducing a non-linear mapping between αi

c and the resultant orientation of its thrust force. Note that
the two longitudinal channels, see Figure 2b, have a small downwards angle, whereas the two—not
shown—transversal channels have no such bending. The steering grid thruster can also exhaust its
water flow in a full 360◦ range. Figure 2c indicates that this systems bends the flow by approximately
180° in the zx-plane before it exits the system. The grid itself has a small angle β to orient the flow
underneath the hull.

The bollard pull forces of both thrusters can be found in Figure A1, and more design details
together with their main discrepancies with conventional actuation systems in [22]. Since the bow
of the Cogge houses the steering-grid and the stern the four-channel thruster, αi

b and αi
s will denote

their internal angles in this study, and nb and ns their propeller speeds. Furthermore, in [3] a flow
straightener was placed inside the stern-oriented exhaust channel of the stern thruster to increase the
straight line stability of the Cogge. This self made straightener was not installed during the bollard
pull tests from Figure A1.
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Figure 2. Actuation system design: (a) positions of both thrusters; (b) longitudinal cross-section of the
four-channel thruster at the stern; (c) longitudinal cross-section of the steering-grid at the bow; (d) angle
convention four-channel thruster with αi

c = −45° and = 180°; and (e) angle convention steering-grid
with αi

g = 0° and = 90°. Figures (b–e) were adapted or reproduced from [22] with permission from
MDPI, 2020.

2.3. Main Onboard Components

Figure 3 summarises the main onboard components and their communication links, for which
more details can be found in [3,4]. In summary, a programmable logic controller (PLC) controls the
internal thruster angles and rotational speeds of the actuators based on their desired values, which it
receives from an industrial computer (I-PC)—or remote controller or Web interface. During the
experiments, this I-PC ran the Mission Oriented Operating Suite (MOOS) middleware [23] and received
data from the GNSS and IMU sensors. An AsteRx-U Marine Global Navigation Satellite System
(GNSS) receiver with two PolaNt* MC antennas [24] was pulse per second (PPS) synchronised with an
Ekinox-2E Inertial Measurement Unit (IMU) [25]. The GNSS sensor received real-time kinematic (RTK)
corrections via the Flemish Positioning Service, which currently has 45 RTK base stations installed [26].
With these RTK corrections, this GNSS sensor claims to have a horizontal accuracy—depending on the
distance to the nearest base station—of 0.6 cm + 0.5 ppm, expressed in twice the distance root mean
square. The main GNSS antenna, placed at the stern, expressed the position data and was separated
by approximately 4.44 m from the auxiliary antenna, at the bow, which enabled accurate pitch and
yaw data [3].
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The IMU sensor ran a real-time extended Kalman filter at 200 Hz, where it received corrective
steps from the GNSS unit at 5 Hz. A calibration procedure—to find the position and orientation
differences between the IMU and GNSS sensors—was conducted using the IMU software; more details
and a benchmark of this procedure can be found in [27]. In this study, both the GNSS sensor and the
IMU internally logged—PPS synchronised—data at 50 Hz. The GNSS sensor also sent the Coordinated
Universal Time (UTC) to the I-PC, where the MOOS middleware logged these data together with
the desired and measured actuation system states which were requested at 20 Hz. Accordingly,
the UTC stamps provided the connection for the post-processing synchronisation of all the relevant
data; see Section 3.2.2.

Sensor subsystem

Cameras
 
 
 

15
 
 
 

GNSS
 
 

17
 
 
 

IMU
 
 
 

16 
 
 

LIDAR
 
 
 

18
 
 
 

RS232RS232

PPS

PPS

TCP (UDP)/IP

Shoreside subsystem

RC
 
 
 

R - PC1
 
 
 

Radio

3G/4G

Wifi (LAN)

30
 
 
 31
 
 
 

23
 
 

BMS
 
 
 

Bow thruster motor drive
 
 
 

9
 
 

Bow angle stepper motor
 
 
 

10
 
 

Stern angle stepper motor
 
 
 

13
 
 

Stern thruster motor drive
 
 
 

12
 
 

CANopen

Actuation subsystem

 

3G

Router
 
 
 

3
 
 
 

Radio

TCP (UDP)/IP

POE Switch  
 
 

4
 
 
 

Modbus
TCP/IP1

 
 
 

PLC
 
 
 

2
 
 
 

I - PC
 
 
 

TCP (UDP)/IP TCP (UDP)/IP

3G/4G Wifi

Figure 3. Onboard components and their communication links reproduced from [4] with permission
from MDPI, 2020.

3. Methods

Section 3.1 starts with deriving the decoupled equations of motion for surge, sway, and yaw,
which will be used throughout this study. Section 3.2 discusses the design of the experiments to
generate data in order to identify these models, for which Section 3.3 offers two identification methods.
Finally, Section 3.4 provides an overview of the used approaches to compare the results of these
identification procedures.

3.1. Decoupled Hydrodynamic Motion Models

3.1.1. Modelling Assumptions

Equation (1) describes the equations of motion for a vessel in calm water, and thus with
frequency-independent coefficients, according to the robot-like vectorial model of [15,17]:

MRBν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body forces

+ MAν̇ + CA(ν)ν + D(ν)ν︸ ︷︷ ︸
hydrodynamic f orces

+ g(η)η+ go︸ ︷︷ ︸
hydrostatic f orces

= τexternal . (1)

Here ν = [u, v, w, p, q, r]> denotes the generalised velocity vector expressed in a body-fixed reference
frame with origin, Ob, and η = [x, y, z, φ, θ, ψ]> the generalised position and orientation vector
expressed in an inertial reference frame with origin, Oi; Figure 4 illustrates their convention throughout
this study. The matrix MRB represents the rigid-body mass matrix, CRB the rigid-body Coriolis and
centripetal matrix, MA the added mass matrix, CA the Coriolis and centripetal matrix due to MA, D(ν)

the damping matrix, g(η) the gravitational/buoyancy vector, go the ballast control vector, and finally,
τexternal accumulates all the external forces acting on the vessel.
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Figure 4. Inertial (Oi) and body-fixed (Ob) reference frames.

The following assumptions were made to model the decoupled hydrodynamic equations of motion for
the barge in this study:

i. A local north–east–down reference frame approximates an inertial reference frame to describe the
position and orientation of the vessel navigating over short distances; see Figure 4.

ii. Ob is positioned at the centre of gravity and its axes align with the principal directions of the
barge. Furthermore, given the rather prism-shaped geometry of the vessel and its block coefficient
of 0.95, the horizontal positions of the centre of gravity, buoyancy, and floatation are assumed to
coincide in the middle of the vessel in both length and width.

iii. The experimental design of this study aimed at solely studying, and thus exciting, the horizontal
motions of the vessel, i.e., neglecting pitch, roll, and heave motions, meaning: η = [x, y, ψ]>

and ν = [u, v, r]>. Furthermore, the remaining motions in the water plane were investigated
separately for each degree of freedom. Subsequently, no Coriolis, centripetal, buoyancy, or ballast
forces were modelled.

iv. Only thruster related external forces were explicitly modelled, i.e., τexternal = τthrust, and their
dynamic behaviour was neglected. Do note that for the surge and sway models a bias term was
added to the external forces, which was intended to implicitly capture any constant wind forces;
see Section 3.3.

The accumulation of these four main assumptions results in the following set of equations which
represent the decoupled hydrodynamic motions for the barge in surge, sway, and yaw motion:

(M + MA)ν̇ + D(ν)ν = τthrust (2)

Accordingly, three hydrodynamic phenomena need to be modelled and identified: the added mass,
damping, and actuation forces, which are respectively detailed in Sections 3.1.2–3.1.4.

3.1.2. Added Mass Models

In the manoeuvring theory framework [17], the added masses [28] can be modelled by a
constant term. Several approaches exist to determine these terms in the absence of well-conditioned
towing tank data: (i) numerical approaches (strip theory [29] or panel methods [30]) which are
often based on (ii) theoretical values [29,31] for common shapes, (iii) empirical methods [32,33],
and (iv) less-conditioned outdoor experiments. Liu et al. [18] successfully implemented the empirical
methods of Zhou et al. [32] and Clarke et al. [33] on two scale model reference inland vessels for the
Yangtze River. Therefore, this study applied the method of Zhou et al. [32] for the transversal and
rotational added masses, and the method of Clarke et al. [33] for the longitudinal added mass, Xu̇,
which equates to:

3% × M ≤ Xu̇ ≤ 6% × M, (3)
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where M denotes the mass of the vessel. Given that our vessel has a higher CB than the reference vessels
used to derive (3) [33], the upper limit of (3) was be selected for Xu̇. Additionally, Zhou et al. [32]
suggested that the transversal, Yv̇, and rotational, Nṙ added masses can be approximated based on the
main ship dimensions, listed in Table 1, by the following two relations:

Yv̇ = M[0.882− 0.54CB(1− 1.6
T
B
)− 0.156(1− 0.673CB)

L
B

+ 0.826
T
B

L
B
(1− 0.678

T
B
)− 0.638CB

T
B

L
B
(1− 0.669

T
B
)],

(4)

Nṙ = Mj2z , jz =
L

100
[33− 76.85CB (1− 0.784CB) + 3.43

L
B
(1− 0.63CB)]. (5)

3.1.3. Damping Models

The arising damping forces have many known contributors, e.g., potential damping (due to
wave forming), skin friction, vortex shedding, and lifting forces (both due to linear circulation of the
water around the hull and due to cross-flow drag). Different modelling assumptions exist to model
this complex array of contributors [17,34–36]. Given that: (i.) it is not convenient to independently
identify all these contributors, and (ii.) this study investigates the decoupled planar motions of the
barge, the complexity of the one degree of freedom damping models was chosen to be cubic, quadratic,
or linear, respectively represented by the following three equations:

D(u) = Xuuuu3 + Xuuu2 + Xuu, D(v) = Yvvvv3 + Yvvv2 + Yvv, D(r) = Nrrrr3 + Nrrr2 + Nrr (6)

D(u) = Xuuu2 + Xuu, D(v) = Yvvv2 + Yvv, D(r) = Nrrr2 + Nrr (7)

D(u) = Xuu, D(v) = Yvv, D(r) = Nrr (8)

3.1.4. Propulsion System Models

In the spectrum of the more conventional propulsion systems, tunnel thrusters [37–39] and
azimuth thrusters [40–42] might appear to hold the largest similarities with the non-conventional
thrusters of this study [22]. The modelling literature for these tunnel and azimuth thrusters does
remain scarce and often uses the open-water propeller characteristics model of [43] as the starting
point. Furthermore, the present actuation system might look similar to a water jet system, but it was
not designed to perform at the conventional higher speed ranges for these systems [44,45], nor does
the overall inlet and outlet design seem to be optimal for such purposes [46]. Do note that some
water jet models [47] use the findings of [43] as a modelling starting point, for consistency with the
existing hydrodynamic literature. Subsequently, the present work will also start with the first order
approximation of the lift forces induced by the propeller blades [43]. Accordingly, the theoretical
thrust force, Tth, depends quadratically on the shaft speed, n, and bi-linearly on n and the axial inflow
speed VA:

Tth(n, VA) = Tnnn2 + TnVA
nVA. (9)

Introducing the non-dimensional thrust coefficient KT and advance ratio J:

KT =
Tth

ρn2D4
p

, J =
VA

nDp
, (10)

where ρ represents the water density and Dp the propeller diameter, in conjunction with a linear
approximation of KT :

KT = KT0 + KTJ J, (11)
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gives rise to their connection with (9):

Tth = KT0 ρD4
pn2 + KTJ ρD3

pnVA, (12)

where
Tnn = KT0 ρD4

p , TnVA = KTJ ρD3
p. (13)

Appending a propeller behind a ship hull changes (9) due to propeller-hull and propeller-wake
interactions which can be modelled by the thrust deduction coefficient, t, and the wake fraction, w,
respectively:

VA = (1− w)u, T = (1− t)Tth, (14)

with T the actually available thrust force. Combining (9) and (14) results in:

T(n, u, t, w) = (1− t)
[

Tnnn2 + TnVA
n(1− w)u

]
, (15)

for a conventionally-positioned propeller on a vessel with forward speed. Given (i) the present
360-degrees-rotatable actuators (see Section 2.2), (ii) their angle-dependent bollard thrust forces
(see Section 2.2 and Figure A1), and (iii) the manoeuvrability of the vessel, t could be made
angle-dependent, and w velocity-dependent, as follows:

T(n, ν, αi, t, w) = 1− t(αi)][Tnnn2 + (1− w(ν))Tnνnν]. (16)

In [22], the authors demonstrated that T(ν = 0) = [1− t(αi)]Tnnn2 can serve as a robust theoretical
thrust force model for the speed-independent part of (16), by studying the data from Figure A1.
Note that t and w denote thrust differences between fully open-water tests (only a propeller) and tests
with a propeller attached to a hull. Therefore, the static parts of t(αi) and w(ν) cannot be explicitly
identified in this study, but they will be implicitly incorporated in the thrust coefficients. Nevertheless,
their respective angle- and speed-dependency can be investigated.

For the experiments with decoupled vessel motions, i.e., ν = [u, 0, 0]>, [0, v, 0]>, or [0, 0, r]>,
three thruster angles suffice, αi ∈ [−90, 0, 90]° (see Section 3.2.1), and assuming vessel and actuator
symmetry around the zx-plane narrows these angles down to αi ∈ [0, 90 = −90]°. Furthermore,
the water speed at the inlets of the propellers will be assumed to be purely longitudinal or transversal,
where for the rotational case the inlet transversal speed at the bow or stern thruster depends on
their longitudinal distance Lx

b/s from the centre of gravity (vinlet = Lx
b/sr). In addition, given the

axisymmetric water inlet at the bottom of the ship hull and the position of the propeller shaft which
stands orthogonal to the calm water plane, it will be further assumed that the differences in wake
effects for a longitudinal or transversal inlet flow will be negligible. This assumption means, w(ν)

can be modelled by a single term, w(ν) = wνν, where ν will be assumed to be either pure u or v.
Combining these assumptions allows for a further simplification of the thruster models:

T(0o) = T(n, ν = u, αi = 0o) = (1− t(0o))[Tnnn2 + (1− wν)Tnνnu]

= T0
nnn2 + T0

nνnu
(17)

T(90o) = −T(−90o) = T(n, ν = v, αi = 90o) = (1− t(90o))[Tnnn2 + (1− wν)Tnνnv]

= T90
nnn2 + T90

nνnv
(18)

The thruster model of (17) and (18) will be coined the conventional thrust model in this study. Two other
models will be explored too: (19) the bollard thrust model and (20) the direct speed loss thrust model,
in order to offer more insights into the potential speed dependency of the thrust forces:

T(0) = T0
nnn2, T(90) = T90

nnn2, (19)
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T(0) = T0
nnn2 + T0

nnνn2u, T(90) = T90
nnn2 + T90

nnνn2v. (20)

3.1.5. Selected Decoupled Hydrodynamic Motion Models

Table 2 lists the selected combinations of the aforementioned model structures for the damping
and thruster forces. The resultant model structures,M(θx

d), are named by the vector of their unknown
parameters, θx

d, for each degree of freedom, d ∈ [u, v, r], and a combination of thruster and damping
models, x ∈ [a, b, c, d, e, f , g, h, i]. In order to fully crystallise this convention, (21) expresses the full
model ofM(θa

u), (22) ofM(θe
v), and (23) ofM(θi

r), where the superscripts b and s for the thruster
parameters denote the bow and stern thruster respectively.

M(θa
u) = (M + Xu̇)u̇ + Xuuuu3 + Xuuu2 + Xuu = T0,b

nn n2
b + T0,b

nν nbu + T0,s
nn n2

s + T0,s
nν nsu (21)

M(θe
v) = (M + Yv̇)v̇ + Yvvv2 + Yvv = T90,b

nn n2
b + T90,s

nn n2
s (22)

M(θi
r) = (Iz + Nṙ)ṙ + Nrr = Lx

b(T
90,b
nn n2

b + T90,b
nnν n2

b Lx
b r) + Lx

s (T
−90,s
nn n2

s + T−90,s
nnν n2

s Lx
s r) (23)

Table 2. The selected model structures of this study.

Model Added Mass Damping Propulsion

M(θa
u), M(θa

v), M(θa
r ) Constant, see (3)–(5) Cubic, see (6) Conventional Thrust, see (17)

M(θb
u), M(θb

v), M(θb
r ) Constant, see (3)–(5) Quadratic, see (7) Conventional Thrust, see (18)

M(θc
u), M(θc

v), M(θc
r) Constant, see (3)–(5) Linear, see (8) Conventional Thrust, see (18)

M(θd
u), M(θd

v), M(θd
r ) Constant, see (3)–(5) Cubic, see (6) Bollard Thrust, see (19)

M(θe
u), M(θe

v), M(θe
r) Constant, see (3)–(5) Quadratic, see (7) Bollard Thrust, see (19)

M(θ
f
u), M(θ

f
v), M(θ

f
r ) Constant, see (3)–(5) Linear, see (8) Bollard Thrust, see (19)

M(θ
g
u), M(θ

g
v), M(θ

g
r ) Constant, see (3)–(5) Cubic, see (6) Direct Speed Loss, see (20)

M(θh
u), M(θh

v), M(θh
r ) Constant, see (3)–(5) Quadratic, see (7) Direct Speed Loss, see (20)

M(θi
u), M(θi

v), M(θi
r) Constant, see (3)–(5) Linear, see (8) Direct Speed Loss, see (20)

3.2. Experimental Design

3.2.1. Decoupled Surge, Sway, and Yaw Motion Experiments

In the comparative review of identification papers on ship manoeuvring models in [48], it can be
noted that most studies use standard manoeuvres as inputs. In this study, the decoupled motions of
surge, sway, and yaw need to be excited independently over a variety of speeds, in order to generate
data for the models of Section 3.1.5. Table 3 shows that the actuation system of the Cogge enables three
submodes to generate surge motion data: (i) bow thruster only, named “Bow”, (ii) stern thruster only,
named “Stern”, and (iii) both thrusters simultaneously, named “Dual”. In addition, the Cogge can
sway to the l“Left” or to the “Right”, not unlike the crabbing test manoeuvres [49]. Finally, a counter
thrust test as suggested by [50] can be performed clockwise or counter-clockwise, named “CW” or
“CCW”, to induce the yaw motion data.

For each of the aforementioned submodes, three desired time-dependent propeller speed missions,
nd

b/s(t), were requested from the thrusters named “Ramp,” “Stairs,” and “Step” in Table 3, and each
mission was conducted twice. The first batch of missions, denoted by “m1”, were conducted in
calm weather conditions, whereas a slight 1–2 Beaufort wind picked up during the second batch,
“m2”, which can also be seen in Section 4.3.1. For the surge missions, both thrusters had an equal
internal angle, αi

b/s = 0°, for the sway missions both angles were oriented sideways, αi
b/s = 90° or

= −90° , and for the yaw missions both thrusters had opposite sideway angles, αi
b = −αi

s = 90° or
= −90° . Figure 5 illustrates the three different desired and measured, nm

b/s(t), time-dependent
propeller speed profiles. The requested and measured rotational speeds for all missions can be found
in the Supplementary Materials S1 Experimental Data. For the sway and yaw motions, the nd

b/s were
manually determined during the experiments and set to nd

b = 2000 rpm and nd
s = 500 rpm for all
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their submodes. This speed ratio gave good visual results—by watching the vessel motion from
inside a supply vessel—for both sway and yaw, but it introduces a small discrepancy: since a no-yaw
requirement needs equal but counteracting moments of the thrusters, and a no-sway requirement
needs equal but counteracting forces of these thrusters. Given the different lever arms of both thrusters,
see Figure 2a, it might be assumed that one cannot achieve both situations, i.e., no yaw during
sway and vice versa, with the same propeller speed ratio, although this depends on the potential
speed-dependency of the thrust forces which was unknown during the experiments.

Table 3. Overview of all experiments.

Surge Sway Yaw

nd
b/s(t) Bow Stern Dual Left Right CW CCW

Ramp m1, m2 m1, m2 m1, m2 m1, m2 m1, m2 m1, m2 m1, m2
Stairs m1, m2 m1, m2 m1, m2 m1, m2 m1, m2 m1, m2 m1, m2
Step m1, m2 m1, m2 m1, m2 m1, m2 m1, m2 m1, m2 m1, m2
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(a) bow–ramp–m1
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(c) dual–step–m1

Figure 5. Time-dependent speed profiles, desired (nd
b/s) and measured (nm

b/s) values: (a) ramp profile
for a bow thruster mission, (b) stair profile for a stern thruster mission, and (c) a step profile for a dual
thrusters mission.

3.2.2. Data Post Processing

Due to the different data logging locations and frequencies (see Section 2.3), the relative time
vector of the MOOS database needed to be converted to UTC stamps, and the MOOS data needed to
be merged with the other sensor data. Consequently, the following manipulations were done to the
MOOS data using the Pandas package [51] in Python version 3 [52]: (i) the time vector was converted
to a UTC time vector, (ii) the data were clipped to their relevant mission time range, (iii) the offsets
in relative time and position were removed, (iv) the variables were linearly interpolated, given that
MOOS allows for asynchronous data logging, and (v) the resultant data were upsampled to 50 Hz.
Afterwards, these data were merged with the IMU and GNSS data based on the UTC time vector.
The potential time delays between a measurement and its log were assumed negligible and irrelevant
compared to the studied vessel dynamics.

The Supplementary Materials S1 Experimental Data holds the results of these manipulations for
the variables used in this study in a file per mission, structured according to the taxonomy of Table 3.
As a result, each mission file contains: (i) a relative time vector, (ii) the position data of the main GNSS
mushroom, which were calculated in the MOOS in real-time using the driver from [53], (iii) the desired
and measured αi

b/s and nb/s from the MOOS, (iv) the roll, pitch, and yaw angles from the IMU, (v) the
yaw-rate from the IMU, (vi) the northern and eastern speeds from the IMU, and (vii) the surge and
sway accelerations from the IMU. Note that the IMU publishes these accelerations in a horizontal
ship reference frame where the gravity vector has been taken into account. This horizontal frame
aligns with the assumptions made in Section 3.1.1. In combination with the decoupled design of the
experiments, and thus by neglecting other motions, one can assume these accelerations to be equal to
those at the centre of gravity for the surge and sway experiments.
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Based on the logged northern and eastern speeds, the course over ground was calculated which
allowed the determination of the drift vector. Thereupon, the surge and sway speeds were calculated
based on the total speed and drift vectors. In addition, the yaw-accelerations were calculated using the
gradient function from Numpy [54]. Finally, all data—to have similar distortions on each variable—
were filtered forward and backward—to avoid phase distortions —using a low pass Butterworth
filter of order 2 with desired cutoff frequency of 0.3 Hz and Nyquist frequency of 25 Hz, by using
the Scipy package [55]. Note that these calculations and filters were not added or performed on the
Supplementary Material S1 Experimental Data, in order to provide the original as-measured data sets.

3.3. Identification Methods

The offline identification of hydrodynamic vessel models can be roughly divided into frequency
and time domain methods [48,56,57]. This study used two different time domain approaches of which
the usage need not be restricted to the models suggested in this study. The first method uses the
instantaneous force balance of the dynamic equations, given that all inputs and outputs were measured
during the experiments; see Section 3.3.1. The second approach integrates the system dynamics by
solving its differential equations; see Section 3.3.2. For each model structure x ∈ [a, · · · , i] and motion
d ∈ [u, v, r], both methods called the bounded nonlinear least squares function of Virtanen et al. [55],
which uses a thrust-region reflective method based on Branch et al. [58] to minimise a cost function,
Ex

d(θ
x
d), for k sets of data by altering the values of their parameter vector θx

d:

Ex
d(θ

x
d) =

i=k

∑
i=1

Ex
di
(θx

d). (24)

To each translational training mission, i.e., d ∈ [u, v], a bias term βdi
was added as an external

force, which was intended to capture the static parts of the wind forces. Accordingly, the vector
βd = [βdi

, . . . , βdk
] was added to the θx

d vectors of the surge and sway cases. In other words, for these
two cases, the k training missions share the unknown parameter vector θx

d but each mission has an
individual bias term βdi

. To facilitate the notation of the cost functions in Sections 3.3.1 and 3.3.2,
let the matrices ydi = [ḋi, d3

i , d2
i , di] accumulate all the speeds and their quadratic and cubic values,

and the accelerations for each d ∈ [u, v, r]. Similarly, let xdi = [nm
s , nm

b , αm
s , αm

b ] capture all the measured
thruster states. For xui and xvi , the outputs ui and vi should be added too, given that some thruster
models depend on these speeds. Similarly, xri needs to be appended with the calculated transversal
speeds at the thrusters: vb,i and vs,i. Consequently, each parameter vector θx

d can be similarly divided
into two parts which accumulate the parameters relevant for ydi and xdi respectively: θ

xy
d and θxx

d .
Finally, all “left” and “CCW” missions were transformed to “right” and “CW” missions by changing
the signs of the measurements.

3.3.1. Force Balance Method (FBM)

Using the knowledge from (2), i.e., the inertial and damping forces should equal the thrust forces,
and by adding the individual potential wind bias term for each translation mission, the following three
equations show the cost functions for k training sets for the surge, sway, and yaw methods respectively
using the FBM approach:

Ex
u(θ

x
u, βu) =

i=k

∑
i=1

Ex
ui
(θx

u, βui ) =
i=k

∑
i=1

(
θ

xy
u yui − θxx

u xui − βui

)2
(25)

Ex
v(θ

x
v, βv) =

i=k

∑
i=1

Ex
vi
(θx

v, βvi ) =
i=k

∑
i=1

(
θ

xy
v yvi − θxx

v xvi − βvi

)2
(26)

Ex
r (θ

x
r ) =

i=k

∑
i=1

Ex
ri
(θx

r ) =
i=k

∑
i=1

(
θ

xy
r yri − θxx

r xri

)2
(27)
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3.3.2. Differential Equation Method (DEM)

In order to integrate the differential equations of motion, only the measured αi
b/s and nb/s are

needed in combination with the initial vessel speed, which provides the start condition. These
integrations were done using the “odeint” function from the SciPy python package [55] which calls
the “lsode” solver from the FORTRAN library “odepack” [59]. To further clarify this approach,
Equation (28) expresses such a differential equation forM(θe

v) of (22):

v̇ =
Tb,90

nn n2
b + Ts,90

nn n2
s −Yvvv2 −Yvv

M + Yv̇
(28)

Integrating (28) for each time period of 20 ms, where the associated propeller speed and angle
measurements are updated accordingly, generates a vector, v̂, with the predicted sway speeds for that
mission. The vectors û and r̂ can be calculated analogously. The DEM cost functions aim to minimise
the difference between these predicted speeds and the measured speeds by changing the values of θx

d
and βd, as respectively shown for surge, sway, and yaw speeds:

Ex
u(θ

x
u, βu) =

i=k

∑
i=1

Ex
ui
(θx

u, βui ) =
i=k

∑
i=1

(ui − ûi(t, xui , θx
u, βui ))

2 (29)

Ex
v(θ

x
v, βv) =

i=k

∑
i=1

Ex
vi
(θx

v, βvi ) =
i=k

∑
i=1

(vi − v̂i(t, xvi , θx
v, βvi ))

2 (30)

Ex
r (θ

x
r ) =

i=k

∑
i=1

Ex
ri
(θx

r ) =
i=k

∑
i=1

(ri − r̂i(t, xri , θx
r ))

2 (31)

Thus, this DEM method uses an implementation of the prediction error method philosophy [60].
In comparison to methods using the known predictor equation, e.g., [61], which only predicts one
step ahead based on the previous measurement, the DEM method can predict the speed profile for the
whole time range based on θx

d and βd. Furthermore, the equations of motion need no linearisation,
which often is the case (e.g., [62,63]), and no direct accelerations need to be used. The extended Kalman
filter of the IMU does use these accelerations to calculate its speeds, so they are implicitly nested in the
cost functions.

3.4. Model Structure Comparison and Selection

Section 3.4.1 offers the comparison potential for the surge identification results with external
data sets from a CFD study and an empirical approach. Afterwards, Section 3.4.2 briefly lists the
comparison possibilities solely using the data of this study.

3.4.1. Comparisons with External Data

Peeters et al. [20] applied CFD to investigate the surge resistance of the Cogge. Accordingly,
they simulated its hydrodynamic behaviour at five surge speeds, u ∈ [0.2, 0.4, 0.6, 0.8, 1.0]m

s , with the
OpenFOAM [64] software, using the volume of fluid approach [65] and a k−ω turbulence model [66].
In order to verify their modelling approach, they first conducted the same methodology on a scale
model KVLCC2 hull for which towing tank data were present [67]. For this vessel, six speed simulations
in the range of u = 0.944 to 1.283 m

s resulted in a maximal error of 1.55% compared with the towing
tank data. To examine their spatial grid convergence, they used only two grids which resulted in a
grid convergence index (GCI) estimation [68] for their coarser grid of around 7%, which depends on
the applied safety factor and assumed grid convergence. This GCI suggests an error band around
the asymptotic value of the simulations, in which the current solution lies. The calculations for the
Cogge were done on a finer grid refinement compared to this coarser grid for the KVLCC2 hull. Hence,
perhaps it might be assumed that its GCI would lie in the same order of magnitude.
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Figure 6a shows the relative pressure field of the water surface around the Cogge, which was
longitudinally cut in the middle, had a draft of TCFD = 0.23 m, and had a simulated speed of
u = 1.0 m

s . For the same configurations, Figure 6b depicts the water speed and streamlines for
a longitudinal section of water at the middle of the vessel, i.e., at the top of Figure 6a. Figure 6b
demonstrates that, during the initial design phase, the steering-grid thruster at the bow protruded
the vessel hull. The physical Cogge has no such protrusion, since its thrusters are fully embedded.
In addition, these simulations were done with a total vessel height of 0.35 m, whereas the final hull
had a height of approximately 0.43 m, if sensor extensions were neglected. Bearing these assumptions
and discrepancies in mind, the CFD calculations resulted in the following second order approximation
of the surge damping forces:

DCFD(u) = 22.12u2 + 0.10u (32)

(a)
(b)

Figure 6. CFD results with u = 1.0 m
s , reproduced from [20] with permission from IEEE, 2020:

(a) relative pressure field on the water’s surface, and (b) speed and streamlines for a longitudinal
section of the water at the bow.

Kristensen et al. [21] extensively reported on an empirical approach based on the ITTC-1957
method [69] to estimate the damping forces of a vessel. Accordingly, the total resistance coefficient CT
can be approximated by (33), with RT being the total resistance, S the wetted surface, and the following
coefficients: CF the frictional resistance, CA the incremental resistance, CAA air resistance, and CR the
residual resistance. Applying the method from Kristensen et al. [21] the following estimations and
calculations were made: (i) S according to (34), where ∇ denotes the displacement, (ii) CF by (35),
where Re represents the Reynolds number and ν the kinematic viscosity, (iii) CA = 0.0004, given that
the hull was not produced according to towing tank standards, and its surface roughness is more in
line with larger vessels, (iv) CAA = 0.00007 given that the vessel has plenty of extensions on its deck,
and finally (v) for the estimation of CR, [70] provided diagrams based on the length-displacement
ratio Md, prismatic coefficient CP where CM denotes the midship coefficient, and the Froude number
Fr—see (36) for their definitions. This diagram estimation, CRd , should be corrected for several factors,
∑ CRcorr : the position of the centre of buoyancy, hull shape and form, bulbous bow shapes, and the B

T
ratio—see (37). Based on Appendix I from [21], CRd = 0.001, and only a correction for B

T was added by
the following equation: CR

corr, B
T
= 0.16( B

T − 2.5) × 10−3.

CT = CF + CA + CAA + CR =
RT

0.5ρSu2 (33)

S = 0.99(
∇
T

+ 1.9LwlT), ∇ =
M
ρ

(34)



J. Mar. Sci. Eng. 2020, 8, 889 14 of 30

CF =
0.0075

(log(Re)− 2)2 , Re =
uLwl

ν
(35)

Md =
Lwl

∇1/3 , CP =
CB
CM

, Fr =
u√
gLwl

(36)

CR = CRd + ∑ CRcorr (37)

Table 4 lists the additional measured, calculated, or estimated parameters of the geometry of
the Cogge. The measured draft of 0.22 m would equal a vessel weight of 623 kg, and vice versa,
the measured weight of 590 kg would generate a draft of 0.21 m. The latter weight and draft have
been used for the calculations in this study. The geometry of the Cogge, with a CB = 0.95, lies outside
the boundaries of some parts of the empirical method of Kristensen et al. [21]. Consequently, it is
not straightforward to read, or extrapolate, the right CRd from the diagrams, or to apply all these
suggested CR corrections; hence, only the B

T correction was added. Considering these limitations, made
assumptions, and the neglected additional corrections, the predicted damping forces by this empirical
method can thus be reasonably assumed to serve as an underestimation of the actual damping forces.
Calculating RT via (33) with u = 1.0 m

s , ρ = 997 kg
m3 , ν = 1.15 × 10−6 m2

s was used to define (38) which
provides an under limit for the surge damping forces of the Cogge.

DEmp(u) = 11.82u2 (38)

Table 4. Measured, calculated, or estimated parameters of the Cogge.

Parameter Symbol Measured Calculated Estimated Units

Draft T 0.22 ± 0.02 0.21 – [m]
Length waterline Lwl 4.75± 0.02 – – [m]
Mass m 590 ± 10 623 – [kg]
Midship section coefficient CM – – 0.99 [21] [-]
Prismatic coefficient CP – 0.96 – [-]

3.4.2. Comparisons Based on Experimental Data of This Study

In addition to the two external data comparisons of Section 3.4.1, this section briefly handles three
approaches to compare the model structures in this data, based solely on the present experimental data.
First, one can use both identification methods of Section 3.3 for the same model structures and see
whether both methods independently achieve similar results, which might hint at a good underlying
model structure. Second, one can compare the final cost of (24) between model structures for an
identification method. Note that one should not compare these costs between identification methods,
given their different cost function declarations. Third, for both identification methods, all the data have
been split into a verification and a validation set. The former groups all the training missions, whereas
the latter gathers the missions which were not used during the identification procedure. Table 5 lists
these manually selected validation missions. These missions were chosen to be the missions with the
highest initial conditions, i.e., vessel speeds. Accordingly, we aimed to offer a robust test set of data to
investigate the model structures and identification methods of this study. This selection should also
increase the performance of the FBM, which is more sensitive to these start conditions.

Table 5. Manually chosen validation missions.

Surge Sway Yaw

bow–ramp–m2, bow–step–m1,
stern–ramp–m1, stern–stairs–m1,
dual–ramp–m2, dual–stairs–m2

left–ramp–m2,
left–stairs–m2,
right–step–m2

cw–ramp–m1,
cw–step–m2,
ccw-stairs–m1
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4. Results

Sections 4.1–4.3 respectively discuss the results for the surge, sway, and yaw motion models.
Each section starts with plotting experimental data, continues with the identification and comparison
of their model structures, and ends with a suggested model selection.

4.1. Results of Surge Motion Models

4.1.1. Exemplary Data Surge Missions

Figure 7 summarises the relevant measured data, which were processed according to Section 3.2.2,
from the first-step mission with both thrusters on. Figure 7a reveals that the measured nb and ns

overshot before they reached their requested values. This behaviour offers a richer data set, and can
also be noted in the measured u̇. Figure 7b,c confirms that the sway speeds remained small compared
to the surge speeds, and that the heading did not change much during the mission.
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Figure 7. Data fetched during the first surge dual step mission: (a) surge speed and acceleration,
(b) sway speed and acceleration, and (c) heading and yaw-rate.

4.1.2. Surge Model Structures’ Identification and Comparison

The surge motion submode experiments enabled data to be recorded where the thrusters did not
cooperate. These independent operation modes, in combination with the dual modes, might offer the
most versatile data sets in this study. For this reason, all the surge models,M(θx

u), have been identified
by both the FMB and DEM once using physical boundaries on the thruster parameters, and once
with unbounded thruster coefficients, denoted by the superscripts B and U respectively. For both the
bounded and unbounded training runs, the initial guesses T0,b

nν0 = T0,b
nnν0 = T0,s

nν0 = T0,s
nnν0 = 0. The initial

guesses for T0,b
nn0 = 13.7

(1500)2
N

rpm2 and T0,s
nn0 = 135

(1545)2
N

rpm2 were calculated based on the towing tank
data by assuming a purely quadratic fit to the data points at the highest measured propeller speeds,
see Figure A1. For the unbounded training, T0,b

nν , T0,b
nnν, T0,s

nν , T0,s
nnν ∈ [0,−∞], and T0,b

nn , T0,s
nn ∈ [0,+∞].

For the bounded training T0,b
nn ∈ [0.85× T0,b

nn0 , 1.15× T0,b
nn0 ], and T0,s

nn ∈ [0.25× T0,s
nn0 , 1.10× T0,s

nn0 ]. These
boundaries aim to: (i) take into account the data uncertainty of both thrusters [22], (ii) allow some
slack, given that higher rotational speeds were used compared to the towing tank data and the
steering grid was now inside a hull, see Figure A1, and (iii) investigate the installed flow straightener,
see [3], in the stern thruster which was not installed during the towing tank experiments. Finally,
the T0,b

nν , T0,b
nnu, T0,s

nν , T0,s
nnu had an upper limit of zero, and an lower limit which would induce a thrust

deduction the size of the available thrust which was taken to be 85% of the initial guess. More precisely,
these lower limits were calculated using the following data of two independent step missions: nb =

2700 rpm, u = 1.2 m
s for the bow, and ns = 1400 rpm, u = 0.8 m

s for the stern.
The initial guesses and the boundaries for the added mass and damping models stayed the same

throughout all model structures for both the bounded and unbounded methods. The initial guess of
Xu̇ = 35.4 Ns2

m equalled the upper limit of (3). To potentially compensate for the weight measurement
accuracy and the high CB of the Cogge, this added mass received the following training boundaries
Xu̇ ∈ [25, 75]. The present damping parameters received an initial value of seven and the training
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limits Xuuu, Xuu, Xu ∈ [0, 100]. Evidently, if a damping or thruster parameter was not in θx
u it was not

used during its model fit.
Table 6 summarises the residuals of the bounded and unbounded FBM and DEM cost functions

for all the surge model structures, i.e., (25) and (29) for x ∈ [a, · · · , i]. Table 7 zooms in on the
DEMB by listing its identified coefficients. The coefficients for DEMU , FBMB, and FBMU , can be
respectively found in the Appendices Tables A1–A3. Based on these identified coefficients, Figure 8
plots the predicted speed profiles, simulated by the differential equations, for all the model structures
with a quadratic damping model, i.e., M(θb

u), M(θe
u), and M(θh

u), for three validation and three
verification cases. The bias term for each mission was determined by retraining (25) or (29) for only one
mission using the identified coefficients and only allowing βuI to vary. For both the validation and the
verification missions, the FBMB seems to better capture the data compared to its unbounded alternative.
For the bounded and unbounded DEM, there seems to be no significant difference, which can also
be noted by the final costs of Table 6. In general, if we judge the model structures on their ability to
capture the shape of the data sets, the speed-independent thruster model,M(θe

u), looks to perform
the worst, which Table 6 might be confirming, given that this model structure consistently has a higher
final cost compared toM(θb

u) andM(θh
u) for all the listed identification approaches.

Table 6. Final costs for the surge identification methods.

θa
u θb

u θc
u θd

u θe
u θ

f
u θ

g
u θh

u θi
u

FBMB 44,306.46 44,460.31 50,313.20 79,170.60 80,628.91 121,466.91 59,083.96 59,675.91 63,849.69
FBMU 43,361.09 43,361.09 44,946.84 144,849.19 85,623.04 228,775.01 59,083.96 45,0793.14 63,572.62
DEMB 13.69 14.36 18.25 35.64 45.28 92.83 19.13 20.77 23.67
DEMU 13.69 14.24 15.31 36.19 45.33 92.83 19.14 20.79 23.69

Table 7. Identified surge model coefficients for DEMB.

θa
u θb

u θc
u θd

u θe
u θ

f
u θ

g
u θh

u θi
u

cost 13.7 14.4 18.2 35.6 45.3 92.8 19.1 20.8 23.7
Xu̇ 25.7 25.0 25.0 75.0 75.0 58.6 30.5 39.8 27.7
Xuuu 8.11 0.00 0.00 25.0 0.00 0.00 12.8 0.00 0.00
Xuu 0.00 11.0 0.00 0.00 36.3 0.00 0.00 13.6 0.00
Xu 14.7 10.8 19.0 15.9 3.77 39.3 17.6 14.0 22.9
T0,b

nn 6.92 × 10−6 7.00 × 10−6 7.00 × 10−6 6.03 × 10−6 6.02 × 10−6 5.42 × 10−6 5.50 × 10−6 6.21 × 10−6 6.99 × 10−6

T0,s
nn 2.62 × 10−5 2.66 × 10−5 2.75 × 10−5 1.69 × 10−5 1.62 × 10−5 1.68 × 10−5 2.58 × 10−5 2.71 × 10−5 2.81 × 10−5

T0,b
nν −7.02 × 10−3 −7.54 × 10−3 −8.79 × 10−3 0.00 0.00 0.00 0.00 0.00 0.00

T0,s
nν −2.67 × 10−2 −2.78 × 10−2 −3.00 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T0,b
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −3.55 × 10−7 −1.42 × 10−6 −2.98 × 10−6

T0,s
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −1.52 × 10−5 −1.70 × 10−5 −1.89 × 10−5
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Figure 8. Comparison of bounded and unbounded FBM and DEM identification methods for the
different thruster models with quadratic damping models: (a–d) validation mission: bow–step–m1;
(e–h) validation mission: stern–ramp–m1; (i–l) validation mission: dual–stairs–m2; (m–p) verification
mission: bow–step–m2; (q–t) verification mission: stern–ramp–m2; and (u–x) verification mission:
dual–stairs–m1.
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4.1.3. Surge Model Selection

The identification results of Section 4.1.2 can also be compared with the external data from
Section 3.4.1. Accordingly, Figure 9a–d compares the identified cubic damping models for the three
different thruster models, i.e.,M(θa

u),M(θd
u), andM(θ

g
u), with the curves defined by (32) and (38).

The damping models for the speed-independent thruster model seem to be consistently too large for
both the bounded and unbounded FBMs and DEMs. Figure 9e–h similarly contrasts the identified
bollard thrust forces of the bow thruster together with its experimental data. Note that this comparison
was not made for the stern thruster due to its installed flow straightener which would make it an
unfair benchmark. Evidently, the bollard thrust forces for the bounded FBM and DEM stay close to the
experimental data, however, both unbounded methods do stay within a close range too, which might
hint at a good model structure and/or identification methodology. Finally, given that the conventional
thruster model seems to perform well according to Table 6 and Figures 8 and 9, in both DEMB and
DEMU , Figure 10 illustrates the three different damping models for this thruster model. In particular,
Figure 10a–c shows the simulated the model responses for the three validation cases, Figure 10d
compares the damping forces with the curves from (32) and (38), and Figure 10e,f predicts the bollard
thruster forces.
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Figure 9. Comparison of bounded and unbounded FBM and DEM surge identification methods for
the cubic damping models: (a–d) predicted damping models in comparison with Peeters et al. [20],
i.e., (32) and Kristensen et al. [21]—(38); and (e–h) predicted bollard pull forces of the bow thruster in
comparison with the towing tank data from Peeters et al. [22].
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Figure 10. Comparisons of different damping models for the conventional thruster model, identified
with the DEMB: (a–c) the three longitudinal validation missions, (d) the predicted damping forces
compared with Peeters et al. [20], i.e., (32), and Kristensen et al. [21]—(38); (e) predicted bollard thrust
bow compared with towing tank data from Peeters et al. [22], and (f) predicted bollard stern thrust
with installed flow straightener; hence the towing tank data was not plotted.

4.2. Results of Sway Motion Models

4.2.1. Exemplary Data Sway Missions

Figure 11 outlines the relevant captured data, which were processed according to Section 3.2.2,
from the first ramp mission where the vessel swayed to the right. This figure displays that both
propellers have a lower limit on their rotational speed, hence the straight parts in the ramp profiles of
the propeller speeds. Figure 11c reveals that although the heading oscillated a bit during the mission
the vessel stayed rather straight. Finally, Figure 11a shows a rather small surge speed compared to the
sway speed of Figure 11b.
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Figure 11. Data fetched during the first transversal right ramp mission: (a) surge speed and acceleration,
(b) sway speed and acceleration, and (c) heading and yaw-rate.
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4.2.2. Sway Model Structures’ Identification and Comparison

Considering the good DEMB performance in Section 4.1, these results for the sway model
identifications will be exclusively discussed here. The determination of the initial parameter
estimations and their training boundaries happened similarly to the surge model approach. Thus,
according to (4), the added mass Yv̇ = 383 Ns2

m , with the limits Yv̇ ∈ [373, 583]. The damping terms
started at 500 and had the boundaries of Yvvv, Yvv, Yv ∈ [0, 1.0× 104]. Taking into consideration that
(i) the surge experiments had the most versatile data sets, (ii) Section 3.1.4 assumed the surge or
sway wake effect differences to be negligible, and (iii) both the bounded and unbounded FBMs and
DEMs identified speed-dependent thruster coefficients in the same order of magnitude, the start
estimations for the coefficients, T90,b

nν0 , T90,b
nnν0 , andT90,s

nν0 , T90,s
nnν0 , were selected to equal the values of their

DEMb identified T(0◦) equivalents for surge; see Table 7. In order to consider the angle dependency of
the thrust deduction (see Figure A1), t, lower and upper limits of 90% and 110% of their initial value
were given to these parameters. The initial guesses for T90,b

nn0 = 14.52
(1500)2

N
rpm2 and T90,s

nn0 = 26.15
(617)2

N
rpm2 were

calculated based on the towing tank data by assuming a purely quadratic fit to the highest data points
closest to the highest propeller speed of the experiments; see Figure A1. Here too, upper and lower
limits of 90% and 110% were implemented for both thrusters. These boundaries aimed to: (i) take
into account the data uncertainty of both thrusters [22], and (ii) allow some slack, given that higher
rotational speeds were used compared to the towing tank data and the steering grid was now inside a
hull, see Figure A1.

Table 8 states the DEMB identified coefficients forM(θx
v). Thereupon, Figure 12 predicts the sway

speed profiles for three validation and three verification missions for the quadratic damping models,
i.e.,M(θb

v),M(θe
v), andM(θh

v). The bias terms for each missions were determined similar to the
surge speed predictions of Section 4.1.2, and the negative initial sway speeds of two of the validation
missions were taken into account in their differential equations. Both Table 8 and Figure 12 indicate
minor differences between the different model structures.
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Figure 12. Comparison of different thruster models using the quadratic damping model: (a–c) the
validation missions and (d–f) the verification missions.
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Table 8. Identified sway model coefficients for the bounded DEM.

θa
v θb

v θc
v θd

v θe
v θ

f
v θ

g
v θh

v θi
v

cost 10.1 10.6 12.8 10.4 11.0 14.1 10.4 10.8 12.6
Yv̇ 430.26 440.51 583.00 569.82 583.00 583.00 547.97 545.61 583.00
Yvvv 1424.59 0.00 0.00 1732.56 0.00 0.00 1663.00 0.00 0.00
Yvv 0.00 557.57 0.00 0.00 682.70 0.00 0.00 616.06 0.00
Yv 56.43.7 1.70 173.44 68.62 3.26 226.31 67.87 9.1 195.21
T90,b

nn 5.81 × 10−6 5.81 × 10−6 5.81 × 10−6 5.81 × 10−6 5.81 × 10−6 5.81 × 10−6 5.81 × 10−6 5.81 × 10−6 5.81 × 10−6

T90,s
nn 7.56 × 10−5 7.56 × 10−5 7.56 × 10−5 7.56 × 10−5 7.56 × 10−5 7.56 × 10−5 7.56 × 10−5 7.56 × 10−5 7.56 × 10−5

T90,b
nν −7.72 × 10−3 −8.29 × 10−3 −9.67 × 10−3 0.00 0.00 0.00 0.00 0.00 0.00

T90,s
nν −2.40 × 10−2 −2.50 × 10−2 −3.30 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T90,b
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −3.91 × 10−07 −1.56 × 10−6 −3.28 × 10−6

T90,s
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −1.37 × 10−5 −1.53 × 10−5 −1.70 × 10−5

4.2.3. Sway Model Selection

With the currently available training data, no model structure seems to outperform its competitors.
Figure 13a–c depicts the sway speed predictions for three verification missions for the different
damping models using the conventional thruster model. These figures indicate little differences
between the linear, quadratic, or cubic damping models. Figure 13d predicts these damping forces,
and Figure 13e,f evaluates the bollard pull forces for the bow and stern thruster in comparison with
their towing tank data. 0 10 20 30 40 50 60 70 80
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Figure 13. Comparisons of different damping models for the conventional thruster model, identified
with the bounded DEM: (a–c) the three verification missions, (d) the predicted damping forces,
and (e,f) respectively show the identified bollard thrusts of the bow and stern thrusters compared with
their towing tank data from Peeters et al. [22].

4.3. Results of Yaw Motion Models

4.3.1. Exemplary Data Yaw Missions

Figure 14 gives an overview of the relevant captured data, which were processed according to
Section 3.2.2, from both stairs missions where the Cogge rotated counter clockwise. The trajectory
plots of Figure 14b,d demonstrate that there was less wind during the first run of the experiments
compared with the second run, given that for the same inputs, the trajectory of the Cogge during m2

was more spread out in the diagonal XY-direction. Nevertheless, Figure 14a,c illustrates that similar
yaw-rates were achieved during both missions.
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Figure 14. Data fetched during the first and second rotation counter-clockwise stairs missions:
(a,c) heading and yaw rate, and (b,d) position of the stern GNSS antenna.

4.3.2. Yaw Model Structures’ Identification and Comparison

Since the yaw experiments used the same thruster angles and propeller speed configurations
as the sway experiments, the exact same initial conditions and parameter boundaries were used for
these thruster coefficients. The yaw moment of inertia estimation, Iz = m(0.2536L)2 = 878 kgm2,
followed the approach documented in [18,71]. The initial guess Nṙ = 845 Nms2

rad , based on (5), received
the boundaries Nṙ ∈ [845, 1245]. In addition, all the damping parameters started at 500 and were
bounded to Nrrr, Nrr, Nr ∈ [0, 1.0× 1004]. Table 9 lists the coefficients forM(θx

r ), identified by the
DEMB. Subsequently, Figure 15 shows simulations of the yaw rates for three validation and three
verification missions for the quadratic damping models, i.e.,M(θb

r ),M(θe
r), andM(θh

r ). Note that
the yaw missions have no bias terms. In the same vein as the sway results of Section 4.2.2, both Table 9
and Figure 15 suggest minor differences between the different yaw model structures.0 10 20 30 40 50 60 70 80
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Figure 15. Comparison of different thruster models for the quadratic damping model: (a–c) the
validation missions and (d–f) the verification missions.
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Table 9. Identified yaw model coefficients for the bounded DEM.

θa
r θb

r θc
r θd

r θe
r θ

f
r θ

g
r θh

r θi
r

cost 2.64 2.90 7.41 2.4 2.67 10.72 2.39 2.68 8.14
Nṙ 845.00 845.00 845.00 887.07 877.95 969.59 845.00 845.00 845.00
Nrrr 4158.99 0.00 0.00 5278.05 0.00 0.00 4873.16 0.00 0.00
Nrr 0.00 1067.49 0.00 0.00 1282.86 0.00 0.00 1218.23 0.00
Nr 153.98 97.57 252.29 175.66 102.54 342.74 173.49 108.28 292.55
T90,b

nn 7.10 × 10−6 7.10 × 10−6 5.81 × 10−6 7.10 × 10−6 7.10 × 10−6 5.81 × 10−6 7.10 × 10−6 7.10 × 10−6 5.81 × 10−6

T90,s
nn 6.18 × 10−5 6.22 × 10−5 7.56 × 10−5 6.18 × 10−5 6.18 × 10−5 7.56 × 10−5 6.18 × 10−5 6.18 × 10−5 7.27 × 10−5

T90,b
nν −6.32 × 10−3 −6.79 × 10−3 −9.67 × 10−3 0.00 0.00 0.00 0.00 0.00 0.00

T90,s
nν −2.40 × 10−2 −2.50 × 10−2 −3.30 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T90,b
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −3.20 × 10−7 −1.28 × 10−6 −3.28 × 10−6

T90,s
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −1.67 × 10−5 −1.87 × 10−5 −2.08 × 10−5

4.3.3. Yaw Model Selection

Comparable with Section 4.2.3, no M(θx
r ) seems to capture the yaw-rate data better than

its alternatives. Figure 16a–c compares the conventional thruster model for the three damping
models on the three validation missions. These comparisons indicate a better curve fitting for the
non-linear damping models. Finally, Figure 16d illustrates the different predicted damping moments,
and Figure 16e,f plots the computed bollard thrust forces for the bow and stern thruster.0 10 20 30 40 50 60 70 80
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Figure 16. Comparisons of different damping models for the conventional thruster model, identified
with the bounded DEM: (a–c) the three validation missions, (d) the predicted damping moments,
and (e,f) respectively show the identified bollard thrusts of the bow and stern thruster compared with
their towing tank data from Peeters et al. [22].

5. Discussion

When investigating the results of Section 4, the modelling assumptions and limitations
of Section 3.1.1 need to be kept in mind. The provided exemplary mission data sets—see
Sections 4.1.1, 4.2.1, and 4.3.1—already aided to judge the adequacy of these assumptions. In addition,
Figure 17 sheds more light on the neglected degrees of freedom, i.e., roll, pitch, and heave, for three-step
missions of the studied motions of surge, sway, and yaw. This figure reveals that the pitch angle did
not vary much for these missions. The roll angle varied more compared to this pitch angle, and even
changed almost 3° during the rotational manoeuvre. The plotted heave represents the motions of
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the IMU which was positioned approximately 1.3 m behind the middle of the vessel [27]. Evidently,
these neglected degrees of freedom do impact the hydrodynamics of the vessel.
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Figure 17. Roll, pitch, and heave for a three-step mission in the three different motion modes:
(a) dual–step–m1, (b) right–step–m1, and (c) ccw–stairs–m1.

Bearing the just-mentioned assumptions and limitations in mind, the conventional thruster
models, i.e.,M(θa

u),M(θb
u), andM(θc

u), seem to outperform their alternative thruster models for
the surge motion according to: (i) their cost function results for both the FBM and the DEM—see
Table 6; (ii) their predictions of both validation and verification missions—see Figure 8; and (iii) their
comparison with the external CFD and empirical methods—see Figures 9 and 10. This combination of
evidence might hint that these model structures best capture the occurring hydrodynamics. However,
for the yaw and sway motion, there seems to be no real significant performance difference between
the different thruster models. Accordingly, Figure 18 attempts to provide more insights into why this
might be the case, by plotting the longitudinal or transversal pseudo-advanced speed ratios for surge,
sway, and yaw step missions. The vessel speed was taken as advance speed to calculate these ratios;
however, the propeller itself does not move in this speed direction, hence the name pseudo-advanced
speed ratio. It can be seen that both thrusters achieved higher pseudo-advanced speed ratios in surge
than in sway or yaw motion.
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Figure 18. Pseudo longitudinal, Ju, or transversal, Jv, advance speed ratios, at both thrusters for
a three-step mission in the three different motion modes: (a) dual–step–m1, (b) right–step–m1,
and (c) ccw–stairs–m1.

Whether or not the conventional thruster models of this study capture the conventional advance
speed effect of a normal propeller configuration might not be determinable with the current data.
It might also be the case that this conventional model structure succeeds in approximating another
physical phenomena. Nevertheless, it can be concluded that both speed-dependent thruster models
of this study, i.e., (17) and (20), perform better than the speed-independent thruster model, (19),
for the surge missions, which did induce higher vessel speeds compared to the sway and yaw cases.
For the latter two motion cases, the simpler bollard thrust model (19) seems to suffice to capture
the vessel behaviour. Be noted that, running the sway and yaw models without limitations on their
speed-dependent thruster parameters, i.e., T90,b/s

nν , T90,b/s
nnν ∈ [0,−∞], resulted in similar identification

results where the speed-dependent thrust losses became assigned to only one thruster. This assignment
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might have been caused due to the fact that both propellers received the same shapes of input signals.
Future work could add the no-yaw or no-sway constraints to the cost functions of these sway or yaw
modes, which might reduce or avoid this identification effect. Finally, for all motions, the damping
forces or moments seem to be capturable with only two parameters: a combination of a linear and
a quadratic or cubic term. Consequently, it was demonstrated that a variety of model structures can
capture the decoupled hydrodynamic behaviour of the Cogge. Evidently, the selection of a model
structure depends on the envisaged requirements of its end user.

Future work could also focus on investigating the coupled equations of motion, where the
addition of the roll motion might be beneficial, considering the data of Figure 17. Likewise,
the propeller dynamics [39] or the potential thruster-thruster interactions [72] could be investigated.
These interactions might be present when the outflow of the steering-grid points towards the stern.
Adding a wind sensor and explicitly modelling this disturbance should also offer a better performance
than the currently implemented bias terms which were included to capture these effects. It should also
be noted that, based on Figure 10, the installed flow straightener seems to have significantly decreased
the thrust force of the four-channel thruster. Hence, it might be better to replace this configuration
with a rudder in the future. Finally, it should be pointed out that the identification methods used need
not be restricted to the suggested model structures or the utilised vessel and its actuators. For example,
a similar approach could be applied to the real-size Watertruck+ vessels, which would eliminate the
scale effects [73] which would occur when one extrapolates the presently identified models. It is
noteworthy that the small scale factor of eight should help in decreasing these scale effects [74].

6. Conclusions

This study detailed the geometry of a scale model of a self-propelled CEMT-I barge which houses
a novel actuation system configuration consisting of two fully-rotatable and embedded thrusters.
Thereupon, this work derived several model structures for the decoupled equations of motion in surge,
sway, and yaw, with a focus on the thruster and damping models. The supplementary materials hold all
the outdoor experimental data captured to identify and compare these model structures. Accordingly,
this work discussed the onboard sensors which fetched these data sets, and detailed the implemented
data post-processing. Furthermore, this work offered two identification methods—one based on
the instantaneous force balance, and the other one integrated the differential equations of motion.
Both methods were used to identify the derived motion models but they could also be used to
determine other manoeuvring models. The identified model structures for the surge motion were
compared with an external CFD study and with an empirical approach. Subsequently, the conventional
thruster model seems to be a good model structure for the surge motion. Speed-independent thrust
models seem to suffice for the yaw and sway motions. Finally, cubic or quadratic models seemed to
suit to predict the damping forces or moments for surge, sway, and yaw.

Supplementary Materials: S1: Experimental Data: All the experimental data of this study are available online at:
http://www.mdpi.com/2077-1312/8/11/889/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

CCW Counter Clockwise
CFD Computational Fluid Dynamics
CW Clockwise
DEM Differential Equation Method
FBM Force Balance Method
GCI Grid Convergence Index
GNSS Global Navigation Satellite System
I-PC Industrial Computer
IMU Inertial Measurement Unit
MOOS Mission Oriented Operating Suite
PLC Programmable Logic Controller
PPS Pulse Per Second
RTK Real Time Kinematic
SP-CEMT-I Self-Propelled CEMT Type I barge
UTC Coordinated Universal Time
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Figure A1. Experimental bollard pull thruster data: (a) four-channel stern thruster in longitudinal
direction, Dx

s (α
i
s) (b) four-channel stern thruster in transversal direction, Dy

s (α
i
s), and (c) steering-grid

bow thruster, Db(α
i
b). Figures reproduced from [22], with permission from MDPI, 2020. Note that the

stern thruster data were fetched with this thruster installed in half a ship hull, whereas the steering-grid
was tested as a stand-alone device. Consequently, it may be assumed that the full—internal and
external—angle-dependent thrust deductions were captured for the stern thruster, whereas only the,
probably dominant, internal angle-dependent deductions were measured for the bow thruster; see [22].
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Appendix B

Table A1. Identified surge model coefficients for the DEMu.

θa
u θb

u θc
u θd

u θe
u θ

f
u θ

g
u θh

u θi
u

cost 13.7 14.2 15.3 36.2 45.3 92.8 19.1 20.8 23.7
Xu̇ 26.60 35.41 75.00 75.00 25.00 62.60 43.46 74.96 56.80
Xuuu 8.30 0.00 0.00 25.85 0.00 0.00 13.14 0.00 0.00
Xuu 0.00 9.01 0.00 0.00 33.08 0.00 0.00 13.45 0.00
Xu 14.7 11.9 18.2 16.0 3.60 39.5 18.0 15.3 24.0
T0,b

nn 6.88 × 10−6 7.53 × 10−6 9.03 × 10−6 6.28 × 10−6 5.49 × 10−6 5.46 × 10−6 5.55 × 10−6 6.70 × 10−6 7.29 × 10−6

T0,s
nn 2.62 × 10−5 2.70 × 10−5 2.93 × 10−5 1.67 × 10−5 1.48 × 10−5 1.69 × 10−5 2.63 × 10−5 2.86 × 10−5 2.95 × 10−5

T0,b
nν −6.84 × 10−3 −9.22 × 10−3 −1.41 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T0,s
nν −2.67 × 10−2 -2.86 × 10−2 −3.23 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T0,b
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −2.80 × 10−07 −1.71 × 10−6 −3.07 × 10−6

T0,s
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −1.56 × 10−5 −1.81 × 10−5 −1.98 × 10−5

Table A2. Identified surge model coefficients for the FBMB.

θa
u θb

u θc
u θd

u θe
u θ

f
u θ

g
u θh

u θi
u

cost 44,306.5 44,460.3 50,313.2 79,170.6 80,628.9 121,466.91 59,084.0 59,675.91 63,849.7
Xu̇ 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00
Xuuu 4.42 0.00 0.00 16.60 0.00 0.00 9.36 0.00 0.00
Xuu 4.97 11.98 0.00 5.18 31.12 0.00 0.00 13.46 0.00
Xu 9.43 6.52 15.35 10.10 0.00 31.07 14.22 8.92 19.04
T0,b

nn 7.00 × 10−6 7.00 × 10−6 7.00 × 10−6 5.18 × 10−6 5.18 × 10−6 5.18 × 10−6 6.27 × 10−6 6.50 × 10−6 7.00 × 10−6

T0,s
nn 2.41 × 10−5 2.41 × 10−5 2.54 × 10−5 1.47 × 10−5 1.49 × 10−5 1.56 × 10−5 2.37 × 10−5 2.38 × 10−5 2.50 × 10−5

T0,b
nν −8.79 × 10−3 −8.85 × 10−3 −1.02 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T0,s
nν −2.47 × 10−2 −2.51 × 10−2 −2.83 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T0,b
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −2.13 × 10−6 −2.47 × 10−6 −3.54 × 10−6

T0,s
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −1.47 × 10−5 −1.51 × 10−5 −1.66 × 10−5

Table A3. Identified surge model coefficients for the FBMU .

θa
u θb

u θc
u θd

u θe
u θ

f
u θ

g
u θh

u θi
u

cost 43,361.1 43,361.1 44,946.8 144,849.2 85,623.0 228,755.0 59,084.0 450,793.1 63,572.6
Xu̇ 25.00 25.00 25.00 35.45 29.47 35.42 25.0 35.40 25.00
Xuuu 0.00 0.00 0.00 12.58 0.00 0.00 9.36 0.00 0.00
Xuu 8.10 8.10 0.00 13.38 26.78 0.00 0.00 7.00 0.00
Xu 8.63 8.63 13.78 15.68 5.64 18.25 14.22 7.00 18.85
T0,b

nn 7.82 × 10−6 7.82 × 10−6 8.48 × 10−6 7.01 × 10−6 5.32 × 10−6 6.36 × 10−6 6.27 × 10−6 8.96 × 10−6 7.33 × 10−6

T0,s
nn 2.42 × 10−5 2.42 × 10−5 2.47 × 10−5 1.82 × 10−5 1.55 × 10−5 1.12 × 10−5 2.37 × 10−5 5.64 × 10−5 2.48 × 10−5

T0,b
nν −1.17 × 10−2 −1.17 × 10−2 −1.46 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T0,s
nν −2.55 × 10−2 −2.55 × 10−2 −2.73 × 10−2 0.00 0.00 0.00 0.00 0.00 0.00

T0,b
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −2.13 × 10−6 −7.49 × 10−6 −3.88 × 10−6

T0,s
nnν 0.00 0.00 0.00 0.00 0.00 0.00 −1.47 × 10−5 −6.65 × 10−5 −1.63 × 10−5
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